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Abstract For parallel line assays with two preparations, an L-design is an
equireplicated design that accommodates the estimation of three specific con-
trasts of primary interest with full efficiency. We provide necessary and suf-
ficient conditions for the existence of connected L-designs for symmetrical
parallel line assays with two preparations that are conducted in a row-column
design.
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1 Introduction

Parallel line assays have long been an important tool in bioassay studies (cf.
Finney, 1978). There are nonetheless still some intriguing mysteries in this
area of research, and we will solve one of these. The parallel line assays with
two preparations, one a standard preparation and the other a test preparation,
are called symmetrical parallel line assays with two preparations if both prepa-
rations have the same number of doses. Such assays can be run in a variety
of experimental designs, including completely randomized designs, block de-
signs, and row-column designs. We will focus on the use of row-column designs.
Finney (1978), page 177, already describes the use of Latin square designs and
generalizations in the presence of two blocking systems formed by different
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sites and animals. Regulatory bodies also provide guidelines for running these
experiments in row-column designs (cf. Council of Europe, 2020, Section 5.3),
along with a statistical analysis that treats row and column effects as fixed ef-
fects. There are also publications that treat row and column effects as random
effects, and others that assume a polynomial trend in row or column effects
(cf. Schlain et al., 2001).

There are three specific contrasts that are normally of primary interest in
these studies, and it has been proposed to use equireplicated designs in which
these three contrasts can be estimated with full efficiency. Designs that accom-
plish this have been called L-designs (Gupta and Mukerjee, 1990, 1996). Our
focus is on the existence of row-column L-designs. However, other contrasts
can also be of interest. For example, Finney (1978) extensively discusses the
use of balanced incomplete block designs for when all pairwise comparisons
are of equal interest. Treatment contrasts within preparations can also be use-
ful to study deviations from the parallel line assumption. For that reason, our
focus is on the existence of connected row-column L-designs. More specifically,
we will answer the following fundamental question: With k > 2 rows, b > 2
columns and m > 2 doses for each of the two preparations, what are the values
of k, b and m for which a connected row-column L-design exists?

The problem of establishing the existence of symmetrical and asymmetrical
L-designs has received considerable attention for block designs. References
include Das and Kulkarni (1966); Kulshreshtha (1969); Win and Dey (1980);
Nigam and Boopathy (1985); Das and Saha (1986); Gupta (1988, 1989); Gupta
and Mukerjee (1990); Chai (2002). The latter established a result that, when
applied to symmetrical parallel line assays with m > 2 doses for each of two
preparations, implies that an L-design in b blocks of size k exists if and only
if k > 4 and both k and k(m+ 1)/2 are even. A few methods of constructions
of block designs for both symmetric and asymmetric parallel line assays have
been studied in Bhar (2016) and Shekhar and Bhar (2016).

Establishing necessary and sufficient conditions for the existence of row-
column L-designs is a much more difficult problem. By using results on magic
rectangles and nearly magic rectangles, we are however able to obtain such
conditions. More precisely, we show that a connected L-design in k rows, b
columns and with m > 2 doses for each of the two preparations exists if and
only if k > 4, b > 4, k, b, k(m + 1)/2 and b(m + 1)/2 are all even, with the
exception that the design does not exist for m = k = b = 4. The sufficiency
will be established by construction of connected L-designs for every m, k and b
that satisfy these conditions. Thus, for each such combination of m, k and b, we
are satisfied with establishing the existence of a single connected L-design. In
general, there could be different designs of this type with different properties,
and a user who is interested in a connected L-design with additional properties
may not want to use the designs that we construct. Addressing such additional
concerns is beyond the scope of this paper.

In Section 2, basic concepts and notation are introduced, followed by a for-
mal definition and characterization of row-column L-designs for symmetrical
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parallel line assays. The construction of row-column L-designs is explored in
Section 3. Section 4 concludes with some final remarks.

2 Symmetrical parallel line assays and row-column L-designs

Let m denote the common number of doses for the standard and test prepa-
rations in a bioassay, so that there are a total of v = 2m treatments. Writing
s1 < · · · < sm and t1 < · · · < tm to denote these doses, respectively, we
write xi = log(si), zi = log(ti), and follow the common assumption that the
xi’s and zi’s are equally spaced. The responses under the standard and test
preparations can now be modeled using polynomial models in the xi’s and
zi’s, respectively. In a line assay, these would be polynomials of degree 1, and
in a parallel line assay the slopes of the two lines would be equal. Writing the
treatment effects as τi = η1(xi), τm+i = η2(zi), i = 1, . . . ,m, for polynomials
η1 and η2, it is easily seen that if η1 and η2 are first-order orthogonal polyno-
mials, say ηj(u) = βj0 + βj1φ1(u), j = 1, 2, then the relationship between the
β’s and τ ’s is given by

