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Abstract For parallel line assays with two preparations, an L-design is an
equireplicated design that accommodates the estimation of three specific con-
trasts of primary interest with full efficiency. We provide necessary and suf-
ficient conditions for the existence of connected L-designs for symmetrical
parallel line assays with two preparations that are conducted in a row-column
design.
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1 Introduction

Parallel line assays have long been an important tool in bioassay studies (cf.
Finney, 1978). There are nonetheless still some intriguing mysteries in this
area of research, and we will solve one of these. The parallel line assays with
two preparations, one a standard preparation and the other a test preparation,
are called symmetrical parallel line assays with two preparations if both prepa-
rations have the same number of doses. Such assays can be run in a variety
of experimental designs, including completely randomized designs, block de-
signs, and row-column designs. We will focus on the use of row-column designs.
Finney (1978), page 177, already describes the use of Latin square designs and
generalizations in the presence of two blocking systems formed by different
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sites and animals. Regulatory bodies also provide guidelines for running these
experiments in row-column designs (cf. Council of Europe, 2020, Section 5.3),
along with a statistical analysis that treats row and column effects as fixed ef-
fects. There are also publications that treat row and column effects as random
effects, and others that assume a polynomial trend in row or column effects
(cf. Schlain et al., 2001).

There are three specific contrasts that are normally of primary interest in
these studies, and it has been proposed to use equireplicated designs in which
these three contrasts can be estimated with full efficiency. Designs that accom-
plish this have been called L-designs (Gupta and Mukerjee, 1990, 1996). Our
focus is on the existence of row-column L-designs. However, other contrasts
can also be of interest. For example, Finney (1978) extensively discusses the
use of balanced incomplete block designs for when all pairwise comparisons
are of equal interest. Treatment contrasts within preparations can also be use-
ful to study deviations from the parallel line assumption. For that reason, our
focus is on the existence of connected row-column L-designs. More specifically,
we will answer the following fundamental question: With k > 2 rows, b > 2
columns and m > 2 doses for each of the two preparations, what are the values
of k, b and m for which a connected row-column L-design exists?

The problem of establishing the existence of symmetrical and asymmetrical
L-designs has received considerable attention for block designs. References
include Das and Kulkarni (1966); Kulshreshtha (1969); Win and Dey (1980);
Nigam and Boopathy (1985); Das and Saha (1986); Gupta (1988, 1989); Gupta
and Mukerjee (1990); Chai (2002). The latter established a result that, when
applied to symmetrical parallel line assays with m > 2 doses for each of two
preparations, implies that an L-design in b blocks of size k exists if and only
if k > 4 and both k and k(m+1)/2 are even. A few methods of constructions
of block designs for both symmetric and asymmetric parallel line assays have
been studied in Bhar (2016) and Shekhar and Bhar (2016).

Establishing necessary and sufficient conditions for the existence of row-
column L-designs is a much more difficult problem. By using results on magic
rectangles and nearly magic rectangles, we are however able to obtain such
conditions. More precisely, we show that a connected L-design in k rows, b
columns and with m > 2 doses for each of the two preparations exists if and
only if k >4, b >4, k, b, k(m+1)/2 and b(m + 1)/2 are all even, with the
exception that the design does not exist for m = k = b = 4. The sufficiency
will be established by construction of connected L-designs for every m, k and b
that satisfy these conditions. Thus, for each such combination of m, k and b, we
are satisfied with establishing the existence of a single connected L-design. In
general, there could be different designs of this type with different properties,
and a user who is interested in a connected L-design with additional properties
may not want to use the designs that we construct. Addressing such additional
concerns is beyond the scope of this paper.

In Section 2, basic concepts and notation are introduced, followed by a for-
mal definition and characterization of row-column L-designs for symmetrical
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parallel line assays. The construction of row-column L-designs is explored in
Section 3. Section 4 concludes with some final remarks.

