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a b s t r a c t

Functional magnetic resonance imaging (fMRI) techniques involve studying the brain
activity of an experimental subject in response to a mental stimulus, such as a picture or
a video shown to the subject. The design problem in fMRI studies is to come up with the
best sequence of stimuli to be shown to subjects which enables the precise estimation
of the brain activity. In previous analytical studies concerning fMRI designs, it has been
assumed that the errors are independent over time. The current state-of-the-art method
to find optimal designs for the situations when the errors are correlated is to use the
genetic algorithm. In this paper, we analytically obtain the optimal designs in a subclass
for the situations when the errors over time are assumed to have an auto-regressive
(AR) structure. Since such optimal designs might not exist, in practice, we advocate the
use of what we call g-lag orthogonal designs. We show that these g-lag orthogonal
designs perform reasonably well under a wide range of conditions under the models
with correlated errors.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Functional magnetic resonance imaging (fMRI) measures cerebral blood flow, which is used as a surrogate for neuronal
rain activity. When an area of the brain is stimulated, it leads to increased blood flow in that area. The fMRI uses the
lood-oxygen-level-dependent (BOLD) contrast which is used to map neural activity in the brain of humans or other
nimals by imaging the change in blood flow (also known as, hemodynamic response) related to energy use by brain cells.
vent-related functional magnetic resonance imaging (ER-fMRI) is a technique for studying brain activity in response to
ental stimuli (for example, looking at pictures, watching a video, etc.). ER-fMRI is important and popular in neuroscience
ecause this technique does not involve people to undergo brain surgery or to ingest substances or chemicals which may
ave harmful side-effects.
Experimental subjects are presented with a sequence of mental stimuli of one or more types and during this exposition,

n MRI scanner repeatedly scans the subject’s brain to collect a time series from each brain voxel. For each voxel, the
bserved time series represents the cumulative effects of the stimuli. The effect of a single stimulus is modeled by a
emodynamic Response Function (HRF), which could be different for different voxels. Estimating the HRF is often the
ain interest in an fMRI experiment (Lazar, 2008). For design selection, we focus on estimation of the heights of the HRF

at selected time points after onset.
In this paper, we consider fMRI studies with one type of stimulus and focus on estimating the HRF function. The design

problem for fMRI studies with one type of stimulus is to understand which 0–1 sequence out of the 2n sequences, where
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is the length of the considered sequence, is the best sequence for estimating the HRF function. Considerations are based
n a common model for fMRI studies that is discussed in Section 2.
Existing approaches for finding optimal fMRI designs mainly rely on computer search algorithms (Wager and Nichols,

003; Kao et al., 2009a,b, for example). Recently, analytical results for stimuli of one or two types have been obtained (Kao,
013, 2015, for example). To the best of our knowledge, the analytical results are only available for the situations when
he observations are independent over time. Kao (2015), while discussing the analytical results for stimuli of two types,
mentioned that the assumption of uncorrelated errors may sometimes be violated and it becomes important to find
optimal designs for such situations analytically. The current state-of-the-art method to find the best designs is to use
the genetic algorithm of Kao et al. (2009a). The algorithm can incorporate several models that occur in practice, and can
andle the errors being temporally dependent. The designs provided by the algorithm are highly efficient but there is no
urety that these designs are optimal.
In this paper, we study analytically obtaining highly efficient fMRI designs under the assumption of correlated errors.
e start with the model that is considered in the papers with the assumption of independent errors (Kao, 2013, 2015)

nd introduce the correlated errors assuming an auto-regressive (AR) structure. Since it is quite hard to provide a general
olution to the problem, we obtain the optimality results within a subclass of designs. In Sections 2 and 3, we discuss
he model, information matrix, class of designs, optimal designs under our setup, and the definition of g-lag orthogonal
esigns. Since the optimal designs may not exist, in Section 4, we identify g-lag orthogonal designs that (a) are locally
ptimal when the correlation parameter is not too large, and (b) are highly efficient compared to the optimal designs
btained in this paper. Additionally, we propose a new construction method to obtain larger g-lag orthogonal designs
rom smaller designs which provides alternate designs to the ones available in the literature. It is possible to have non-
rthogonal designs that are better than the ones we have advocated the use of. Using a genetic algorithm (GA), we
tudy the efficiencies of g-lag orthogonal designs among all possible designs under the AR(1) structure. We identify g-lag
rthogonal designs that perform well as long as the parameter of AR(1) structure is not too large (efficiencies higher than
.90). In addition, we also identify efficient g-lag orthogonal designs for the AR(2) error structure, which sometimes is a
ore useful error structure in practice (Lenoski et al., 2008).

