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Abstract— The coupled problems of selecting control nodes
and designing control actions for nonlinear network dynamics
are fundamental scientific problems with applications in many
diverse fields. These problems are thoroughly studied for linear
dynamics; however, in spite of a number of open research
questions, methods for nonlinear network dynamics are less
developed. As observed by various studies, the prevailing graph-
based controllability approaches for selecting control nodes
might result in significantly suboptimal control performance
for nonlinear dynamics. Herein we present a new, intuitive,
and simple method for simultaneous control node selection and
control sequence design for complex networks with nonlinear
dynamics. The method is developed by incorporating the control
node selection problem into an open-loop predictive control cost
function and by solving the resulting mixed-integer optimization
problem using a mesh adaptive direct search method. The
developed framework is numerically robust and can deal with
stiff networks, networks with non-smooth dynamics, as well
as with control and actuator constraints. Good numerical
performance of the method is demonstrated by testing it on pro-
totypical Duffing oscillator and associative memory networks.
The developed codes that can easily be adapted to models of
other complex systems are available online.

I. INTRODUCTION

The fundamental problems of controlling and estimating
states of nonlinear network dynamics and systems appear
in a large variety of engineering and scientific disciplines.
These problems are crucial for the design, safe operation,
and analysis of power systems, elastic structures, electrical
circuits, traffic, communication, chemical reaction, ecological,
and biological networks [1]–[6]. The control problem for
nonlinear networks consists of two subproblems. The first
subproblem, referred to as the control node selection problem,
is to select a subset of control nodes such that the network
is controllable. Once the control nodes have been selected,
the second subproblem, referred to as the control design
problem, is to design control actions that will achieve the
desired system performance. Closely related problems to these
two subproblems are sensor selection and observer design
problems that deal with state estimation of nonlinear network
dynamics. The necessity for selecting control nodes originates
from the fact that it is often expensive to control all nodes in
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the network or it is physically impossible to install actuators
on every node.

A large number of recent approaches for sensor and control
node selection rely on graph-theoretic methods that are widely
popularized and revived in [1], [2]. These approaches and
a large number of follow-up contributions rely on the main
results of control theory for systems with graph structure [7].
Although such approaches can provide us with some insights
and preliminary solutions of control and sensor selection
problems, a number of authors have observed and analyzed
several shortcomings of graph-based approaches [8]–[12].
Among several limitations, the main limitation that is relevant
for this work is that, in some cases, graph-based approaches
might result in far from optimal control solutions. As possible
remedies to these limitations, the authors in [8], [10] propose
methods to optimally select control (sensor) nodes for linear
networks by optimizing Gramian-based controllability (ob-
servability) metrics. However, such methods are designed for
linear network dynamics.

Sensor selection and state estimation problems for nonlinear
networks have been considered in [9], [13]. Despite the fact
that control and estimation problems are dual, the generaliza-
tion of the approach presented in [9] for control node selection
is not straightforward. In principle, empirical Gramian-based
approaches used in [13] and summarized in [9], can also
be used for control node selection. The drawback of these
approaches is that the computation of empirical controllability
Gramians is computationally prohibitive even for small-sized
networks. Recently, control node selection algorithms for lin-
ear systems have been proposed in [14]–[18]. The applicability
of these methods to nonlinear systems has to be theoretically
and numerically investigated.

Recently, a new approach for sensor selection and observer
design for nonlinear systems has been presented in [19].
The potential of using this method for control node selection
still has to be investigated, especially for networks with stiff
dynamics that are ubiquitous in real-life applications. Tradi-
tional control-theoretic approaches for actuator and sensor
placement for linear systems have been summarized [20].
Sensor/actuator placement problems for the system dynamics
described by partial differential equations have been consid-
ered in [21]–[24]. To the best of our knowledge, most of the
approaches for control node selection overlook the fact that
often in practice, the network dynamics can be stiff [9] or
even non-smooth. Finally, control node selection and control
design problems are usually treated separately which might
result in far from optimal performance.