2 Symmetrical parallel line assays and row-column L-designs

Let m denote the common number of doses for the standard and test prepa-
rations in a bioassay, so that there are a total of v = 2m treatments. Writing
§1 < -+ < sy and t; < -+ < t,, to denote these doses, respectively, we
write z; = log(s;), z; = log(t;), and follow the common assumption that the
z;’s and z;’s are equally spaced. The responses under the standard and test
preparations can now be modeled using polynomial models in the x;’s and
z;’s, respectively. In a line assay, these would be polynomials of degree 1, and
in a parallel line assay the slopes of the two lines would be equal. Writing the
treatment effects as 7; = n1(x;), Tmti = 1n2(2:), i = 1,...,m, for polynomials
71 and 79, it is easily seen that if 77 and 7 are first-order orthogonal polyno-
mials, say n;(u) = Bjo + Bj161(u), 7 = 1,2, then the relationship between the
B’s and 7’s is given by

m m
1 1, 1 1,
Bio = — E Ti=—1,7, Bao=— g Tmti = — 1,74,
m m m & m
1= =

/ /
Bi1 = cie,Ts,  [Po1 = c1€,Tt,
. . . I (o I\
where ¢; is an appropriate constant, 7 = (71, ..., T, Tmt1, - - -, Tom)' = (72, T{)
is the vector of treatment effects, e,, = (1,2,...,m)’ — (m + 1)1,,, and 1,,

is the m x 1 vector of ones.

Parallelism is studied with the contrast ¥ = 811 — B21. If the assumption
of parallelism is not violated, then interest focuses on estimating the potency,
p, defined as the ratio of doses with equal effects for the two preparations, i.e.,
for © = log(s) and z = log(t) with 1 (z) = n2(2),

p=s/t= ele=2) — o e){p{—(l31()—ﬂzn))/51}7

where 81 = (811 + B21)/2. This stresses the importance of the contrasts ¢ =
B11 + P21 and Y3 = [19 — P20, which we would like to estimate with full
efficiency. In terms of the 7;’s, these three contrasts correspond, except for a
multiplicative constant, to

! ! ! ! / !
€n,Ts — € Tt, €,Ts + e, and 1, 7o — 10 74, (1)

respectively.

We will consider the usual fixed-effects additive Gauss-Markov model for
a row-column design with one observation per cell. Let X; be a kb x k row-
incidence matrix, X5 be a kb x b column-incidence matrix, and X3 be the kbx v
treatment-incidence matrix corresponding to a design d. Such a design d is a
k x b matrix with elements from the set {1,2,...,2m} such that an entry in
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a cell corresponds to the application of that treatment in the corresponding
row and column. We write the model as

y=Xia+ Xoy + X37 +¢, (2)

where « is the k x 1 vector of row effects, v is the bx 1 vector of column effects,
7 is the v X 1 vector of treatment effects with v = 2m as defined above, and
¢ is the random error vector with mean 0z, and variance o2Ix;,. We will write
M = X!/X; and N = X/X, for the treatment-row and treatment-column
incidence matrices. If the design is equireplicated with common treatment
replication r, then 1/ M = b1}, M1y =rl,, 1\ N = k1}, and N1, = rl,. The
information matrix for 7 may then be written as

1 r?

1
C= Xé(lkb - P[X1 Xz])XS =rl, — —NN' — MM +

!/
k b kblvlv’

where Py = A(A’A)~ A’ denotes the orthogonal projection matrix onto the
column space of A.

A design is connected if and only if rank(C') = v—1. An equireplicated row-
column design can only be connected if r is at least equal to 2. We will use the
notation D(v, k, b, r) for the class of all equireplicated, connected row-column
designs with v treatments, each replicated » = kb/v times, in k rows and b
columns. Connected designs facilitate unbiased estimation of every treatment
contrast, and the best linear unbiased estimator of ¢, where ¢'1, = 0, is
given by /7 = ¢/C~Q where C~ is an arbitrary generalized inverse of C' and
Q = X3(I, — Pix, x,))y- It follows that the variance of this estimator is given
by 02¢'C~c. Since C < X4(I, — P1,,) X3 = r(I, — 11,17), it also follows that
for any design in D(v, k, b, r) we have for any contrast ¢'7 that

Var(c'7) = o?c'c/r. (3)

If equality holds in (3) for a contrast ¢'7, then we say that the design allows
the estimation of this contrast with full efficiency.

Definition 1 An equireplicated design d is called a row-column L-design if
it allows the estimation of the three contrasts in (1) with full efficiency under
Model (2).

The next lemma will help with the characterization of row-column L-
designs.

