PCC Proteus: Scavenger Transport And Beyond

Tong Meng!
lutuc

ABSTRACT

Many Internet applications need high bandwidth but are not time
sensitive. This motivates a congestion control “scavenger” that
voluntarily yields to higher-priority applications, thus improving
overall user experience. However, the existing scavenger protocol,
LEDBAT, often fails to yield, has performance shortcomings, and
requires a codebase separate from other transport protocols.

We present PCC Proteus, a new congestion controller that can
behave as an effective scavenger or primary protocol. Proteus incor-
porates several novel ideas to ensure that it yields to primary flows
while still obtaining high performance, including using latency devi-
ation as a signal of competition, and techniques for noise tolerance
in dynamic environments. By extending the existing PCC utility
framework, Proteus also allows applications to specify a flexible
utility function that, in addition to scavenger and primary modes,
allows choice of hybrid modes between the two, better capturing
application needs. Extensive emulation and real-world evaluation
show that Proteus is capable of both being a much more effec-
tive scavenger than LEDBAT, and of acting as a high performance
primary protocol. Application-level experiments show Proteus sig-
nificantly improves page load time and DASH video delivery, and
its hybrid mode significantly reduces rebuffering in a bandwidth-
constrained environment.

CCS CONCEPTS

« Networks — Transport protocols.

KEYWORDS
Congestion Control; Scavenger

ACM Reference Format:

Tong Meng, Neta Rozen Schiff, P. Brighten Godfrey, Michael Schapira. 2020.
PCC Proteus: Scavenger Transport And Beyond. In Annual conference of
the ACM Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication (SIG-
COMM °20), August 10-14, 2020, Virtual Event, USA. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3387514.3405891

1 INTRODUCTION

It was a scorching summer. A camel and a zebra embarked on a
desert expedition. The two companions brought a container of wa-
ter, which, being best friends, they decided to share equally during
their journey. Unfortunately, the zebra suffered serious dehydration,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM °20, August 10-14, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7955-7/20/08....$15.00
https://doi.org/10.1145/3387514.3405891

Neta Rozen Schiff> P. Brighten Godftrey!

2Hebrew University of Jerusalem

615

Michael Schapira?

even though the camel could easily have waited until they reached
an oasis to quench its thirst. The moral of the story is that equally
sharing resources is often not optimal when user requirements are
heterogeneous.

The same principle applies to the classic problem of Internet con-
gestion control. Traditional congestion control, dividing bandwidth
equally among flows on a common bottleneck, may result in lower
network-wide utility. For example, in a typical home, Alice may
be watching a high-definition video, while Bob is sleeping at the
same time, having left his device downloading a large volume of
files from a remote-updated Dropbox folder. Ideally, Alice should
enjoy high video quality smoothly as usual, while the Dropbox
download could be delayed by hours without Bob even noticing.
However, thanks to the “fair” transport layer, Alice suffers from
constant video quality degradation.

Among the diverse applications using the network today, there
are many with similarly elastic resource requirements, for at least
some of their flows: software update, online data backup, back-
ground replication of cloud storage (e.g., Dropbox), proactive cache
warmup in CDNs, and aggregation of IoT sensor data for offline an-
alytics, among others. Those applications could occupy bandwidth
that is excessive for their users, and could have been consumed by
more data-intensive applications.

Even those applications that are often time-sensitive sometimes
become elastic. For example, a video client may not need to ur-
gently preload chunks as long as the highest bitrate is smoothly
streamed, or when the client has little free space in its playback
buffer. When a machine learning task is hindered by a slow worker,
receiving its input for its next phase of work may be lower priority.
Likewise, applications with usually-elastic requirements may at
times demand increased priority, e.g., when a Dropbox user specifi-
cally requests to view a file. Standard congestion control protocols
cannot accommodate such context-sensitive priorities.

We claim that a scavenger mode that yields to normal (primary)
flows helps mitigate this problem, by deprioritizing traffic with
elastic requirements. Of course, this approach will not be as close
to optimal as a centralized resource allocator, but its deployability
makes it a practical approach for general-purpose Internet conges-
tion control, i.e., within end-to-end transport. More specifically, a
scavenger has two goals:

(1) Yielding: Minimally impact primary flows on a common bot-
tleneck. That is, flows running traditional transport protocols
should experience throughput, latency, etc., almost as if the
scavenger were not present.

Performance: Actlike a traditional congestion controller when
only scavengers share a bottleneck. For example, competing
scavengers should fairly and fully utilize bandwidth while min-
imizing queueing delay.

@

The main existing scavenger proposal, Low Extra Delay Back-
ground Transport (LEDBAT) [34], tries to defer to high priority

https://doi.org/10.1145/3387514.3405891
https://doi.org/10.1145/3387514.3405891

SIGCOMM ’20, August 10-14, 2020, Virtual Event, USA

flows by never adding more than a target delay in queueing. How-
ever, it is designed mainly as a scavenger against TCP CUBIC [21].
Aswe will see, it is relatively aggressive compared with recently pro-
posed latency-sensitive protocols such as BBR [13] and COPA [8].
When only LEDBAT flows compete, it also has shortcomings: it
gives an advantage to latecomers [32], and as its design is based
on traditional TCP, it inherits problems like lack of tolerance to
random packet loss and poor performance with shallow buffers.
Therefore, LEDBAT falls short of both goals above.

Furthermore, as explained above, a flow may dynamically switch
between scavenger and primary modes. This is hard for LEDBAT,
which, as deployed in Microsoft Windows Server 2019 [7] and
BitTorrent [32], is implemented separately from primary protocols.
Maintaining separate codebases also imposes an increased software
engineering burden, and makes it difficult for improvements in the
implementation of one protocol to benefit another.! We thus add a
third goal:

(3) Flexibility: A single transport protocol framework and code-
base should be able to easily switch between primary mode and
scavenger mode.

We aim to design a congestion control scavenger that meets all
three goals. However, this is challenging. The scavenger needs to
be both conservative (against primary flows) and aggressive (when
alone or among scavengers). It should ideally meet the desired goals
whatever the primary protocol is, and we can no longer assume
that will always be CUBIC: BBR has widespread deployment, and
many research advances are waiting in the wings [8, 16, 17, 42],
mostly latency-aware.

Our solution, PCC Proteus, extends the utility-based approach in
PCC [16, 17] with the following design contributions:

e To achieve our goals of performance and yielding, we build
utility function objectives for both primary (Proteus-P) and
scavenger (Proteus-S) senders. The scavenger utility employs
a penalty based on latency deviation which provides a sensi-
tive signal of competition and is typically not used by primary
flows, allowing Proteus-S to act as a good scavenger even relative
to latency-aware protocols. Our theoretical analyses show that
competing Proteus-P and Proteus-S senders produce a unique
equilibrium, and this equilibrium is fair when all senders use the
same utility function.

o We extend the utility design to support more than two modes of
service, including a hybrid mode, Proteus-H, with a piecewise
utility function that switches between primary and scavenger
modes at an adaptive threshold determined by cross-layer appli-
cation requirements (e.g., maximum bitrate for an online video).
The modular architecture of Proteus allows applications to easily
select modes and fulfills the goal of flexibility.

o To further improve performance in light of Proteus-S’s sensitivity
to latency deviation, we introduce techniques to better respond
to network latency noise (i.e., non-congestion variability in end-
to-end latency associated with the channel rather than with the
senders’ chosen rates) such that the scavenger can achieve robust
performance in highly dynamic environments such as wireless
networks.

! This cost is hard to quantify, but anecdotally, multiple major content providers have
expressed this concern to us.

616

Tong Meng, Neta R. Schiff, Brighten Godfrey, and Michael Schapira

We implement Proteus and evaluate it and LEDBAT along with
many primary protocols (CUBIC, BBR, COPA, and PCC Vivace)
in emulated networks and the live Internet. To the best of our
knowledge, this is the broadest performance test of scavengers
currently available. Our results show that Proteus achieves the
scavenger goals more effectively:

e Yielding: Proteus yields > 90% of bandwidth to competing pri-
mary flows, while LEDBAT may yield less than 50%, particularly
against modern latency-aware protocols like BBR and COPA.
In application-level tests on the live Internet, web pages load
33% faster and DASH video delivery receives 2.5X higher bi-
trate when Proteus, instead of LEDBAT, is scavenging in the
background.

e Performance: When scavengers compete with themselves, Pro-
teus maintains a Jain’s index over 90%, and reaches up to 1.75x
higher than LEDBAT. Proteus needs 32X lower buffer to achieve
90% utilization when running alone.

o Flexibility: The hybrid mode in Proteus delivers up to 11% higher
bitrate for 4K video and 68% lower rebuffering ratio in a video
streaming benchmark.

Our code is available open source [4]. This work does not raise
any ethical issues.

2 PRELIMINARIES AND MOTIVATION
2.1 When Does Scavenging Makes Sense?

There is a rich literature on prioritizing network bandwidth across
flows in ways other than max-min fairness, such as using cen-
tralized knowledge of applications [23] or pricing [11], which are
generally impractical for the present Internet.

In contrast, a scavenger’s prioritization approach is very coarse:
flows that are clearly low priority can voluntarily deprioritize them-
selves. Given that the scavenger may lack incentive to yield for the
sake of another flow, and has no idea of other flows’ true priorities,
when does this make sense? Generally, we believe scavenging will
be effective when (1) the scavenger is so time-insensitive that the
cost is negligible, and (2) the application designer choosing to use a
scavenger has some chance of benefiting, perhaps indirectly.

As an example, a mobile phone manufacturer may choose a
scavenger for automated software updates. The long-running soft-
ware update is unlikely to be significantly delayed by occasional
higher-priority flows like web page loads, and even if it is, the user
is unlikely to notice. The manufacturer benefits because other apps
perform better, providing an improved user experience across the
whole device.

As another example, some large cloud providers offer multi-
ple popular services ranging from cloud storage to video delivery.
Background replication of stored files from the cloud to a particular
device can act as a scavenger with negligible cost. The provider
benefits from improved video quality of experience on the same
device, or on other devices with a shared bottleneck like a home
DSL connection.

We believe there are numerous other use cases following this
pattern. We will explore several in our evaluation.

PCC Proteus: Scavenger Transport And Beyond

2.2 Signaling Scavengers to Yield

Congestion control protocols typically reward and penalize spe-
cific control signals. Different sensitivities to these signals cause
differential aggressiveness among competing protocols. What met-
ric(s) should a scavenger use in order to yield to primary flows? We
consider two approaches.

(1) Same metrics, greater penalty. The scavenger could adopt
the same metrics as the primary protocol(s) of interest, but with a
greater penalty so it is more conservative. For example, a design
in [17] has greater or lesser tolerance for packet loss, for the purpose
of proportional bandwidth allocation among senders. This approach
has several difficulties.

First, metrics chosen by primary protocols generally represent
something very undesirable happening in the network; so if the pri-
mary and scavenger protocols have different sensitivities to these
important metrics, one or the other of them will sacrifice their per-
formance as a good stand-alone congestion controller (violating our
performance goal). For example, the aforementioned proportional
allocation design [17] can cause very high loss in order to acquire
more bandwidth.

Second, this approach assumes the primary and scavenger rely on
the same or similar metrics, which may not be true with a diversity
of primary protocol designs. Whatever its target bandwidth share
is, the aforementioned proportional allocator of [17] can easily
dominate a latency-sensitive sender.

(2) Different metric. Due to the above drawbacks, ideally, a
scavenger would somehow take signals from a different metric than
primary protocols of interest. To gain some insights on the require-
ments for this dedicated metric, we start by analyzing performance
metrics adopted by existing primary protocols.

As a simplistic example, suppose a scavenger is intended to
coexist with a latency-based primary protocol like PCC Vivace or
COPA. The scavenger could use packet loss as a different metric,
but the loss signal will come too late, if ever, since Vivace and COPA
avoid filling queues.

LEDBAT’s congestion signal is RTT exceeding a threshold,
e.g., 100 ms above the minimum RTT. This signal often comes
earlier than loss, but still fails for primary protocols that react to
even earlier signals — as will occur with Vivace’s and COPA’s latency
sensitivity. Even with CUBIC as primary, it will fail if a moderate-
size buffer causes loss before latency inflation hits 100 ms.