β10 =
1

m

m∑
i=1

τi =
1

m
1′mτs, β20 =

1

m

m∑
i=1

τm+i =
1

m
1′mτt,

β11 = c1e
′
mτs, β21 = c1e

′
mτt,

where c1 is an appropriate constant, τ = (τ1, . . . , τm, τm+1, . . . , τ2m)′ = (τ ′s, τ
′
t)
′

is the vector of treatment effects, em = (1, 2, . . . ,m)′ − 1
2 (m + 1)1m, and 1m

is the m× 1 vector of ones.
Parallelism is studied with the contrast ψ1 = β11 − β21. If the assumption

of parallelism is not violated, then interest focuses on estimating the potency,
ρ, defined as the ratio of doses with equal effects for the two preparations, i.e.,
for x = log(s) and z = log(t) with η1(x) = η2(z),

ρ = s/t = e(x−z) = c2 exp{−(β10−β20)/β1},

where β1 = (β11 + β21)/2. This stresses the importance of the contrasts ψ2 =
β11 + β21 and ψ3 = β10 − β20, which we would like to estimate with full
efficiency. In terms of the τi’s, these three contrasts correspond, except for a
multiplicative constant, to

e′mτs − e′mτt, e′mτs + e′mτt, and 1′mτs − 1′mτt, (1)

respectively.
We will consider the usual fixed-effects additive Gauss-Markov model for

a row-column design with one observation per cell. Let X1 be a kb × k row-
incidence matrix, X2 be a kb×b column-incidence matrix, and X3 be the kb×v
treatment-incidence matrix corresponding to a design d. Such a design d is a
k × b matrix with elements from the set {1, 2, . . . , 2m} such that an entry in



4 Feng-Shun Chai et al.

a cell corresponds to the application of that treatment in the corresponding
row and column. We write the model as

y = X1α+X2γ +X3τ + ε, (2)

where α is the k×1 vector of row effects, γ is the b×1 vector of column effects,
τ is the v × 1 vector of treatment effects with v = 2m as defined above, and
ε is the random error vector with mean 0kb and variance σ2Ikb. We will write
M = X ′3X1 and N = X ′3X2 for the treatment-row and treatment-column
incidence matrices. If the design is equireplicated with common treatment
replication r, then 1′vM = b1′k, M1k = r1v, 1′vN = k1′b, and N1b = r1v. The
information matrix for τ may then be written as

C = X ′3(Ikb − P[X1 X2])X3 = rIv −
1

k
NN ′ − 1

b
MM ′ +

r2

kb
1v1
′
v,

where PA = A(A′A)−A′ denotes the orthogonal projection matrix onto the
column space of A.

A design is connected if and only if rank(C) = v−1. An equireplicated row-
column design can only be connected if r is at least equal to 2. We will use the
notation D(v, k, b, r) for the class of all equireplicated, connected row-column
designs with v treatments, each replicated r = kb/v times, in k rows and b
columns. Connected designs facilitate unbiased estimation of every treatment
contrast, and the best linear unbiased estimator of c′τ , where c′1v = 0, is
given by c′τ̂ = c′C−Q where C− is an arbitrary generalized inverse of C and
Q = X ′3(Iv−P[X1 X2])y. It follows that the variance of this estimator is given

by σ2c′C−c. Since C 6 X ′3(Iv − P1kb
)X3 = r(Iv − 1

v1v1
′
v), it also follows that

for any design in D(v, k, b, r) we have for any contrast c′τ that

Var(c′τ̂) > σ2c′c/r. (3)

If equality holds in (3) for a contrast c′τ , then we say that the design allows
the estimation of this contrast with full efficiency.

Definition 1 An equireplicated design d is called a row-column L-design if
it allows the estimation of the three contrasts in (1) with full efficiency under
Model (2).

The next lemma will help with the characterization of row-column L-
designs.

Lemma 1 Under Model (2), a design d ∈ D(v, k, b, r) allows the estimation
of a treatment contrast c′τ with full efficiency if and only if c′M = 0′k and
c′N = 0′b.

Proof The contrast c′τ is estimated with full efficiency if and only if

c′X ′3(Iv − P[X1 X2])X3c = c′X ′3(Iv − P1kb
)X3c,
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or equivalently
c′X ′3(P[X1 X2] − P1kb

)X3c = 0. (4)

But 1′kbX3c = r1′vc = 0, so that (4) is equivalent to P[X1 X2]X3c = 0kb. This
in turn is equivalent to X ′1X3c = 0k and X ′2X3c = 0b, or M ′c = 0k and
N ′c = 0b.

In order to emphasize the dependence of N andM on design d ∈ D(v, k, b, r),
we will change the notation to Nd and Md. Moreover, we will partition these
matrices into two parts, with one corresponding to the first m treatments
(doses for the standard treatment) and the other to the last m treatments:
Nd = (N ′d1, N

′
d2)′ and Md = (M ′d1,M

′
d2)′. Equations (5) and (6) in the follow-

ing corollary are an immediate consequence of Definition 1 and Lemma 1.

