Toward Greater Scavenger Congestion Control
Deployment: Implementations and Interfaces

Christopher Cai!
'UIuc

Tong Meng!

ABSTRACT

Heterogeneous applications and restricted bandwidth on the
Internet have motivated recent works on scavenger conges-
tion control, which yields bandwidth to competing primary
traffic for increased network-wide utility. Although poten-
tial use cases are quite common, deployments are as yet
limited, in part due to protocol design immaturity, lack of
open source code, and limited experimental evaluation. In
this work, we extend recent scavenger advances by providing
(1) open-source implementations of two recent scavenger
proposals, PCC Proteus (QUIC-based) and LEDBAT++; (2)
early benchmarks of the two in a realistic network setup;
and (3) a discussion of APIs needed for applications to take
advantage of scavenger congestion control. Ultimately, we
hope this line of work will lead to further community dis-
cussion, open development, and deployment of scavengers
yielding better quality of experience for users.

CCS CONCEPTS

» Networks — Transport protocols.

KEYWORDS

Congestion Control; Scavenger

1 INTRODUCTION

Internet congestion control traditionally strives for fairness
among competing flows. However, because application needs
are heterogeneous, non-equal bandwidth allocation can im-
prove overall network-wide utility. For example, in a home
with a limited-bandwidth Internet connection, a video stream-
ing flow may deliver degraded video quality when a software
update runs in the background. Since the user does not re-
quire the software update to finish immediately (and may
not even realize it is happening), it would be preferable for
the update to yield and allow the video stream to utilize more

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

ANRW 21, July 24-30, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8618-0/21/07.
https://doi.org/10.1145/3472305.3472323

Brighten Godfrey'
2Hebrew University of Jerusalem

59

Michael Schapira?

bandwidth at that moment. This is the goal of a congestion
control scavenger [12, 19, 19] - enabling a flow with elastic
timing requirement to yield to more time-sensitive compet-
ing traffic. Moreover, as demonstrated in [12, 14], even for
time-sensitive applications, network-wide Quality of Expe-
rience (QoE) can be enhanced if the application adaptively
lowers its priority when it can be done safely (e.g., when
a video streaming flow’s throughput is higher than needed
to serve the highest video bitrate smoothly). While having
many natural use cases, compared with primary protocols,
the deployment of scavengers thus far remains sparse. To
the best of our knowledge, the most significant examples
are the use of LEDBAT [19] and LEDBAT++ [16] within the
Windows Server operating system, and the use of LEDBAT
by uTorrent [1] and Apple devices (for software updates) [2].

Several factors that limit the widespread adoption of scav-
engers. First, current scavengers exhibit suboptimal per-
formance. An early scavenger proposal, LEDBAT [19], is
designed to limit the induced queuing delay below a tar-
get. However, it suffers from a latecomer advantage with
homogeneous LEDBAT flows [17], and is more aggressive
than latency-aware primary protocols such as BBR [7] and
PCC [9, 12]. LEDBAT++ [16], an improved version of LED-
BAT, is yet to be evaluated comprehensively. Our own scav-
enger congestion control proposal, PCC Proteus [12], adopts
the utility framework from past research on PCC [8, 9], and
uses a dedicated scavenger utility function that leverages
latency deviation as a sensitive early signal of flow competi-
tion. Although the Proteus scavenger (Proteus-S) addresses
LEDBAT’s main deficiencies, its performance under noisy
wireless environments needs to be improved [12].

Furthermore, available implementations of scavenger con-
gestion controllers are limited: LEDBAT and Proteus have
open source implementations only in non-standard datap-
aths (in pTorrent [1] and a UDT variant [4], respectively).
LEDBAT++ has no open-source codebase, being implemented
only in Windows Server. Thus, researchers cannot conve-
niently evaluate the performance of scavenger protocols in
real-world conditions. It is even harder to explore scenarios
where the priority of a flow is adaptively chosen while the
flow is in progress [12, 14], since existing congestion con-
trol interfaces (like the Linux kernel and CCP [13]) cannot
convey the priority selection to transport datapath.

In this talk, we report on several advances in scavenger


https://doi.org/10.1145/3472305.3472323

ANRW °21, July 24-30, 2021, Virtual Event, USA

—=— BBRvs. Pnloteus—QUIC
| —=— CUBIC vs. Proteus-QUIC
0.6 - BBR vs. LEDBAT++
0.4 - CUBIC vs. LEDBAT++

0.2 jjﬂ

s aamtray
P e —— — el

0.6 0.7 0.8 0.9 1.0
Primary Flow Throughput Ratio

Cumulative Distribution

Figure 1: Primary flow throughput ratio

congestion control. We implemented Proteus within the
widely-deployed QUIC datapath [11]. We also developed
a LEDBAT++ implementation and are releasing it as open
source code (this is the first such implementation of LED-
BAT++, to the best of our knowledge). We present prelim-
inary benchmarks of the two implementations. Finally, as
scavengers can benefit from application-layer guidance, we
discuss the congestion control interface necessary for scav-
enger usage by diverse Internet applications.

