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ABSTRACT

Heterogeneous applications and restricted bandwidth on the
Internet have motivated recent works on scavenger conges-
tion control, which yields bandwidth to competing primary
traffic for increased network-wide utility. Although poten-
tial use cases are quite common, deployments are as yet
limited, in part due to protocol design immaturity, lack of
open source code, and limited experimental evaluation. In
this work, we extend recent scavenger advances by providing
(1) open-source implementations of two recent scavenger
proposals, PCC Proteus (QUIC-based) and LEDBAT++; (2)
early benchmarks of the two in a realistic network setup;
and (3) a discussion of APIs needed for applications to take
advantage of scavenger congestion control. Ultimately, we
hope this line of work will lead to further community dis-
cussion, open development, and deployment of scavengers
yielding better quality of experience for users.
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1 INTRODUCTION

Internet congestion control traditionally strives for fairness
among competing flows. However, because application needs
are heterogeneous, non-equal bandwidth allocation can im-
prove overall network-wide utility. For example, in a home
with a limited-bandwidth Internet connection, a video stream-
ing flow may deliver degraded video quality when a software
update runs in the background. Since the user does not re-
quire the software update to finish immediately (and may
not even realize it is happening), it would be preferable for
the update to yield and allow the video stream to utilize more
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bandwidth at that moment. This is the goal of a congestion
control scavenger [12, 19, 19] - enabling a flow with elastic
timing requirement to yield to more time-sensitive compet-
ing traffic. Moreover, as demonstrated in [12, 14], even for
time-sensitive applications, network-wide Quality of Expe-
rience (QoE) can be enhanced if the application adaptively
lowers its priority when it can be done safely (e.g., when
a video streaming flow’s throughput is higher than needed
to serve the highest video bitrate smoothly). While having
many natural use cases, compared with primary protocols,
the deployment of scavengers thus far remains sparse. To
the best of our knowledge, the most significant examples
are the use of LEDBAT [19] and LEDBAT++ [16] within the
Windows Server operating system, and the use of LEDBAT
by uTorrent [1] and Apple devices (for software updates) [2].

Several factors that limit the widespread adoption of scav-
engers. First, current scavengers exhibit suboptimal per-
formance. An early scavenger proposal, LEDBAT [19], is
designed to limit the induced queuing delay below a tar-
get. However, it suffers from a latecomer advantage with
homogeneous LEDBAT flows [17], and is more aggressive
than latency-aware primary protocols such as BBR [7] and
PCC [9, 12]. LEDBAT++ [16], an improved version of LED-
BAT, is yet to be evaluated comprehensively. Our own scav-
enger congestion control proposal, PCC Proteus [12], adopts
the utility framework from past research on PCC [8, 9], and
uses a dedicated scavenger utility function that leverages
latency deviation as a sensitive early signal of flow competi-
tion. Although the Proteus scavenger (Proteus-S) addresses
LEDBAT’s main deficiencies, its performance under noisy
wireless environments needs to be improved [12].

Furthermore, available implementations of scavenger con-
gestion controllers are limited: LEDBAT and Proteus have
open source implementations only in non-standard datap-
aths (in pTorrent [1] and a UDT variant [4], respectively).
LEDBAT++ has no open-source codebase, being implemented
only in Windows Server. Thus, researchers cannot conve-
niently evaluate the performance of scavenger protocols in
real-world conditions. It is even harder to explore scenarios
where the priority of a flow is adaptively chosen while the
flow is in progress [12, 14], since existing congestion con-
trol interfaces (like the Linux kernel and CCP [13]) cannot
convey the priority selection to transport datapath.

In this talk, we report on several advances in scavenger
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Figure 1: Primary flow throughput ratio

congestion control. We implemented Proteus within the
widely-deployed QUIC datapath [11]. We also developed
a LEDBAT++ implementation and are releasing it as open
source code (this is the first such implementation of LED-
BAT++, to the best of our knowledge). We present prelim-
inary benchmarks of the two implementations. Finally, as
scavengers can benefit from application-layer guidance, we
discuss the congestion control interface necessary for scav-
enger usage by diverse Internet applications.

2 SCAVENGER IMPLEMENTATIONS

In [12], we implemented Proteus [4] in user-space on top of
UDT [10]. Since UDT is not a popular transport datapath, we
have now ported it to QUIC. The code [5] is open-sourced.