Corollary 1 A design d ∈ D(v, k, b, r) with m > 2 is a row-column L-design
if and only if k > 4, b > 4 and

1′mNd1 =
k

2
1′b; e′mNd1 = 0′b; 1′mMd1 =

b

2
1′k; e′mMd1 = 0′k, (5)

1′mNd2 =
k

2
1′b; e′mNd2 = 0′b; 1′mMd2 =

b

2
1′k; e′mMd2 = 0′k. (6)

It is clear from (5) and (6) that k and b must be even, but neither can be
equal to 2. To see the latter, let, without loss of generality, k be equal to 2.
For both e′mNd1 and e′mNd2 to be 0′k, it must be that each column has either
both treatments from {1, 2, . . . ,m} or from {m+ 1,m+ 2, . . . , 2m}. But since
1′mNd1 = 1′mNd2 = k

21′b, each column must have exactly one element from
each of {1, 2, . . . ,m} and {m+ 1,m+ 2, . . . , 2m}, which is a contradiction.

Corollary 2 If d ∈ D(2m, k, b, r) is a row-column L-design with m > 2, then
k > 4, b > 4 and k, b, k(m+ 1)/2, and b(m+ 1)/2 must be all even.

Proof That k > 4 and b > 4 must be even is obvious from Corollary 1. More-
over, the condition e′mNd1 = 0′b in Corollary 1 is equivalent to (1, 2, . . . ,m)Nd1 =
(k(m + 1)/4)1′b, so that k(m + 1)/2 must be even. Similarly, it follows from
e′mMd1 = 0′k that b(m+ 1)/2 must be even.

In the next section, we will show that the necessary conditions for the
existence of a connected equireplicated row-column L-design in Corollary 2
are also sufficient provided that kb/2m is an integer and r > 2, with the single
exception that no such design exists for m = k = b = 4, as established in the
next lemma.

Lemma 2 A connected equireplicated row-column L-design does not exist for
m = k = b = 4.

Proof Suppose the design does exist. From Corollary 1, it follows that (a) every
row and every column must have exactly two treatments from {1, 2, 3, 4} and,
thus, also exactly two from {5, 6, 7, 8}, and (b) if 1 appears in a row or column,
then so must 4. Similarly for 2 and 3, for 5 and 8, and for 6 and 7.
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Since each treatment appears twice, after a permutation of rows and columns
(a connected row-column L-design is invariant under such operations), we can
assume without loss of generality, that the first row and column start as 1, 4.
But that means that the second replication of treatment 4 must occur in row
2 and column 2. In the remainder of the first row, we must have 5 and 8 or 6
and 7. Without loss of generality, say, it is 5 and 8. Continuing like this, it is
seen that the design must look like

1 4 5 8
4 1 8 5
6 7 2 3
7 6 3 2


It is an L-design, but the information matrix C has only rank 5. Hence the

design is not connected.

3 Construction of row-column L-designs

Lemma 3 shows the main structure of the desired row-column L-design d
and Lemma 4 constructs a connected design dC with each element in the
set {1, 2, . . . , 2m} occurring twice. Designs constructed in Theorem 1 are con-
nected because they contain dC as a subdesign. Occasionally we assume that
b > k. This can be done without loss of generality, for otherwise a design could
be obtained by simply transposing the original design.

From Corollary 2, k and b should both be even, say k = 2k1 and b = 2b1.
The basic structure of k × b row-column designs d that we will construct is

d =

[
S1 T1
T2 S2

]
, (7)

where the matrices Sj and Tj , j = 1, 2, are each of the order k1 × b1; the
elements of Sj , j = 1, 2, belong to the set {1, 2, . . . ,m} and the elements of
Tj , j = 1, 2, belong to the set {m+ 1,m+ 2, . . . , 2m}.

Lemma 3 Let d be a k × b row-column design with elements from the set
{1, 2, . . . , 2m} as in (7) and with the properties that

(i) together S1 and S2 contain each treatment from the set {1, 2, . . . ,m} r
times;

(ii) together T1 and T2 contain each treatment from the set {m+1,m+2, . . . , 2m}
r times;

(iii) each of the Sj and Tj, j = 1, 2, are constructed by juxtaposing multiple
submatrices so that if one of these submatrices of Sj is of size pg × qg,
it has constant row sums equal to qg(m+ 1)/2 and constant column sums
equal to pg(m+ 1)/2 and a pg × qg submatrix of Tj has constant row sums
equal to qg(3m+ 1)/2 and constant column sums equal to pg(3m+ 1)/2.