. The model and the information matrix

An ordered sequence (x1, x2, . . . , xn) where xi ∈ {0, 1}, i = 1, . . . , n is an fMRI experimental design with one stimulus
ype occurring for at most n time points. The pre-specified time between successive time-points is called the inter-
timulus interval or ISI. When xi = 1, the stimulus occurs at the ith time point for a brief time, say, 1 s, and when
i = 0, no stimulus is shown at the ith time point and the subject is asked to rest or gaze at a fixed object.
The stimuli xi’s are presented sequentially to an experimental subject while a BOLD signal is obtained at each brain

oxel. The cumulative heights of the HRFs, that contribute to an fMRI time series, are observed at regular, discrete time
oints depending on the times at which scanning takes place. Since an HRF will return to baseline (cf. Zhang and Yu,
008), the number of heights of an HRF that an fMRI time series provides information about depends on ISI, the time to
epetition (TR) or time between two consecutive observations in an fMRI time series, and the time until the HRF returns
o baseline. For details we refer to Kao and Stufken (2015). We assume that the number of heights for which information
s collected is equal to k(< n).

The assumption that the last k − 1 elements of the design also appear in the pre-period before the first valid MRI
easurement, similar to the previous studies (Kao, 2013, 2015), is adopted here. The model that we consider is

yi = µ +

k−1∑
j=0

xi−jhj+1 + ϵi, i = 1, . . . , n,

here µ is the general mean, hj+1 is the jth HRF height, and xi−j = xn+i−j. The model in matrix notation is then,

y = 1nµ + Xα + ϵ, (1)

here 1n is a column vector of length n with all 1s, y = (y1, . . . , yn), α = (h1, . . . , hk), and the design matrix

X =

⎡⎢⎢⎣
x1 xn xn−1 · · · xn−k+2
x2 x1 xn · · · xn−k+3
...

...
... · · ·

...

xn xn−1 xn−2 · · · xn−k+1

⎤⎥⎥⎦ .

We assume that the errors ϵ = (ϵ1, . . . , ϵn) are auto-correlated, following a circular AR(1) structure with parameter λ.
hat is, the variance–covariance matrix of ϵ is Σ such that

Σ−1
=

⎡⎢⎢⎢⎣
1+ λ2

−λ 0 · · · −λ

−λ 1+ λ2
−λ · · · 0

...
...

... · · ·
...

2

⎤⎥⎥⎥⎦ .
−λ 0 0 · · · 1+ λ
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A Toeplitz matrix is a matrix in which each descending diagonal from left to right is constant. One can denote a n× n

oeplitz matrix A = (Au,v) by a generating vector of length 2n− 1 with entries (an−1, . . . , a1, a0, a−1, . . . , a−(n−1)) where
Au,v = au−v , u, v = 1, . . . , n. For example, Σ−1 is a Toeplitz matrix with its generating vector being (−λ, 0, . . . ,−λ, 1+

λ2,−λ, . . . , 0,−λ). Define H to be the Toeplitz matrix with the generating vector being (0, 0, . . . ,−λ, 1, 0, . . . , 0,−λ).
Then, the information matrix of α, using the generalized least squares estimation, in the circular AR(1) model (1) for an
arbitrary design equals

C = XTHTHX −
1

1T
nHTH1n

XTHTH1n1T
nH

THX . (2)

We observe that

HX =

⎡⎢⎢⎣
x1 − λxn xn − λxn−1 xn−1 − λxn−2 · · · xn−k+2 − λxn−k+1
x2 − λx1 x1 − λxn xn − λxn−1 · · · xn−k+3 − λxn−k+2

...
...

... · · ·
...

xn − λxn−1 xn−1 − λxn−2 xn−2 − λxn−3 · · · xn−k+1 − λxn−k

⎤⎥⎥⎦ .