To address the limitations of the approaches discussed
above, we develop a novel control node selection method.
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The basic idea of our approach is to simultaneously compute
an optimal selection of control nodes and control actions. This
is achieved by integrating the control node selection problem
into an open-loop predictive control cost function. As a result,
we obtain a Mixed-Integer Nonlinear Optimization (MINO)
problem whose solutions are optimal locations of control
nodes and control actions. Despite the fact that in the general
case the resulting MINO problem is nonconvex and NP-hard,
by performing extensive numerical experiments, we show that
such a problem can be effectively solved using the Mesh
Adaptive Direct Search (MADS) algorithm [25]. The main
advantage of this solution process over other solution methods
relying on variations of a branch and bound method [26]
is in its implementation simplicity and generality. Namely,
the used approach is applicable to a broad class of nonlinear
network dynamics and it does not rely on convexification or
linearization procedures that are often case dependent. Besides
this, the developed approach is numerically robust and it
can easily handle stiff or non-smooth dynamics as well as
actuator and various control constraints. We test the developed
approach on models of prototypical Duffing oscillators net-
works, resembling models of many complex systems, as well
as on associative memory networks, representing memory
models. Good numerical performance is confirmed by testing
the method against exhaustive search and random control node
selection. The used codes are available online [27].

The letter is organized as follows. In Section II, we intro-
duce the class of networks considered in this letter and prelim-
inaries. Next, in Section III we formulate the MINO control
problem and develop the solution method. In Section IV
and Section V we present numerical results and conclusions,
respectively.

II. SYSTEM DESCRIPTIONS AND PRELIMINARIES

In this section, we describe the class of considered net-
works. We consider nonlinear networks composed ofN nodes.
The network model with parametrized locations of control
nodes has the following form

ẋ(t) = f(x) +B
(
π
)
z(t), (1)

where π ∈ {0, 1}N is a binary parameterization vec-
tor variable encoding control node locations, x =
col
(
x(1),x(2), . . . ,x(N)

)
∈ RNn is the network global state

consisting of node states x(i) ∈ Rn (the operator col(·) stacks
all vectors into a single vector), f(x) : RNn → RNn is a
nonlinear function, and z ∈ RN is a parametrized control
input allowing all nodes to be controlled by a scalar input.
For simplicity we assume that the local control input is one-
dimensional. For presentation clarity, we assume that the
control input affinely influences the system dynamics. The
developed method can be straightforwardly generalized to the
case of nonlinear dependencies between the state dynamics
and control inputs. The non-zero pattern of π determines the
set of controlled nodes. The parameterization of the matrix
B(π) ∈ RNn×N depends on how the control input affects
the dynamics. In numerical models considered in this letter,
we assume that the matrix B

(
π
)

is parameterized as follows.

For networks with n = 1, we have B
(
π
)
= diag(π), where

the notation diag(·) is used to define a diagonal matrix with
the vector π on the main diagonal. For networks with n > 1
we assume that the matrix B is a block diagonal matrix, with
the i-th block Bi = col(0, 0, . . . , πi). That is, the i-th column
of B is zero if πi = 0. This is equivalent to having the zero
control action at node i. Under the constraint thatM nodes can
be controlled, our goal is to determine the non-zero pattern of
π. Once this is completed, we can eliminate zero columns of
B in order to obtain the matrix B̂ ∈ RNn×M . This procedure
produces the following model

ẋ(t) = f(x) + B̂u(t), (2)

where u ∈ RM represents the control input vector formed
from the entries of z. A large number of complex networks,
such as highway traffic, combustion dynamics, and epidemic
outbreak networks can be expressed by (2). Under the con-
straint that a predefined number M , M ≤ N , of nodes can
be used for control, our goal is to determine the structure of
matrix B̂ and the sequence of control inputs u that jointly
optimize a control performance that will be defined in the
sequel.

