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Abstract

Sensor and actuator selection problems (SASPs) are some of the core problems in dynamic systems design and control.
These problems correspond to determining the optimal selection of sensors (measurements) or actuators (control nodes)
such that certain estimation/control objectives can be achieved. While the literature on SASPs are indeed inveterate,
the vast majority of the work focuses on linear(ized) representation of the network dynamics, resulting in the placements
of sensors or actuators (SAs) that are valid for confined operating regions. As an alternative, herein we propose a new
general framework for addressing SASPs in nonlinear dynamic systems (NDSs), assuming that the inputs and outputs
are linearly coupled with the nonlinear dynamics. This is investigated through (i) classifying and parameterizing the
NDSs into various nonlinear function sets, (ii) utilizing rich Lyapunov theoretic formulations, and (iii) designing a new
customized branch-and-bound (BnB) algorithm that exploits problem structure of the SASPs. The newly designed BnB
routines are computationally more attractive than the standard one and also directly applicable to solve SASPs for linear
systems. In contrast with contemporary approaches from the literature, our approach is suitable for finding the optimal
SAs combination for stable/unstable NDSs that ensures stabilization of estimation error and closed-loop dynamics through
a simple linear feedback control policy.

Keywords: Sensor selection, actuator selection, nonlinear dynamic systems, Lipschitz continuous, mixed-integer
semidefinite programming, branch-and-bound algorithm

1. Introduction and Paper Contributions

Sensor and actuator selection problems (SASPs)—which
fall into (i) finding optimal geographic placements or time-
varying selection of sensors or actuators (SAs) (but not
necessarily simultaneously), while (ii) optimizing state esti-
mation or control metrics—have become prevalent research
topics in numerous science and engineering fields. For in-
stance, in power networks application, sensor selection cor-
responds to the placement of phasor measurement units for
the purpose of power systems monitoring [1] while actuator
selection corresponds to the placement of energy storage
devices to ensure system controllability [2]. Both problems
are crucial to achieve more economical and robust power
systems operations while ensuring that certain minimal re-
quirements, such as allowable tolerance on dynamic estima-
tion error and voltage/frequency deviation, are met.

Extensive studies have been carried out in the literature
to address SASPs for particularly linear dynamic systems—
see [3–6] for some notable references. Unlike SASPs in lin-
ear(ized) systems which yield feasible or optimal SAs config-
urations for specific operating points, SASPs for nonlinear
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dynamic systems (NDSs) offer SA selections that are appli-
cable for much larger operating regions or even globally—
this is demonstrated in our prior work through a simple
example [7]. Indeed, SASPs for NDSs have not received
comparable attention in the literature as the SASPs for lin-
ear systems, until recently. In [1], the concept of empirical
Gramian to quantify the observability of NDSs is considered
jointly with the sensor selection problem (SSP) to determine
the combination of sensors that maximizes the logarithmic
determinant of the empirical Gramian matrix. The joint
problem of sensor selection and state observation is investi-
gated in [8]. In particular, a new method for reconstructing
the initial states of NDSs while simultaneously selecting sen-
sors for a given observation window is presented. A differ-
ent approach is pursued in [9] where the authors introduce
a randomized algorithm for dealing with SSP and develop
theoretical bounds for eigenvalue and condition number of
observability Gramian. Recently, a method for selecting the
control nodes and designing control actions for NDSs, which
is based on an open-loop predictive control framework, is
proposed in [10]. This approach is later adopted in [11] for
jointly selecting sensors and performing state estimation. In
spite of these efforts, their potential applicability to address
SASPs in unstable NDSs along with their ability to incorpo-
rate SAs selection with some estimation/control-theoretic
metrics, unfortunately, remains unclear.
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The objective of this paper is to find the minimal SAs
combination for stable/unstable NDSs that ensures stabi-
lization for estimation error (via minimal sensor selection)
and closed loop system through feedback control (via min-
imal actuator selection). The proposed algorithms devel-
oped herein are based on the following observations. First,
numerous observer and controller designs for NDSs have
been developed in the past two decades. By using Lyapunov
stability theory and given that the nonlinearities in NDSs
satisfy some function sets such as bounded Jacobian [12],
Lipschitz continuous [13], one-sided Lipschitz [14], quadrat-
ically inner-bounded [14], and quadratically bounded [15],
the procedure to compute stabilizing observer/controller
gain matrix can be posed as convex semidefinite program-
mings (SDPs). Secondly, physical states in many practical
NDS models are almost always bounded. Hence, it can be
shown or safely assumed that the corresponding nonlinear-
ities satisfy the properties of the aforementioned function
sets in confined state-space regions—regions that are much
larger than operating regions of linearization points.

Without loss of generality, this paper focuses on SASPs
for Lipschitz NDSs in which the vector-valued nonlinearity
in the system dynamics satisfies the Lipschitz continuity as-
sumption. The proposed method can be easily extended for
other types of non-Lipschitz nonlinearities. It is assumed
throughout the paper that the inputs and outputs of the
NDSs form linear relations with the nonlinear dynamics. It
is also worth noting that we do not address the simultane-
ous selection of SAs. That is, we only consider the minimal
selection of sensors with observer design or actuators with
controller design. A preliminary version of this work ap-
peared in [16], where the SSP for Lipschitz NDSs is studied
and solved via a general purpose solver [17]. The key con-
tributions of this paper are summarized as follows:
• We present a novel generalized framework to address

SASPs for NDSs by: (i) parameterizing NDSs’ nonlin-
earities based on the corresponding function sets, (ii) for-
mulating the SASPs using a plethora of observer and/or
controller designs, and (iii) reformulating the resulting
SASPs into convex mixed-integer SDPs (MISDPs).

• Particularly for Lipschitz NDSs with Lipschitz constant
γl, we formalize NDSs observability and controllability
(coined as γl-observability and γl-controllability, respec-
tively) as SDP feasibility problems and show that it is
crucial to obtain the smallest Lipschitz constant in order
to obtain less number of SAs in SASPs. In particular,
we theoretically investigate the relationship between the
Lipschitz constant of the system and the number of acti-
vated SAs.

• A new customized branch-and-bound (BnB) algorithm
for MISDPs to solve SASPs is proposed. This BnB algo-
rithm, referred to as structure-exploiting BnB (SE-BnB),
utilizes heuristics and exploits problem structure to effi-
ciently find optimal and suboptimal solutions for SASPs,
owing to the reduced number of constraints and/or vari-
ables of the corresponding SDP problems when finding
upper an lower bounds on each node of the BnB tree.

• We showcase the computational advantages of the pro-
posed BnB routines for solving SSP in comparison with
our implementation of the standard BnB algorithm and
the `1-norm relaxation technique [18].

The distinction of our approach to address SASPs for
NDSs in comparison with the other contemporary meth-
ods includes (a) its ability to find optimal placement of
SAs with stabilizing estimation/control gain matrix, and
(b) its flexibility to incorporate estimation/control metrics
for continuous-time/discrete-time NDSs having different
classes of nonlinearity. The paper’s organization and no-
tation are as follows. Section 2 formalizes the NDSs model.
Section 3 investigates the relation between Lipschitz con-
stant and γl-observability while Section 4 constructs the
SSP for Lipschitz NDSs. Next, Section 5 focuses on trans-
forming SSP into a convex MISDP form and provides a
detailed description for the SE-BnB algorithm. In Section
6, some discussions related to actuator selection problem,
solving SASPs beyond Lipschitz NDSs, and robust SSP are
provided. Finally, Section 7 presents some numerical results
and Section 8 concludes the paper.
Notation. The notation 1 represents a matrix of ap-
propriate dimension with elements of 1. The notations Rn
and Rp×q denote the sets of row vectors with n elements
and matrices with size p-by-q with elements in R. Given
A as a matrix, its i-th and j-th element is denoted by Aij .
The operators Blkdiag(·) constructs a block diagonal ma-
trix, Diag(·) constructs a diagonal matrix from a vector,
vec(·) constructs a vector by stacking each column of a ma-
trix, ⊗ denotes the Kronecker product, and � denotes the
Hadamard product. The symbol ∗ is used to represent sym-
metric entries in symmetric matrices. The set I(n) is defined
as I(n) := {i ∈ N | 1 ≤ i ≤ n}, which is usually used to rep-
resent the set of indices.