Then, it is easy to see that XTHTHX is a Toeplitz matrix with its generating vector as (ek−1, ek−2, . . . , e1, f , e1, . . . , ek−2,

ek−1), where

f =

n∑
i=1

(xi − λxi−1)2 = (1+ λ2)
n∑

i=1

x2i − 2λ
n∑

i=1

xixi−1, (3)

ej =
n∑

i=1

(xi − λxi−1)(xi−j − λxi−1−j)

= (1+ λ2)
n∑

i=1

xixi−j − λ

n∑
i=1

xixi−j+1 − λ

n∑
i=1

xixi−j−1. (4)

We also note that H1n = (1− λ)1n, and 1T
nH

THX = (1− λ)2(
∑n

i=1 xi)1
T
k . Therefore,

1
1T
nHTH1n

XTHTH1n1T
nH

THX =
(1− λ)2

n
(

n∑
i=1

xi)21k1T
k . (5)

Note that C is a k × k matrix, and from the expressions in (3), (4), and (5), it is immediately clear that C depends
on the design only through the values of

∑n
i=1 xixi−ℓ for ℓ = 0, 1, . . . , k, with the value for ℓ = k only playing a role

for correlated errors. For the case of uncorrelated errors, one of the sufficient conditions (Kao, 2013, Theorem 1) for a
design to be universally optimal is that the design should have an equal number (n/2) of 1s and 0s. Therefore, we also
use designs with n/2 stimuli as our starting point, and call such a design g-lag orthogonal if it also satisfies

n∑
i=1

xixi−ℓ =
n
4
, for all ℓ = 1, . . . , g, (6)

where the design is (x1, x2, . . . , xn) with xi ∈ {0, 1}, i = 1, . . . , n. We use D(n, g) to denote the class of all g-lag orthogonal
designs with n/2 stimuli. A (k−1)-lag orthogonal design with n/2 stimuli is universally optimal for uncorrelated errors (see
Kao, 2013, Theorem 1).

In the next section, we first obtain the information matrix of designs in D(n, k−1), and then obtain A-optimal designs
in this subclass of designs.

3. Optimal designs in D(n, k − 1)

From (2), using (3), (4), (5) and (6), the information matrix for the fMRI designs in D(n, k − 1), with the errors being
correlated as AR(1) with parameter λ, is

C =
n
4

⎡⎢⎢⎢⎣
1+ λ2

−λ 0 · · · bλ
−λ 1+ λ2

−λ · · · 0
...

...
... · · ·

...

bλ 0 0 · · · 1+ λ2

⎤⎥⎥⎥⎦ , (7)

where

b = 1−
4
n

n∑
xixi−k. (8)
i=1
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Note that the information matrix C is dependent on the design through b. Then, 4
nC is a Toeplitz matrix with its

generating vector as (bλ, 0, . . . ,−λ, 1+λ2,−λ, . . . , 0, bλ). The designs in D(n, k−1) have
∑n

i=1 xixi−k equal to an integer
between 0 and n

2 , and therefore, the values of b lie between −1 and 1. Now, we obtain the optimal values of b assuming
b is a real number and then for finding the actual designs, one could use the nearest integer value of b.

We consider A-optimality as a criterion to find optimal designs. A design d∗ ∈ D(n, k − 1) is said to be A-optimal in
D(n, k − 1) if trace(C−1

d∗ ) ≤ trace(C−1
d ) for any other design d ∈ D(n, k − 1). The following result, with a proof in the

Appendix, gives an expression for the trace(C−1
d ) for a design d ∈ D(n, k− 1), where C is as in (7).

heorem 1. For a design d ∈ D(n, k− 1) with k ≥ 3 and a non-zero λ,

trace(C−1
d ) =

4
n

(∑k
i=1 λ2(k−i)(i(k− i+ 1)− b2(i− 1)(k− i))∑k

i=0 λ2i + 2bλk − b2
∑k−1

i=1 λ2i

)
.

Note that from (7), for λ = 0, trace(C−1
d ) = 4k

n for any design d ∈ D(n, k − 1). Therefore, all designs are equivalent at
λ = 0 and any design could be used.