To simplify the method development, we represent the
dynamics in the discrete-time domain [28]. The choice of a
method used to discretize the dynamics depends on desired
accuracy, available computational resources, and the degree
of stiffness. Networks with stiff dynamics are characterized
by time constants of local nodes that significantly differ in
magnitude. Typical examples of such networks are ubiq-
uitously present chemical reaction networks and networks
coupling different physical phenomena, such as reaction-
diffusion systems. To accommodate various networks with
different stiffness properties, herein we consider two distinct
discretization approaches. In the case of non-stiff network
dynamics where all nodes have time constants of similar
magnitudes, we consider the Forward Euler (FE) discretization
method [29]. The discretized dynamics of network (1) has the
following form

xk+1 = xk + h
(
f(xk) +B

(
π
)
zk
)
, (3)

where h > 0 is a discretization step, xk := x(kh) and zk :=
z(kh) are the discrete global state and discrete global input,
respectively, and k = 0, 1, 2, . . ., is a discrete-time instant. If
h is a relatively small number and the network is not stiff, the
FE method is able to accurately approximate the continuous-
time dynamics. Note that in (3) the future state xk+1 explicitly
depends on the current state xk and input zk. In the case of
stiff network dynamics, implicit discretization methods are
required. To that end, we employ the Trapezoidal Implicit
(TI) method [29] to (1), which results in

xk = xk−1+
h

2

(
f(xk)+f(xk−1)+B

(
π
)
(zk+zk−1)

)
. (4)

In a sharp contrast to (3), notice that the current state xk
in (4) implicitly depends on current and prior states and
inputs. A solution of the optimization problem defined in the
sequel consists of a repeated simulation of the discretized
dynamics. The main computational disadvantage of the TI



method over the FE method is that in every simulation step k,
we need to solve the nonlinear system of equations in (4),
resulting in O

(
n3N3

)
computational complexity. On the

other hand, the simulation of the FE discretized dynamics
consists of forward propagation of (3), resulting in O

(
nN
)

computational complexity. However, the main advantage of
using the TI dynamics is that we can handle a much broader
class of nonlinear systems as well as larger discretization steps
than in the case of the FE dynamics.

III. SIMULTANEOUS CONTROL NODE AND CONTROL
ACTION DESIGNS: SOLUTION APPROACH

In this section, we present the control node selection method
that is developed by incorporating the control node selection
problem into a control action design problem. In order not to
blur the main ideas of this paper and for brevity, for control
action design we use an open-loop predictive control frame-
work. The method proposed in this paper can be applied to
more general model-based control frameworks, such as model
predictive control approach [28], for which it is possible to
stabilize the system around unstable desired state. For a given
initial state x0, the control action design consists of finding
the control input sequence u0:T := col

(
u0,u1, . . . ,uT

)
,

uk := u(kh), that will drive the network state to be as close as
possible to the desired state, denoted by xD, within a discrete-
time window of the length of T , while at the same time
optimizing a control performance criterion (cost function). We
consider the following cost function that is parametrized by
control node locations and control inputs

J
(
z0:T ,π

)
=

T∑
i=1

(
xD − xi

)T
Qi

(
xD − xi

)
, (5)

where z0:T := col
(
z0, z1, . . . , zT

)
and Qi ∈ RNn are the

weighting matrices. The control node selection problem has
the following form

(P) min
z0:T ,π

J
(
z0:T ,π

)
, (6a)

subject to xi = w
(
xi,xi−1, zi, zi−1,π

)
, ∀i, (6b)

N∑
l=1

πl ≤Mmax, πl ∈ {0, 1}. (6c)

where z0:T := col
(
z0, z1, . . . , zT

)
, Qi ∈ RNn are weighting

matrices, πl is the l-th entry of π, and w(·) stands for dis-
cretized dynamics that is defined in (3) or (4), depending on the
used discretization method. For presentation clarity, we have
only used essential constraints in the MINO problem (6b).
The proposed method can easily be generalized to include
constraints on the control inputs and hard constraints on the
difference between the final and desired states. To solve the
MINO problem, we utilize the MADS algorithm (also known
as NOMAD) that is implemented in the OPTI MATLAB
toolbox [30]. This is a derivative-free optimization method,
only requiring a procedure to evaluate the cost function and
constraints. Furthermore, we have chosen MADS (NOMAD)
due to its MATLAB interface and its ability to integrate all
the nonlinear MATLAB solvers that are necessary to simulate
the system dynamics.