2. System Description and Preliminaries

Consider a continuous-time networked NDS comprised of
N subsystems (also referred to as nodes) modeled as

ẋ(t) = Ax(t) +Gf(x) +Bu(t), y(t) = Cx(t). (1)

Numerous NDSs—see Table 1 for some notable examples—
can be represented in the form of (1). In this model, the
global state x ∈ X ⊂ Rnx consists of N numbers of nodal
state xi ∈ Xi ⊂ Rnxi . Likewise, each subsystem i is
also comprised of nui inputs and nyi measurements such
that ui ∈ Ui ⊂ Rnui and yi ∈ Rnyi . The notations ui
and yi denote the nodal input and measurements vectors
whereas X and U represent the operating region and ad-
missible inputs for NDS (1). The global input and output
vectors are u ∈ U ⊂ Rnu and y ∈ Rny . Matrices A, B,
C, and G are all assumed to have appropriate dimensions
and in particular, B and C are representative of input-
to-state and state-to-output mappings and supposed to
posses the following structure: B = Blkdiag (B1, . . . ,BN ),
C = Blkdiag (C1, . . . ,CN ). Matrix A expresses the linear
dynamics of the system as well as interaction between sub-
systems while matrixGdepicts the distribution of nonlinear
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Table 1: Dynamic models of some nonlinear dynamic systems in electric power systems, traffic, combustion networks, . . . .

Type of Systems Nonlinear Dynamics Model Description

Electric power
grids[19]

δ̇i = ωi − ω0

ω̇i =
ω0
2Hi

(
Pmi −

N∑
j=1

EiEj
(
Ḡij cos(δi − δj) + B̄ij sin(δi − δj)

)
− KDi

ω0
(ωi − ω0)

) 2nd-order swing equation

xi := [δi ωi]
>

δi: rotor angle, ωi: rotor speed

Highway traffic [20] ρ̇i =
vf
l (ρi−1 − ρi + ρ̂j − α(k)ρ̌k)− δ

(
ρ2i−1 − ρ

2
i + ρ̂2j − α(k)ρ̌2k

)
Free-flow condition

xi := [ρi], ρi: traffic density

Combustion
networks[21]

χ̇i =
nr∑
j=1

(βji − αji)
(
d
(f)
j

n∏
k=1

χ
αjk
k − d(b)j

n∏
k=1

χ
βjk
k

)
xi := [χi]

χi: chemical concentration

Oscillator
synchronization [22]

θ̇i = ωi +
N∑
j=1

Kij sin(θj − θi)
Kuramoto model

xi := [θi], θi: oscillator phase

Epidemic outbreaks[23] ṗi = −δpi +
N∑
j=1

aijβpj(1− pi)
xi := [pi], pi ∈ [0, 1]

pi: infection probability

Mass-spring-damper
systems

miẍi = diẋi−1 − (di + di+1)ẋi + di+1ẋi+1 + kixi−1 − (ki + ki+1)xi + ki+1xi+1

+aix
3
i−1 − (ai + ai+1)x3

i + ai+1x
3
i+1

xi := [xi]
xi: mass relative position

mapping f : Rnx → Rng that may capture any linear and
nonlinear phenomena in the system.

The ultimate objective of this work is to search for both
optimal and suboptimal SAs configurations or locations for
NDSs (or equivalently, the number of nonzero columns ofB
and nonzero rows of C) while satisfying some user-defined
constraints, which generally may include closed-loop sys-
tem stability, convergence of estimation error dynamics,
and actuator/sensor constraints. It is worth mentioning
that this paper emphasizes solving SASPs for continuous-
time NDSs with Lipschitz nonlinearities since (i) Lipschitz
is one of widely used function sets both in observer and
controller designs—for example, see [13, 20]—and (ii) the
proposed methodology to solve SASPs can be directly ex-
tended for other classes of nonlinearities mentioned pre-
viously as well as for discrete-time NDSs with additional
estimation/control objectives. To proceed, the subsequent
assumption is considered in the paper.

Assumption 1. The mapping f : Rnx → Rng is locally
Lipschitz continuous in X such that for any x, x̂ ∈ X

‖f(x)− f(x̂)‖2 ≤ γl‖x− x̂‖2, (2)

where γl ≥ 0 is the corresponding Lipschitz constant.

Readers are referred to [24] for scalable numerical methods
to compute Lipschitz constants—including the ones corre-
sponding to the other function sets. In the next section,
we formalize the notion of observability for Lipschitz NDSs
which is crucial in the context of SSP.

3. Observability for Lipschitz NDS

In contrast to linear systems, quantifying observability
for nonlinear systems is, without doubt, much more diffi-
cult and less straightforward. To that end, in this section
we focus on the concept of observability for NDS (1) in re-
gard to solvability of the corresponding SDPs and Lipschitz
constant. To proceed, consider a NDS in the form of (1). A
standard Luenberger-like observer for NDS (1) can then be
constructed as follows

˙̂x(t) = Ax̂(t) +Gf(x̂) +Bu(t) +L(y(t)− ŷ(t)) (3a)

ŷ(t) = Cx̂(t), (3b)

where in (3), L ∈ Rnx×ny is the observer gain matrix, x̂ is
the estimated states, and ŷ is the estimated outputs. The
objective here is to compute L that makes the estimation
error dynamics, where estimation error is constructed as
e(t) := x(t) − x̂(t), to converge asymptotically towards
zero. The next definition quantifies observability for NDS
(1), posed as a SDP feasibility problem, for a given γl.

Definition 1. NDS (1) is said to be γl-observable if and
only if there exist P ∈ Snx++, Y ∈ Rnx×ny , and ε ∈ R++

such that the following linear matrix inequality (LMI) is
feasible[
A>P + PA−C>Y > − Y C + εγ2

l I ∗
G>P −εI

]
≺ 0. (4)

LMI (4) originates from [13] with special case G = I
and it can be proven that (4) is indeed sufficient and nec-
essary for the existence of stabilizing matrix L for the esti-
mation error dynamics, provided that V (e) = e(t)>Pe(t)
is the Lyapunov function candidate and ε ∈ R+. Once the
LMI is solved, L can be recovered as P−1Y . The advan-
tages of utilizing Definition 1 to quantify observability are
twofold. First, if there exists any solution for (4) then one
can immediately obtain stabilizing gain matrix L and sec-
ond, the observability prevails for various operating points
in X . These are in contrast to other types of observabil-
ity for NDS such as empirical observability Gramian, as it
only quantifies observability based on local behaviors of the
systems around certain operating points and, upon deter-
mining the observability, one is still required to design a
state estimator algorithm to estimate the actual states.

At this point, we are now compelled to consider the fol-
lowing question regarding the feasibility of SDP that corre-
sponds to γl-observability for NDS (1):

Q1: What role does constant γl have on γl-observability?

To answer Q1, we need to further study the LMI given in
(4). For the sake of simplicity, let us assume that ε > 0 is a
constant. Then, realize that Y C can be expressed as

3



Y C =

nx∑
i=1

ny∑
j=1

YijČij ,

where Čij ∈ Rny×nx is constructed as

row
(
Čij

)
k

=

{
{[Ckl]}nxl=1 ∈ R1×nx , if j = k

01×nx , otherwise.