To find the value of b corresponding to the A-optimal design, standard calculus results are used. The roots are
obtained for the first derivative of trace(C−1

d ) in Theorem 1 with respect to b and then these roots are evaluated for their
corresponding maxima or minima possibility. The first derivative of trace(C−1

d ) yields only two roots of b. The absolute
value of one of these two roots is larger than 1, and the corresponding second derivative is strictly negative. The detailed
proofs are given in the Appendix. The second derivative at the other root, however, is strictly positive. Therefore, if the
absolute value of the other root is smaller than or equal to 1, then we have found the value of b corresponding to an
A-optimal design. Theorem 3 gives the value of b for which trace(C−1

d ) is minimum among all designs d ∈ D(n, k−1). But,
we first need to show that the value of b in Theorem 3 is a real number. This is done in Lemma 2, the proof of which is
n the Appendix.

Both in Lemma 2 and Theorem 3 we will use the following notation: c1 =
∑k

i=1 i(k − i + 1)λ2(k−i), c2 =
∑k

i=1(i −
)(k− i)λ2(k−i), c3 =

∑k
i=0 λ2i, c4 = λk, and c5 =

∑k−1
i=1 λ2i. Then, for a design d ∈ D(n, k− 1), the value for trace(C−1

d ) in
heorem 1 can be written as

trace(C−1
d ) =

4
n

(
c1 − c2b2

c3 + 2c4b− c5b2

)
. (9)

The value of the parameter λ lies between −1 and 1. The quantities c1, c2, c3, and c5 are all symmetric around λ = 0, that
is, the values of c1, c2, c3, and c5 are the same at |λ| as at −|λ|. On the other hand, the value of c4 at |λ| is the negative of
its value at −|λ|. These observations are helpful to simplify the proofs of Lemma 2 and Theorem 3.

Lemma 2. For a design d ∈ D(n, k− 1) and for 0 < |λ| ≤ 1, it holds that

(c1c5 − c2c3)2 > 4c1c2c24 and c1c5 > c2c3,

where c1 through c5 are as defined before (9).

In Theorem 3, we find the optimal value of b (and call it b∗) for which trace(C−1
d ) is minimum among all designs

d ∈ D(n, k− 1). We note that the value of b∗ at |λ| is the negative of its value at −|λ|.

Theorem 3. For a design d ∈ D(n, k− 1), the value of b corresponding to the A-optimal design under model (1) with AR(1)
error structure having the parameter λ is

b∗ =
(c1c5 − c2c3)− ((c1c5 − c2c3)2 − 4c1c2c24 )

1
2

2c2c4
,

where c1 through c5 are as defined before (9).

roof. From (9), let trace(C−1
d ) =

4
n

(
c1−c2b2

c3+2c4b−c5b2

)
= f (b). Differentiating it with respect to b and putting the first

derivative equal to 0 yields two roots, r1 =
s1−

√
s2

2s3
, and r2 =

s1+
√
s2

2s3
, where s1 = c1c5 − c2c3, s2 = s21 − 4c1c2c24 , and

s3 = c2c4.
Let f ′′(r1) and f ′′(r2) denote the values of the second derivative of f with respect to b at the roots r1 and r2, respectively.

Simplifying these values at each of these two roots, we get

f ′′(r1) =
16

√
s2s43

(−2c5s2 + 2
√
s2(c5s1 − 2c4s3))2

, f ′′(r2) =
−16

√
s2s43

(2c5s2 + 2
√
s2(c5s1 − 2c4s3))2

.

Also, for k ≥ 3 and for non-zero λ, c2 > 0, and c24 > 0, therefore, s43 > 0. To see that the denominator of f ′′(r1) is

ifferent from zero, we note that (−2c s +2
√
s (c s −2c s ))2 = 4s (c (s −

√
s )−2c s )2 = 4s (c 4c1c2c24√ −2c2c )2 =
5 2 2 5 1 4 3 2 5 1 2 4 3 2 5 (s1+ s2) 4 2
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(s1+
√
s2)2

(c1c5+ c2c3−
√
s2)2, and since s2 < s21, we have that

√
s2 < (c1c5− c2c3) < c1c5+ c2c3. Similarly, the denominator

of f ′′(r2) is different from zero, because (2c5s2 + 2
√
s2(c5s1 − 2c4s3))2 =

16s2c22 c
4
4

(s1−
√
s2)2

(c1c5 + c2c3 +
√
s2)2. Now, if s2 is also

strictly positive, then r1 and r2 are points of local minima and maxima, respectively. From Lemma 2, we have that s2 is
strictly positive for non-zero λ. Hence, r1 is the desired point where trace(C−1

d ) is minimum.
We now show that |r2| > 1 and therefore outside the possible range of b. Since c2 = c1 − k