Another interesting signal is RTT gradient, used by Timely [28]
and PCC Vivace [17]. For example, Vivace calculates the gradient
of recently received RTT samples, and avoids inflation by penal-
izing positive gradient. This will occur earlier than many other
signals, but being in use by certain protocols and having similar
latency-awareness to a protocol like COPA, it may not be appropri-
ate for a scavenger. Furthermore, there is a chance that the gradient
calculation (e.g., linear regression in [17]) may average out some
transient congestion-related RTT fluctuation. In an extreme case,
RTT gradient may stay close to zero while the bottleneck buffer is
repeatedly inflated and deflated by other concurrent senders.

To sum up, we can’t hope to guarantee that a scavenger is robust
to every conceivable primary protocol. But ideally, its signal of
competition should be typically not used by primary protocols, and
should provide as early as possible a signal of competing senders.

617

SIGCOMM ’20, August 10-14, 2020, Virtual Event, USA

- Applications II

Rate Control
Module

Control Storage

Re:

uirements

Utility Uil
Calculator T (L
¢ Utility
=)
A
C Control
= | N R I S e Sh;;di‘"g. Algorithm
o Metric Collection e
Utility Packet Level Events
Module

NIC

Figure 1: Proteus congestion control architecture

2.3

The Internet congestion control domain accumulates massive code-
bases after decades of effort, ranging from traditional kernel mod-
ules to recent user-space implementations (e.g., QUIC [25]). For
example, the main existing scavenger protocol, LEDBAT, uses a
different implementation from primary protocols such as BBR and
CUBIC. As content providers try to optimize use cases with dif-
ferent needs (web traffic, video, real-time voice, scavengers, etc.),
a proliferation of codebases would impose a nontrivial burden to
develop initially and to maintain. The interaction between different
protocols, especially the deprioritization of the scavenger, can be
challenging to analyze, and brittle even with minor implementation-
level code updates or bugfixes.

Separate implementations are also limited to coarse-grained pri-
ority changes. Most operating system kernels use a single conges-
tion control protocol for all traffic. Although it is possible to config-
ure different protocols on a per-socket basis or through tools such
as iptables, this cannot accommodate priority changes mid-flow.
For example, when a software update has a deadline requirement,
it may want to yield dynamically, only after reaching a certain
throughput.

Therefore, it would be of great value if there is a flexible, generic
architecture for Internet congestion control that synthesizes both
primary and scavenger modes, and eases the formal analysis for
intra- and inter-protocol interaction, i.e., scavenger vs. scavenger,
and scavenger vs. primary flow.

Motivation for Flexibility

3 PROTEUS DESIGN OVERVIEW

Fig. 1 summarizes the PCC Proteus architecture. We begin with a
utility-based approach, similar to [16, 17]. Proteus separates con-
gestion control into a utility module and a rate control module.
The utility module has a library of utility functions, which may
be tailored to different applications’ needs. During data transmis-
sion, the utility module collects packet-level events (e.g., loss, RTT,
timeout), summarizes these metrics in the form of a numeric utility
value, and associates the utility with the corresponding sending
rate (or window size). Based on the relationship between different
sending rates and their corresponding utilities, the rate control
module algorithmically adjusts sending rate in the direction that
empirically maximizes utility. The sender uses different sending
rates in consecutive time intervals called monitor intervals (Mls),

SIGCOMM ’20, August 10-14, 2020, Virtual Event, USA

and calculates the utility for each MI when all packets sent in that
MI are acknowledged or lost.

We adopt PCC’s utility approach because of its decoupled utility
design and rate control. We can construct utility functions based
on selected performance metrics (§2.2), while allowing these util-
ity functions to share the same rate control algorithm (e.g., the
gradient-based rate control in PCC Vivace [17]). In fact, a sender
can even switch utility functions dynamically within a running in-
stance of the rate controller, which provides flexibility with minimal
overhead (§2.3).

To apply this approach to our setting, Proteus introduces sev-
eral new components. First, we design a new utility function for
scavenger senders, called Proteus-S, that satisfies our yielding
and performance goals by leveraging latency deviation as a signal
of flow competition. Second, to satisfy our flexibility goal, the
Proteus system supports dynamic utility function selection. The
application may select or re-select a utility function in real-time,
even in the middle of a flow. (In our user-space implementation,
this is a simple API call.) In addition to Proteus-S, applications
may select among a primary-flow utility function called Proteus-P,
and a new hybrid-mode utility function that we call Proteus-H,
which combines Proteus-S and Proteus-P in an adaptive piece-wise
function according to applications’ throughput requirements.

Within this high-level design, there are two hard problems,
which are the subject of the upcoming sections. First, we design
the new utility functions, especially the scavenger and its exten-
sion to hybrid mode (§4). We employ a game-theoretic analysis
of equilibria when senders use the proposed utility functions to
show that our performance goal is met for both our primary and
scavenger utility functions. Second, because the scavenger utility
function is sensitive to non-congestion RTT noise, we design novel
noise-tolerant control mechanisms (§5).

4 PROTEUS UTILITY DESIGN

In this section, we present the utility functions employed by Proteus.
After introducing the primary-protocol mode, we discuss the key
metric employed by our scavenger and then the scavenger utility
function for Proteus-S. Finally, we combine Proteus-P and Proteus-S
into a hybrid mode (Proteus-H), using a piecewise utility function
with cross-layer design, to improve bandwidth allocation.

4.1 Primary Utility Function

We begin with the relatively easy part: for Proteus-P, we use the PCC
Vivace utility function [17] with a minor modification — negative
RTT gradient is ignored:

xi+ L,

. d(RTm} . "

up(x,-)zxit—b‘x,--max{ T

where x; is the sending rate of sender i, L is the observed loss rate,
and d(RTT;)/dt represents RTT gradient. We ignore negative RTT
gradient because we found it ultimately slows convergence (the
sender tends to reduce its rate significantly below capacity so the
queue drains quickly). This change still results in a fair equilibrium
among competing Proteus-P senders, similar to [17]. We prove the
following theorem in Appendix A).

618

Tong Meng, Neta R. Schiff, Brighten Godfrey, and Michael Schapira

THEOREM 4.1. In a shared bottleneck, n Proteus-P senders will
converge to a fixed rate configuration (xi, x5, , xy) such that x{ =
x; = -+ = Xy, and the link is fully utilized.

The above Proteus-P utility function is latency-aware, and penal-
izes two performance metrics: RTT gradient and packet loss rate. Its
convergence property is determined by three constant parameters
as proved in [6]. The exponent t (0 < ¢t < 1) should guarantee
function concavity, and thus, the existence of a unique equilibrium.
The latency coefficient b (b > 0) corresponds to a theoretical maxi-
mum number of competing senders on a specific bottleneck with
no inflation in equilibrium state, i.e., all senders’ sending rates sum
up to the bottleneck capacity. For example, b = 900 is used by PCC
Vivace [17], aimed at up to 1000 competing senders on a bottleneck
of at most 1000 Mbps. The coefficient c sets a threshold on random
loss tolerance, e.g., ¢ = 11.35 to tolerate up to 5% random loss rate.
In Proteus-P, we use the same default values as in [17] (t = 0.9,
b = 900, ¢ = 11.35).

4.2 Competition Indicator: RTT Deviation

As analyzed in §2.2, the ideal signal for a scavenger is not just
ongoing congestion; we would like to know of impending conges-
tion, i.e., competition between flows. The implication is twofold.
First, when there are multiple concurrent primary flows with a
scavenger on a common bottleneck, if they are under-utilizing the
bandwidth, the scavenger does not need to back off since there is
no competition. Second, if the bottleneck buffer starts to be inflated
and deflated alternatively due to flows probing for bandwidth, the
scavenger should identify and react to such an early signal even
before persistent congestion is induced. That is crucial to guarantee
consistent low priority whether the primary flow is latency-aware
or not. Based on that intuition, we choose RTT deviation as the indi-
cator for flow competition. RTT deviation is the standard deviation
of RTT samples within an MI and is calculated as

o(RTT) = \/% > (RTTj -m)z,
7

where n is the number of RTT samples in the corresponding MI, and
RTT; and RTT are the j-th and the mean RTT of the M, respectively.

RTT deviation captures the latency, and thus buffer occupancy
dynamics, caused by flow competition. As long as the competing
primary flows actively probe for available bandwidth and do not
blindly speed up transmission, their competition will cause RTT
fluctuation. This is true for both the early scenario when several
latency-aware flows have just come close to full bandwidth utiliza-
tion (where brief random bursts will cause RTT deviation even if
the queue isn’t persistently growing), and the late scenario when
several loss-based flows already bloat the buffer to full occupancy.
Even if multiple latency-sensitive flows converge at the steady state,
primary senders still repeatedly probe around the steady-state rate
so that they can adapt to channel dynamics, for example, bandwidth
that is freed up when competing flows stop transmitting. That pro-
cess causes positive RTT deviation, driving scavenger senders to
back off. Of course, this is not to imply that RTT deviation is ideal
when competing with any possible primary protocol, but we believe
the above arguments are broadly true of current protocols.

PCC Proteus: Scavenger Transport And Beyond

16

50 11

T T T T T T
— 0 flows/sec 0 flows/sec

e [| —
%‘ 12 — 3flows/sec %‘ 40 \ — 3 flows/sec |
S — 6 flows/sec g 30 fil — 6 flows/sec |
0 g f\\w— 9 flows/sec e | — 9 flows/sec
E [A\ 2 20 JI\]
3 4 Vs y 3 AN
g 4 (““\A&‘\\ﬁ) © 10 \\\\ |
g o LW Y B, ~ .

0 020406081012 14 0 0.005 0.01 0.015 0.02

RTT Deviation (ms) Absolute Value of RTT Gradient

(a) RTT Deviation (b) RTT Gradient

Figure 2: PDF of RTT deviation/gradient under Poisson ar-
rival CUBIC flows

To show its advantage as a competition indicator, we compare
RTT deviation with RTT gradient, a metric used by Proteus-P and
Vivace for latency-awareness. More specifically, we will compare
whether RTT deviation and absolute value of RTT gradient? in-
deed increase as flow competition increases. Considering that RTT
gradient is a metric used by the primary protocol, the scavenger’s
dedicated performance metric should be something that produces
an earlier signal of impending congestion than RTT gradient, so
that the scavenger can also yield to latency-sensitive senders.

For this comparison, we set up a 100 Mbps, 60 ms RTT bottleneck
with 1500 KB (2 BDP) buffer on Emulab. To emulate impending
congestion, we generate short CUBIC flows with uniform flow sizes
ranging from [20, 100] KB and Poisson interarrival time. To measure
the two metrics, we use a fix-rate UDP flow at 20 Mbps and analyze
the RTT gradient and deviation it observes in consecutive 1.5 RTT
intervals across a 2-minute run. We test flow arrival rates ranging
from 0-9 flows/sec, resulting in average link utilization in the range
of 20-24%. This gives an indication of how the metrics perform
as an early signal of congestion: congestion is not persistent, but
random arrivals will cause occasional brief periods of congestion.

Fig. 2 presents the probability distribution function (PDF) of
the two metrics. RTT deviation closely captures the extent of con-
gestion, with its most significant probability peak getting further
from the non-congestion peak as the arrival rate of CUBIC flows
increases. Specifically, because the arrival rate of 3 flows/sec can-
not introduce continuous congestion, RTT deviation shows two
peaks, corresponding to non-congestion and congestion cases, re-
spectively. In comparison, RTT gradient has more similar peaks
in all cases. To quantify this, we calculate a confusion probability
from the observed RTT samples, defined as the probability, across
uniform-randomly-chosen pairs of (0 flow/sec, 9 flow/sec) samples,
that a metric has smaller value in the congested (9 flow/sec) sample
than in the non-congested (0 flow/sec) sample. RTT deviation has
a confusion probability of 0.6%, significantly lower than 8.0% for
RTT gradient. This validates that RTT deviation provides a more
sensitive, early signal of RTT fluctuation dynamics, confirming our
intuition in §2.2 that the averaging effect of RTT gradient delays or
hides important information.