Then, d is an equireplicated row-column L-design.
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Let ΠR(H) denote a matrix obtained by cyclically shifting each row of H
to the next row and ΠC(H) denote a matrix obtained by cyclically shifting
each column of H to the next column. Also, let ΠCR(H) = ΠC(ΠR(H)).

Lemma 4 Let m = m1m2. Let SC1 be a m1 × m2 matrix containing each
element from the set {1, 2, . . . ,m} exactly once, SC2 = ΠCR(SC1 ), and TC1 =

m1m11′m2
+SC1 . Then, dC =

[
SC1 TC1
TC1 SC2

]
∈ D(v = 2m, k = 2m1, b = 2m2, 2)

is a connected equireplicated row-column design.

Proofs of Lemmas 3 and 4 are provided in the appendix. Designs dC are
used in the construction of connected L-designs for general values of m, b and
k. It turns out that to construct a connected L-design for m = 8, k = 4u, and
b = 4l, l > 3, u > 1, we need a different design to play the role of dC . This
design, also named dC , is presented in the following remark.

Remark 1 For m = 8, k = 4, b = 12, define design dC as in (8). It is not too
hard to see that dC satisfies Lemma 3 and that it is connected. Therefore, dC

is a connected equireplicated row-column L-design in D(16, 4, 12, 3).

dC =


1 5 6 7 3 5 9 13 14 15 11 13
8 4 3 2 6 4 16 12 11 10 14 12

16 16 12 11 10 10 8 8 4 3 2 2
9 9 13 14 15 15 1 1 5 6 7 7

 (8)

We now state the sufficiency result as already announced at the end of
Section 2.

Theorem 1 Sufficient conditions for the existence of a connected equirepli-
cated row-column L-design with m > 2 are that each of k, b, k(m+ 1)/2 and
b(m + 1)/2 are even provided that r = kb/2m (> 2) is an integer, k > 4 and
b > 4, except that such a design does not exist for m = k = b = 4.

In what follows, we first present a general structure for construction of a
row-column L-design d ∈ D(v = 2m, k, b, r) and then construct the individual
components. The construction makes use of the two types of designs shown
in Figure 1, both of which follow the basic structure in (7). The difference is
that, depending on the values of m, k, and b, in some cases we are able to
construct each of the parts Sj and Tj , j = 1, 2, by juxtaposing equireplicated
submatrices as in Lemma 3(iii), in which case we use designs of type I. In other
cases where this is not possible, the construction becomes a bit more tricky
and we need to revert to type II designs. Thus, in the first cases, we have
stronger properties than those in Lemma 3(i) and (ii) because each Sj and
Tj are equireplicated on their respective sets of treatments. The second cases
are trickier because the individual quadrants in (7) are not equireplicated. In
those cases we need to make use of the submatrices SEj and TEj in designs of
type II. Take for example the case m = 16, k = 8, and b = 12. The array S1

is then of size 4× 6. Since SC1 must contain each of 1, 2, . . . ,m once, it means



8 Feng-Shun Chai et al.

(a) Design type I (b) Design type II

Fig. 1: Structure of design d. The parts with the superscript C represent the
connected component dC as in Lemma 4. Other parts need to be completed

as described in the proof of Theorem 1.

that SM1 in designs of type I cannot be equireplicated on 1, 2, . . . ,m. But we
show how to construct the corresponding design by using type II designs.

Before we show the constructions, we note the following properties about
the individual components of Figure 1. If we can construct a design d in Figure
1 satisfying (a)-(c) along with satisfying Lemma 3, then d is a desired connected
row-column L-design. Our proof then follows by showing the method by which
these components can be constructed.

(a) The elements of S1 and S2 (NW and SE quarters in Figure 1) together
contain r replications of each treatment from the set {1, 2, . . . ,m}, and the
elements of T1 and T2 (NE and SW quarters in Figure 1) together contain
r replications of each treatment from the set {m+ 1,m+ 2, . . . , 2m};

(b) TE1 , TC1 , TM1 , and TM2 are obtained from SE1 , SC1 , SM1 , and SM2 , respec-
tively, by replacing i with m+ i, i = 1, . . . ,m.

(c) The middle component of d, that is

[
SC1 TC1
TC1 SC2

]
, corresponds to dC in Lemma

4 or in Remark 1. The adopted construction method ensures that dC has
each treatment from the set {1, 2, . . . , 2m} equally often and is a connected
subdesign of d.

Proof (Proof of Theorem 1) It is sufficient to show the construction of Sj ,
j = 1, 2, since Tj are obtained from Sj . We will distinguish between two cases
based on whether m is even or odd.

In what follows, Pa×b denotes a magic rectangle of order a× b (Kudrle and
Menard, 2007) and Qa×b a nearly magic rectangle of order a× b (Chai et al.,
2019). The notation [i : j] denotes a row vector [i i+ 1 i+ 2 . . . j] when i 6 j
and [i i− 1 i− 2 . . . j] when i > j. Recall that SC2 = ΠCR(SC1 ), as in Lemma
4, for both design types I and II.