∑k
i=1 λ2(k−i), we have that

1 > c2. Now assume that λ > 0. Then since c4 ≥ 0, we have that c1c4 ≥ s3, or, in other words s2 = s21−4c1c4s3 ≤ s21−4s23.
hen since, s1, s2, and s3 are all non-negative, we have that s1 − 2s3 ≥

s2
s1+2s3

≥ 0. Then, s1 − 2s3 +
√
s2 > 0 implies that

s1+
√
s2

2s3
> 1, or r2 > 1. For the case, when λ < 0, we note that the value of r2 at |λ| is the negative of the value of r2 at

|λ|. This implies that the absolute value of r2 is always larger than 1.
By using Lemma 2, it is easy to see that the numerator of r1 = b∗ is always a non-negative real number. We now show

hat |r1| < 1. For r1 < 1, it should hold that (s1 − 2s3)2 < s2 = s21 − 4c1c2c24 or that s23 − s1s3 + c1c2c24 < 0 or (since s3 > 0)
hat s3 − s1 + c1c4 < 0. So, showing r1 < 1 is equivalent to showing c1c5 − c2c3 − c2c4 − c1c4 > 0. Now, using the values
f ci, i = 1, . . . , 5 from the proof of Lemma 2, we get

c1c5 − c2c3 − c2c4 − c1c4 = −c2(1+ λk)2 +
kλ2(1− λ2k)(1− λk−2)(1+ λk)

(1− λ2)2
.

herefore, we need to show that

c2 <
kλ2(1− λk)(1− λk−2)

(1− λ2)2
.

Using the value of c2 from the proof of Lemma 2, we, therefore, need to show that

kλ2k
− (k− 2)λ2k+2

+ (k− 2)λ2
− kλ4 < kλ2(1− λk)(1− λk−2)(1− λ2),

or, upon simplifications, 2λ2k
− kλk+2

+ kλk−2
− 2 < 0. Now, say, g(λ) = 2λ2k

− kλk+2
+ kλk−2

− 2. The derivative
g ′(λ) = 4kλ2k−1

−k(k+2)λk+1
+k(k−2)λk−3

= λk−3(4kλk+2
−k(k+2)λ4

+k(k−2)). That 4kλk+2
−k(k+2)λ4

+k(k−2) > 0
follows because λx is convex in x. Then r1 < 1 follows by noting that g ′(λ) > 0 for λ ∈ (0, 1), implying that g(λ) is an
ncreasing function. This, together with the fact that g(1) = 0 proves that 2λ2k

− kλk+2
+ kλk−2

− 2 < 0, or that, r1 < 1.
For the case, when λ < 0, we note that the value of r1 at |λ| is the negative of the value of r1 at −|λ|. This implies that
the absolute value of r1 is always smaller than 1. ■

Within the class of (k− 1)-lag orthogonal designs, that is, in D(n, k− 1), we obtained the value of an optimal b such
that if the (k − 1)-lag orthogonal design additionally has the value of 4

n

∑n
i=1 xixi−k = 1 − b∗, then that design is the

A-optimal design for the situations when the errors are correlated with a circular AR(1) structure.
We recognize the fact that a design with optimal b∗ might not exist and even if it exists, it might be hard to find. In

what follows, we consider the (k− 1)-lag orthogonal designs that additionally have b = 0 or
∑n

i=1 xixi−k =
n
4 . Note that

hese designs are k-lag orthogonal designs from the definition in (6).