Now let ČS,ij := Čij+Č
>
ij for each i, j. By using the above

expression, the term Y C +C>Y > can be expressed as

Y C +C>Y > =

nx∑
i=1

ny∑
j=1

YijČij +

 nx∑
i=1

ny∑
j=1

YijČij

>

=

nx∑
i=1

ny∑
j=1

YijČS,ij =

nxny∑
k=1

yv,kC̄k, (5)

in which yv := [yv,1 yv,2 · · · yv,nxny ]> = vec(Y ) and
C̄k ∈ Snx for each k ∈ I(nxny) is associated with the corre-
sponding ČS,ij . Using (5), LMI (4) along with P � 0 can
be written in the following compact form

A(P ,yv) +A0 � 0, (6a)

in which A : Snx × Rnxny → S2nx × Snx is constructed as
A(P ,yv) := AP (P ) +AY (yv) and

AP (P ) := Blkdiag

(
−
[
A>P + PA ∗
G>P O

]
,P

)
(6b)

AY (yv) := Blkdiag

([∑nxny
i=1 yv,iC̄i ∗
O O

]
,O

)
(6c)

A0 := Blkdiag

([
−εγ2

l I ∗
O εI

]
,O

)
. (6d)

Using the expression provided in (6), we now present the
first theoretical result of the paper.

Theorem 1 (Larger Lipschitz Constant Reduces Observ-
ability). There exist P ∈ Snx and yv ∈ Rnxny such that
A(P ,yv) +A0 � 0 if and only if there is no Z ∈ S3nx in
the form of

Z = Blkdiag

([
Z1 ∗
Z>2 Z3

]
,Z4

)
, (7a)

such that Z � 0 and Z 6= 0 satisfying

Z4 = Z1A
> +AZ1 +GZ>2 +Z2G

> (7b)
nx∑
j=1

nx∑
k=1

C̄i,jkZ1,jk = 0, ∀i ∈ I(nxny) (7c)

tr(Z3) ≤ γ2
l tr(Z1). (7d)

The proof of the above theorem is presented in Appendix B.
Problem (7) is referred to throughout the section as the
alternative problem for (6a). To answer Q1, we need to
look into inequality (7d). Realize that the term tr(Z3) is
lower bounded by zero since Z � 0. Consequently, we get

0 ≤ tr(Z3) ≤ γ2
l tr(Z1). (8)

It is seen from (8) that the feasible set of (7) expands as the
value of γl increases. In a particular case when γl = 0, the
term tr(Z3) is enforced to be equal to zero. Since eigenval-
ues of Z3 cannot be negative, then they must be equal to

zero. On the other hand, if γl is considerably large, then
there is not much restriction on the upper bound of tr(Z3).
Hence, it is important to get smaller Lipschitz constant γl
since this will make the problem described in (7) to have
narrower feasible space. This finding is in accordance with
empirical observations from the literature: SDP (4) has no
solution if γl is selected to be sufficiently large—such large
Lipschitz constant is labeled as conservative. This provides
an answer for Q1. The next section introduces the SSP for
Lipschitz NDSs and presents some properties useful for the
development of a more efficient BnB algorithm.

4. Sensor Selection and NDS Observability

In this section, we wish to answer the question below:

Q2: What is the impact of the number of placed sensors
on γl-observability?

The above question may seem trivial since it is expected
that dynamic systems have higher degree of observability
as more sensors are placed or utilized. The objective of
this section is to demonstrate the above conjecture from
γl-observability stand point. To begin with, we formally
construct the SSP for NDS (1) as follows. Let γi ∈ {0, 1}
be a binary variable that ascertains the activation or deac-
tivation of sensor on each subsystem i. That is, γi = 1 if
the sensor measuring subsystem i is activated and γi = 0
otherwise. These variables can be combined into γ, giv-
ing γ := [γ1 γ2 · · · γN ]

>
. The following conventions are

adopted in this section.

Definition 2. Let Sγ be an N -tuple representing the
selection of sensors, i.e., Sγ := (γ1, γ2, . . . , γN ). The set

of active sensor is constructed as S(a)
γ := {γ ∈ Sγ | γ = 1}.

Let S̄γ := (γ11ny1 , γ21ny2 , . . . , γN1nyN ) where card(S̄γ) =
ny. The selection of sensors in matrix form can be written
as Γ := Blkdiag

(
γ1Iny1 , γ2Iny2 , . . . , γNInyN

)
.

By using the above definition, NDS (1) together with
sensor selection can be conveniently expressed as

ẋ(t) = Ax(t) +Gf(x) +Bu(t) (9a)

y(t) = ΓCx(t). (9b)

Additionally, it is also beneficial to consider a set Gγ ⊆
{0, 1}N representing logistic constraints and availability of
sensors such that γ ∈ Gγ might be imposed. This in turn
allows a simplified high level formulation of a general SSP

(P1) minimize c>γ + EstimationObjective

subject to (9), γ ∈ Gγ , EstimationConstraints.

The objectives of P1 are threefold: (i) performing state
estimation for NDS (9) while (ii) utilizing smallest number
of sensors as possible (or satisfying a given constraint over
the collections of library of sensors) and (iii) optimizing a
specific estimation metric. Vector c ∈ RN+ in the objective
function of P1 assigns weights for each sensor γi. Given
P1, SSP for Lipschitz NDSs assuming no estimation objec-
tive (this is considered in Section 6), can be constructed by
incorporating (9) into LMI (4). The resulting problem is
given below.
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(P2) minimize
P ,Y ,ε,γ

c>γ (10a)

subject to

A>P + PA+ εγ2
l I

−Y ΓC −C>ΓY > ∗
G>P −εI

 � 0 (10b)

P � 0, ε > 0, γ ∈ Gγ , γ ∈ {0, 1}N . (10c)

In P2 the objective is to minimize the number of the ac-
tivated sensors while (a) finding a stabilizing observer gain
matrixL and (b) satisfying sensor’s logistic constraints. As
Γ is a binary matrix variable, P2 is a nonconvex optimiza-
tion problem with mixed-integer bilinear matrix inequali-
ties (MIBMIs) because of the Y Γ term. Our approach to
address this problem is given in the next section. Following
(5), the term Y ΓC +C>ΓY > is equal to

ny∑
j=1

γj

(
nx∑
i=1

YijČS,ij

)
=

nxny∑
k=1

γ̄kyv,kC̄k, (11)

where each γ̄k corresponds to γj ∈ S̄γ . As such we may
write γ̄k / γj . For the sake of analysis, let us assume that γ
is fixed. From (11), define AY,Γ(yv) as follows

AY,Γ(yv) := Blkdiag

([∑nxny
k=1 γ̄kyv,kC̄k ∗

O O

]
,O

)
, (12a)

such that, by having AΓ(P ,yv) := AP (P ) + AY,Γ(yv),
matrix inequality (6a) now becomes

AΓ(P ,yv) +A0 = AP (P ) +AY,Γ(yv) +A0 � 0. (12b)

The next result is established due to Theorem 1.

Theorem 2. Consider a certain sensor configuration
Sγ . There exist P ∈ Snx and yv ∈ Rnxny satisfying
AΓ(P ,yv) + A0 � 0 if and only if there is no Z ∈ S3nx

provided in the form of (7a) such that Z � 0 and Z 6= 0

satisfying (7b), (7d), and Z1 ∈ Z
(
S(a)
γ

)
where

Z
(
S(a)
γ

)
:=

{
Z1 ∈ Snx

∣∣∣∣∣
nx∑
j=1

nx∑
k=1

γ̄iC̄i,jkZ1,jk = 0,

∀i ∈ I(nxny) ∧ γ̄i / γm, γm ∈ S(a)
γ

}
. (13)

It follows from Theorem 2 (see Appendix C for the proof)
that including more sensors will reduce the feasible set of
the alternative problem and thus, in general, utilizing more
sensors reduces the feasible set of the alternative problem.
By reducing this set, one can expect that the constraint
will be inconsistent thus making the alternative problem
infeasible and consequently, giving a feasible solution for
(12b). This provides an answer for Q2. From Theorem 2,
the following additional result is obtained.

Corollary 1. Suppose Sγ,1 and Sγ,2 are two distinct sen-

sor’s configurations so that S(a)
γ,1 ⊂ S

(a)
γ,2. If (12b) has no

solution for Sγ,2, then it also has no solution for Sγ,1.