Lemma 1 Under Model (2), a design d € D(v,k,b,r) allows the estimation
of a treatment contrast ¢t with full efficiency if and only if /M = 0}, and
dN =0,

Proof The contrast ¢’ is estimated with full efficiency if and only if

dX5(1, — Pix, Xz])X3C =dX5(1, — Py,,) X3¢,
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or equivalently
¢ X3(Pix, x, — P1,,)X3¢=0. (4)

But 13, X3¢ = rlj,c = 0, so that (4) is equivalent to Px, x,)X3c = Ogp. This
in turn is equivalent to X{Xsc = 0 and X;X3¢c = 0p, or M'c = 0; and
N'c=0,.

In order to emphasize the dependence of N and M on design d € D(v, k, b, ),
we will change the notation to Ny and My. Moreover, we will partition these
matrices into two parts, with one corresponding to the first m treatments
(doses for the standard treatment) and the other to the last m treatments:
Ng = (N}, N),) and Mg = (M}, M},)". Equations (5) and (6) in the follow-
ing corollary are an immediate consequence of Definition 1 and Lemma 1.

Corollary 1 A design d € D(v, k,b,r) with m > 2 is a row-column L-design
if and only if k >4, b >4 and

k b

1, Na1 = 512; €nNat =0y 1, Mgy = 51%; € Mg =0, (5)
k b

1/ Ngo = 512; er Nago=0p; 10 Mgo = 51;; er, Mgz =05,.  (6)

It is clear from (5) and (6) that k& and b must be even, but neither can be
equal to 2. To see the latter, let, without loss of generality, k£ be equal to 2.
For both e, Ng1 and €], Ngo to be 0}, it must be that each column has either
both treatments from {1,2,...,m} or from {m+1,m+2,...,2m}. But since
1. Nyg = 1/, Ngo = glg, each column must have exactly one element from
each of {1,2,...,m} and {m + 1,m + 2,...,2m}, which is a contradiction.

Corollary 2 Ifd € D(2m,k,b,r) is a row-column L-design with m > 2, then
k>4,b>4 and k,b,k(m +1)/2, and b(m + 1)/2 must be all even.

Proof That k > 4 and b > 4 must be even is obvious from Corollary 1. More-
over, the condition e}, Ng1 = 0 in Corollary 1 is equivalent to (1,2,...,m)Ng1 =
(k(m +1)/4)1}, so that k(m + 1)/2 must be even. Similarly, it follows from
er,Mq1 = 0}, that b(m + 1)/2 must be even.

In the next section, we will show that the necessary conditions for the
existence of a connected equireplicated row-column L-design in Corollary 2
are also sufficient provided that kb/2m is an integer and r > 2, with the single
exception that no such design exists for m = k = b = 4, as established in the
next lemma.

Lemma 2 A connected equireplicated row-column L-design does not exist for
m=k=»b=4.

Proof Suppose the design does exist. From Corollary 1, it follows that (a) every
row and every column must have exactly two treatments from {1, 2, 3,4} and,
thus, also exactly two from {5, 6, 7,8}, and (b) if 1 appears in a row or column,
then so must 4. Similarly for 2 and 3, for 5 and 8, and for 6 and 7.
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Since each treatment appears twice, after a permutation of rows and columns
(a connected row-column L-design is invariant under such operations), we can
assume without loss of generality, that the first row and column start as 1, 4.
But that means that the second replication of treatment 4 must occur in row
2 and column 2. In the remainder of the first row, we must have 5 and 8 or 6
and 7. Without loss of generality, say, it is 5 and 8. Continuing like this, it is
seen that the design must look like

1 4 5 8
4 1 8 5
6 7 2 3
7T 6 3 2

It is an L-design, but the information matrix C' has only rank 5. Hence the
design is not connected.

3 Construction of row-column L-designs

Lemma 3 shows the main structure of the desired row-column L-design d
and Lemma 4 constructs a connected design d© with each element in the
set {1,2,...,2m} occurring twice. Designs constructed in Theorem 1 are con-
nected because they contain d¢ as a subdesign. Occasionally we assume that
b > k. This can be done without loss of generality, for otherwise a design could
be obtained by simply transposing the original design.

From Corollary 2, k and b should both be even, say k = 2k; and b = 2b;.
The basic structure of k£ x b row-column designs d that we will construct is

where the matrices S; and T}, j = 1,2, are each of the order k; x by; the
elements of Sj,j = 1,2, belong to the set {1,2,...,m} and the elements of
T;,5 = 1,2, belong to the set {m+1,m+2,...,2m}.