. Optimality and construction of g-lag orthogonal designs

The next result shows that g-lag orthogonal designs (with g = k) are locally A-optimal for estimation under model (1)
ith AR(1) error structure.

heorem 4. A design d0 ∈ D(n, k−1) which is also k-lag orthogonal, i.e., which has b = 0, is locally-A-optimal in D(n, k−1)
nder model (1) with AR(1) error structure when the parameter λ is in a neighborhood of 0.

roof. For a design d ∈ D(n, k − 1), from Theorem 1, let trace(C−1
d ) = f (λ, b). Consider the function h(λ, b) =

f (λ, b) − f (λ, 0). From simple algebra, it can be seen that h(0, b) = 0, ∂h(λ,b)
∂λ

= 0 at λ = 0, but the second derivative
f h(λ, b) at λ = 0 is ∂2h(λ,b)

∂λ2
> 0. ■

The efficiency of a design d ∈ D(n, k− 1) with respect to a design d∗ is defined as

effd =
trace(C−1

d∗ )

trace(C−1
d )

. (10)

Considering d∗ in (10) to be an optimal fMRI design in D(n, k− 1) with b = b∗ as obtained in Theorem 3, in Fig. 1(a),
fficiencies of k-lag orthogonal designs are plotted for λ ∈ [−1, 1] and for specific values of k = 3, . . . , 6, and in Fig. 1(b)
he box-plots of efficiencies of k-lag orthogonal designs are displayed for k = 3, . . . , 15 where each box-plot is over
he values of λ ∈ [−1, 1]. From the figure, we note that k-lag orthogonal designs remain highly efficient as k increases,
rrespective of the value of λ. Additionally, as λ inches closer to 0, k-lag orthogonal designs are more efficient, and even
ptimal for small enough λ. For example, for |λ| ≤ 0.4, the efficiencies are at least 0.95. Similarly, for k ≥ 4, the efficiencies
88
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Fig. 1. Efficiency charts for k-lag orthogonal designs.

are at least 0.9, and the efficiencies are always larger than 0.95 provided that k is greater than 6. Since we do not know
hether d∗ exists, the efficiencies calculated using (10) are, in fact, lower bounds for the efficiencies.
We now provide a construction method to obtain g-lag orthogonal fMRI designs with larger n from such designs with

maller n. Note that for g = k − 1, these designs are universally optimal under the model (1) with uncorrelated error
structure for estimating k HRF heights. For g = k, these designs are locally A-optimal under the model (1) with AR(1)
error structure as in Theorem 4.

Theorem 5. For n1 ≥ g1 and n2 ≥ g2, let d1 = (x11, . . . , x
1
n1 ) and d2 = (x21, . . . , x

2
n2 ) be g1-lag and g2-lag orthogonal designs

for a single stimulus type, respectively. With g = min(g1, g2), the design d+ = (d1, d2) is a g-lag orthogonal design provided
that either (i) x1u = x2u for u = 1, . . . , g, or (ii) x1n−v = x2n−v for v = 0, . . . , g − 1.

For the proof, from the definition of d+, it is easily seen that, for ℓ = 1, . . . , g , the value of
∑

i xixi−ℓ for d+ is equal to
the sum of the values for d1 and d2 if condition (i) or (ii) holds. That d+ is g-lag orthogonal follows now since d1 and d2
are.

Theorem 5 provides alternate orthogonal designs for certain values of n and g to the ones available in the lit-
erature (Kao, 2015; Lin et al., 2017). Lemma 3.8 of Lin et al. (2017) also constructs larger orthogonal designs by
epeating copies of the same design. This is a special case of Theorem 5, but may be less desirable if patients can
emorize the earlier pattern and start behaving differently. In such situations, our Theorem 5 may provide an alternate
onstruction. For example, a design with n = 128 and g = 14 can be constructed using Theorem 5 from the two
esigns d1 with n1 = 36, g1 = 14 and d2 with n2 = 92, g2 = 14 of Lin et al. (2017). The design d+ is given as
111110100001101001000100110001110101011010000011001000000111110111011100101101001100011101011111
0100001101001000100110001110101).

. Performance against non-orthogonal designs

We have obtained the conditions for a design to be A-optimal when the errors are correlated with the AR(1) structure
ithin the class of (k−1)-lag orthogonal designs, D(n, k−1). Because such designs with an optimal b∗ may not exist, we
howed that k-lag orthogonal designs perform reasonably well, that is, have high efficiencies within this class D(n, k−1).
owever, it is possible to have designs that fall outside D(n, k− 1). For example, one may obtain such designs using the
enetic algorithm (GA) of Kao et al. (2009a). Using the genetic algorithm, we obtained the designs for the parameters
rovided in Table 1 for the λ values equal to 0.1, 0.3, and 0.5 and for n between 100 and 200. We chose these parameters
n and g) because we know that g-lag orthogonal designs exist for these parameters (Lin et al., 2017). From Table 1, we
ee that for a small λ = 0.1, there are times when an orthogonal design performs better than the design obtained via
enetic algorithm (efficiencies exceeding 1). As λ increases, the designs obtained by the genetic algorithm are better than
he k-lag orthogonal designs but the relative efficiencies of k-lag orthogonal designs remain higher than 0.90.