The above corollary essentially states that if the system
is not γl-observable for a particular sensor configuration
Sγ,2, then the system is also not γl-observable for any sensor
configuration, represented by Sγ,1, having fewer number of

sensors if S(a)
γ,1 ⊂ S

(a)
γ,2 . The proof of Corollary 1 follows

directly from the fact that S(a)
γ,1 ⊂ S

(a)
γ,2 implies Z

(
S(a)
γ,1

)
⊂

Z
(
S(a)
γ,2

)
. That is, since the alternative problem with set of

constraintsZ
(
S(a)
γ,2

)
has nonempty feasible set, then this set

is never empty for any Sγ,1 sinceZ
(
S(a)
γ,1

)
is less constrained.

By contrapositive, then it is also true that the system is γl-
observable for any sensor configuration Sγ,2 provided that it
is also γl-observable for a certain sensor configuration Sγ,1
such that Sγ,1⊂ Sγ,2.

Now, a natural question to ask is whether there is a re-
lation between the value of Lipschitz constant γl and the
number of activated sensors to achieve γl-observability for
SSP. Consider a SSP where the objective is to achieve γl-
observability with minimum number of activated sensors.
From previous results, we know that minimizing γl while
incorporating more sensors reduces the feasible set of the al-
ternative problem. However, as we want to incorporate the
least number of sensors as possible, then we can only rely on
using the smallest Lipschitz constant γl. The rationale here
is, if the alternative problem can be made infeasible from
(8) by reducing the Lipschitz constant, then we can utilize
less number of activated sensors to achieve γl-observability.
In the next section, we discuss our approach to solve SSP
formulated in P2.

5. Solving the SSP Through Customized BnB

5.1. From MIBMI to Convex MISDP

Our approach involves transforming the SSP to a con-
vex MISDP. Specifically, our prior work [16] reformulates
the SSP P2 into a covex MISDP using McCormick’s relax-
ation [25]. This is not the only method to convert MIBMI
into MISDP: the big-M method, which is popular in dis-
junctive programming, can also be employed—see [6]. The
McCormick’s reformulation is performed by defining a new
matrix variable M := Y Γ where M ∈ Rnx×ny given that
Y is bounded such that Y ≤ Y ≤ Ȳ , while the big-M as-
sumes that −L1 ≤ Y ≤ L1 for a sufficiently large constant
L > 0. For convenience, we consider Y ∈ B(Y ) where
B(Y ) is defined as

B(Y ) :=

{
Y ≤ Y ≤ Ȳ , for McCormick,

−L1 ≤ Y ≤ L1, for Big-M.

It is apparent here that the bounds on Y are determined
by a single constant L for big-M and matrices Y , Ȳ for Mc-
Cormick, making big-M to be a special case of McCormick’s
relaxation. The resulting problem can now be written as

(P3) minimize
P ,Y ,M ,ε,γ

c>γ (14a)

subject to

A>P + PA+ εγ2
l I

−MC −C>M> ∗
G>P −εI

 � 0 (14b)

M = Y Γ, Y ∈ B(Y ), (10c). (14c)

Without loss of generality, it is assumed throughout the
section that the number of variables in γ are equal to the
number of rows in C. By applying big-M or McCormick’s
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relaxation, the nonconvex MISDP P3 can be converted to
an equivalent convex MISDP given in the next theorem.

Theorem 3. Problem P3 is equivalent to

(P4) minimize
v

c>v v (15a)

subject to Lv(v) + Cv � 0, (15b)

vi ∈ {0, 1}, ∀i ∈ Iv(γ), (15c)

where Lv(·) denotes LMI terms, Cv denotes the constant
terms, and vector v ∈ Rnv populates all decision variables
in the following fashion

v :=
[
vec(P )> ε vec(M)> vec(Y )> γ>

]>
, (15d)

with nv = n̄x + 1 + 2nxny + ny, n̄x := 1
2nx(nx + 1).

The proof of Theorem 3 is detailed in Appendix D. The
notation Iv(γ) in (15c) is useful for indicating the index i of
v such that vi = γj for each corresponding j ∈ I(γ); sim-
ilar notations are also used to label any variable in v that
corresponds to P , Y ,M , and ε. Specifically, the inequality
Ξν ≤ ϕ which is embedded in LMI (15b) essentially en-
compasses the McCormick’s envelope on the bilinear equal-
ity Mij = Yijγj expressed as

1 −1 −Y ij
−1 1 Ȳij
1 0 −Ȳij
−1 0 Ȳij


Mij

Yij
γj

 ≤

−Y ij
Ȳij
0
0

 , (16)

which is equivalent to the previous bilinear constraint (sim-
ilarly for big-M). Now that we have a convex MISDP, prob-
lem P4 can be solved using one of the aforementioned tech-
niques. In the next section, we develop a customized BnB
algorithm that can be used to compute both optimal and
suboptimal solutions for P4.

5.2. Structure-Exploiting BnB Algorithm

A natural way to solve such MISDP is through BnB al-
gorithm. In a general purpose BnB algorithm, an SDP is
solved in every node, in which the SDP is obtained from
relaxing the integer variables to their corresponding convex
relaxations. Thus, the complexity of BnB algorithm stems
from the difficulties in solving the SDPs and the number of
SDPs that need to be solved. In a practical situation, find-
ing a relatively good solution in a much shorter time is more
desirable than finding an optimal one. Despite that some
general purpose BnB algorithms for MISDPs are available,
these conventional solvers cannot be configured to make
them amenable for exploiting the structure of the problem
at hand in order to reduce the complexity of solving SSP.

To that end, we present a customized BnB algorithm that
can be utilized to compute optimal and suboptimal solu-
tions for P4 in a more efficient manner, owing it to (a) its
ability to exploit problem structure and (b) heuristics to
quickly find good suboptimal solutions. To proceed, define

F := {v | Lv(v) + Cv � 0, vi ∈ {0, 1}, ∀i ∈ Iv(γ)}
R := {v | Lv(v) + Cv � 0, vi ∈ [0, 1], ∀i ∈ Iv(γ)},

i.e., F denotes the feasible set for P4 whereas R is its con-
vex relaxation. Note that we have F ⊆ R because in R,

Algorithm 1: SE-BnB Algorithm

1 input: F , εf , maxBranch
2 initialize: C = ∅,W = ∅, LB,UB =∞, k = 0,
v∗ = 0

3 process root node: T ← RelaxSol(F)

4 update: LB← c>v T (2), C ← C ∪ {T }
5 while UB− LB > εf and k < maxBranch do

6 T̃ = arg minTk∈C c
>
v Tk(2), C ← C \ {T̃ },

LB← c>v T̃ (2)

7 if T̃ (2)i ∈ {0, 1}, ∀i ∈ Iv(γ) then

8 T̃ (3)← T̃ (2)

9 else

10 {T̃ (3),W} ← FeasSol(T̃ ,W)

11 find: i ∈ Iv(γ) such that T̃ (2)i /∈ {0, 1} and

T̃ (2)i = minj∈Iv(γ)