Algorithm 1: Control Node Selection

1 inputs: x0, xD, Mmax, T , and Qi, i = 1, . . . , T .
2 initial solution: Set π(0) = 1 and solve the NLP

min
z0:T

J
(
z0:T ,π

(0)
)
, (7a)

subject to xi = w
(
xi,xi−1, zi, zi−1,π

(0)
)
, ∀i. (7b)

3 solve: P in (6) with (π(0), z
(0)
0:T ) as an initial guess,

where z
(0)
0:T is the solution of (7). Let π̂ and ẑ0:T be the

resulting optimal solutions.
4 construct: The new reduced matrix B̂ where its columns

correspond to the nonzero columns of B(π̂)

5 final solution: Using B̂ as a fixed variable solve

min
u0:T

J
(
u0:T

)
, (8a)

subject to xi = g
(
xi,xi−1,ui,ui−1, B̂), ∀i. (8b)

where g(·) in (8b) is obtained by substituting B
(
π
)

by
B̂, and zi by ui in w(·). Let û0:T be the corresponding
optimal solution.

6 output: π̂, û0:T .

The proposed method is summarized in Algorithm 1. To
generate an initial solution for P, in step 2, we use the full
set of control nodes, i.e. π(0) = 1. This yields a NonLinear
Program (NLP) described in (7) whose solution is represented
by z

(0)
0:T . This NLP problem is solved using the quasi-Newton

method implemented in the MATLAB function fminunc.
Another option for this step would be to relax the integer
constraints in P by 0 ≤ πl ≤ 1, to solve the resulting NLP
problem for both z0:T and π, and to threshold the entries of π
to either 0 or 1. However, for the network models considered
in this letter both approaches generate similar results. In step 3,
using the initial solution guess (π(0), z

(0)
0:T ) we approximately

solve P using the NOMAD solver. The solutions obtained
from this step are denoted by (π̂, ẑ0:T ). In step 4 we construct
the reduced matrix B̂ from non-zero columns of B

(
π̂
)
, and in

step 5, we solve the NLP problem in (8) to compute û(0)
0:T . The

final outcomes are π̂ (set of nodes that need to be controlled)
and û0:T (control sequence to be applied to these nodes).
We use a recursive approach for solving the MINO and NLP
problems, see Chapter 10 in [28]. Consequently, the states are
not considered as explicit optimization variables.

For some particular cases of f(·), our problem can poten-
tially be solved using other MINO solvers and approaches, see
for example [26], [31]. However, in most cases, the MINO
problem has to be convexified, linearised, or represented in
an equivalent form, and this procedure is case dependent
and might be highly non-trivial for general forms of the
dynamics f(·). Furthermore, the extensions of branch and
bound methods summarized in [26], [31] are developed for
problems that are not constrained by system dynamics, and
their applicability to our case when the problem is constrained
by the system dynamics requires further theoretical and



numerical investigations. Consequently, it is challenging to
implement the methods of [26], [31] and to compare them
with our approach. To perform the comparison, we use an
alternative approach that is inspired by an idea for solving
MINO problems arising in the design of time-domain-sparse
control inputs for predictive control [32]–[34]. The idea is
to relax the integer constraints and to first solve the relaxed
problem

min
z0:T ,α

J
(
z0:T ,α

)
, (9)

subject to xi = w
(
xi,xi−1, zi, zi−1,α

)
, ∀i, 0 ≤ α ≤ 1.

(10)

where α ∈ RN is a relaxation of the vector π. The problem
(9)-(10) belongs to the class of NLPs and we solve it using the
interior point method implemented in the MATLAB function
fmincon. Let α̂ be the solution of this problem. Then, the
control node locations are found by solving

min
π

N∑
i

|πi − αi|, subj. to
N∑
l=1

πl ≤Mmax, πl ∈ {0, 1}.

(11)
where αi is the ith entry of α. By introducing slack variables,
the problem (11) can be easily transformed into an Integer
Linear Program (ILP) [26], [31]. We solve this ILP using
the branch and bound method implemented in the MATLAB
function intlinprog. Once this problem is solved, we
compute the control sequence by solving the optimization
problem (8a)-(8b).

IV. NUMERICAL RESULTS

This section presents numerical experiments. All simula-
tions are performed on a computer with 16GB RAM and IntelR

CoreTM i7-7500 processor. The used codes are provided online
in [27]. In all simulation experiments we set Qi = I for all i.