Lemma 3 Let d be a k X b row-column design with elements from the set
{1,2,...,2m} as in (7) and with the properties that

(i) together Si and So contain each treatment from the set {1,2,...,m} r
times;

(ii) together Ty and Ty contain each treatment from the set {m+1,m+2,...,2m}
r times;

(1ii) each of the S; and T;, j = 1,2, are constructed by juzctaposing multiple
submatrices so that if one of these submatrices of S; is of size pg X qq,
it has constant row sums equal to gg(m + 1)/2 and constant column sums
equal to pg(m+1)/2 and a py % q4 submatriz of T has constant row sums
equal to qo(3m + 1)/2 and constant column sums equal to py(3m +1)/2.

Then, d is an equireplicated row-column L-design.
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Let ITr(H) denote a matrix obtained by cyclically shifting each row of H
to the next row and IIo(H) denote a matrix obtained by cyclically shifting
each column of H to the next column. Also, let IIcr(H) = IIc(I1gr(H)).

Lemma 4 Let m = myims. Let S’lc be a m1 X mg matrix containing each
element from the set {1,2,...,m} exactly once, S¢ = Hcr(SY), and TE =
C TC
mlp, 10, +5¢. Then, d° = [ szlc Slc ] € D(v=2m,k =2mq,b = 2may, 2)
1 2
is a connected equireplicated row-column design.

Proofs of Lemmas 3 and 4 are provided in the appendix. Designs d® are
used in the construction of connected L-designs for general values of m, b and
k. It turns out that to construct a connected L-design for m = 8, k = 4u, and
b=4l,1 >3, u>1, we need a different design to play the role of d. This
design, also named d°, is presented in the following remark.

Remark 1 For m = 8,k = 4,b = 12, define design d® as in (8). It is not too
hard to see that d© satisfies Lemma 3 and that it is connected. Therefore, d
is a connected equireplicated row-column L-design in D(16,4,12, 3).

156 7 3 5 91314151113
8 4 3 2 6 4|1612111014 12 3
161612111010 8 8 4 3 2 2 (8)
9 9131415151 1 5 6 7 7

d° =

We now state the sufficiency result as already announced at the end of
Section 2.

Theorem 1 Sufficient conditions for the ezistence of a connected equirepli-
cated row-column L-design with m > 2 are that each of k, b, k(m +1)/2 and
b(m +1)/2 are even provided that r = kb/2m (= 2) is an integer, k > 4 and
b > 4, except that such a design does not exist for m =k =0b=4.

In what follows, we first present a general structure for construction of a
row-column L-design d € D(v = 2m, k,b,r) and then construct the individual
components. The construction makes use of the two types of designs shown
in Figure 1, both of which follow the basic structure in (7). The difference is
that, depending on the values of m, k, and b, in some cases we are able to
construct each of the parts S; and T , j = 1,2, by juxtaposing equireplicated
submatrices as in Lemma 3(iii), in which case we use designs of type I. In other
cases where this is not possible, the construction becomes a bit more tricky
and we need to revert to type II designs. Thus, in the first cases, we have
stronger properties than those in Lemma 3(i) and (ii) because each S; and
T; are equireplicated on their respective sets of treatments. The second cases
are trickier because the individual quadrants in (7) are not equireplicated. In
those cases we need to make use of the submatrices SJE and TjE in designs of
type II. Take for example the case m = 16, k = 8, and b = 12. The array 5
is then of size 4 x 6. Since S must contain each of 1,2,...,m once, it means
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(a) Design type I (b) Design type 11

Fig. 1: Structure of design d. The parts with the superscript C' represent the
connected component d¢ as in Lemma 4. Other parts need to be completed
as described in the proof of Theorem 1.

that SM in designs of type I cannot be equireplicated on 1,2, ..., m. But we
show how to construct the corresponding design by using type II designs.

Before we show the constructions, we note the following properties about
the individual components of Figure 1. If we can construct a design d in Figure
1 satisfying (a)-(c) along with satisfying Lemma 3, then d is a desired connected
row-column L-design. Our proof then follows by showing the method by which
these components can be constructed.

(a) The elements of S; and So (NW and SE quarters in Figure 1) together

contain r replications of each treatment from the set {1,2,...,m}, and the
elements of T} and To (NE and SW quarters in Figure 1) together contain
r replications of each treatment from the set {m + 1,m+2,...,2m};

(b) TE, TC, TM, and TM are obtained from SF, S{, SM, and S, respec-
tively, by replacing ¢ with m +4,i=1,...,m.