∣∣∣T̃ (2)j − 1
2

∣∣∣
12 FL := {v ∈ T̃ (1) | vi ≤ 0}
13 if ∀γ ∈ {0, 1}ny ,γ ∈ I(FL), then γ /∈ W

then
14 TL ← RelaxSol(FL), C ← C ∪ {TL}
15 FR := {v ∈ T̃ (1) | vi ≥ 1}
16 if ∀γ ∈ {0, 1}ny ,γ ∈ I(FR), then γ /∈ W

then
17 TR ← RelaxSol(FR), C ← C ∪ {TR}
18 k ← k + 1

19 if c>v T̃ (3) < UB then

20 UB← c>v T̃ (3), v∗ ← T̃ (3)

21 foreach Tj ∈ C do
22 if c>v Tj(2) > UB then
23 C ← C \ {Tj}

24 output: LB, UB, v∗

the integer constraints are relaxed. The proposed BnB al-
gorithm solves two convex problems on each BnB node in
order for it to be able to find a good suboptimal solution im-
mediately: the convex relaxation of P4 to get a local lower
bound, and P4 with fixed SAs combination to get a global
upper bound. Within this section, it is supposed that each
node i is representable by a 3-tuple Ti := (Fi,v, v̄), where

v = arg min
v∈Ri

c>v v, v̄ ∈ {v | v ∈ Fi},

such thatFi = Ti(1), v = Ti(2), and v̄ = Ti(3). We also use
an abstract set I(·) ⊆ Rny where I(Ti) ⊂ Ti(1) to represent
the restrictions (or integer cut) on integer variable vi, where
i ∈ Iv(γ), which is added in the branching process of BnB
algorithm. To stop the algorithm when a suboptimal solu-
tion is sought, two stopping criteria characterize by εf ∈ R+

and maxBranch ∈ N+ are employed. Let LB and UB be the
known best lower and upper bounds at the end of the al-
gorithm. When the optimality gap UB − LB is zero, the
solution is optimal. However, if UB−LB ≤ εf the solution
is regarded to be εf -optimal. Alternatively, the solution
is only suboptimal. The notation maxBranch, sometimes
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Algorithm 2: FeasSol

1 input: T̃ ,W
2 candidate generation: generate a random sensor

combination γc ∈ {0, 1}ny such that γc /∈ W and
γc ∈ I(T̃ (1))

3 solve: f̄ = minv∈T̃ (1), vi=γc,i
c>v v (problem P6)

with minimizer v̄
4 if f̄ =∞ then
5 W ←W ∪ {γc}
6 output: v̄,W

abbreviated as mBr, determines the number of maximum
allowable branching. These BnB routines, referred to as
structure-exploiting BnB (SE-BnB), are detailed in Algo-
rithm 1. The algorithmic function RelaxSol(·) solves the
relaxed problem f = minv∈R c

>
v v for a given F where v is

the minimizer and wrap the results into T . In addition to
this, Algorithm 1 uses a heuristic procedure for efficiently
finding a feasible solution for P4 on each node, if such solu-
tion exists. This heuristic generates a random combination
of sensors γc. To do so, we define the setW as

W :=
{
γ ∈ {0, 1}ny

∣∣∣ [w> γ>]> /∈ F , ∀w
}
,

i.e., the set of combinations of sensors that are infeasible
for P4. By exploiting the property proposed in Corollary
1, we are able to effectively generate a candidate of sensor
combination γc that is not positively infeasible for P4. This
heuristic, embedded in the function FeasSol(·), is presented
in Algorithm 2. This idea is implemented in Steps 13 and
16 of Algorithm 1. Now, some modifications for making the
SE-BnB algorithm to be more efficient are discussed.

• In RelaxSol(·), the relaxed P4 is solved. Realize that an
integer cut is appended in every node (apart from the root
node) that corresponds to whether a particular relaxed
integer variable, say vi for i ∈ Iv(γ), is constrained to be
vi ≤ 0 or vi ≥ 1. As vi ∈ [0, 1], then the only feasible
solution is vi = 0 or vi = 1. Either case, the resulting
McCormick’s envelope (or big-M) yields the best relax-
ation which makes (16) redundant. At this instance, con-
straint (16) can be discarded and replaced with Mij = 0
or Mij = Yij , depending on the value of vi.

• Recall that the SE-BnB algorithm attempts to find a fea-
sible solution on each node by fixing γ and solve P4—
performed in FeasSol(·). Since P4 is equivalent to P3
and P3 becomes a SDP when γ is fixed, then one can
solve P3 to find a feasible solution. Furthermore, given a
fixed γ, the equality constraintM = Y Γ becomes redun-
dant and hence, this constraint can be removed as well as
the variableM from P3. Moreover, when a certain vari-
able γi = 0, due to redundancy, then the corresponding
row ofC and column of Y can also be removed to obtain
smaller number of variables (essentially, only consider the
nonzero row of C and column of Y ).

The aforementioned procedures enable the SE-BnB to ex-
ploit the structure of SSP and as a result, the complexity

of solving the associated SDPs required to find bounds on
each node of the BnB tree can be lowered.

6. Some Important Extensions

6.1. Controllability and Actuator Selection

In this section, NDS controllability and actuator selection
problem (ASP) are discussed, in which we consider a similar
concept to quantify controllability for a given γl.

Definition 3. NDS (1) is said to be γl-controllable if and
only if there exist Q ∈ Snx++, X ∈ Rnu×nx , and σ ∈ R++

such that the LMI below is feasible[
QA> +AQ−X>B> −BX + σGG> ∗

Q − σ
γ2
l
I

]
≺ 0. (17)

If the NDS is γl-controllable, then from the above LMI,
the stabilizing controller gain matrix is given as K =
XQ−1 with control action u(t) = Kx(t) [26]. It is worth
noting that, unlike (4), LMI (17) is a sufficient condition. A
similar question to Q1 now emerges: what role does γl have
on γl-controllability? By performing a similar analysis as
in Section 3 (not shown here due to space constraint), it
is revealed that if γl is made to be sufficiently small, then
there exists at least a solution for LMI (17) (if σ is fixed).

Next, the relation between actuators and NDS controlla-
bility is discussed. Let πi ∈ {0, 1} be a binary variable rep-
resenting the activation or deactivation of actuator/control
node on each subsystem i such that πi = 1 if control node
at i is activated and πi = 0 otherwise. For compactness, let
us define π := [π1 π2 · · · πN ]

>
and Π as

Π := Blkdiag
(
π1Inu1 , π2Inu2 , . . . , πNInuN

)
.

As such, ASP for NDS (1) can be expressed as

ẋ(t) = Ax(t) +Gf(x) +BΠu(t), y(t) = Cx(t), (18)

from which a simplified high level formulation for ASP can
be formulated as follows

(P5) minimize c>π + ControlObjective

subject to (18), π ∈ Gπ, ControlConstraints.

The goals in the above are threefold: (i) performing feed-
back stabilizing control on NDS (18) while (ii) utilizing
smallest number of actuators as possible (or satisfying a
given constraint over the collections of library of actuators)
and (iii) optimizing a specific control metric. In P5, vec-
tor c ∈ RN+ assigns weights for each actuator πi whereas
Gπ ⊆ {0, 1}N represents actuator’s logistic constraints.
The ASP for Lipschitz NDSs can be formulated as

(P6) minimize
Q,X,ε,π

c>π (19a)

subject to

QA
> +AQ+ σGG>

−X>ΠB> −BΠX ∗
Q − σ

γ2
l
I

 � 0 (19b)

Q � 0, σ > 0, π ∈ Gπ, π ∈ {0, 1}N . (19c)

In P6 the objective is to minimize the number of the ac-
tivated actuators while (a) finding a stabilizing controller
gain matrix K and (b) satisfying actuator’s logistic con-
straints. Notice that P6 is also a nonconvex optimization
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problem with a MIBMI constraint. Further analysis shows
that, in general, in order to employ less number of actuators,
one should obtain the least possible Lipschitz constant.

6.2. NDS Parameterization for Non-Lipschitz Systems

Note that many observer/controller designs for func-
tion sets other than Lipschitz continuous such as one-sided
Lipschitz, quadratically inner-bounded, bounded Jacobian,
and quadratically bounded—see [12, 14, 15] for notable
examples—can also be considered and utilized to construct
SASPs. For example, the nonlinearities in a NDS may
satisfy one-sided Lipschitz (OSL) and quadratically inner-
bounded (QIB) conditions—see Definition 4.

Definition 4 (OSL & QIB). The mapping f : Rnx → Rng
in (1) is locally OSL in X if for any x, x̂ ∈ X then

〈G(f(x)− f(x̂)),x− x̂〉 ≤ γs‖x− x̂‖22,
for γs ∈ R and QIB in X if for any x, x̂ ∈ X it holds that

〈G(f(x)− f(x̂)),G(f(x)− f(x̂))〉 ≤

γq1‖x− x̂‖22 + γq2〈G(f(x)− f(x̂)),x− x̂〉,
for γq1, γq2 ∈ R.