1) Duffing Oscillator Networks: A large variety of phys-
ical systems, such as systems with geometric nonlinearities,
electrical circuits, structural beams, cables, micromechanical
structures, nanomechanical resonators, rotors, flight motor of
an insect, etc., can be modeled by equations that closely
resemble the governing equations of Duffing oscillators [35].
Duffing oscillators are characterized by a nonlinear spring
stiffness Fs = αx − βx3, where α, β ∈ R are the spring
constants, x is the spring displacement, and Fs is the spring
force (we assume a softening spring). We consider oscillator
nodes connected via spring-damper connections

ẋi1 = xi2,

ẋi2 = −αiixi1 + βiix
3
i1 − γiixi2 −

∑
j∈N (i)

αij
(
xi1 − xj1

)
+
∑

j∈N (i)

βij
(
xi1 − xj1

)3 − ∑
j∈N (i)

γij
(
xi2 − xj2

)
+ biui,

where xi1 and xi2 are the position and velocity of the i-th
oscillator, αij and βij are the spring constants, γij is damping,
bi ∈ {0, 1} is the control parameter, ui is the control input,
N (i) denotes the set of nodes j that are connected to the
node i. The connection between oscillators is described by
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Fig. 1. Uncontrolled responses of (a) the Duffing oscillator network for
N = 10 (TI dynamics) and (b) the associative memory network for N = 25
(FE dynamics). The results are generated for h = 10−2.

a Geometric Random Graph (GRG) that is generated using
the method and codes described in [36]. Such graphs tend to
have larger diameters. The nodes are generated randomly on
a unit square, and two nodes are connected if their spatial
distance is below the radius of

√
1.44/N . The parameters

αij are generated from a uniform distribution on the interval
[10, 20], whereas the parameters βij , γij are generated from a
uniform distribution on the interval [1, 2]. First, we consider a
smaller Duffing oscillator network (N = 10 nodes) for which
we can perform an exhaustive search for controlled nodes. The
network’s uncontrolled response is shown in Fig. 1(a). We use
the following parameters T = 10 and h = 10−4 and the TI
discretization method. For this network, the FE method pro-
duces an unstable system response. We have simulated the un-
controlled dynamics using the MATLAB ode23s function.
The relative error between the TI method and the ode23s
solver is below 10−4. The entries of the desired vector are
selected from a uniform distribution on the interval [0, 0.5].
An initial network state for the MINO problem is computed
as a steady-state (that approximates the equilibrium point) of
the uncontrolled dynamics. For this purpose, the dynamics is
simulated from a random state whose entries are generated
from the uniform distribution on the interval [0, 0.5]. In this
way, we make the control problem more challenging, since
we want to drive the network from a stable equilibrium point
to a new unstable state. The control performance is quantified
by computing the final control error: e = ‖xD − xk=T ‖2.
To test the method for fixed fractions of control nodes we
replace the inequality in (6c) by equality. Vertical red lines in
panels of Fig. 2 start from the error values on the horizontal
axis that are obtained for the control sequence computed
using Algorithm 1. The black lines are errors produced by the
method used for comparison that is summarized at the end
of Section III. Histograms show control error distributions
when control nodes are selected by exhaustive search (by
exploring all the possible combinations for fixed fractions of
controlled nodes). For each selection of control nodes (that
determines the structure of matrix B̂) in the exhaustive search,
the corresponding error is obtained for a control sequence
computed by solving (8). In this way, we can truly investigate
and illustrate the main advantages of our method compared
to exhaustive search and the method used for comparison. We
can see that in most cases, the developed method generates
optimal or almost optimal selections of control nodes. On the
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control nodes. (b) The control error produced by Algorithm 1 as a function
of control time steps.

other hand, the method used for comparison does not produce
as good results. Next, we generate a Duffing oscillator network
with N = 60 nodes (Nn = 120) and all other parameters
are unchanged. We test the method by keeping the inequality
in (6c). The results analogous to the ones shown in Fig. 2
are shown in Fig. 3. For brevity, we only show the results for
47% of controlled nodes (Mmax = 30 and computed M is
28). Similarly to previously shown results, the results shown
in Fig. 3 clearly demonstrate the good performance of the
developed method.