Nevertheless, latency noise (i.e., non-congestion RTT variability)
may also cause deviation in some networks, like rapidly chang-
ing wireless networks. Proteus’s rate controller (from [17]) helps

2We use the absolute value of RTT gradient since either significantly positive or
significantly negative gradients could indicate flow competition. RTT deviation, of
course, is never negative.

619

SIGCOMM ’20, August 10-14, 2020, Virtual Event, USA

ameliorate possible confusion by trying to distinguish whether the
sender’s rate is the cause of utility changes, by experimenting with
different rates. However, we found realistic noise still impacted
performance, so we designed noise control mechanisms (§5) for
enhanced robustness.

4.3 Scavenger Utility Function

Given the intuition that RTT deviation can indicate when to yield,
we define the utility function for Proteus-S as:

us(xi) = up(x;) —d - x; - o(RTT;), 2

where up(x;) is the utility function for Proteus-P, d > 0 is a pa-
rameter, and o(RTT;) denotes the RTT deviation calculated from a
corresponding ML

We show that this utility function results in a fair equilibrium
among competing Proteus-S senders, as required by our perfor-
mance goal. We prove the following theorem in Appendix A.

THEOREM 4.2. In a shared bottleneck, n Proteus-S senders will
converge to a fixed rate configuration (x3, x5, -+ ,x;,) such that x] =

X, =+ =Xy, and the link is fully utilized.

When Proteus-P and Proteus-S senders compete with each other,
we prove in the appendix that there exists a unique equilibrium. We
leave the formal analysis of Proteus-S senders yielding bandwidth to
Proteus-P senders to future work. As informal intuition, a Proteus-
S sender yields to a Proteus-P sender because the RTT deviation
term in the Proteus-S utility function generates larger penalty, and
makes the Proteus-S sender relatively conservative.

When the primary protocol is something other than Proteus-P,
the effectiveness of RTT deviation can be informally justified by
§ 4.2, and validated by our experiments.

Since we adopt the rate control algorithm from PCC Vivace, the
above theorem and analysis deal with the existence of equilibria.
We leave a study of the dynamics of convergence (e.g., convergence
speed) to future work.

4.4 Proteus-H: Hybrid Mode

Network-wide utility can also benefit from applications only occa-
sionally switching to scavenger mode. For example, when watch-
ing an online video, users may complain about rebuffering if the
throughput cannot fulfill a certain bitrate, but will be satisfied once
the video is played in the highest bitrate smoothly. For that purpose,
we extend Proteus-P and Proteus-S into Proteus-H, a hybrid mode
with a piecewise utility function constructed from Proteus-P and
Proteus-S:

up(x;) if xj < threshold,

us (x;)

ug (x;) = { (3)

otherwise.

Effectively, Proteus-H switches between scavenger and primary
modes based on a threshold. But there is no explicit switch in the
control algorithm; it happens implicitly, simply by comparing utility
values of different sending rates.

Intuitively, when two senders deviate from the equilibrium send-
ing rate, they will either change towards fair share if they are in
the same modes, or the sender in scavenger mode will yield, both
of which drive them back to equilibrium. In an ideal situation, then,
when two Proteus-H senders with switching threshold r; and rp

SIGCOMM ’20, August 10-14, 2020, Virtual Event, USA

(r1 < r2) compete on a bottleneck with capacity C, we would expect
them to converge towards the rate pair (x}, x;) where:

Cc/2,CJ2 if C € [0, 2ry),
. r,(C—-ry) ifC € [2r, r1+12),
(xl,xz) = .
(C=ra),r2 if C € [r1 + 12, 2r2),
C/2,C/2 if C € [2ry,).

Cross-Layer Design for Switching Threshold. The thresh-
old in ug(x;) should be set adaptively by the application. We de-
velop a threshold policy for video streaming. We start with three
observations of video bitrate adaptation:

(1) Users are oblivious to transport throughput as long as the
highest video quality is rendered smoothly.

(2) The client will only request the next video chunk if there is
enough space in the local playback buffer.

(3) When the video stalls upon rebuffering, the client wants as
large throughput as possible to recover.

With this in mind, for bitrate adaptation, we can dynamically set
the threshold to the maximum value which satisfies the following
two rules:

(1) Sufficient rate rule: threshold < G - bitrateygx. We set
G = 1.5 so there is a sufficient margin of safety to avoid
rebuffering.

(2) Buffer limit rule: threshold < #
is the (possibly fractional) number of chunks of free space in
the buffer. This rule applies when f < 2, and is checked upon
requesting a new chunk. The effect is that the threshold will
decrease as the buffer approaches full (and therefore loading
chunks quickly is not necessary, since anyway, the ABR
algorithm will pause transmission if the buffer is full).

- bitratecyrrent, Where f

Then, whenever rebuffering happens, the following rule will over-
ride the switching threshold, until the video resumes.

(3) Emergency rule: threshold = .

As our experiments show, when a buffer-based adaptation algo-
rithm such as BOLA [35] is used, the above rules effectively increase
network-wide efficiency. We should note that we present this as a
representative solution for benchmarking; it may not be suitable for
bitrate adaptation that uses throughput for control. We leave the
incorporation of Proteus-H into other video streaming algorithms,
and other types of applications, to future work.

5 HANDLING LATENCY NOISE

Inherent network dynamics, e.g., wireless channel noise, raise chal-
lenges for latency-aware congestion control. In Proteus, a noisy
utility calculation, which is based on RTT gradient and deviation,
can result in incorrect rate change decisions during ramping up,
and thus, capacity under-utilization.

For the purpose of noise tolerance, a fixed tolerance threshold for
RTT gradient is used by PCC Vivace [17] (any RTT gradient with a
smaller magnitude is ignored). But a fixed threshold is ineffective
with rapid fluctuations that can occur on the Internet. We therefore
design more robust mechanisms.

Per-ACK: RTT Sample Filtering. We found that in dynamic
environments such as wireless networks, ACK reception can be
bursty even on a non-congested link, possibly due to irregular MAC

620

Tong Meng, Neta R. Schiff, Brighten Godfrey, and Michael Schapira

scheduling. This leads to excessive penalty from both RTT gradient
and deviation, and can mislead a Proteus sender into slowing down.
To mitigate this, we use the “ACK interval” (the time between
reception of two consecutive ACKs) to filter out abnormal RTT
samples, when the ratio between two consecutive ACK intervals
exceeds a threshold (set to 50 in our implementation). All RTT
samples are then ignored until an RTT is observed that is below
the exponentially weighted moving RTT average.

Per-MI: Regression Error Tolerance. In RTT gradient calcu-
lation, the error in linear regression also reflects the accuracy of
calculated RTT gradient. Specifically, for the i-th packet sent in the
MI whose sent time is sent_time; and RTT is RTT;, we calculate its
estimated regression RTT as:

RTTl-* = avg(RTT;)+rtt_gradient - (sent_time; —avg(sent_time;)),

where avg(RTT;) and avg(sent_time;) are the average RTT and sent
time for all acknowledged packets in the MI, respectively. Then, we
calculate regression error based on the residual in linear regression:

1

1
regression_error = \/; . Zi:(RTTi - RTT})? - MI duration’

where n is the number of acknowledged packets in the MI and the
final factor simply normalizes by MI duration to produce a relative
error. Then, for each ML, if the calculated RTT gradient’s magnitude
is less than regression_error, we treat both the RTT gradient and
the RTT deviation as 0.

MI History: Trending Tolerance. The above per-MI error tol-
erance may hide a slow but persistent RTT increase, which stays
within tolerance for several consecutive MIs, leading to late reaction
against inflation. Since RTT deviation is ignored too, a Proteus-S
sender may stop behaving as a scavenger until it sees more sig-
nificant inflation. To avoid such late reaction, Proteus keeps track
of latency-related metrics for a longer time period. Specifically, a
sender maintains the RTT deviation and average RTT of the most
recent k MIs (e.g., k = 6 in our experiments for a reasonable trade-
off between noise-vulnerability and slow responsiveness), based
on which it computes two trending metrics: trending gradient and
trending deviation. Specifically, using linear regression based on the
stored MIs’ average RTTs, trending gradient is calculated as:

o & P
K=1-D0. RTT:E~ZMIJ'(RTT),
j=1 J=1
Sk (j = K)(MI;(RTT) - RTT))
trending_gradient =)

%i(j - K)?
and by taking standard deviation of stored RTT deviations, trending
deviation is calculated as:

k
— 1
DEV = ¢ - ZMIJ- (DEV),
Jj=1
k
1 R
trending_deviation = T Z(Mlj (DEV) — DEV)2 .
j=1

In the above expressions, MI;(RTT) and MI;(DEV) represent the
Jj-th stored MI's average RTT and deviation, respectively.

PCC Proteus: Scavenger Transport And Beyond

In addition, we also maintain the exponentially weighted mov-
ing average and per-sample deviation for both trending metrics
(similar to how smoothed RTT and RTT deviation are updated in
the Linux kernel). Then, for each new sample of the two metrics,
we compare it with the corresponding average. Our insight is that,
when the calculated trending metric sample is several deviations
away from its average, it is statistically unlikely to be caused by
non-congested noise, and thus, cannot be ignored. We illustrate
with the pseudocode below.

1if |trending_gradient - avg_trend_grad| < G; * dev_trend_grad :
2 rtt_gradient « o

3 if trending_deviation - avg_trend_dev < G; * dev_trend_dev :
4 rtt_deviation « o

Specifically, the new RTT gradient sample will be ignored if the
difference between the updated trending gradient and its moving
average (avg_trend_grad) is smaller than G; times the deviation
of trending gradient (dev_trend_grad). In that case, RTT deviation
is also ignored if the difference between trending deviation and
its moving average (avg_trend_dev) is smaller than G, times its
deviation (dev_trend_dev). In our implementation, we conserva-
tively select G = 2 and G, = 4 to approximately achieve above
95% confidence with normally-distributed latency noise.

Control Algorithm: Majority Rule. For each rate control de-
cision in its “probing” state, Vivace tries a pair of sending rates
(in random order) twice, and changes sending rate only if they
imply a consistent rate change direction [16]. That may cause slow
rate ramp-up and under-utilization in highly noisy environments,
where the sender sees more inconsistent rate change indicators
and has to repeatedly test the same pair of sending rates before
increasing rate correctly. To improve on that, we let Proteus senders
try each pair of sending rates three times (instead of twice), and
change the sending rate based on the majority decision from the
three pairs of trials. By adding the additional pair, the sender can
generally determine the direction of rate change more quickly in
noisy networks, while the majority rule effectively avoids frequent
false rate change direction.

Note. We do not have enough space to show how each tolerance
mechanism contributes to Proteus’s performance. Briefly, per-MI
regression error tolerance is necessary for Proteus senders to satu-
rate bandwidth even on relatively stable bottleneck, while trending
tolerance helps enhance latency sensitivity. The RTT sample fil-
tering mechanism and the usage of majority rule in rate control
mainly benefit Proteus in highly dynamic networks, which can be
demonstrated to some extent by the performance improvement
of Proteus over Vivace on the live Internet (§6.2.1). However, we
emphasize that the above tolerance mechanisms are heuristics, and
do not have theoretical performance guarantees. Performance may
still be impacted when network latency noise appears very bursty
on the timescale of a MI (observed in our real-world WiFi test
in §6.2.1), causing abnormal samples of RTT gradient and RTT
deviation. More robust designs could employ statistical inference
techniques, and taking advantage of all available information in-
cluding in-network feedback [19].

6 EVALUATION

We implemented Proteus by branching off of the existing open-
source UDP-based PCC implementation [17] and implementing the

621

SIGCOMM ’20, August 10-14, 2020, Virtual Event, USA

—=—\Proteus-S
—e— LEDBAT
—— CUBIC~__
—v— BBR e
—+— Proteus-P
COPA

%~ Vivace
-

/ —a— proteus-s
/ —e— LEDBAT
—— CUBIC
/ v BBR
|4 —+— Proteus-P
o COPA

|
—*— Vivace
0 L"L’/‘ i L
1

10 100

Throughput (Mbps)
95-th Inflation Ratio

<

300

600 900

Buffer Size (KB) Buffer Size (KB)

(a) Throughput (b) Latency inflation

Figure 3: Bottleneck saturation with varying buffer size

50 1p—
——
! 0.9 .}\ \1/.7//
7 | b -
2 Al £ 08| \(
T 10 @ \ Proteus-S
E g o7t N LEDBAT
2 5 \. 4 cusiC
2
3 w 06| \ —+— BBR
£ —+— Protéts-P — £ Y/~ ProteusP
COPA - ~, 05r CcopA
—%— Vivace R § —%— Vivace
| ; i i] 04 A S S AN

1

i
0.04 0.05 0.06 2 3 4 5 6 7 8 9
Number of Flows

0 0.01 0.02 0.03

Random Loss Rate

Figure 4: Loss tolerance Figure 5: Fairness index

design of the previous sections.? For Proteus-P’s utility function,
we adopt the default parameters from [17]: t = 0.9, b = 900, and
¢ = 11.35. For Proteus-S, we set the RTT deviation coefficient
d = 1500 (with RTT deviation in units of seconds).