In Definition 4, the notation 〈·, ·〉 denotes the standard in-
ner product. By considering OSL and QIB, the parameter-
ization of NDSs entails to finding the constants γs, γq1, and
γq2. These constants can be computed either analytically
or numerically via stochastic point-based method or deter-
ministic interval-based method. If numerical approach is
pursued, then the computation of these constants reduces to
solving global optimization problems. Our particular work
in [24] investigates NDSs parameterization using interval-
based global maximization.

6.3. From OSL and QIB to Robust Selection

Now we demonstrate how the proposed methodology can
be easily extend to solve SASPs for other class of nonlinear-
ities. Now suppose that f(·) in NDS (1) is both OSL and
QIB with constants γs, γq1, and γq2. Using observer design
presented in [27], the corresponding SSP can be formed as

minimize
P ,Y ,ε1,ε2,γ

c>γ (21a)

subject to

 A>P + PA+ ε1γsI

+ε2γq1I − Y ΓC −C>ΓY > ∗
G>P +

γq2ε2 − ε1
2

I −ε2I

 � 0

(21b)

P � 0, ε1, ε2 > 0, γ ∈ Gγ , γ ∈ {0, 1}N , (21c)

while the SSP for discrete-time NDSs is formulated as [28]

minimize
P ,Y ,ε1,ε2,γ

c>γ (22a)

subject to (22b) −P + ε1γsI + ε2γl1I ∗ ∗
PA− Y ΓC +

γq2ε2 − ε1
2

I P − ε2I ∗
PA− Y ΓC O −P

 � 0

(22c)

P � 0, ε1, ε2 > 0, γ ∈ Gγ , γ ∈ {0, 1}N . (22d)

Notice that the problem described in (21) possesses simi-
lar nonconvexity as in P2. In addition to the above, the
proposed sensor selection framework can also facilitate to
include robustness in the objective. For instance, by consid-
ering the Lipschitz condition, robust SSP with L∞ metric
can be constructed as [20]

minimize
P ,Y ,ε,α,µ0,1,2

µ0µ1 + µ2 (23a)

subject to
A>P + PA−C>ΓY >

−Y ΓC + αP + εγ2
l I ∗ ∗

P −εI ∗
B>wP −D

>
wY

> O −αµ0I

 � 0 (23b)

−P ∗ ∗
O −µ2I ∗
Z O −µ1I

 � 0, (23c)

P � 0, ε, µ0, µ1, µ2 ≥ 0, α > 0, γ ∈ Gγ , γ ∈ {0, 1}N ,
(23d)

where matrices Bw and Dw represent how the distur-
bances are distributed, Z is the performance matrix with
z(t) = Ze(t), and e(t) is the estimation error. The objec-
tive herein is to select the best sensor combination, given
a fixed number of activated sensors, that minimizes the
worst case disturbance attenuation µ =

√
µ0µ1 + µ2. If the

problem described in (23) is solved, then it is ensured that
limt→∞ sup‖z(t)‖2 ≤ µ‖w(t)‖L∞ where w(t) denotes the
disturbance vector [20]. By fixing some constants, (21) and
(23) share similar nonconvexity with P2 and thus the pro-
posed methodology can be used to solve the SSP. Provided
that the variables α and µ0 or µ1 are fixed, this problem
along with the ones described in (21) and (22) share similar
nonconvexity as P2 and therefore, by using the proposed
methodology, they can be solved using the SE-BnB algo-
rithm. Next, we focus on numerically testing the SE-BnB
algorithm in solving SSP for a NDS satisfying the Lipschitz
condition.

7. Numerical Assessment

In this section, we demonstrate the proposed methodol-
ogy to solve SSP for a NDS on network of nonlinear un-
stable nodes. The simulations are performed using MAT-
LAB R2019a, where YALMIP’s [17] optimization package
with MOSEK [29] solver are used to solve the corresponding
SDPs problem. The network of nonlinear unstable nodes
considered here is adapted from [30], which is initially a
network of linear systems. In order to obtain nonlinear sys-
tems, a sinusoidal function is introduced on each node such
that each node i has the following dynamics

ẋi =

[
ζ1i 1
1 ζ2i

]
xi +

[
0
βi

]
sin(x2i) +

∑
j 6=i

eα(i,j)xj +

[
0
1

]
ui,

(24)

where the constants ζ1i, ζ2i, and βi are randomly gener-
ated within [−2, 2], [−2, 2], and [−1, 1] respectively for each
i. The coupling between nodes i and j is determined by
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Figure 1: Numerical experiment results for network of nonlinear un-
stable nodes to find suboptimal solutions via the SE-BnB and S-BnB:
(a) computational time for different number of maximum allowable
branching mBr and (b) the resulting sensor costs. The solid lines
correspond to SE-BnB whereas dashed lines correspond to S-BnB.
To compensate the heuristics on both SE-BnB and S-BnB, the nu-
merical test is performed three times for each value of N and the
results shown correspond to the average values.
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Figure 2: Comparison between SE-BnB and `1-norm relaxation to
search for suboptimal solutions: (a) computational time and (b) the
resulting sensor costs. To compensate the heuristics on SE-BnB,
the numerical test is performed three times and the results shown
correspond to the average values.

the function of Euclidean distance α(i, j). This distance is
randomly generated inside a box of size 5×5. It can be ver-
ified that the Lipschitz constant for this system is γl =

√
N

where N is the number of nodes. For the sake of simplicity,
the weighting vector is set to be c = 1 where Y is bounded
such that −103 ≤ Yi,j ≤ 103 for each i, j. From (24), each
node i can have at most two measurements—hence for N
subsystems, there are at most 2N measurements.

7.1. SE-BnB and Standard BnB

In the first case of this numerical assessment, we evaluate
the performance of the SE-BnB algorithm to find subop-
timal solutions for SSP. The tolerance defining optimality
gap is set to be 10−4 with integer tolerance 10−6 while re-
stricting the maximum number of allowable branching. We
also invoke a logistic constraint such that at least 20% of the
available measurements are equipped with sensors. We test
the new SE-BnB algorithm with various number of nodes
and compare the results with different values of maxBranch
(or mBr) against our own implementation of the standard
BnB algorithm (S-BnB)—that is, only takes MISDP P4—
while still utilizes the heuristic discussed in Section 5.2. The
results of this numerical test are illustrated in Fig. 1. It can
be seen that, in overall, the SE-BnB requires less compu-
tational time than the S-BnB. This is due to the fact that,
in the SE-BnB, the corresponding SDPs used to obtain lo-
cal lower bound and global upper bound on each BnB node
have reduced complexities as opposed to the S-BnB. It is
also showcased in Fig. 1b that this reduction in computa-
tional time does not contribute to the resulting sensor costs
since sensor costs are merely determined by the number of
explored nodes as well as the heuristics used to find global
upper bounds. Both SE-BnB and S-BnB show similar sen-
sor costs. These costs are reduced, despite of some irregu-
larities, as more branches are explored—these irregularities
are attributed to the heuristics used in finding global upper
bounds.