C C

(c) The middle component of d, that is {Slc L
Ty 55

4 or in Remark 1. The adopted construction method ensures that d© has
each treatment from the set {1,2,...,2m} equally often and is a connected

subdesign of d.

] , corresponds to d¢ in Lemma

Proof (Proof of Theorem 1) It is sufficient to show the construction of S,
j = 1,2, since T} are obtained from S;. We will distinguish between two cases
based on whether m is even or odd.

In what follows, P, «; denotes a magic rectangle of order a x b (Kudrle and
Menard, 2007) and Q. xp a nearly magic rectangle of order a x b (Chai et al.,
2019). The notation [i : j| denotes a row vector [i i+14i+2 ... j] when i < j
and [ii—14—2 ... j] when i > j. Recall that S§ = ITcr(S{), as in Lemma
4, for both design types I and II.

Case (A): m is even. When m is even, from Corollary 2, both k; and by
must be even. For the bulleted items S} U S in what follows, = copies
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indicates that the dark hatched part of Figure 1 (corresponding to S} and
SM) jointly contains x copies of each of the matrices Hi,..., H,, /2, where
H;’s are 2 x 2 matrices with diagonal values equal to ¢ and off-diagonal values
m — i + 1. We further segment the cases as below:

Case (A1): m =4mo +2 =2(2mo + 1). For r = kb/2m = 4% to
be an integer, 2mo+1 must divide (k1/2)(b1/2), and, so, there are odd integers
mq and mo so that 2mg + 1 = mimeo and k1 = 2umy, by = 2lms.

When m = 2, m; = my = 1, so that k&1 = 2u and by = 2[, we use

— Design type: 11,
- S¢=[12),SFf=[21) and S¥ =[1 2], and
— SM U SM: 2(ul — 1) copies.

For m > 2, if my = 1 or mg = 1, without loss of generality let ms = 1. Then
my = 2mg + 1, k1 = 2umy, by = 2[, and we use

— Design type: 11,
— S =[L:m), SF = [m: 1] and SF = [Tg([m : 1]'), and
— SM U SM: 2(ul — 1) copies.

For m > 2, if both my > 1 and mq > 1, so that k; = 2um; and by = 2lmo, we
use

— Design type: 11,
= S = Qo xmar S = Hr(S7) and 55 = Hp(Iler(SY)), and
— SM U SM: 2(ul — 1) copies.

To satisfy Lemma 3 (iii), the rows of Qa2m, xm, should be arranged such that
their sums alternate, that is, in the first row the elements sum up to s, in the
second to s + 1, in the third to s, and so on, where s = (ma(m + 1) — 1)/2.
This can always be done because exactly half of the row sums are s, the other
half being s+ 1. By doing this, and by combining S{ and S¥ according to the
design type II, we get the constant row and column sums.

Case (A2): m = 4mg, mg is odd, and r is even. For r = kb/2m =
QW to be an integer, mo must divide (k1/2)(b1/2), and, so, there must
be odd integers my and mo so that mg = mims, k1 = 2umq, by = 2lms.
When m = 4, then mqy = mo = 1, k; = 2u and by = 2[. Since [ = 1 and
u = 1 is not possible because the design does not exist for m =k =b =4 (see
Lemma 2), we take, without loss of generality, u > 1 and [ > 1. We use

— Design type: II,
— 8¢ =[1:4), SF=[4:1) and SF = IIx([4 : 1]’), and
— SMySM: ul — 2 copies.

When m > 4, for k1 = 2um, and by = 2lms, we use

— Design type: I,
- SC = P2’m1><2m27 and
— SM U SM: ul — 1 copies.
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Case (A8): m = 8myg. For m = 2ab, where a and b are even integers not
simultaneously equal to 2, we define matrices Fyxp and Gaxp of order a x b
such that each of the row sums are equal to b(1 + m)/2, each of the column
sums are equal to a(l +m)/2, and elements of F and G together contain
treatments from the set {1,...,m} exactly once. One way of constructing F
and G, through a decomposition of magic rectangles, is given in Lemma Al in
the appendiz. For r = kb/2m = W to be an integer, mg must divide
(k1/2)(b1/2), and, so, there are two integers my and ma, so that mg = myma,
k1 = 2umyq, by = 2lmy. Then, r = ul. We first discuss the case when r is odd,
implying both | and u are odd. If both | = u =1, then r = 1, but we have that
r > 2. So, without loss of generality we take | > 1.