We compare two scavengers — Proteus-S and LEDBAT - and let
them compete with various primary protocols: TCP CUBIC [21],
BBR [13], COPA [8], PCC-Vivace [17], and Proteus-P. We employ
the LEDBAT implementation in the open-source pyTorrent Trans-
port Library [2], with the target extra delay set to 100 ms, as in the
current IETF standard [34] as well as yTorrent’s default setting.*

To measure transport-level performance, our test environment
uses Pantheon [42] to run flows and collect performance metrics,
both on Emulab [38] and in the live Internet. Unless otherwise
specified, we use Emulab tests with a 50 Mbps bandwidth, 30 ms
RTT setup, and show the mean of at least 10 trials in each sce-
nario. We also measure application-level performance (DASH video
streaming [1] and webpage loading) to show the benefits of having
scavengers competing with primary flows.

For the evaluation of Proteus-H, we implement emulated video
streaming on top of our UDP implementation. Specifically, Proteus
receiver runs a BOLA [35] agent that takes a DASH video definition
as input and consumes the received bytes to maintain an emulated
playback buffer. The receiver uses a side channel to notify the
sender of: (1) its requested bitrate for each chunk, (2) when to
stop/resume transmission due to limited playback buffer space, and
(3) the calculated switching threshold if Proteus-H is used.

3 At the moment, both Proteus-P and Proteus-S, as well as PCC Vivace, are based on
UDT [20]. However, we adopt QUIC-compatible APIs [25] in the Proteus implementa-
tion, which should facilitate its real-world deployment.

“4The first LEDBAT IETF draft [33] used a 25 ms target. We evaluate its performance
as well, and get similarly undesirable results as achieved by 100 ms; see Appendix B.

SIGCOMM ’20, August 10-14, 2020, Virtual Event, USA

< = &
.% BBR % BBR 2
5 80 cuBic S 80 cuBic

= copa = COPA

2 60 Proteus-P.) 2 60 Proteus-P.

< <

g g

© 40 [-Buffer: 75KB375KB " © 40 [-Buffer: 75KB375KB

£ - E

> 20 > 20

© ©

£ 0 | | | | o £ 0 | | | |]
S 0 20 40 60 80 100 [0 20 40 60 80 100

Capacity Utilization (%) Capacity Utilization (%)

(a) LEDBAT as Scavenger (b) Proteus-S as Scavenger

Primary Throughput Ratio (%)

Tong Meng, Neta R. Schiff, Brighten Godfrey, and Michael Schapira

BBR .

cusic

CoPA

Proteus-P °
- ; e

Buffer: 75KB 375KB

BBR
CuBiC
COPA
Proteus-P.

Buffer: 75KB 375KB =

0 I I I I I
0 20 40 60 80 100

Capacity Utilization (%)

0 I I I I I
0 20 40 60 80

Capacity Utilization (%)

Primary Throughput Ratio (%)

(c) Proteus-P as Scavenger (d) COPA as Scavenger

Figure 6: Scavenger competes with primary protocols

6.1 Scavenger-Only Performance

When there are no primary flows, a good scavenger should have
high performance like a normal congestion controller. We evaluate
this single-protocol performance with typical congestion control
objectives (high throughput, low latency) across different environ-
ment variables (buffer size, random loss probability, and number of
competing flows).

6.1.1 Latency Awareness. We run a single flow on the above speci-
fied Emulab bottleneck link for 100 seconds, with varying buffer size.
We compare the protocols’ throughput and RTT inflation (Fig. 3).

As shown in Fig. 3(a), both Proteus-P and Proteus-S need as
small as 4.5 KB buffer to achieve at least 90% capacity utilization,
i.e., 45 Mbps throughput, which is the same as needed by BBR
and PCC Vivace. In comparison, both CUBIC and COPA need 5.7X
larger buffer to reach the same utilization. LEDBAT, always trying
to inflate the RTT by 100 ms, needs 150 KB buffer, which is close to
the BDP (187.5 KB), and 32.3% larger than needed by Proteus.

We then evaluate latency sensitivity in terms of 95th percentile
inflation ratio, calculated as:

95th percentile RTT — base RTT

95th inflati tio = ,
inflation ratio buffer size/ bottleneck bandwidth

which effectively measures the 95th percentile buffer occupancy. We
report this value in Fig. 3(b). Both Proteus-S and Proteus-P, similar
to Vivace, limit the inflation ratio below 10% as long as the buffer
is > 150 KB. Even COPA, which is latency-aware, needs 3x larger
buffer (600 KB) to keep inflation ratio below 10%. In comparison,
LEDBAT has around 100% inflation ratio until the buffer size is large
enough (at least 625 KB) to accommodate its target delay. More
specifically, at 2 BDP buffer size (375 KB), Proteus-S has 75.3%,
93.8%, 96.4%, and 96.42% smaller inflation ratio compared with
COPA, BBR, CUBIC, and LEDBAT, respectively.

6.1.2 Random Loss Tolerance. Next, when there exists random non-
congestion loss, we compare different protocols’ average through-
put from multiple 100-second runs on the same bottleneck with
375 KB buffer (2 BDP) in Fig. 4. Thanks to its improved noise con-
trol, Proteus-P, using a similar utility function as Vivace, performs
somewhat better than Vivace on that front, achieving 74% higher
throughput with 5% random loss. Proteus-S, on the other hand, has
somewhat worse throughput than Vivace, which can be attributed
to its RTT deviation-based rate control which causes it to ramp up
more conservatively.

622

LEDBAT is fragile even when facing a 0.001% random loss rate,
suffering from 50% degradation compared with Proteus.

We note that COPA and BBR have higher random loss tolerance
because they do not directly react to packet losses. In comparison,
as explained in §4.1, the loss coeflicient in Proteus and PCC Vivace’s
utility function is set to achieve 5% random loss tolerance. We could
tune the coefficient for higher tolerance, although this induces
higher congestion loss [17].

6.1.3 Fairness With Competing Flows. To evaluate convergence
when multiple senders of the same protocol compete with each
other, we use a 30 ms RTT bottleneck link on Emulab. We test
n € 2,...,10 flows with 20n Mbps link bandwidth and 300n KB
buffer size. In each run, a flow is started after waiting 20 seconds
for the previous flow to ramp up. We measure mean throughput
of each flow during the 200 seconds after all flows are started, and
present Jain’s fairness index in Fig. 5. We see that Proteus-P, PCC
Vivace, CUBIC, BBR and COPA all keep Jain’s index around 99%.
Proteus-S has lower, but still always above 90%, fairness index.

In comparison, LEDBAT’s fairness decreases and then increases
with n. The decreasing fairness is known as its latecomer issue [34],
which occurs because after one LEDBAT flow is running, the min-
imum delay observation for any subsequent flow is based on an
already-inflated buffer. For example, with 6 competing flows, Proteus-
S is 75% more fair than LEDBAT. LEDBAT’s fairness begins improv-
ing once n is large enough that the sum of the target extra delay of
all flows exceeds the maximum inflation allowed by the bottleneck
buffer size.

6.2 Yielding to Primary Flows

When a scavenger competes with a primary flow, our goals are that
(1) most importantly, the scavenger should have minimal impact
on the primary flow (compared to running the primary flow alone);
and (2) secondarily, the scavenger should opportunistically use any
remaining resources.

Our evaluation uses two flows, one primary followed by one
scavenger. Again, we use the specified Emulab link. We consider
both shallow (75 KB, i.e., 0.4 BDP) and large buffer (375 KB, i.e.,
2 BDP) setups. In addition to LEDBAT, we test Proteus-P in the role
of the scavenger, to emphasize the effectiveness of Proteus-S’s RTT
deviation-based utility function. We calculate two performance
metrics. To measure goal (1), we use the primary throughput ratio,
defined as the primary flow’s throughput when running with the

PCC Proteus: Scavenger Transport And Beyond

SIGCOMM ’20, August 10-14, 2020, Virtual Event, USA

3 1 n 1~
—=— Proteus-S . —e— BBR vs. Proteus-S —=— Proteus-S
- II;EDtBATP — S og| © BBRUs LEDBAT < o0g| —= LEDBAT /
—e— Proteus- 2 - — r i
e COPA 3 k] —a— CUBIC ‘
= 2 S —~— BBR [l
< 2 - \ & 06 - & 061 4 proteus-P [
£ ° e copa
< 2 04L ® 0.4 - —*%— Vivace
: / B] f
n - a = |
o _—) \,,,,, E g Iw.a
1 \./u—-v—A S 02 O 02F n
b 3 i
— o A
B! e
L L L I 0n ! 0 Z L I
CUBIC BBR COPA Proteus-P PCC 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Primary Protocol

Figure 7: RTT with competition

scavenger divided by its throughput when running alone. To mea-
sure goal (2), we use the the total capacity utilization of the two
flows.

Although designed as a scavenger against TCP CUBIC, LEDBAT
fails to yield to CUBIC when its target extra delay exceeds the max-
imum inflation allowed by the buffer. This occurs with both buffer
setups (Fig. 6(a)). In that situation, it approximately fairly shares the
bottleneck with CUBIC. LEDBAT also fails to yield when the com-
peting sender is less aggressive, e.g., it lowers BBR’s throughput to
26.0% with 375 KB buffer. Similarly, the other three latency-aware
protocols, COPA, PCC Vivace, and Proteus-P, are more significantly
impacted by LEDBAT, e.g., they all have lower than 43% throughput
ratio when competing with LEDBAT.

In contrast, Proteus-S yields well (Fig. 6(b)): with CUBIC, BBR,
COPA, and Proteus-P as the primary flow, the primary throughput
ratio is above 98%, 95%, 87%, and 88%, respectively, in all test cases.
For primary flows COPA and Proteus-P, regardless of the buffer size,
the performance gains are more than 1.1X and 2.3X over LEDBAT.
When competing with Vivace, Proteus-S has somewhat lower pri-
mary throughput ratio (since Vivace does not have adaptive noise
tolerance, and thus may tolerate less RTT fluctuation). However, it
is still at least 3.2X better than both LEDBATS.

The other two latency-aware protocols, as expected, do not con-
sistently yield (Fig. 6(c),6(d)). Specifically, Proteus-P competes with
COPA and Vivace fairly under both buffer setups, while COPA is
friendly (i.e., has fair equilibrium) to all the other protocols except
when competing with BBR with a shallow buffer. We also observe
that Proteus-P can lower the throughput of BBR to 88%, compared
with at least 95% from Proteus-S. This validates our claim in Sec-
tion 4.2 that RTT deviation signals competition better than RTT
gradient, and hence is a better scavenger penalty metric.

Proteus-S also outperforms LEDBAT in our secondary goal of
utilizing the remaining bandwidth. When competing with BBR,
CUBIC, Proteus-P and PCC Vivace, Proteus-S maintains a joint
capacity utilization of at least 95%. Its utilization competing with
COPA is 89% (although we note this is the same utilization COPA
can achieve when it competes with itself). LEDBAT only delivers
around 85% utilization when competing with Proteus-P and Vivace
with 75 KB buffer.