2 SCAVENGER IMPLEMENTATIONS

In [12], we implemented Proteus [4] in user-space on top of
UDT [10]. Since UDT is not a popular transport datapath, we
have now ported it to QUIC. The code [5] is open-sourced.

Next, we implemented LEDBAT++ [16]. LEDBAT++ in-
troduces several enhancements to LEDBAT, such as better
sampling of queuing delay to mitigate the latecomer advan-
tage. Our open-source implementation [3] branches from
the yTorrent Transport Library [1].

To test these implementations, we emulated network bot-
tlenecks in Mahimahi [15]. First, we let our Proteus-QUIC
scavenger and LEDBAT++ compete against CUBIC and BBR,
respectively, on a wide range of bottlenecks: bandwidth in
{12, 24, 48, 96, 192} Mbps, RTT in {10, 30, 60, 100, 200} ms,
buffer size in {0.2, 0.5, 1, 2, 5} BDP. We tested all 125 com-
binations of those parameter settings. Fig. 1 presents the
CDF of primary flow throughput ratio, computed as primary
flow throughput when competing with scavenger divided
by that when running alone. Compared with LEDBAT’s per-
formance in [12], LEDBAT++ does better: when competing
with BBR, it can yield similarly well as our Proteus-QUIC
scavenger, although with a worse tail (e.g., it lowers BBR’s
throughput by at least 20% in 8% of cases, 2.5% as often as
the Proteus-QUIC scavenger). With CUBIC as the primary
flow, Proteus-QUIC yields better than LEDBAT++, giving
CUBIC a median of 5.6% higher throughput. That is fun-
damentally due to LEDBAT++’s reliance on a target delay,
which may inevitably be relatively more aggressively under
specific bottlenecks.

To see performance effects in more detail, we pick a repre-
sentative 48 Mbps Mahimahi bottleneck with 30 ms RTT and
4 BDP buffer, and let a scavenger flow compete with a BBR
and a CUBIC flow successively across time. Fig. 2(a) shows

60

Tong et al.

50

40 -

i
T EEL;BAnt
A ot cuBic

—— Proteus-QUIC Scayenger
-~~~ BBR i
—— CUBIC

20 20

10 10

Throughput (Mbps)
Throughput (Mbps)

N i
200 0 50 100 150
Time (Second)

(b) LEDBAT++

0 J i i
0 50 100 150
Time (Second)

(a) Proteus-QUIC

200

Figure 2: Throughput across time

that Proteus-S yields to both BBR and CUBIC. As in Fig. 2(b),
LEDBAT++ fails to yield most of its bandwidth to BBR, but
backs off faster than Proteus-S when the CUBIC flow starts.
Thus, our QUIC implementation of Proteus maintains the
scavenging gains claimed in [12], but further improvements
(e.g., convergence speed) are desirable.

3 CONGESTION CONTROL INTERFACES

CCP [13] and CONMax [6] demonstrate the importance of
establishing unified interfaces for congestion control proto-
cols. Existing congestion control interfaces on most transport
datapaths are oblivious to application requirements. This lay-
ered network stack [18] is a design choice intended to accom-
modate plugging a congestion control protocol into any ap-
plication once implemented, without application developers
bothering with lower layers. However, this restricts each flow
to a static congestion control mode, e.g., primary/scavenger,
for the flow’s entire lifetime, and cannot accommodate Pro-
teus’s ability to adaptively switch between primary and scav-
enger priorities for optimized network-wide utility. We are
thus inspired to envision an interface such that the applica-
tion can convey the selected priority to congestion controller.
Implementation Approaches. To support the above inter-
face, the transport datapath needs to incorporate a callback
that facilitates the switch of congestion control priorities (e.g.,
OnPrioritySwitch(.)). For Proteus, it suffices to toggles a
boolean flag (e.g., is_scavenger_prior) to change the util-
ity function in use. If primary and scavenger protocols are
implemented separately (e.g., as separate classes in QUIC),
the callback can be used to initiate a connection migration
(e.g., OnConnectionMigration(.) method in QUIC), which
effectively starts a new connection with a saved state includ-
ing the congestion window. Otherwise, the application can
open two parallel connections per flow, representing primary
and scavenger priorities, respectively. Then, the callback can
enforce a congestion window of 0 for a certain connection,
and migrate the current congestion window to another con-
nection with corresponding priority (which can be combined
with multipath protocols like MPTCP [20]).