When m = 8, and r is odd, for k; = 2u and by = 21,1 > 3, we use

— Design type: I,
s¢ TF
eS¢
— SM U SM: (ul —3)/2 copies.

When m > 8, and r is odd, for k1 = 2umy and by = 2lmo, [ > 3, we use

—d¢ = } is from Remark 1, and

— Design type: II,
- SC = P2m1><4m27 SlE = F2m1><2m2 and SQE = G2m1><2m27 and
— SM U SM: (ul —3)/2 copies.

When m = 8mg = 8myms and r is even, for k; = 2um; and by = 2imeo,
without loss of generality, let [ be even. We use

— Design type: 1,
- Slc = P2m1 X4ma s and
— SM U SHM: (ul —2)/2 copies.

To complete this proof, we need to show that each of the p, x g, decomposed
submatrices of S; and T}, j = 1,2, have row sums equal to g,(m + 1)/2 and
column sums equal to p,(m + 1)/2. The submatrices Hy, ..., Hy, o are 2 x 2
matrices with the row and column sums equal to m + 1. It is also not too hard
to see that S¢ and Sf taken together according to design type have row sums
equal to pg(m+1)/2 and column sums equal to g4(m+1)/2 and so is the case
for S§ and S¥ taken together.

Case (B): m is odd. For this case, r = kb/v = (2k1)(2b1)/2m = 2k1b1/m,
and hence, 7 must be even. For odd p and ¢, p = 3, ¢ > 3, let A,y =
[a1 as ... a,)’ denotes a px ¢ matrix constructed as in Lemma A2, and a] is the
ith row of the matrix A, = 1,...,p. For the bulleted items SM US} in what
follows, = o Z indicates that the dark hatched part of Figure 1 (corresponding
to S7 and Ss) jointly contains z copies of the matrix Z.

Since m is odd, k1b; must be a multiple of m, so that there are odd integers
mq and my such that m = mime, k1 = wm; and by = Ims.

Case (B1): When my > 1 and mas > 1, for k1 = wmy and by = lma, we
use

— Design type: 1,
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— 8¢ = Py, xm, and
— SMUSHM:2(ul — 1) 0 Py sems-

Case (B2): When one of my and mso is 1, take my = 1 without loss of
generality. Then ki = umy = um and by =1 with [ > 2.
When b; =1 is odd, we use

— Design type: II,
- S¢ =a;, SE =[a1az ... aj_1], and S¥ = I[T(SE), and
— SMySHM: 2(u—1)0 A

Ixm*

When b; = [ is even but not a power of 2, that is, by = = 2%y, where [; > 1
is odd, we use

— Design type: II,
— 8¢ =a,, Sf =[a1as ... a,_1], and SF¥ = Ir(SF), and
— SMySHM: 2(u2¥ — 1) 0 A

i xm*
When by = [ is a power of 2, that is, by = = 2%, we use
— Design type: 11,
— 8¢ =[1:m], SE=[m:1], and SF =[1 [m : 2]J’, and
/
_ QM M. w o [m : 1]
ST USY: (u2 2)0{[1:7”}]

It is again easy to verify that the constructed designs satisfy the conditions
in Lemma 3 and properties (a)—(c) presented after Theorem 1. This completes
the proof.

To illustrate the construction, we now provide some examples. For design
type I, we provide examples from Case (B1) in the proof of Theorem 1.

Ezample 1 Consider v = 18,k = b = 6. This implies that m = 9,my = my =3

753
and u =1 =1. With Psx3 = |2 94|, an equireplicated row-column L-design
618
d is
7 5 3|16 14 12
¢ TC 2 9 4[111813
| 6 1 8151017
T 11614 12]/8 6 1
C C _ C
T |8y = Her(ST) 111813/3 7 5
1510174 2 9

Similarly, for v = 18,k = 6 and b = 12, a design is
7 5 3|7 5 3|16 14 12|16 14 12

sM | s¢|pe|mm 2 9 4|2 9 4(1118 13|11 18 13
|61 86 1 8[151017[15 10 17

vlclec o |~ |161412[161412[8 6 1|7 5 3
|| 5715 1118 13[11 18 13|3 7 5(2 9 4
1510 171510 17/4 2 9|6 1 8
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For design type II, we provide an example from Case (A1) in the proof of
Theorem 1.