Case (A): m is even. When m is even, from Corollary 2, both k1 and b1
must be even. For the bulleted items SM1 ∪ SM2 in what follows, x copies
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indicates that the dark hatched part of Figure 1 (corresponding to SM1 and
SM2 ) jointly contains x copies of each of the matrices H1, . . . ,Hm/2, where
Hi’s are 2× 2 matrices with diagonal values equal to i and off-diagonal values
m− i+ 1. We further segment the cases as below:

Case (A1): m = 4m0 + 2 = 2(2m0 + 1). For r = kb/2m = 4 (k1/2)(b1/2)
(2m0+1) to

be an integer, 2m0+1 must divide (k1/2)(b1/2), and, so, there are odd integers
m1 and m2 so that 2m0 + 1 = m1m2 and k1 = 2um1, b1 = 2lm2.

When m = 2, m1 = m2 = 1, so that k1 = 2u and b1 = 2l, we use

– Design type: II,
– SC1 = [1 2]′, SE1 = [2 1]′ and SE2 = [1 2]′, and
– SM1 ∪ SM2 : 2(ul − 1) copies.

For m > 2, if m1 = 1 or m2 = 1, without loss of generality let m2 = 1. Then
m1 = 2m0 + 1, k1 = 2um1, b1 = 2l, and we use

– Design type: II,
– SC1 = [1 : m]′, SE1 = [m : 1]′ and SE2 = ΠR([m : 1]′), and
– SM1 ∪ SM2 : 2(ul − 1) copies.

For m > 2, if both m1 > 1 and m2 > 1, so that k1 = 2um1 and b1 = 2lm2, we
use

– Design type: II,
– SC1 = Q2m1×m2

, SE1 = ΠR(SC1 ) and SE2 = ΠR(ΠCR(SC1 )), and
– SM1 ∪ SM2 : 2(ul − 1) copies.

To satisfy Lemma 3 (iii), the rows of Q2m1×m2
should be arranged such that

their sums alternate, that is, in the first row the elements sum up to s, in the
second to s + 1, in the third to s, and so on, where s = (m2(m + 1) − 1)/2.
This can always be done because exactly half of the row sums are s, the other
half being s+ 1. By doing this, and by combining SC1 and SE1 according to the
design type II, we get the constant row and column sums.

Case (A2): m = 4m0, m0 is odd, and r is even. For r = kb/2m =

2 (k1/2)(b1/2)
m0

to be an integer, m0 must divide (k1/2)(b1/2), and, so, there must
be odd integers m1 and m2 so that m0 = m1m2, k1 = 2um1, b1 = 2lm2.

When m = 4, then m1 = m2 = 1, k1 = 2u and b1 = 2l. Since l = 1 and
u = 1 is not possible because the design does not exist for m = k = b = 4 (see
Lemma 2), we take, without loss of generality, u > 1 and l > 1. We use

– Design type: II,
– SC1 = [1 : 4]′, SE1 = [4 : 1]′ and SE2 = ΠR([4 : 1]′), and
– SM1 ∪ SM2 : ul − 2 copies.

When m > 4, for k1 = 2um1 and b1 = 2lm2, we use

– Design type: I,
– SC1 = P2m1×2m2 , and
– SM1 ∪ SM2 : ul − 1 copies.
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Case (A3): m = 8m0. For m = 2ab, where a and b are even integers not
simultaneously equal to 2, we define matrices Fa×b and Ga×b of order a × b
such that each of the row sums are equal to b(1 + m)/2, each of the column
sums are equal to a(1 + m)/2, and elements of F and G together contain
treatments from the set {1, . . . ,m} exactly once. One way of constructing F
and G, through a decomposition of magic rectangles, is given in Lemma A1 in

the appendix. For r = kb/2m = (k1/2)(b1/2)
m0

to be an integer, m0 must divide
(k1/2)(b1/2), and, so, there are two integers m1 and m2, so that m0 = m1m2,
k1 = 2um1, b1 = 2lm2. Then, r = ul. We first discuss the case when r is odd,
implying both l and u are odd. If both l = u = 1, then r = 1, but we have that
r > 2. So, without loss of generality we take l > 1.
When m = 8, and r is odd, for k1 = 2u and b1 = 2l, l > 3, we use

– Design type: I,

– dC =

[
SC1 TC1
TC1 SC2

]
is from Remark 1, and

– SM1 ∪ SM2 : (ul − 3)/2 copies.

When m > 8, and r is odd, for k1 = 2um1 and b1 = 2lm2, l > 3, we use

– Design type: II,
– SC1 = P2m1×4m2 , SE1 = F2m1×2m2 and SE2 = G2m1×2m2 , and
– SM1 ∪ SM2 : (ul − 3)/2 copies.