7.2. SE-BnB and `1-Norm Relaxation

Next, we assess the ability of our SE-BnB algorithm in
finding good suboptimal solutions relative to `1-norm re-
laxation, which is developed in [18], to solve a class of com-
binatorial optimization problems. This technique finds its
popularity in SASPs for linear systems—for example, see
[31]. This particular approach works as follows. First, note
that each γi determines the values of col (Y )i, i.e., col (Y )i
can be any value if and only if γi = 1 and zero otherwise.
As such, the integer variable γ can be removed from op-
timization variables and consequently, the SSP boils down
into minimizing the number of nonzero columns of Y , i.e.,∑ny
i=1‖col (Y )i‖`0 . Since `0-norm is nonconvex, it is re-

placed by `1-norm, yielding the following relaxed problem

(P7) minimize
P ,Y ,ε,γ

ny∑
i=1

ciw
(k)
i ‖col (Y )i‖`1 (25a)

subject to (4), P � 0, ε > 0, (25b)
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Algorithm 3: Iterative `1-Norm Relaxation for SSP

1 input: εw, κ, maxIter

2 initialize: k = 0, w(1) = 1
3 do
4 k ← k + 1

5 solve P7 in (25), obtain Y (k)

6 foreach i ∈ I(ny) do

7 update w
(k+1)
i from Y (k) using (26)

8 while
∣∣∥∥w(k+1)

∥∥
2
−
∥∥w(k)

∥∥
2

∣∣ > εw and

k < maxIter
9 find: a feasible solution of LMI (25b) where Y

corresponds to the nonzero column of Y (k) from
the last iteration

10 output: P , Y

where w
(k)
i is the corresponding weighting factor for col-

umn i at iteration k. When w(k) is fixed, P7 becomes a
convex SDP. This weighting factor is updated at each iter-
ation k using the solution from previous iteration through
the following update rule [18]

w
(k+1)
i :=

1∥∥∥col (Y )
(k)
i

∥∥∥
`1

+ κ
, ∀i = 1, 2, . . . , ny, (26)

where κ > 0 is a relatively small constant. Algorithm 3,
adapted from [18], provides the detailed steps.

In this numerical experiment, both algorithms are con-
figured such that the objective is to find at least N − 1
activated sensors. The `1-norm relaxation is used with
εw = 0.1 and 500 maximum iterations. Two different values
for κ are considered which correspond to two scenarios for
this approach: `1-norm relaxation-1 uses κ = 10−4 while
`1-norm relaxation-2 uses κ = 10−5. The corresponding
results are illustrated in Fig. 2. In particular, Fig. 2b
indicates that our SE-BnB algorithm is able to find sub-
optimal sensor combinations with N − 1 activated sensors
while the `1-norm relaxation fails to find sensor combina-
tions under such prescribed limitation. On the matter of
computational time, as shown in Fig. 2a, the SE-BnB al-
gorithm requires less computational time compared to the
`1-norm relaxation. This demonstrates an advantage of the
proposed SE-BnB algorithm in finding suboptimal solutions
for SSP over the `1-norm relaxation technique, at least for
the network of nonlinear unstable nodes described in (24).

7.3. Corroborating the Theory

Finally, we employ SE-BnB algorithm to find optimal
solutions for SSP while using different values of Lipschitz
constant. This numerical test is intended to find empiri-
cal relation between the value of Lipschitz constant and the
number of activated sensors. For this purpose, we consider
the so called Lipschitz multiplier η > 0 such that the Lip-
schitz constant for N number of subsystems is formulated
as γl = η

√
N . Fig. 3 illustrates the corresponding results.

It can be observed that increasing Lipschitz constant (that

3 4 5 6 7 8
0

2

4

6

8

Figure 3: Optimal sensor costs computed through the SE-BnB for
different Lipschitz multiplier η where the Lipschitz constant is given
by γl = η

√
N .

is, by equivalently increasing η) raises the number of acti-
vated sensors—this is indicated by the nondecreasing fash-
ion in the number of sensor costs as the value of η increases.
This result corroborates the theoretical foundation given in
Section 4 and Theorem 2. That is, in the context of SSP,
increasing Lipschitz constant shrinks the feasible space of
the SSP problem, hence requiring more sensors to stabilize
the estimation error dynamics.

8. Paper Summary and Limitations

A novel general framework for dealing with SASPs for
NDSs is presented. Our approach is built upon SDP formu-
lations for observer/controller designs for various classes
of NDSs developed in the literature. Specifically, this pa-
per focuses on addressing SASPs for Lipschitz NDSs and
our investigations show that smaller Lipschitz constant al-
lows less number SAs are required to achieve stabilization
in control/estimation purpose. A customized BnB algo-
rithm, referred to as SE-BnB, which exploits problem struc-
ture and utilizing new heuristics to efficiently obtain opti-
mal and suboptimal solutions for SASPs, is proposed. The
main advantage of our framework as opposed to other ap-
proaches from the literature is its capability to obtain the
optimal SAs combination by means of a BnB algorithm for
stable/unstable NDS that ensures stability for either esti-
mation and/or stabilization/tracking purposes.

The methods presented in this paper come with their lim-
itations. First, this paper is not concerned with scaling the
problem for extremely large-scale systems. This is a result
of using SDPs and LMIs that still have serious scalability
issues—in addition to the worst case complexity of BnB
routines. Second, this paper also does not address the si-
multaneous selection of SAs and also assumes that all SAs
are operating in ideal conditions (e.g. no saturation effect).
To that end, our future work will focus on (i) investigating
different approaches to solve SASPs other than using BnB
algorithm such as the generalized Benders decomposition
[32] and branch-and-cut algorithm [33], (ii) extending the
proposed approach for addressing the robust SASPs as well
as the simultaneous selection of SAs through output feed-
back control and observer-based control policies, and (iii)
considering the effect of SAs saturation in SASPs.
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Appendix A. Adjoint Mapping for Symmetric
Matrices

Consider T : V → W where V and W are finite dimen-
sional vector spaces with the associated inner product given
as 〈·, ·〉V and 〈·, ·〉W , respectively. For everyw ∈ W, the ad-
joint of T , which is denoted by T ?, is a mapping such that
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〈T (v),w〉V = 〈v, T ?(w)〉W for a unique v ∈ V that satis-
fies T (v) = w. For LMIs represented by linear mapping
A : V → Sn, its adjoint A? : Sn → V is therefore a map-
ping such that for every v ∈ V and S ∈ Sn, it holds that
〈A(v),S〉V = 〈v,A?(S)〉Sn ; see reference [34].

Appendix B. Proof of Theorem 1

The proof relies on the notion of adjoint mapping for
both finite-dimensional vector spaces and symmetric ma-
trices, as discussed in Appendix A. Let A : Snx ×Rnxny →
S2nx × Snx be expressed as A(P ,yv) = AP (P ) + AY (yv)
for P ∈ Snx and yv ∈ Rnxny . First, it can be proven that
for AP (P ) described in (6b) and matrix Z given in (7a),
〈AP (P ),Z〉dom(A) is equal to

〈P ,−Z1A
> −AZ1 −GZ>2 −Z2G

> +Z4〉im(A),

yielding A?P (Z) = −Z1A
>−AZ1−GZ>2 −Z2G

>+Z4.
Second, let us reformulate AY (yv) described in (6c) into

AY (yv) =

nxny∑
i=1

yv,iC̄D,i, (B.1a)

where C̄D,i in (B.1a) is nothing but

C̄D,i = Blkdiag

([
C̄i ∗
O O

]
,O

)
.

Then, it is straightforward to show that

〈AY (yv),Z〉dom(A)

= 〈yv,
[
tr(C̄D,1Z) tr(C̄D,2Z) · · · tr(C̄D,nxnyZ)

]
〉im(A)

= 〈yv,
[
tr(C̄1Z1) tr(C̄2Z1) · · · tr(C̄nxnyZ1)

]
〉im(A).

The above indicates that A?Y (Z) =
{[

tr(C̄iZ1)
]}nxny
i=1

.
From these results, it can be confirmed that the ad-
joint mapping of A(P ,yv) is equivalent to A?(Z) =
(A?P (Z),A?Y (Z)). The theorem of alternatives [34, The-
orem 1] declares that whether there exist P ∈ Snx and
yv ∈ Rnxny such that A(P ,yv) + A0 � 0 or there exists
Z as given in (7a) such that Z � 0 and Z 6= 0 satisfying
A?(Z) = 0 and tr(A0Z) ≤ 0. Notice that A?(Z) = 0 is
indeed equivalent to

A?(Z) = 0⇔

{
A?P (Z) = 0

A?Y (Z) = 0
. (B.1b)

The first right-hand side of (B.1b) implies

−Z1A
> −AZ1 −GZ>2 −Z2G

> +Z4 = 0, (B.1c)

whereas the second condition implies that

tr(C̄iZ1) =

nx∑
j=1

nx∑
k=1

C̄i,jkZ1,jk = 0, ∀i ∈ I(nxny). (B.1d)

The results from (B.1c) and (B.1d) establish (7b) and (7c),
respectively. Next, note that tr(A0Z) ≤ 0 implies

tr(A0Z) = tr(−εγ2
l Z1) + tr(εZ3) ≤ 0. (B.1e)

Since ε > 0, then (B.1e) establishes (7d). This concludes
the proof. �

Appendix C. Proof of Theorem 2

The proof of the proposition is similar to that of Theorem
1. The only difference lies in the adjoint of AY,Γ(yv). From
(12a), it is not difficult to show that

〈AY (yv),Z〉dom(A)

= 〈yv,
[
tr(γ̄1C̄1Z1) · · · tr(γ̄nxnyC̄nxnyZ1)

]
〉im(A).