Example 2 Consider v = 4,k = 8 and b = 8. This implies that m = 2, u = 2
and [ = 2. An equireplicated row-column L-design d is

(12

12
SP|sf| e |\Tf 21
34
4 3|3
M S 34314
| 4343

B = NN
=W N = N

4 Conclusions

The necessary conditions for the existence of a connected row-column L-design
for symmetrical parallel line assay are provided. These conditions are also
proved sufficient by providing a proof via constructing a design for each pa-
rameter set, except that the design for v =8, k = b =4 and r = 2 does not
exist.

The L-design property assures that the three treatment contrasts of pri-
mary interest can be estimated with full efficiency. The connectedness of the
designs guarantees that any other treatment contrast can be estimated unbi-
asedly. If one is interested in finding an equireplicated row-column L-design
that, in some sense, is optimal for estimation of other treatment contrasts, one
could search for the best row-column L-design in the class D(v, k, b, r) using a
criterion of most interest. That is a problem that is beyond the scope of this

paper.
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Appendix

Lemma A1l Let m = 2pq, where p and q are even integers that are not simul-
taneously equal to 2. Then there exist two matrices of order p X q, say Fpxq
and Gpxq, such that they together contain numbers 1,2,...,m ezactly once
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and each of them has row sums equal to g(1 + m)/2 and column sums equal
to p(1+m)/2. When combined, to form a 2p x q matriz, the result is a magic
rectangle on {1,2,...,m}.

Proof Let p = 2p; and ¢ = 2¢;. From the literature on magic rectangles (Chai
et al., 2019), it is not hard to construct a 2 x ¢ magic rectangle Vi = Payq
based on {1,2,...,2q}. Define V., = Vi + (2 — 1)2q151,4, 2z = 2,...,p. For
z=1,...,p1, exchange the first ¢; columns of V, with the first ¢; columns of
Vp4+1—- and then, using the resulting matrices, exchange the second row of the
zth matrix with the second row of the (p 4+ 1 — z)th matrix. Call the matrices
obtained in this way R, and R,y;_.. Note that the row and column sums of
each of these matrices are equal to ¢(1+m)/2 and 1+ m, respectively. Then,
Fpxq=[Ry,..., R, and Gpxq = [R), 1, .., R)]'. Also, Popxg = [R] ... R)]
is a magic rectangle based on {1,2,...,m}.

Lemma A2 (Lemma 2.2 of Chai et al. (2019)) Letp > 3 and g > 3 be
odd. Then, there exists a p X q matrix A with equal column sums such that
each row is a permutation of [1 : gq|.

Proof of Lemma 3. That d is equireplicated is satisfied because of (i) and
(ii) in the statement of the lemma. Additionally, the necessary and sufficient
conditions for a design d € D(v,k,b,r) to be a row-column L-design are pro-
vided in Corollary 1. Conditions 1/ N4 = %12 and 1/ My = %1;~C of Corollary
1 translate into each of the columns and rows having k/2 and b/2 treatments
from {1,...,m}, respectively. This is true because of the structure in Figure 1
and (i) and (ii) in the statement of the lemma. For the same reasons, conditions
1/, Ngo = 51/ and 1/, My = 21/, are true.

Let Mg15, 7 = 1,2, be the m X k; treatment-row incidence matrix cor-
responding to a design with the same treatments as in the rows of S;, and
no treatments in the other rows. Similarly, let Mg25, j = 1,2, be the m x ky
treatment-row incidence matrix corresponding to a design with the same treat-
ments as in the rows of T}, and no treatments in the other rows. Then, for a
design d, the treatment-row incidence matrix is

M, — Ma11 M2
Maz1 Maza |-

From (iii) in the statement of the lemma, each of the S; and T}, j = 1,2,
can be decomposed into py x g4 submatrices S7 and T7. Let Mg, j = 1,2, be
the m x ky treatment-row incidence matrix where rows correspond to the m
treatments in S;, and columns correspond to the k; rows of S;. For rows that
do not intersect with Sjg, the entire column in M 51 j is 0, and for treatments
that do not appear in S7, the entire row in Mg, ; is 0. Define M, similarly
using Tjg. Then, Mg1; = Zg Mglj, and Mgy; = Zg MU‘{Q]., ji=1,2.

If we can show that e;nMglj =0/ for all g, then from the above equations,
Zg e;nMdglj = e, Mg1; = 0, implying that, in the notation of Corollary 1,
el Mg = 0'. Arguments that the other conditions in Corollary 1, e, N4 = 0,
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el Mgs = 0, and e}, Ngo = 0, hold would be similar. This would imply the
desired result.