Next, we implemented LEDBAT++ [16]. LEDBAT++ in-
troduces several enhancements to LEDBAT, such as better
sampling of queuing delay to mitigate the latecomer advan-
tage. Our open-source implementation [3] branches from
the yTorrent Transport Library [1].

To test these implementations, we emulated network bot-
tlenecks in Mahimahi [15]. First, we let our Proteus-QUIC
scavenger and LEDBAT++ compete against CUBIC and BBR,
respectively, on a wide range of bottlenecks: bandwidth in
{12, 24, 48, 96, 192} Mbps, RTT in {10, 30, 60, 100, 200} ms,
buffer size in {0.2, 0.5, 1, 2, 5} BDP. We tested all 125 com-
binations of those parameter settings. Fig. 1 presents the
CDF of primary flow throughput ratio, computed as primary
flow throughput when competing with scavenger divided
by that when running alone. Compared with LEDBAT’s per-
formance in [12], LEDBAT++ does better: when competing
with BBR, it can yield similarly well as our Proteus-QUIC
scavenger, although with a worse tail (e.g., it lowers BBR’s
throughput by at least 20% in 8% of cases, 2.5% as often as
the Proteus-QUIC scavenger). With CUBIC as the primary
flow, Proteus-QUIC yields better than LEDBAT++, giving
CUBIC a median of 5.6% higher throughput. That is fun-
damentally due to LEDBAT++’s reliance on a target delay,
which may inevitably be relatively more aggressively under
specific bottlenecks.

To see performance effects in more detail, we pick a repre-
sentative 48 Mbps Mahimahi bottleneck with 30 ms RTT and
4 BDP buffer, and let a scavenger flow compete with a BBR
and a CUBIC flow successively across time. Fig. 2(a) shows

60

Tong et al.

50

40 -

i
T EEL;BAnt
A ot cuBic

—— Proteus-QUIC Scayenger
-~~~ BBR i
—— CUBIC

20 20

10 10

Throughput (Mbps)
Throughput (Mbps)

N i
200 0 50 100 150
Time (Second)

(b) LEDBAT++

0 J i i
0 50 100 150
Time (Second)

(a) Proteus-QUIC

200

Figure 2: Throughput across time

that Proteus-S yields to both BBR and CUBIC. As in Fig. 2(b),
LEDBAT++ fails to yield most of its bandwidth to BBR, but
backs off faster than Proteus-S when the CUBIC flow starts.
Thus, our QUIC implementation of Proteus maintains the
scavenging gains claimed in [12], but further improvements
(e.g., convergence speed) are desirable.

3 CONGESTION CONTROL INTERFACES

CCP [13] and CONMax [6] demonstrate the importance of
establishing unified interfaces for congestion control proto-
cols. Existing congestion control interfaces on most transport
datapaths are oblivious to application requirements. This lay-
ered network stack [18] is a design choice intended to accom-
modate plugging a congestion control protocol into any ap-
plication once implemented, without application developers
bothering with lower layers. However, this restricts each flow
to a static congestion control mode, e.g., primary/scavenger,
for the flow’s entire lifetime, and cannot accommodate Pro-
teus’s ability to adaptively switch between primary and scav-
enger priorities for optimized network-wide utility. We are
thus inspired to envision an interface such that the applica-
tion can convey the selected priority to congestion controller.
Implementation Approaches. To support the above inter-
face, the transport datapath needs to incorporate a callback
that facilitates the switch of congestion control priorities (e.g.,
OnPrioritySwitch(.)). For Proteus, it suffices to toggles a
boolean flag (e.g., is_scavenger_prior) to change the util-
ity function in use. If primary and scavenger protocols are
implemented separately (e.g., as separate classes in QUIC),
the callback can be used to initiate a connection migration
(e.g., OnConnectionMigration(.) method in QUIC), which
effectively starts a new connection with a saved state includ-
ing the congestion window. Otherwise, the application can
open two parallel connections per flow, representing primary
and scavenger priorities, respectively. Then, the callback can
enforce a congestion window of 0 for a certain connection,
and migrate the current congestion window to another con-
nection with corresponding priority (which can be combined
with multipath protocols like MPTCP [20]).
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