Since γ̄i = 0 where γ̄i / γj for which γj /∈ S(a)
γ , then

A?Y,Γ(Z) =
{[

tr(γ̄iC̄iZ1)
]}nxny
i=1

, ∀γ̄i / γj , γ̄j ∈ S(a)
γ ,

which is equivalent to having Z1 ∈ Z
(
S(a)
γ

)
where Z

(
S(a)
γ

)
is defined in (13), thus completing the proof. �

Appendix D. Proof of Theorem 3

The equality constraint M = Y Γ in P3 is equivalent to

Mij = Yijγj ⇔Mij =

{
Yij , if γj = 1

0, if γj = 0,
(D.1)

where Yij ∈
[
Y ij , Ȳij

]
for all i, j for McCormick’s refor-

mulation and Yij ∈ [−L,L] for all i, j for big-M. In what
follows, we apply McCormick’s relaxation to transform the
consequence in (D.1) into convex MISDP as it generalizes
the big-M method. To that end, by realizing that Ȳij −Yij ,
Yij−Y ij , 1−γj , and γj are all nonnegative and noting that
Mij = Yijγj , we get(

Ȳij − Yij
)

(1− γj) ≥ 0

⇔Mij ≥ Yij + Ȳij (γj − 1) (D.2a)(
Ȳij − Yij

)
γj ≥ 0⇔ Ȳijγj ≥Mij (D.2b)(

Yij − Y ij
)

(1− γj) ≥ 0

⇔ −Mij ≥ −Yij + Y ij (1− γj) (D.2c)(
Yij − Y ij

)
γj ≥ 0⇔Mij ≥ Y ijγj . (D.2d)

Next, notice that there are only two possible values for γj .
That is, for γj = 1, then substituting γj = 1 to (D.2) yields

Yij ≥Mij ≥ Yij
Ȳij ≥Mij ≥ Y ij

}
⇒Mij = Yij .

On the other hand, for γj = 0, substituting γj = 0 to (D.2)
yields

0 ≥Mij ≥ 0

Ȳij ≥Yij ≥ Y ij

}
⇒Mij = 0.

Since this holds for all i, j, then (D.1) and (D.2) are equiv-
alent. For big-M method, one can obtain a similar equiv-
alency by substituting Y ij = −L and Ȳij = L in (D.2).
Next, define σ1, σ2, Ω′ and Ω as follows

σ1 :=
[
1 −1 1 −1

]>
,

σ2 :=
[
−1 1 0 0

]>
,

Ω′ :=
[
vec(Ω) . . . vec(Ω)

]︸ ︷︷ ︸
ny times

,
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Ω :=


ω11 ω12 · · · ω1ny

ω21 ω22 · · · ω2ny
...

...
. . .

...
ωnx1 ωnx2 · · · ωnxny

,
where ωij is given by

ωij :=


[
−Y ij Ȳij −Ȳij Y ij

]>
, for McCormick,[

L L −L −L
]>

, for Big-M.

By using the above notations, (D.2) can be written as Ξν ≤
ϕ where where matrix Ξ ∈ R(2nxny+ny)×(4nxny) is given as

Ξ :=
[
Inxny ⊗ σ1 Inxny ⊗ σ2 Ω′ � Iny ⊗ I4nx

]
,

(D.3a)

vector ν ∈ R2nxny+ny is given as

ν :=
[
vec(M)> vec(Y )> γ>

]>
, (D.3b)

and vector ϕ ∈ R4nxny is given as

ϕ := vec(Ω)� Inxny ⊗
[
1 1 0 0

]>
. (D.3c)

This yields the following problem

minimize
P ,Y ,M ,ε,γ

c>γ (D.4a)

subject to (14b), (10c), Y ∈ B(Y ), Ξν ≤ ϕ, (D.4b)

Since other constraints except M = Y Γ in P3 are con-
vex, then P3 and the problem described in (D.4) are equiv-
alent. The next step is to transform problem (D.4) into
standard inequality form. To do so, notice that the lo-
gistic constraint in (10c) can be implicitly represented by
H>γ ≤ h in whichH ∈ Rny×nh andh ∈ Rnh whereasY ∈
B(Y ) can be represented by Φ>vec(Y ) ≤ ψ where Φ =[
I −I

]
∈ Rnxny×2nxny and ψ =

[
vec
(
Ȳ
)>

vec (Y )
>
]

for McCormick’s relaxation—similarly for big-M. Next, de-
fine Iv(P ), Iv(ε), Iv(M), Iv(Y ), and Iv(γ) as the set of
indices for v—given in (15d)—that correspond to P , ε,M ,
Y , and γ, which can be combined into index set I(v). Next,
define

EP := {EP,1,EP,2, . . . ,EP,n̄x}

as the set of standard basis in Snx . Likewise,

EM := {EM,1,EM,2, . . . ,EM,nxny}
is defined as the set of standard basis in Rnx×ny . As such,
the objective function (D.4a) can be written as c>v v where

vector cv is constructed as
[
01×(n̄x+1+2nxny) c>

]>
while

the linear terms in problem (D.4) can be written as

Lv(v) :=
∑
i∈I(v)

vi Blkdiag
(
A

(1)
i ,A

(2)
i ,A

(3)
i ,A

(4)
i

)
,

where A
(1)
i , A

(2)
i , A

(3)
i , A

(4)
i are detailed as follows

A
(1)
i =



Blkdiag

([
−A>EP,i −EP,iA ∗

−G>EP,i O

]
,EP,i,O

)
,

if i ∈ Iv(P )

Blkdiag
(
−γ2

l I, I,O, I
)
, if i ∈ Iv(ε)

Blkdiag
(
EM,iC +C>E>M,i,O

)
, if i ∈ Iv(M)

O, otherwise

,

A
(2)
i =

{
Diag (−H1i,−H2i, . . . ,−Hnhi) , if i ∈ Iv(Y )

O, otherwise
,

A
(3)
i =

{
Diag

(
−Φ1i,−Φ2i, . . . ,−Φ2nxnyi

)
, if i ∈ Iv(Y )

O, otherwise
,

A
(4)
i =

{
Diag

(
−Ξ1i,−Ξ2i, . . . ,−Ξ4nxnyi

)
, if i ∈ Iv(z)

O, otherwise
,

where Iv(z) := (Iv(M), Iv(Y ), Iv(γ)). Accordingly, the
constant terms in problem (D.4) can be written as

Cv := Blkdiag
(
C(1),C(2),C(3),C(4)

)
where C(1), C(2) C(3), C(4) are constructed as

C(1) = −κI, C(2) = Diag (h1, h2, . . . , hnh) ,

C(3) = Diag
(
ψ1, ψ2, . . . , ψ2nxny

)
,

C(4) = Diag
(
ϕ1, ϕ2, . . . , ϕ4nxny

)
,

in which κ > 0 is a relatively small constant to ensure pos-
itive definiteness. The resulting problem can now be pre-
sented as

minimize
v

c>v v

subject to Lv(v) + Cv � 0,

vi ∈ {0, 1}, ∀i ∈ Iv(γ),

which is P4. This ends the proof. �
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