So, ey, M, ; = 0"if and only if 3301 wmyp, = ((m+1)/2)(30_; mwn), h =
1, ..., k1, where m,,, is the (w, h)th element of M§1j~ Additionally, >/ wmy,, =
Zib:11+(j—1)b1 che, where cp is the (h, £)th element of S¢ and is defined as 0 for
columns ¢ that do not intersect with Sjg . Note that h is now restricted to those
rows that intersect with S and Y77 myn = gy Therefore, e}, M7, ; = 0" if

and only if Zib:ll+(j_1)b1 che = qg(m +1)/2. 0

Proof of Lemma 4. Let m = myms. The proof is divided in two cases:

Case (i): my = 1 or my = 1. Without loss of generality, let m; = 1, S¢ =
[1:m] and S§ = Hcr(SY) = Ie(SC) = [m 1 : (m —1)]. Then d¢ is (a)
a 2 X 2m row-column design with each treatment from the set {1,...,2m}
replicated exactly twice, (b) row-treatment and column-treatment connected,
and (c¢) NjcMgc = 213,15 Hence, from Theorem 2.1 of Raghavarao and
Federer (1975), d° € D(2m,2,2m,2) is a connected row-column design.

Case (ii): my > 1 and mo > 1. Without loss of generality, let the gth column
of S¢ be 051 = (¢ —Dmly,, +[1:mi), ¢ =1,...,ma. Then, since TC =
mlny, 10, +S¢ and S§ = IIcr(SY), the gth column of T is el =mly, —|—c§1
and the gth column of S§ is ¢3> such that for ¢ = 1, 2 = [mymy, ((mgy —
my+1) : ((mg—1)m1+my —1)] and for ¢ = 2,...,ma, ¢5> = [(¢g—2)m1 +
mi, ((g—2)my+1) : ((g—2)m1+my—1))". Then, d is a 2m; x 2my row-column
design with each treatment from the set {1,...,2m} replicated twice.

Let y, 4 be the response variable for the (p, ¢)th cell of A, p=1,...,2m,
and ¢ = 1,...,2ms. Consider the first and the pth response from each of the
4 columns ¢}, e, ell ) and ¢52. Under model (2), we obtain the following
expected value identity:

E(yl,l — Yp,1 — Y1,2mq + Yp,2mo + y(m1+1),m2 - y(m1+p),m2
—Y(m1+1),(ma+2) T Y(mi+p),(mat2)) = T1 = Tp = Tmy + T(p—1)-

Summing these expectations for p = 2,...,mq, we get

mq
Z E(yLl ~Yp,1 = Y1,2ms T Yp,2m, + Y(mi+1),m2 — Y(mi+p),ma —
p=2

Y(mi+1),(ma+2) T Ymi+p),(mat2)) = M1(T1 — T,y ),

implying that 7 — 7, is estimable, and hence, treatment 1 is connected
to treatment my. Substituting this back into the above equations, we get
that treatment 1 is connected to treatment p, p = 2,...,m; — 1. Hence,
{1,2,...,mq} is a connected treatment group.

Similarly, considering the first and the pth observation from each of the 4
columns cfl, cZ;Q, cgz, and cesjl £=2,...,my, ({+1=1 when £ =my) and
applying the above procedure, we get that {({ — 1)m; + 1, ({ —1)my +2,...,
(¢ — 1)my + mq} is a connected treatment group. Similarly, it can be shown
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that {m+ (L —1)m1 +1,m+ L —-1)m; +2,....m+ (£ —1)m; +my} is a
connected treatment group, £ =1,...,mo.

By the connectedness checking algorithm in Park and Shah (1995), all
treatments in a connected group can be replaced by any one of them to reduce
the number of treatments in a design. We use the first treatment from each
group as a representative of the group. Then, checking connectedness of d®
is equivalent to checking the connectedness of the following design with 2ms
treatments

1 m+1 - m—m+1 m+1 m+mi+1---2m—mq+1
m+1m+m+1---2m—m+1m+1 2m;p+1 --- 1

Just as in Case (i), the above design is a connected row-column design.

This means that treatment representatives 1,m; +1,2mq +1,...,m —mq +
ILm+1,m+m;+1,...,2m —my + 1 are all connected and hence, d° is a
connected row-column design. ad
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