When m = 8m0 = 8m1m2 and r is even, for k1 = 2um1 and b1 = 2lm2,
without loss of generality, let l be even. We use

– Design type: I,
– SC1 = P2m1×4m2

, and
– SM1 ∪ SM2 : (ul − 2)/2 copies.

To complete this proof, we need to show that each of the pg×qg decomposed
submatrices of Sj and Tj , j = 1, 2, have row sums equal to qg(m + 1)/2 and
column sums equal to pg(m + 1)/2. The submatrices H1, . . . ,Hm/2 are 2 × 2
matrices with the row and column sums equal to m+ 1. It is also not too hard
to see that SC1 and SE1 taken together according to design type have row sums
equal to pg(m+ 1)/2 and column sums equal to qg(m+ 1)/2 and so is the case
for SC2 and SE2 taken together.

Case (B): m is odd. For this case, r = kb/v = (2k1)(2b1)/2m = 2k1b1/m,
and hence, r must be even. For odd p and q, p > 3, q > 3, let Ap×q =
[a1 a2 . . . ap]

′ denotes a p×q matrix constructed as in Lemma A2, and a′i is the
ith row of the matrix A, i = 1, . . . , p. For the bulleted items SM1 ∪SM2 in what
follows, x ◦Z indicates that the dark hatched part of Figure 1 (corresponding
to S1 and S2) jointly contains x copies of the matrix Z.

Since m is odd, k1b1 must be a multiple of m, so that there are odd integers
m1 and m2 such that m = m1m2, k1 = um1 and b1 = lm2.

Case (B1): When m1 > 1 and m2 > 1, for k1 = um1 and b1 = lm2, we
use

– Design type: I,
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– SC1 = Pm1×m2 and
– SM1 ∪ SM2 : 2(ul − 1) ◦ Pm1×m2 .

Case (B2): When one of m1 and m2 is 1, take m2 = 1 without loss of
generality. Then k1 = um1 = um and b1 = l with l > 2.
When b1 = l is odd, we use

– Design type: II,
– SC1 = al, S

E
1 = [a1 a2 . . . al−1], and SE2 = ΠR(SE1 ), and

– SM1 ∪ SM2 : 2(u− 1) ◦A′l×m.

When b1 = l is even but not a power of 2, that is, b1 = l = 2wl1, where l1 > 1
is odd, we use

– Design type: II,
– SC1 = al1 , SE1 = [a1 a2 . . . al1−1], and SE2 = ΠR(SE1 ), and
– SM1 ∪ SM2 : 2(u2w − 1) ◦A′l1×m.

When b1 = l is a power of 2, that is, b1 = l = 2w, we use

– Design type: II,
– SC1 = [1 : m]′, SE1 = [m : 1]′, and SE2 = [1 [m : 2]]′, and

– SM1 ∪ SM2 : (u2w − 2) ◦
[
[m : 1]
[1 : m]

]′
.

It is again easy to verify that the constructed designs satisfy the conditions
in Lemma 3 and properties (a)–(c) presented after Theorem 1. This completes
the proof.

To illustrate the construction, we now provide some examples. For design
type I, we provide examples from Case (B1) in the proof of Theorem 1.

Example 1 Consider v = 18, k = b = 6. This implies that m = 9,m1 = m2 = 3

and u = l = 1. With P3×3 =

7 5 3
2 9 4
6 1 8

, an equireplicated row-column L-design

d is


SC1 TC1

TC1 SC2 = ΠCR(SC1 )

 =


7 5 3 16 14 12
2 9 4 11 18 13
6 1 8 15 10 17
16 14 12 8 6 1
11 18 13 3 7 5
15 10 17 4 2 9

 .
Similarly, for v = 18, k = 6 and b = 12, a design is


SM1 SC1 TC1 TM1

TM2 TC1 SC2 SM2

 =


7 5 3 7 5 3 16 14 12 16 14 12
2 9 4 2 9 4 11 18 13 11 18 13
6 1 8 6 1 8 15 10 17 15 10 17
16 14 12 16 14 12 8 6 1 7 5 3
11 18 13 11 18 13 3 7 5 2 9 4
15 10 17 15 10 17 4 2 9 6 1 8

.
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For design type II, we provide an example from Case (A1) in the proof of
Theorem 1.

Example 2 Consider v = 4, k = 8 and b = 8. This implies that m = 2, u = 2
and l = 2. An equireplicated row-column L-design d is


SM1 TM1

SE1 SC1 TC1 TE1

TE1 TC1 SC2 SE2

TM2 SM2

 =



1 2 1 2 3 4 3 4
2 1 2 1 4 3 4 3
1 2 2 1 3 4 3 4
2 1 1 2 4 3 4 3
3 4 4 3 2 1 1 2
4 3 3 4 1 2 2 1
3 4 3 4 1 2 1 2
4 3 4 3 2 1 2 1


.