Furthermore, the competition between LEDBAT and primary
protocols leads to more significant RTT inflation. Fig. 7 presents
the ratio between 95th percentile RTT seen by a primary flow when
competing with a scavenger flow and when the primary flow runs
alone (achieved with 375 KB buffer). Latency-aware protocols see

Primary Throughput Ratio

Figure 8: Throughput ratio CDF

623

Normalized Throughput

Figure 9: Single flow on WiFi

larger inflation increment, because loss-based protocols such as
CUBIC already fill the buffer when they run alone. For instance,
COPA sees 2.3x RTT when competing with LEDBAT. Proteus-S,
unlike LEDBAT, has negligible influence on RTT, e.g., BBR even
sees 18.8% smaller 95-th RTT. Proteus-P and COPA are also inferior,
doubling the 95-th RTT when competing with each other.

To further stress Proteus-S’s robustness as a congestion control
scavenger, we let it compete with BBR, CUBIC, and Proteus-P under
the 180 distinct bottleneck configurations representing all combina-
tions of the following parameters: bandwidth chosen from {20, 50,
100, 200, 300, 500} Mbps, RTT chosen from {5, 10, 30, 60, 100, 200} ms,
and buffer size chosen from {0.2, 0.5, 1.0, 2.0, 5.0} BDP. For presenta-
tion clarity, we only compare Proteus-S with LEDBAT, and present
the CDF of primary throughput ratios in Fig. 8. In the median case,
the three primary protocols, BBR, CUBIC, and Proteus-P, achieve
7.8%, 28.0%, and 2.8x higher throughput competing with Proteus-S
than with LEDBAT. That corresponds to our above conclusion, i.e.,
the extra delay target used by LEDBAT may be too aggressive for
a moderate-sized buffer, and is a late congestion signal especially
against latency-sensitive protocols.

One may argue that the inferior yielding performance of LED-
BAT can be improved by using a smaller extra target delay. However,
as shown by the results with 25 ms extra delay in Appendix B, using
a smaller extra target delay induces other performance problems, in-
cluding more significant latecomer advantage and worse multiflow
unfairness. Meanwhile, as a general congestion control protocol,
LEDBAT still has high inflation under shallow buffers, and is more
aggressive than latency-sensitive protocols such as PCC Vivace and
Proteus-P.

6.2.1 Scavenger Performance on the Internet. We now move our test
scenarios for the same single-flow and two-flow experiments to the
live Internet. Specifically, we use WiFi connections at four different
locations (two residential apartments, and two restaurants), and test
using the uplink by transmitting from a laptop to an AWS server
in each of 16 different regions.5 For each source-destination pair,
we conduct 4 trials, each lasting 2 minutes, and report the median
value (i.e., the mean of the two middle values).® Finally, to ease
visualization, we normalize this median throughput by the highest
value obtained by any protocol on that source-destination pair.

SThese are all of the AWS regions except Hong Kong, Bahrain, and Capetown which
we were unable to use for logistical reasons.
®We do not observe performance issues due to interference from shared CPU.

SIGCOMM ’20, August 10-14, 2020, Virtual Event, USA

—=— vs Proteus-S
—+— vs LEDBAT

1
—=— vs Proteus-S |
—+— vs LEDBAT 4

0.8
0.6
0.4

0.2

Cumulative Fraction

Cumulative Fraction
AN .

Cumulative Fraction

02 04 06 08 1 0
Primary Flow Throughput Ratio

0 02 04 06 08 1 0
Primary Flow Throughput Ratio

(a) BBR as Primary (b) CUBIC as Primary

—v— vs Proteus-S /"
—+— vs LEDBAT”

02 04 06 08 1 0
Primary Flow Throughput Ratio

(c) COPA as Primary

Tong Meng, Neta R. Schiff, Brighten Godfrey, and Michael Schapira

1 1 1

—— vs Proteus-S -

—+— VSLEDBAT s/
—

Vs Proteus-S"+‘J7F,—
—+— vs LEDBAT ¥

¥

Cumulative Fraction
Cumulative Fraction

02 04 06 08 1
Primary Flow Throughput Ratio

02 04 06 08 1 0
Primary Flow Throughput Ratio

(d) Proteus-P as Primary (e) PCC Vivace as Primary

Figure 10: Primary throughput ratio in real-world WiFi

Fig. 9 shows the CDF of normalized median throughputs across
the 64 source-destination pairs. The protocols intended as primary
flows are, interestingly, among the worst and the best. Two latency-
aware primary protocols, COPA and Vivace, have the worst per-
formance, because they are affected by RTT fluctuations. (Even
though these are WiFi links and not LTE, we observe significant
fluctuation in RTT. The typical RTT deviation is up to 5 ms but RTT
occasionally spikes tens of milliseconds higher.) Meanwhile, CUBIC
and BBR have highest throughput because they are much more
aggressive than other protocols (see latency inflation in Fig. 3(b)).
CUBIC is even better than BBR because CUBIC is loss-based and
the least latency-sensitive.

Among the scavengers, since LEDBAT relies on (one-way) de-
lay, it is also somewhat prone to noisy measurement. Proteus-S is
comparable to LEDBAT.

Overall, in these environments, our latency noise tolerance tech-
niques allow Proteus-P and Proteus-S to each be among the best in
their class (primary and scavenger respectively). Specifically, they
each have close to the best throughput while being much more
latency-aware (Fig. 3(b)) than the other high-throughput protocols.
This helps show our design is generally successful in achieving a
single codebase which can be either a primary or scavenger. While
there might still be room for improvement (such as closing the
moderate throughput gap between Proteus-P and BBR), a tradeoff
between throughput and latency is to be expected.

We move now to the scavenger goal of yielding to primary flows,
quantified by the CDF of primary flow throughput ratio in the same
WiFi environments (Fig. 10). When competing with LEDBAT, BBR
and CUBIC’s median throughput ratios are 80.0% and 76.1% respec-
tively. With Proteus-S as the scavenger, they respectively achieve
17.6% and 19.2% higher throughput ratios. Meanwhile, Proteus-S
enables BBR and CUBIC to have at least 90% throughput ratio in
71.8% and 51.3% of all cases, respectively, which are 1.2x and 81.9%
higher than LEDBAT. Considering BBR and CUBIC are today the
most widely adopted primary protocols, and LEDBAT is perhaps
the only deployed scavenger protocol on the Internet, this is an im-
portant improvement. Furthermore, Proteus-S has more significant
performance gain when the competing primary protocol is latency-
aware. Specifically, when competing with Proteus-S, the median
throughput ratios of COPA, Proteus-P, and Vivace are 39.3%, 41.0%,
and 44.1% higher than achieved when competing with LEDBAT.
These results are consistent with those in Fig. 6.

6.2.2 Application Performance Benchmarks. To demonstrate the
significance of a congestion control scavenger in practice, we use

624

LG- T I><

L

L= only

" | —=— DASH + Proteus-S
—e— DASH + LEDBAT
4 |- —— DASH + cuBIC |

—%— £hrome only
Chrome + Proteus-S
—e— Chrome + LEDBAT
~A‘— Chrcm‘e + CUB\‘C

Average Bitrate (Mbps)

Cumulative Distribution (%)

1 2 4 8 0 3 6 9 12 15
Number of Concurrent Videos Page Loading Time (sec)

(a) DASH Video (b) Webpage Load

Figure 11: Scavenger with Applications on Internet

the live Internet to compare the influence of Proteus-S, LEDBAT,
and CUBIC on two popular applications, DASH video streaming
and webpage loading. We use a wired Xfinity downlink of about
100 Mbps. For DASH video streaming, we use the default dash.js
(version 3.0.1) and request the Big Buck Bunny sample video from
Akamai. For webpage loading, we randomly request the top 30 sites
in United States from Alexa.com in a 10-minute run, with a Poisson
rate of 1 request per 10 seconds. The Chrome browser is used for
both applications. A single scavenger flow may run simultaneously
from an AWS server in Virginia to our laptop in the background.

Fig. 11(a) presents the average video chunk bitrate with different
number of concurrent videos (started simultaneously). The results
when CUBIC runs in the background are included for reference.
We can see that although LEDBAT has smaller impact to DASH
performance than CUBIC, it still dramatically falls behind Proteus-
S. For example, with 8 videos, Proteus-S enables DASH with 2.5%
higher bitrate than LEDBAT. Then, Fig. 11(b) presents the CDF of
webpage loading time. Proteus-S has almost no impact on page load-
ing, while achieving 48.2% (median) and 33.3% (average) speed-up
compared with LEDBAT. Thus, even in a single house with a single
router, a congestion scavenger for background flows (e.g., system
update, cloud storage synchronization) can still increase compet-
ing applications’ performance. (That said, we note that Proteus-S’s
performance gains in Fig. 11 are in part due to the fact that it is
latency-aware, rather than specifically because of our scavenger
mechanisms.)

6.3 Flexibility of Hybrid Utility

Next, we evaluate our novel capability of supporting a hybrid utility
function. As an example application, we compare Proteus-H and
Proteus-P in a video streaming test using our emulated adaptive
BOLA agent. For that purpose, we generate a corpus of 10 4K and

PCC Proteus: Scavenger Transport And Beyond

40 i

30 L o

2]

20 :I: _

— N
[« 1080P —=— 4K Proteus-H]]
[e 1080P 4 4K Proteus-P|
| | | |

10

Avg. Chunk Bitrate (Mbps)

0

70 80 90 100 110

Bottleneck Bandwidth (Mbps)

120

(a) Video Bitrate

. [_1080P = aKProteusH]
{—e— 1080P —— 4K Proteus-P|

Average Rebuffer Ratio (%)

80 90 100 110
Bottleneck Bandwidth (Mbps)

(b) Rebuffer Ratio

Figure 12: Hybrid mode in adaptive video streaming

I I I I
A [_1080P —=— 4K Proteus-H]
[~ 1080P 4 4K Proteus-P|

Average Rebuffer Ratio (%)

Bottleneck Bandwidth (Mbps)

Figure 13: Consistently low rebuffer by hybrid mode

10 1080P videos, all composed of 3-second chunks and at least 3
minutes long, with highest bitrates of above 40 Mbps and 10 Mbps,
respectively.

We first use an Emulab bottleneck with 30 ms RTT, 900 KB buffer
and varying bandwidth. For both Proteus variants, we randomly
select one 4K and three 1080P videos, start them simultaneously
and let them stream for 3 minutes. Fig. 12 presents the average
bitrates and rebuffer ratios of 4K and 1080P videos separately. Com-
pared with Proteus-P, when all flows use Proteus-H, the average
bitrate per 4K video chunk is increased by up to 3 Mbps and up
to 11%, without obviously impacting 1080P videos. With 3-second
chunk duration and 3-minute streaming period, this increment
corresponds to almost half a minute longer duration staying at
the highest 4K bitrate. Meanwhile, the 4K bitrate gain comes with

625

SIGCOMM ’20, August 10-14, 2020, Virtual Event, USA

50 :
. 1
2 40 F |
Qo
=
< 30t
2 BBR vs. BBR-S
£ 20t
3
o
£ 10}
= \
0 L

Time (Sec)

Figure 14: Extend RTT Deviation to BBR

significantly lower rebuffer ratios for both 4K and 1080P videos.
For example, with 110 Mbps bandwidth, the 4K and 1080P rebuffer
ratios are reduced by 68.0% and 33.5%, respectively. The only excep-
tion is under 70 Mbps bandwidth, when Proteus-P does not even
try the highest 4K bitrate due to low fair share.

Considering that the above rebuffer ratios are small because of
adaptation by BOLA, we force the agent at the highest bitrates, and
repeat the above experiments. Fig. 13 shows the achieved rebuffer
ratios, which are consistent with Fig. 12(b). Specifically, under the
same 110 Mbps bandwidth, Proteus-H has 34.0% lower rebuffer
ratio for 4K video. Therefore, the support for an adaptive hybrid
mode can indeed increase utilization efficiency of restricted network
resources.

7 DISCUSSION

We have seen that Proteus-S has robust performance against various
primary protocols, and can help improve network-wide utility, both
on emulated networks and in the wild. Nevertheless, much remains
to explore in scavenger transport. In this section, we discuss several
important insights for practical implementation and future work.

7.1 Real-World Adoption

Proteus can be implemented at the server side without involving the
client, consistent with most existing transport designs [13, 16, 17].
Current Linux kernel mechanisms make it difficult (though, we
think, not impossible) to implement some aspects of our utility
module. But other options exist, such as the CCP platform [29], or
a fully user-space transport stack as used in QUIC [25] (there is
already a QUIC-based prototype of PCC Vivace [3], and we adopted
QUIC-compatible APIs for our implementation of Proteus). Thus,
we see several low-overhead paths to adoption for Proteus.