2) Associative Memory Networks: An associative memory
network [3], [37] is used to memorize desired binary patterns
(images of alphabet letters or signs). When a noisy image
of a letter is set as the network’s initial state, the network
state should converge to the correct memorized letter. That
is, the network should be able to recognize the correct letter
that most closely resembles the one presented to it. From
the dynamical system perspective, memory networks encode
memorized patterns as dynamically stable attractors [37]. An
associative memory network consists of N identical one-
dimensional coupled oscillators [3], [37]

ẋi =

N∑
j=1

Cijsin
(
xj − xi

)
+

ε

N

N∑
j=1

sin2
(
xj − xi

)
+ biui,

where i = 1, 2, . . . , N , xi, ui ∈ R, ε = 0.8 is the strength of
the coupling term, bi ∈ {0, 1}, the coefficients are determined
by Hebb’s learning rule: Cij = (1/N)

∑p
µ=1 ξ

µ
i ξ

µ
j , where

ξµ = col
(
ξµ1 , ξ

µ
2 , . . . , ξ

µ
N

)
, ξµi = ±1, µ = 1, 2, . . . , p, and p

denotes the number of binary patterns to be memorized. The
binary patterns ξ1, ξ2, . . . , ξp are a user choice. The goal is to
memorize these patterns, such that when a perturbed pattern
is given as an initial condition x(0), the network state should
converge to the pattern that most closely resembles the correct
pattern. The Hebb’s learning rule ensures that p desired binary
patterns are coded as stable attractors of the system.

We select the following parameters N = 25, T = 10,
and h = 10−2. By comparing the simulated dynamics using
the MATLAB ode45 function with the FE method, we
concluded that the FE method for h = 10−2 is able to
accurately simulate the dynamics (relative error bellow 10−3).
Consequently, we use the FE discretization method since the
computational time of solving the MINO problem will be short
(several minutes). The stored binary letters are defined on a
5 × 5 mesh, and they are “H”, “T”, and “L”. The network
initial state is the “H” letter that is perturbed by the normal
Gaussian noise. Starting from this perturbed condition, the
uncontrolled network will converge to the letter “H”. The
network’s uncontrolled response is shown in Fig. 1(b). Starting
from this initial state, our goal is to find the control nodes and
the input sequence that will drive the network to the letter “T”.
That is, we want to drive the network from the attractor of the
letter “H” to as close as possible to the letter “T”. To test the
method for a fixed fraction of control nodes we replace the
inequality in (6c) by equality. The results that are analogous
to the results for the Duffing network are shown in Fig. 4(a)–
(c) except that instead of exhaustive search, we generate 1000
random selections of control nodes (in this case, exhaustive
search is computationally expensive). Figure 4(d) shows the
control error evolution for the first 5 control steps. We see that
after a single step the control error reaches the steady-state,
and control inputs keep the network in the steady-state.

The results shown in Fig. 4 clearly demonstrate the excellent
performance of the developed method. The proposed method
is able to produce the final control error that is in most cases
smaller than the error produced by randomly selecting the
control nodes. Furthermore, we are able to reach the steady-
state in a single control step.

V. CONCLUSION, LIMITATION, AND FUTURE WORK

We have developed a control node selection method and
tested it on two representative models of nonlinear networks.
The simulation results demonstrate the good potential of the
developed method. Some of the limitations of our approach
are as follows. First, in the general case, the resulting MINO
problem is non-convex and consequently, the computation
of the optimal solution might be challenging for large-scale
networks. Second, the proposed approach assumes an ideal
model of the networks and does not take into account any
disturbances that might come from modeling error, param-
eter uncertainty, and unknown inputs. Thirdly, the solution
depends on initial and desired states, and possibly such
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(a)–(c) The red line is the control error produced by Algorithm 1. The
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produced by Algorithm 1 as functions of control time steps.

a solution will change for different sets of states. In our
future research—in addition to addressing the aforementioned
limitations—we will explore different approaches for reduc-
ing the computational complexity and implementation effi-
ciency (parallelization) of the method such that it can be used
for large scale networks having hundreds and thousands of
nodes. Furthermore, theoretical and numerical insights into the
convergence and computational complexity of the developed
method will also be investigated. Finally, we will generalize
our problem formulation to feedback control scenarios and to
the case when the number of control nodes is penalized.
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