Acknowledgement. This work was supported by National
Science Foundation Award 2008971.



Toward Greater Scavenger Congestion Control Deployment: Implementations and Interfaces

REFERENCES

[1] 2018. pTorrent Transport Protocol library.

[10

(11

— =

http://github.com/
bittorrent/libutp.

2019. LEDBAT Implementation by Apple. https://opensource.apple.
com/source/xnu/xnu-1699.22.81/bsd/netinet/tcp_ledbat.c.

2020. LEDBAT++ Implementation based on libutp. https://github.
com/meng-tong/libutp.

2020. PCC Proteus Implementation based on UDT. https://github.
com/PCCproject/PCC-Uspace.

2021. PCC Proteus Implementation in QUIC. https://github.com/
netarch/PCC_QUIC.

H. Ballani and P. Francis. 2007. CONMan, a step towards network
manageability. Proc. of ACM SIGCOMM (August 2007).

N. Cardwell, Y. Cheng, C.S. Gunn, S.H. Yeganeh, and Van Jacobson.
2016. BBR: Congestion-Based Congestion Control. Queue 14, 5 (2016),
50.

M. Dong, Qingxi Li, Doron Zarchy, Philip Brighten Godfrey, and
Michael Schapira. 2015. PCC: Re-architecting Congestion Control
for Consistent High Performance. Proc. of NSDI (March 2015).

Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,
Brighten Godfrey, and Michael Schapira. 2018. PCC Vivace: Online-
Learning Congestion Control. Proc. of NSDI (April 2018).

Yunhong Gu. 2005. UDT: a high performance data transport protocol.
University of Illinois at Chicago.

Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles
Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan
Iyengar, et al. 2017. The QUIC Transport Protocol: Design and Internet-
Scale Deployment. In Proceedings of the Conference of the ACM Special

61

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

ANRW °21, July 24-30, 2021, Virtual Event, USA

Interest Group on Data Communication. ACM, 183-196.

Tong Meng, Neta Rozen Schiff, P Brighten Godfrey, and Michael
Schapira. 2020. PCC proteus: Scavenger transport and beyond. Proc.
of ACM SIGCOMM (August 2020).

Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal,
Srinivas Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari
Balakrishnan. 2018. Restructuring endpoint congestion control. Proc.
of ACM SIGCOMM (August 2018).

Vikram Nathan, Vibhaalakshmi Sivaraman, Ravichandra Addanki,
Mehrdad Khani, Prateesh Goyal, and Mohammad Alizadeh. 2019. End-
to-end transport for video QoE fairness. Proc. of ACM SIGCOMM
(August 2019).

R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,
and H. Balakrishnan. 2015. Mahimahi: Accurate Record-and-Replay
for HTTP. Proc. USENIX ATC (August 2015).

D. Havey P. Balasubramanian, O. Ertugay. 2020. LEDBAT++: Conges-
tion Control for Background Traffic. https://tools.ietf.org/html/draft-
irtf-iccrg-ledbat-plus-plus-01.

Dario Rossi, Claudio Testa, Silvio Valenti, and Luca Muscariello. 2010.
LEDBAT: the new BitTorrent congestion control protocol. ICCCN
(August 2010).

J. Saltzer, D. Reed, and D. Clark. 1981. End-to-End Arguments in
System Design. Proc. International Conference on Distributed Computing
Systems (ICDCS) (April 1981).

S. Shalunov. 2009. Low Extra Delay Background Transport (LEDBAT).
Draft. https://tools.ietf.org/pdf/draft-ietf-ledbat-congestion-00.pdf
Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley.
2011. Design, Implementation and Evaluation of Congestion Control
for Multipath TCP. NSDI (March 2011).


http://github.com/bittorrent/libutp
http://github.com/bittorrent/libutp
https://opensource.apple.com/source/xnu/xnu-1699.22.81/bsd/netinet/tcp_ledbat.c
https://opensource.apple.com/source/xnu/xnu-1699.22.81/bsd/netinet/tcp_ledbat.c
https://github.com/meng-tong/libutp
https://github.com/meng-tong/libutp
https://github.com/PCCproject/PCC-Uspace
https://github.com/PCCproject/PCC-Uspace
https://github.com/netarch/PCC_QUIC
https://github.com/netarch/PCC_QUIC
https://tools.ietf.org/html/draft-irtf-iccrg-ledbat-plus-plus-01
https://tools.ietf.org/html/draft-irtf-iccrg-ledbat-plus-plus-01
https://tools.ietf.org/pdf/draft-ietf-ledbat-congestion-00.pdf

	Abstract
	1 Introduction
	2 Scavenger Implementations
	3 Congestion Control Interfaces
	References