In more advanced deployments, client-side participation may
help, including necessary messages required by applications (as in
bitrate adaptation) and voluntary feedback by users (e.g., concrete
deadline requirements). We leave a full design to the future, but
note this feedback can be transmitted through Proteus’s APIs and
does not necessitate protocol changes like reserved header bits.

The basic idea behind utility design in Proteus, i.e., selection
of control signals, can potentially be extended to other primary
protocols. For example, any protocol can lower its priority by react-
ing to RTT deviation. For illustration, we modify the kernel BBR
implementation such that whenever the smoothed RTT deviation
is larger than 20 ms, the BBR sender is forced into its minimum

SIGCOMM ’20, August 10-14, 2020, Virtual Event, USA

RTT probing phase for at least 40 ms,” which is a phase when BBR
effectively stops further transmission, and maintains minimum in-
flight packets to probe for clean channel RTT. We let the modified
BBR, denoted BBR-S, compete with BBR, CUBIC, and BBR-S on an
Emulab bottleneck with 50 Mbps bandwidth, 30 ms RTT, and 375 KB
buffer. Fig. 14 shows the throughput across time. Apparently, BBR-S
is able to yield against BBR and CUBIC, while sharing the bottle-
neck fairly with BBR-S itself. This validates that our techniques
may be of interest beyond Proteus itself.

7.2 Robustness in Noise Tolerance

The current Proteus architecture (as well as the utility framework in
[16, 17]) relies on a relatively ideal model, i.e., the utility functions
and their equilibrium analysis do not formally model inherent RTT
fluctuation. Although Proteus mitigates this with noise tolerance
mechanisms, they are not perfect. According to results from the
live Internet, the relatively more aggressive protocols (BBR and CU-
BIC) still have better performance as primary flows compared with
Proteus-P. Additionally, there are high-fluctuation environments
we have not yet tested, such as LTE. Although those networks
provide better user isolation using fine-grained resource alloca-
tion [41], it is important to consider them in future work on a
full-fledged transport design. Thus, we envision designs to deal
with noise on a more fundamental level, as well as theoretical tools
to analyze these designs. That may involve quantifying confidence
in inputs to the utility function, including a specific noise term in
the utility function, or turning to alternative methods like neural
networks [30].

8 RELATED WORK

The surge of data intensive applications such as online video stream-
ing has driven research on Internet congestion control in both indus-
try and academia. Recent work [8, 13, 17] has shown that traditional
TCP variants (e.g., [10, 21, 27], etc.) cannot consistently deliver high
performance. These variants, and various improvements such as
Remy [40], usually correlate packet losses with congestion, which
is not always the case, and thus, they cannot tolerate random packet
losses. In addition, the widely used TCP CUBIC can cause significant
inflation and bufferbloat, which harms the quality of experience
for latency-sensitive applications. To solve TCP’s inherent perfor-
mance issues, numerous protocols have been introduced. The idea
of performance-oriented congestion control (PCC) was proposed in
[16], leveraging a sending rate control logic based on an empirical
utility function constructed from observed performance metrics.
However, PCC Allegro [16], the first protocol in the PCC family,
uses a loss-based utility function, and also suffers from bufferbloat.
PCC Vivace [17] has better latency awareness and convergence
speed with its latency-aware utility function and gradient-ascent
rate control. TCP BBR [13] tries to build a network model from
recent measurements of network bandwidth and minimum RTT,
so as to maintain high sending rate and avoid excessive inflation.
COPA [8] leverages the observed minimum RTT to achieve a tar-
get rate that optimizes a natural function of throughput and delay
under a Markov packet arrival model. In addition, there are works

7We use fixed thresholds such as 20 ms RTT deviation for illustration. That said, we
are not claiming BBR-S could be a robust scavenger in practice.

626

Tong Meng, Neta R. Schiff, Brighten Godfrey, and Michael Schapira

focusing on congestion control in specific Internet environments
such as LTE (e.g., [41, 43]), or for specific flow characteristics such
as short flows (e.g., [26]). However, all the above works aim at a
fair-sharing equilibrium. Some works such as BBR and COPA ex-
plicitly try to achieve fair share when competing with TCP CUBIC
for the purpose of TCP friendliness.

The most important work targeting a non-fair scavenger equi-
librium is LEDBAT [34]. It tries to control the induced extra delay
to the network within a threshold, so that it can back off when
competing with other primary flows. However, as shown in our
experiments, it often significantly reduces throughput of primary
flows — even CUBIC, but to a larger degree for protocols that include
some latency awareness — and has a known latecomer advantage
issue when competing with itself [5, 14, 32].

Minerva [37] was proposed as an end-to-end transport to im-
prove QoE fairness in video streaming. It differs from our work in
that it tries to compete fairly with TCP, but is related in its devia-
tion from fair sharing among video flows to optimize overall QoE.
We believe Proteus’s and Minerva’s ideas could be relevant to a
full-fledged cross-layer design for QoE optimization.

Our work is orthogonal to, but may utilize, platforms that ease
implementation of new transport protocols, including QUIC’s user-
space transport which modifies the traditional HTTPS stack [25],
and CCP’s universal off-datapath congestion controller design [29].

A separate category of congestion control protocols improves
performance via the combination of protocol changes and in-network
(router/switch) support, either in data centers (e.g., [36, 39]) or in
the Internet (e.g., [12, 19, 24]). While this approach can be feasible
in some data centers, adoption across the public Internet is difficult.

9 CONCLUSION

We propose PCC Proteus, an architecture for Internet congestion
control. Proteus supports interaction from application to transport
layer, to tailor congestion control to application requirements, and
in particular, to realize a congestion control scavenger. Specifically,
based on an online-learning utility framework [16], we design a
protocol that can act as either a primary protocol (Proteus-P) or as
a scavenger (Proteus-S) using a dedicated scavenger utility func-
tion. Through comprehensive experiments on emulated networks
and the live Internet, we show the robustness of Proteus-S as a
scavenger against various competing protocols. We also extend Pro-
teus to a hybrid scavenger/primary design which achieves higher
application-level utility for adaptive bitrate video delivery and web
page loading, and demonstrates the flexibility of our approach. We
believe this line of research will be increasingly important to deal
with Internet environments where constrained bandwidth must
be shared between high-priority and traffic with more elastic time
requirements.

ACKNOWLEDGEMENTS

We thank Praveen Balasubramanian for insightful discussions about
the importance of scavenger transport. We also thank our shepherd,
Mohammad Alizadeh, and SIGCOMM reviewers for their valuable
comments. This research was supported by Huawei and the Israel
Science Foundation.

PCC Proteus: Scavenger Transport And Beyond

REFERENCES

[10]

[11

[12]

[13]

=
it

[15]

[16]

[17]

[19

[20

[21]

[22

[23]

[24

[25]

[26]

[27

[28]

[n.d.]. dash.js. https://github.com/Dash-Industry-Forum/dash.js.

[n.d.]. pTorrent Transport Protocol library. http://github.com/bittorrent/libutp.
[n.d.]. PCC QUIC Implementation. https://github.com/netarch/PCC_QUIC.
[n.d.]. Proteus Implementation. https://github.com/PCCproject/PCC-Uspace.
2017. LEDBAT++: Low priority TCP Congestion Control in Win-
dows. https://datatracker.ietf.org/meeting/100/materials/slides- 100-iccrg-
ledbat-low- priority-tcp-congestion-control-in-windows-01.

2018. Vivace Full Proof of Theorems. http://www.ttmeng.net/pubs/
vivace_proof.pdf.

2018. Windows Transport converges on two Congestion Providers: Cubic and
LEDBAT. https://techcommunity.microsoft.com/t5/Networking-Blog/Windows-
Transport-converges-on-two- Congestion-Providers-Cubic/ba-p/339819.
Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical Delay-Based Conges-
tion Control for the Internet. Proc. of NSDI (April 2018).

J.C. Bansal, P.K. Singh, K. Deep, M. Pant, and A.K. Nagar. 2012. Proceed-
ings of Seventh International Conference on Bio-Inspired Computing: Theories
and Applications (BIC-TA 2012): Volume 2. Springer India. 435-436 pages.
https://books.google.co.il/books?id=97mrtf1TIKOC

L. Brakmo, S. Lawrence, S. O’Malley, and L. Peterson. 1994. TCP Vegas: New
techniques for congestion detection and avoidance. Proc. of ACM SIGCOMM
(1994).

Bob Briscoe. 2007. Flow rate fairness: dismantling a religion. Computer Commu-
nication Review 37, 2 (2007), 63-74. https://doi.org/10.1145/1232919.1232926
M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and K. van der Merwe.
2005. Design and implementation of a Routing Control Platform. Proc. of NSDI
(April 2005).

N. Cardwell, Y. Cheng, C.S. Gunn, S.H. Yeganeh, and Van Jacobson. 2016. BBR:
Congestion-Based Congestion Control. Queue 14, 5 (2016), 50.

Giovanna Carofiglio, Luca Muscariello, Dario Rossi, Claudio Testa, and Silvio
Valenti. 2013. Rethinking the low extra delay background transport (LEDBAT)
protocol. Computer Networks (2013).

Andrey Chernov. 2019. On Some Approaches to Find Nash Equilibrium in
Concave Games. Automation and Remote Control 80 (05 2019), 964-988. https:
//doi.org/10.1134/S0005117919050138

M. Dong, Qingxi Li, Doron Zarchy, Philip Brighten Godfrey, and Michael Schapira.
2015. PCC: Re-architecting Congestion Control for Consistent High Performance.
Proc. of NSDI (March 2015).

Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,
and Michael Schapira. 2018. PCC Vivace: Online-Learning Congestion Control.
Proc. of NSDI (April 2018).

Eyal Even-Dar, Yishay Mansour, and Uri Nadav. 2009. On the convergence
of regret minimization dynamics in concave games. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009, Michael Mitzenmacher (Ed.). ACM, 523-532. http:
//doi.acm.org/10.1145/1536414.1536486

Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mohammad Alizadeh, and Hari
Balakrishnan. 2020. ABC: A Simple Explicit Congestion Controller for Wireless
Networks. Proc. of NSDI (February 2020).

Yunhong Gu. 2005. UDT: a high performance data transport protocol. University
of Illinois at Chicago.

S. Ha, I. Rhee, and L. Xu. 2008. CUBIC: A new TCP-friendly high-speed TCP
variant. ACM SIGOPS Operating Systems Review (2008).

Sergiu Hart and Andreu Mas-Colell. 2015. Markets, correlation, and regret-
matching. Games and Economic Behavior 93 (2015), 42 — 58. https://doi.org/
10.1016/j.geb.2015.06.009

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,]J. Wan-
derer, J. Zhou, and M. Zhu. 2013. B4: Experience with a globally-deployed software
defined WAN. ACM Computer Communication Review (September 2013).

D. Katabi, M. Handley, and C. Rohrs. 2002. Congestion control for high bandwidth-
delay product networks. Proc. of ACM SIGCOMM (August 2002).

Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017.
The QUIC Transport Protocol: Design and Internet-Scale Deployment. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data Communication.
ACM, 183-196.

Q. Li, M. Dong, and P. Godfrey. 2015. Halfback: Running short flows quickly and
safely. Proc. of CONEXT (November 2015).

Shao Liu, Tamer Basar, and Ravi Srikant. 2008. TCP-Illinois: A loss-and delay-
based congestion control algorithm for high-speed networks. Performance Eval-
uation (2008).

Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily R. Blem, Hassan M. G.
Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and
David Zats. 2015. TIMELY: RTT-based Congestion Control for the Datacenter.
In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, SSGCOMM 2015, London, United Kingdom, August 17-21, 2015,
Steve Uhlig, Olaf Maennel, Brad Karp, and Jitendra Padhye (Eds.). ACM, 537-550.

627

SIGCOMM ’20, August 10-14, 2020, Virtual Event, USA

http://dl.acm.org/citation.cfm?id=2785956

Akshay Narayan, Frank Cangialosi, Prateesh Goyal, Srinivas Narayana, Moham-
mad Alizadeh, and Hari Balakrishnan. 2017. The case for moving congestion
control out of the datapath. Proc. of HotNets (December 2017).