4 Conclusions

The necessary conditions for the existence of a connected row-column L-design
for symmetrical parallel line assay are provided. These conditions are also
proved sufficient by providing a proof via constructing a design for each pa-
rameter set, except that the design for v = 8, k = b = 4 and r = 2 does not
exist.

The L-design property assures that the three treatment contrasts of pri-
mary interest can be estimated with full efficiency. The connectedness of the
designs guarantees that any other treatment contrast can be estimated unbi-
asedly. If one is interested in finding an equireplicated row-column L-design
that, in some sense, is optimal for estimation of other treatment contrasts, one
could search for the best row-column L-design in the class D(v, k, b, r) using a
criterion of most interest. That is a problem that is beyond the scope of this
paper.
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Appendix

Lemma A1 Let m = 2pq, where p and q are even integers that are not simul-
taneously equal to 2. Then there exist two matrices of order p × q, say Fp×q
and Gp×q, such that they together contain numbers 1, 2, . . . ,m exactly once
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and each of them has row sums equal to q(1 + m)/2 and column sums equal
to p(1 +m)/2. When combined, to form a 2p× q matrix, the result is a magic
rectangle on {1, 2, . . . ,m}.

Proof Let p = 2p1 and q = 2q1. From the literature on magic rectangles (Chai
et al., 2019), it is not hard to construct a 2 × q magic rectangle V1 = P2×q
based on {1, 2, . . . , 2q}. Define Vz = V1 + (z − 1)2q1′21q, z = 2, . . . , p. For
z = 1, . . . , p1, exchange the first q1 columns of Vz with the first q1 columns of
Vp+1−z and then, using the resulting matrices, exchange the second row of the
zth matrix with the second row of the (p+ 1− z)th matrix. Call the matrices
obtained in this way Rz and Rp+1−z. Note that the row and column sums of
each of these matrices are equal to q(1 +m)/2 and 1 +m, respectively. Then,
Fp×q = [R′1, . . . , R

′
p1 ]′ and Gp×q = [R′p1+1, . . . , R

′
p]
′. Also, P2p×q = [R′1 . . . R

′
p]
′

is a magic rectangle based on {1, 2, . . . ,m}.

Lemma A2 (Lemma 2.2 of Chai et al. (2019)) Let p > 3 and q > 3 be
odd. Then, there exists a p × q matrix A with equal column sums such that
each row is a permutation of [1 : q].

Proof of Lemma 3. That d is equireplicated is satisfied because of (i) and
(ii) in the statement of the lemma. Additionally, the necessary and sufficient
conditions for a design d ∈ D(v, k, b, r) to be a row-column L-design are pro-
vided in Corollary 1. Conditions 1′mNd1 = k

21′b and 1′mMd1 = b
21′k of Corollary

1 translate into each of the columns and rows having k/2 and b/2 treatments
from {1, . . . ,m}, respectively. This is true because of the structure in Figure 1
and (i) and (ii) in the statement of the lemma. For the same reasons, conditions
1′mNd2 = k

21′b and 1′mMd2 = b
21′k are true.

Let Md1j , j = 1, 2, be the m × k1 treatment-row incidence matrix cor-
responding to a design with the same treatments as in the rows of Sj , and
no treatments in the other rows. Similarly, let Md2j , j = 1, 2, be the m × k1
treatment-row incidence matrix corresponding to a design with the same treat-
ments as in the rows of Tj , and no treatments in the other rows. Then, for a
design d, the treatment-row incidence matrix is

Md =

[
Md11 Md12

Md21 Md22

]
.

From (iii) in the statement of the lemma, each of the Sj and Tj , j = 1, 2,
can be decomposed into pg× qg submatrices Sgj and T gj . Let Mg

d1j , j = 1, 2, be
the m × k1 treatment-row incidence matrix where rows correspond to the m
treatments in Sj , and columns correspond to the k1 rows of Sj . For rows that
do not intersect with Sgj , the entire column in Mg

d1j is 0, and for treatments

that do not appear in Sgj , the entire row in Mg
d1j is 0. Define Mg

d2j similarly

using T gj . Then, Md1j =
∑
gM

g
d1j , and Md2j =

∑
gM

g
d2j , j = 1, 2.

If we can show that e′mM
g
d1j = 0′ for all g, then from the above equations,∑

g e
′
mM

g
d1j = e′mMd1j = 0′, implying that, in the notation of Corollary 1,

e′mMd1 = 0′. Arguments that the other conditions in Corollary 1, e′mNd1 = 0,
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e′mMd2 = 0, and e′mNd2 = 0, hold would be similar. This would imply the
desired result.