P. Brighten Godfrey Michael Schapira Nathan Jay, Noga H. Rotman and Aviv
Tamar. 2019. A Deep Reinforcement Learning Perspective on Internet Congestion
Control. Proc. of ICML (2019).

J. B. Rosen. 1965. Existence and Uniqueness of Equilibrium Points for Concave
N-Person Games. Econometrica 33 (July 1965), 520-534.

Dario Rossi, Claudio Testa, Silvio Valenti, and Luca Muscariello. 2010. LEDBAT:
the new BitTorrent congestion control protocol. ICCCN (August 2010).

S. Shalunov. 2009. Low Extra Delay Background Transport (LEDBAT). Draft.
https://tools.ietf.org/pdf/draft-ietf-ledbat- congestion-00.pdf

S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. 2012. Low Extra Delay Back-
ground Transport (LEDBAT). RFC 6817 (Experimental). http://www.ietf.org/
rfe/rfc6817.txt

Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2016. BOLA: Near-
optimal bitrate adaptation for online videos. Proc. [EEE INFOCOM (April 2016).
Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar. 2012. Deadline-aware
datacenter tcp (d2tcp). Proc. of ACM SIGCOMM (August 2012).

Ravichandra Addanki Mehrdad Khani Prateesh Goyal Vikram Nathan, Vibhaalak-
shmi Sivaraman and Mohammad Alizadeh. 2019. End-to-end transport for video
QOE fairness. Proc. of ACM SIGCOMM (August 2019).

B. White, J. Lepreau, L. Stoller, R. Ricci, G. Guruprasad, M. Newbold, M. Hibler,
C. Barb, and A. Joglekar. 2002. An integrated experimental environment for
distributed systems and networks. Proc. of OSDI (December 2002).

Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. 2011.
Better never than late: Meeting deadlines in datacenter networks. Proc. of ACM
SIGCOMM (August 2011).

K. Winstein and H. Balakrishnan. 2013. TCP ex Machina: Computer-Generated
Congestion Control. Proc. of ACM SIGCOMM (August 2013).

K. Winstein, A. Sivaraman, and H. Balakrishnan. 2013. Stochastic Forecasts
Achieve High Throughput and Low Delay over Cellular Networks. Proc. of NSDI
(March 2013).

F.Y. Yan, J. Ma, G. Hill, D. Raghavan, R. S. Wahby, P. Levis, and K. Winstein. 2018.
Pantheon: the training ground for Internet congestion-control research.

Y. Zaki, T. Pétsch, J. Chen, L. Subramanian, and C. Gérg. 2015. Adaptive con-
gestion control for unpredictable cellular networks. Proc. of ACM SIGCOMM
(August 2015).

[29

S W
R

®
=

%
20,

[40]

[41]

[42

[43

APPENDIX

Appendices are supporting material that has not been peer-reviewed.

A PROTEUS EQUILIBRIUM ANALYSIS

We consider a simple model of interaction between senders on
a bottleneck link. We show below that for any combination of
Proteus-P and Proteus-S senders competing over a single link the
induced equilibrium is unique. We leverage this to establish that
when only Proteus-P senders, or only Proteus-S senders, share the
link, the resulting outcome is fair. We leave the study of dynamics
of congestion control in more realistic models (e.g., that incorporate
stochastic packet arrivals), and of the impact of different parameter
configuration on equilibria when Proteus-P and Proteus-P senders
compete, to future research.

A.1 Notation

We let x; denote the sending rate of Proteus sender i, C the bot-
tleneck capacity, and S the total sending rate of all the senders
competing over a common bottleneck (S = }; x;).

As in the proofs for fairness and convergence of PCC-Vivace [17]
(assuming tail drop queue), when the buffer is not empty, the RTT
gradient is captured by the expression

d(RTT;) S-C
ad ~ C

Proteus-S leverages RTT deviation as a signal for competition

with primary (Proteus-P) senders. Thus, the interesting scenario to

consider for the proof is when the buffer is deep enough for RTT

https://github.com/Dash-Industry-Forum/dash.js
http://github.com/bittorrent/libutp
https://github.com/netarch/PCC_QUIC
https://github.com/PCCproject/PCC-Uspace
https://datatracker.ietf.org/meeting/100/materials/slides-100-iccrg-ledbat-low-priority-tcp-congestion-control-in-windows-01
https://datatracker.ietf.org/meeting/100/materials/slides-100-iccrg-ledbat-low-priority-tcp-congestion-control-in-windows-01
http://www.ttmeng.net/pubs/vivace_proof.pdf
http://www.ttmeng.net/pubs/vivace_proof.pdf
https://techcommunity.microsoft.com/t5/Networking-Blog/Windows-Transport-converges-on-two-Congestion-Providers-Cubic/ba-p/339819
https://techcommunity.microsoft.com/t5/Networking-Blog/Windows-Transport-converges-on-two-Congestion-Providers-Cubic/ba-p/339819
https://books.google.co.il/books?id=97mrtf1TlK0C
https://doi.org/10.1145/1232919.1232926
https://doi.org/10.1134/S0005117919050138
https://doi.org/10.1134/S0005117919050138
http://doi.acm.org/10.1145/1536414.1536486
http://doi.acm.org/10.1145/1536414.1536486
https://doi.org/10.1016/j.geb.2015.06.009
https://doi.org/10.1016/j.geb.2015.06.009
http://dl.acm.org/citation.cfm?id=2785956
https://tools.ietf.org/pdf/draft-ietf-ledbat-congestion-00.pdf
http://www.ietf.org/rfc/rfc6817.txt
http://www.ietf.org/rfc/rfc6817.txt

SIGCOMM ’20, August 10-14, 2020, Virtual Event, USA

deviations to be observed and the equilibrium resulted from the
interaction between different Proteus senders (P and/or S) does not
involve packet loss. Thus, to simplify exposition, we disregard the
loss terms in Proteus-P and Proteus-S utility functions in the analy-
sis below. Our formal arguments can be extended to incorporate
penalties for loss using the arguments in [6].

Proteus-P is hence expressed in the following form (with loss
term omitted):

up(xi) = xl-t —-b-xj max {0, u}
C

We also derive the theoretical (simplified) representation of the
scavenger utility function. Note that in our theoretical model, RTT
deviation is induced by senders building or draining the buffer. In
that process, the difference between two consecutive RTT samples
observed by a Proteus-S sender i (assuming MTU-sized data packets)
is

MTU d(RTT;)

Tx dt
Thus, RTTs exhibit arithmetic progression when the global sending
rate configuration is fixed, and sender i’s observed RTT (standard)
deviation at an MI takes the form

2 Z,&ZQ/ZJ (k- ARrr(x:))?

ARTT(xi) =

o(RTT;) = —
1
_ (ni+1)(n; —1)] MTU] d(RTT;)
N 12 xi dt ’

where n; is the number of RTT samples in the corresponding MIL8
The Proteus-S utility function (again, with the loss term omitted)
can now be expressed as

us(xi) = up(x;) —d - x; - o(RTT;)

IS -ClI
c

S —
:xl-t—b'xi-max{O,TC}—d'A-xi-

where A = Mx—TlU ~A/(ng+1)(n; —1)/12.

Since Proteus, similar to [16, 17, 30], employs an RTT-long mon-
itor interval, n; can be regarded as approximately linear in x;. Con-
sequently, A can be regarded as a constant for the purpose of our
analysis.

A.2 Existence and Uniqueness of Equilibrium

We consider n > 0 Proteus-P senders and m > 0 Proteus-S senders
competing over the same bottleneck link. We formulate the interac-
tion between these senders as a non-cooperative game G, in which
the senders are the players, the strategy of each player is its choice
of sending rate, and the payoff for each player from a combination
of strategies (global configuration of sending rates) is as specified
by its (Proteus-P or Proteus-S) utility function. We prove below
that game G has a unique equilibrium point. Our proof consists of
the following parts:

(1) We first make the simple observation that, in any equilibrium,
the total sending rate across all senders can be no less than
the capacity, i.e, S > C in all equilibria.

8Without loss of generality, we show the expression when n; is an odd number.

628

Tong Meng, Neta R. Schiff, Brighten Godfrey, and Michael Schapira

(2) We then focus on the subgame Gs> ¢, which is derived from
G by only permitting combinations of senders’ strategies for
which S > C. We prove that the global rate-configuration
is an equilibrium of Gg ¢ if an only if it is an equilibrium
of G. Thus, we can restrict our attention to analyzing the
equilibria of Gss¢.

Lastly, we prove that the restricted game Gg ¢ falls within
the game-theoretic category of strictly socially concave games
[15, 22], for which a unique equilibrium is guaranteed to ex-
ist [17, 18, 31]. We then conclude that the original game G
is also guaranteed to have a unique equilibrium.

Observation: In any Nash equilibrium of the game G, S > C.

To see why this is so, suppose, for point of contradiction, the
existence of an equilibrium such that S < C.Let e = C - S. Since in
this equilibrium the total sending rate is strictly less than the link
capacity, any of the senders can strictly improve its utility by in-
creasing its rate by less than e (attaining better throughput without
increasing the RTT while still satisfying S < C)—a contradiction to
this being an equilibrium.

We next prove the following lemma.

LEmMMA A.1. A configuration of sending rates is an equilibrium of
G if and only if it is an equilibrium of Gss .

ProOF. Since in any equilibrium of G, S > C (see the above
observation), and since G allows a strict superset of the strategies
available in Gg> ¢, any equilibrium in G is an equilibrium also in
Gs>c-

Now, consider a configuration of sending rates x* which is an
equilibrium in Ggy¢. We first handle the case that S > C. Let
€ = S — C. Suppose, for point of contradiction, that x* is not an
equilibrium in G. Hence, some sender i can increase its utility by
increasing or decreasing its rate by a certain amount 8. As x* is
an equilibrium in Ggs¢, the rate change § must be outside the
strategy space available in Gg> ¢, i.e., it is a rate decrease where
d > €. However, since the Proteus (P and S) utility functions are
continuous, i must be able to improve its utility also by decreasing
its rate by less than €. Observe, however, that this contradicts x*
being an equilibrium in Ggs ¢ (since the rate-configuration reached
after i’s rate change is also in Gg>¢).

Next, consider the case that x* is an equilibrium in Ggs ¢ for
which S = C. Since this is an equilibrium in Gg> ¢, no sender can
increase its utility by increasing its rate. In addition, no sender
can increase its utility by decreasing its rate, because all terms in
its utility would decrease or remain the same: sending rate would
decrease, the latency gradient term would remain at zero since
Proteus (P and S) utility functions do not reward negative latency
gradients, and RTT deviation penalty would either remain at zero
or become negative. Therefore, no sender can improve its utility

and x* is also an equilibrium in G. O

LemmA A.2. Ggx ¢ is strictly socially concave.

Proor. With S > C, the Proteus-S and Proteus-P utility func-
tions take the following form:
S-C
C ,

us(xi)zxit—(b+d-A)-xi(

PCC Proteus: Scavenger Transport And Beyond

S-C
C
To prove that Gg > is strictly socially concave we show that the

following three conditions are satisfied. See [18] for an exposition
of (strictly) socially concave games.

up(xi) =x{ —b-x;

(1) Each individual sender i’s utility function is strictly concave
in its sending rate x;.

(2) Each individual sender i’s utility function is convex in the
other senders’ rates x_; = Z#i Xj.

(3) The sum of sender utilities };cp, | pp 4(xi), where Ps and
Pp are all scavenger and all primary senders, respectively, is
concave in the combination of all senders’ rates X.

We first show that the utility function ug(x;) of Proteus-S sender
i is concave in x;. The first derivative of ug(x;) is
us (x1) _ L
ox; C

S-C

t.xg—l—(b+d-A)(.

Its second derivative is
P ug(x;)

S =t 1xt=? %(b +d-A)

Since 0 < t < 1 this second derivative is negative, so ug(x;) is
concave in x;j.

Then, up(x;)’s concavity in x; follows from the fact that when
S > C, up(x;) is identical to PCC Vivace’s utility function [17],
already shown to be concave in x; [6].

The utility function of each sender i, whether using Proteus-P or
ol (x;)

oxpz 0

Proteus-S, is convex in x_;, as derived from the fact that

ud (x;)
and —(I;i_;z =0.