So, e′mM
g
d1j = 0′ if and only if

∑m
w=1 wmwh = ((m+1)/2)(

∑m
w=1mwh), h =

1, ..., k1, wheremwh is the (w, h)th element ofMg
d1j . Additionally,

∑m
w=1 wmwh =∑jb1

`=1+(j−1)b1 ch`, where ch` is the (h, `)th element of Sgj and is defined as 0 for

columns ` that do not intersect with Sgj . Note that h is now restricted to those

rows that intersect with Sgj and
∑m
w=1mwh = qg. Therefore, e′mM

g
d1j = 0′ if

and only if
∑jb1
`=1+(j−1)b1 ch` = qg(m+ 1)/2. ut

Proof of Lemma 4. Let m = m1m2. The proof is divided in two cases:
Case (i): m1 = 1 or m2 = 1. Without loss of generality, let m1 = 1, SC1 =
[1 : m] and SC2 = ΠCR(SC1 ) = ΠC(SC1 ) = [m 1 : (m − 1)]. Then dC is (a)
a 2 × 2m row-column design with each treatment from the set {1, . . . , 2m}
replicated exactly twice, (b) row-treatment and column-treatment connected,
and (c) N ′dCMdC = 212m1′2. Hence, from Theorem 2.1 of Raghavarao and
Federer (1975), dC ∈ D(2m, 2, 2m, 2) is a connected row-column design.

Case (ii): m1 > 1 and m2 > 1. Without loss of generality, let the qth column
of SC1 be cS1

q = (q − 1)m11m1
+ [1 : m1]′, q = 1, . . . ,m2. Then, since TC1 =

m1m1
1′m2

+SC1 and SC2 = ΠCR(SC1 ), the qth column of TC1 is cT1
q = m1m1

+cS1
q

and the qth column of SC2 is cS2
q such that for q = 1, cS2

1 = [m2m1, ((m2 −
1)m1 + 1) : ((m2− 1)m1 +m1− 1)]′ and for q = 2, . . . ,m2, cS2

q = [(q− 2)m1 +

m1, ((q−2)m1+1) : ((q−2)m1+m1−1)]′. Then, dC is a 2m1×2m2 row-column
design with each treatment from the set {1, . . . , 2m} replicated twice.

Let yp,q be the response variable for the (p, q)th cell of dC , p = 1, . . . , 2m1,
and q = 1, . . . , 2m2. Consider the first and the pth response from each of the
4 columns cS1

1 , cT1
m2

, cT1
m2

, and cS2
2 . Under model (2), we obtain the following

expected value identity:

E(y1,1 − yp,1 − y1,2m2
+ yp,2m2

+ y(m1+1),m2
− y(m1+p),m2

−y(m1+1),(m2+2) + y(m1+p),(m2+2)) = τ1 − τp − τm1
+ τ(p−1).

Summing these expectations for p = 2, . . . ,m1, we get

m1∑
p=2

E(y1,1 − yp,1 − y1,2m2
+ yp,2m2

+ y(m1+1),m2
− y(m1+p),m2

−

y(m1+1),(m2+2) + y(m1+p),(m2+2)) = m1(τ1 − τm1),

implying that τ1 − τm1
is estimable, and hence, treatment 1 is connected

to treatment m1. Substituting this back into the above equations, we get
that treatment 1 is connected to treatment p, p = 2, . . . ,m1 − 1. Hence,
{1, 2, . . . ,m1} is a connected treatment group.

Similarly, considering the first and the pth observation from each of the 4
columns cS1

1 , cT1
m2

, cT1
m2

, and cS2

`+1 ` = 2, . . . ,m2, (` + 1 = 1 when ` = m2) and
applying the above procedure, we get that {(`− 1)m1 + 1, (`− 1)m1 + 2,. . . ,
(` − 1)m1 + m1} is a connected treatment group. Similarly, it can be shown
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that {m + (` − 1)m1 + 1,m + (` − 1)m1 + 2, . . . ,m + (` − 1)m1 + m1} is a
connected treatment group, ` = 1, . . . ,m2.

By the connectedness checking algorithm in Park and Shah (1995), all
treatments in a connected group can be replaced by any one of them to reduce
the number of treatments in a design. We use the first treatment from each
group as a representative of the group. Then, checking connectedness of dC

is equivalent to checking the connectedness of the following design with 2m2

treatments

[
1 m1 + 1 · · · m−m1 + 1 m+ 1 m+m1 + 1 · · · 2m−m1 + 1

m+ 1 m+m1 + 1 · · · 2m−m1 + 1 m1 + 1 2m1 + 1 · · · 1

]
.

Just as in Case (i), the above design is a connected row-column design.
This means that treatment representatives 1,m1 + 1, 2m1 + 1, . . . ,m −m1 +
1,m + 1,m + m1 + 1, . . . , 2m −m1 + 1 are all connected and hence, dC is a
connected row-column design. ut
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