Last, we show that the function g(X) = X ;epq | pp t(x;) is con-
cave in the combination of all senders’ rates X:

900 1= 3 () = (b+d-4) (G E)
iePs
£ () - b8
i€P),
- Z ((xi)t)—(5~b+T-d-A)(—S;C)) ,
i€ePs|JPp

where T is the total sending rate for Proteus-S senders, i.e., T =
Zieps(xi).
On that basis, g(X)’s first derivative with respect to a Proteus-S
sender i’s rate x; is
9 _,
oxj

5 - 5 -
1 Cc CC

and the second derivative with respect to the same sender i is

S T
+5)—(d'A)(+E) ,

9*9(X)

2b +d-A
(9x;)?

=t(t-1xl72 = c

<0

Besides, the second derivative with respect to another Proteus-S
sender j is

9%gi(X) _
90x;0Xj

2.b+d-A
C

<0 ,

629

SIGCOMM ’20, August 10-14, 2020, Virtual Event, USA

and the second derivative with respect to a Proteus-P sender j is

gi(X) 2b+d-A -0
- C

The second derivatives of g(X) when the first derivatives are with
respect to Proteus-P senders can similarly be shown to be negative.
Since all second derivatives are negative, the Hessian is negative
semidefinite and so we conclude that g(X) is concave in X [9].

We have shown that the three conditions are satisfied and so
Gs>c is strictly socially concave. O

90x;0Xj

Strictly socially concave games have a unique equilibrium [17, 18,
31]. This, combined with Lemma A.1, implies that G has a unique
equilibrium.

The uniqueness of equilibria immediately implies the fairness in
symmetric case as in Theorem 4.1&4.2:

Theorem 4.1 When only Proteus-P senders compete over a
bottleneck link the unique equilibrium is fair.

Theorem 4.2 When only Proteus-S senders compete over a
bottleneck link the unique equilibrium is fair.

These two theorems follow from the fact that if some sender i’s
rate in equilibrium x; is different than another sender j’s rate x;,
then the global rate configuration in which i sends at rate x; and
Jj sends at rate x; must be a different equilibrium. This, however,
contradicts the uniqueness of the equilibrium.

B TUNING TARGET EXTRA DELAY CANNOT
SAVE LEDBAT

When LEDBAT was first proposed as an IETF draft [33], it employed
an extra delay target of 25 ms, which is much smaller than 100 ms
today. Based on our analysis in §4.2, using 25 ms extra delay as target
should be an earlier congestion signal than 100 ms. However, using
similar sets of experiments in §6, we demonstrate that both setups
fail to serve as robust scavenger against the evaluated primary
protocols (LEDBAT-25 and LEDBAT-100 are used to distinguish
between two setups).

B.1 Performance Goal

First, as a congestion controller itself, LEDBAT-25 also needs large
buffer to achieve high utilization. In the meanwhile, it keeps the
buffer full until the buffer is large enough to accommodate 25 ms
additional delay.

Using the same Emulab bottleneck as in Fig. 3, we have the
following updated Fig. 15, where LEDBAT-25 and LEDBAT-100
have similar performance.

Similarly, provided 2 BDP buffer under an Emulab bottleneck of
50 Mbps bandwidth and 30 ms RT'T, Fig. 16 shows that LEDBAT-25
has almost identical performance when there exists random loss.
This is because they both inherit the design of traditional TCP, i.e.,
correlating packet losses with in-network congestion.

Furthermore, since with a smaller target extra delay, LEDBAT-
25 has even worse multi-flow fairness, because a specific buffer
can now accommodate the sum of delay targets of more LEDBAT-
25 senders. To validate that, we repeat the multiflow competition
experiment as in Fig. 5 with LEDBAT-25. As expected, in Fig.17,
LEDBAT-25’s fairness index is lower than LEDBAT-100. With n =
10, the Jain’s index of LEDBAT-25 is 38.7% smaller than Proteus-S.

SIGCOMM ’20, August 10-14, 2020, Virtual Event, USA

Figure 15:

50
5 40
@
Q
s ‘
230 - /- d e proteuss
2 —e— LEDBAT-25
S 20 - —4— LEDBAT-100
| —+— CUBIC
g =
Fo10 - Proteus-P
—*— COPA
—+— Vivace
0 ‘ ‘
1 10 - h
Buffer Size (KB)
(a) Throughput
—=—\ Proteus-S
0.8 —e— LEDBAT-25
-S —4— LEDBAT-100
3 R Svocusie
c 0.6 = \A
o
=1 Proteus-P
g e
£ 04 N Vivace
; R i
UI] —
o 02 :
I : ‘

0 100 200 300 400 500 600 700 800 900
Buffer Size

(b) Latency inflation

Bottleneck saturation with varying buffer size

i
Q
el
2
=
=3
Q
<
(=
S
o
=
= Proteus-P
—x— COPA —

—— Vivace ~—
Il Il Il Il Il I
0 0.01 0.02 0.03 0.04 0.05 0.06

Random Loss Rate

1

Figure 16: Random loss tolerance

0.8 K\
AN
N —
0.6 | N H e
~—#— Proteus-S
—e— LEDBAT-25
0.4 |- - —— LEDBAT-100
_— —¥— CUBIC
— —+— BBR
0.2 - Proteus-P
—*— COPA
‘407 ‘Vivace‘

Jain's Fairness Index

0 i i i i i
2 3 4 5 6 7 8 9 10

Number of Flows

Figure 17: Fairness with competing flows

Tong Meng, Neta R. Schiff, Brighten Godfrey, and Michael Schapira

Proteus-S

80
60
40
20

LEDBAT-25

Throughput (Mbps)

TR

fA gy \
ﬁﬁﬂw

100 200 300 400 500

Time (s)

1 A | L L /
0 100 200 300 400 500 O
Time (s)

Figure 18: 4-Flow Competition

& 100 - .
o BBR *
© L cuBIC
o 80 [
« COPA
2 60 Proteus-P
S

[
§ 40 -Buffer: 75KB 375KB
'_E | |
> 20 -
©
E o ‘ ‘ ‘ S
a 0 20 40 60 80 100

Capacity Utilization (%)

Figure 19: LEDBAT-25 as a Scavenger Competing with Pri-
mary Protocols

one-way delay. In the end, the last flow will grab almost all the band-
width. LEDBAT-100 has better fairness than LEDBAT-25, but the
first flow still has the lowest bandwidth share. Both Proteus variants
are much more stable and fair, with Proteus-S fluctuating somewhat
more than Proteus-P because Proteus-S senders back off (and then
recover) in competition more conservatively and frequently.

B.2 Yielding Goal

Second, LEDBAT-25, though less aggressive than LEDBAT-100, is
still not robust enough as a scavenger against many primary proto-
cols, especially recently-proposed latency-sensitive protocols. To
show with, we use the same 50 Mbps bandwidth, 30 ms RTT bottle-
neck with two buffer setups, and conduct the two-flow competition
experiment, letting LEDBAT-25 compete with BBR, CUBIC, COPA,
Proteus-P, and PCC.

The following is the performance summary for LEDBAT in
Fig. 19.

o LEDBAT-25 fails to yield to CUBIC with 75 KB buffer.

e Regardless of the buffer size, compared with LEDBAT-25, the
performance of Proteus-S (Fig. 6(b)) is 24% higher when the
primary protocol is COPA and 2X higher when the primary
protocol is Proteus-P.

e Similar to LEDBAT-100, LEDBAT-25 is even more aggressive
against PCC Vivace and Proteus-P.

Fig. 20 shows the impact of LEDBAT-25 on RTT of primary

To further demonstrate the issue intuitively, we show the through-
put across time with n = 4 in Fig. 18. For LEDBAT-25, each new flow
dominates all previous flows because it observes larger “minimum”

protocols. Although COPA can still achieve 73.3% throughput ratio
competing with LEDBAT-25 (as in Fig. 6(d)), that comes at the cost
of 2.2x RTT.

630

PCC Proteus: Scavenger Transport And Beyond SIGCOMM ’20, August 10-14, 2020, Virtual Event, USA

1 1 ¥ —=— Proteus-S |
& —+— Vs Proteus-S | s —=— vs Proteus-S) —e— LEDBAT-25 [
b+ 0.8 —+— vs LEDBAT-25 1 ° 0.8 —+— vs LEDBAT-25 < 0.8 - —a— LEDBAT-100
© vs LEDBAT-100 o© vs LEDBAT-100 f:’ —»— CUBIC |
'z 0 f s 0 f f L It
% 04 g % 0.4 E . —*— Eroo;ius—P)|
g 0.2 e g 0.2 ! bt g 04 L
R S - O ghei o=l E J
0 02 04 06 08 1 0 02 04 06 08 1 o 0.2 ot d.
Primary Flow Throughput Ratio Primary Flow Throughput Ratio ", 4
0 = v p . el |
(a) BBR as Primary (b) CUBIC as Primary 0 0.2 0.4 0.6 0.8 1
Normalized Throughput
g ! Proteus-S ! s ! Proteus-S I
£ 08 . veLEDBATS . £ 06 velDBAT2S Figure 21: Single Flow Throughput on WiFi (include
o LEDBAT-100_~ o LEDBAT-10
£ 0p T £ ooe TEATD LEDBAT-25)
g 0.4 % 0.4
g o2 Ly g o2 !
= = 3 ¥ R .
Yo o B.2.1 WiFi Performance. With a smaller target extra delay, LEDBAT-
0 02 04 06 08 1 0 02 04 06 08 1 . . i i
Primary Flow Throughput Ratio Primary Flow Throughput Ratio 25 unfortunately is also more sensitive to RTT noise. Fig. 21 shows
(c) COPA as Primary (d) Proteus-P as Primary LEDBAT-25 among our tests of single-flow throughput on real-
world WiFi (our laptop to AWS servers). Its throughput CDF is
.1 R r worse than LEDBAT-100 and Proteus-S.
s " vs proteuss) . -
g 08| - vsLEDBAT:25/0 When acting as scavenger sender on the same WiFi test configu-
E) 0.6 i S rations, LEDBAT-25, as expected, is better than LEDBAT-100, but
g Z; still falls behind Proteus-S, as shown in Figure 22. Specifically, when
3 . competing with Proteus-S, the median throughput ratios of COPA,
O 02 04 06 08 1 Proteus-P, and PCC Vivace are respectively 5.2%, 24.7%, and 38.6%
Primary Flow Throughput Ratio
higher than what they achieve when competing with LEDBAT-25.
(e) PCC Vivace as Primary
B.3 Summary
Figure 22: Primary Throughput Ratio in Real-World WiFi The key reason that LEDBAT-25 still cannot be a robust scavenger
is that LEDBAT uses a late signal for flow competition. Therefore, it
3T L broteuss 1 is easy for it to have much higher aggressiveness than most latency-
e B aware protocols, such as COPA, PCC Vivace, and Proteus-P.

Proteus-P V-
COPA

95-th RTT Ratio

cuBIC BBR COPA Proteus-P pCC
Primary Protocol

Figure 20: Scavenger’s Impact on Congestion RTT (including
LEDBAT-25)

631

	Abstract
	1 Introduction
	2 Preliminaries and Motivation
	2.1 When Does Scavenging Makes Sense?
	2.2 Signaling Scavengers to Yield
	2.3 Motivation for Flexibility

	3 Proteus Design Overview
	4 Proteus Utility Design
	4.1 Primary Utility Function
	4.2 Competition Indicator: RTT Deviation
	4.3 Scavenger Utility Function
	4.4 Proteus-H: Hybrid Mode

	5 Handling Latency Noise
	6 Evaluation
	6.1 Scavenger-Only Performance
	6.2 Yielding to Primary Flows
	6.3 Flexibility of Hybrid Utility

	7 Discussion
	7.1 Real-World Adoption
	7.2 Robustness in Noise Tolerance

	8 Related Work
	9 Conclusion
	References
	A Proteus Equilibrium Analysis
	A.1 Notation
	A.2 Existence and Uniqueness of Equilibrium

	B Tuning Target Extra Delay Cannot Save LEDBAT
	B.1 Performance Goal
	B.2 Yielding Goal
	B.3 Summary