While the most studied error structure in past studies has been an AR(1) structure, several authors have also worked
n more complicated error structures such as AR(2) models (Lenoski et al., 2008), ARMA models (Lindquist, 2008), and
R(p) models with p ≥ 2 (Worsley et al., 2002). All of these models are shown to be useful when analyzing the correlated

oise in fMRI data. In particular, it has been claimed that AR(2) structure often provides better results compared to AR(1)
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Table 1
Relative efficiencies of g-lag orthogonal designs to GA designs for 100 ≤

n ≤ 200, AR(1) structure, and k = g .
n g eff (λ = 0.1) eff (λ = 0.3) eff (λ = 0.5)

100 13 1.0080 0.9826 0.9174
104 19 1.0392 0.9999 0.9529
108 13 1.0098 0.9856 0.9276
112 22 1.0290 0.9943 0.9448
116 13 1.0104 0.9763 0.9379
120 16 1.0143 1.0081 0.9124
124 13 1.0033 0.9882 0.9106
128 13 1.0009 0.9803 0.9228
132 15 1.0035 0.9875 0.9173
136 13 1.0005 0.9782 0.9212
140 13 1.0047 0.9769 0.9118
144 16 1.0033 0.9818 0.9069
148 13 1.0049 0.9802 0.9184
152 13 1.0039 0.9810 0.9192
156 19 1.0122 0.9850 0.9219
160 16 1.0054 0.9772 0.9143
164 13 1.0041 0.9691 0.9165
168 22 1.0128 0.9895 0.9310
172 13 1.0018 0.9739 0.9031
176 15 1.0011 0.9754 0.9078
180 13 1.0016 0.9748 0.9056
184 13 1.0083 0.9727 0.9220
188 13 1.0075 0.9807 0.9101
192 16 1.0026 0.9851 0.9186
196 13 1.0037 0.9731 0.9078
200 16 1.0009 0.9821 0.9178

and ARMA models (Lenoski et al., 2008). The inverse of the variance–covariance matrix Σ of ϵ corresponding to an AR(2)
structure with known parameters λ1 and λ2 is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+ λ21 + λ22 −λ1 + λ1λ2 −λ2 0 · · · 0 −λ2 −λ1 + λ1λ2
−λ1 + λ1λ2 1+ λ21 + λ22 −λ1 + λ1λ2 −λ2 0 · · · 0 −λ2

−λ2 −λ1 + λ1λ2 1+ λ21 + λ22 −λ1 + λ1λ2 −λ2 0 · · · 0

.

.

.

.

.

.

.

.

. · · ·

.

.

.

.

.

. · · ·

.

.

.

−λ1 + λ1λ2 −λ2 0 · · · 0 · · · − λ1 + λ1λ2 1+ λ21 + λ22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Given that k-lag orthogonal designs are highly efficient as long as the parameter of AR(1) structure is not too large, we
ow evaluate the performance of g-lag designs under the AR(2) structure. We again obtain the best designs from the GA
lgorithm using AR(2) error structure and use those designs as the benchmark designs. Using the same methodology as
or the AR(1) error structure, we observed that the information matrix for AR(2) error structure depends on the design via
wo terms

∑n
i=1 xixi−k and

∑n
i=1 xixi−k−1. Since the information matrix under AR(1) error structure was only dependent on

he design via
∑n

i=1 xixi−k, we saw that designs in D(n, k− 1) which additionally have
∑n

i=1 xixi−k = n/4 or, equivalently,
= 0 perform reasonably well, and hence, we now extend the same notion to the AR(2) error structure. For estimating

he k HRF heights in a model where the error has AR(2) error structure, designs in D(n, k− 1) with additional properties
n
i=1 xixi−k = n/4 and

∑n
i=1 xixi−k−1 = n/4 are expected to perform well. That implies that we expect that a (k+ 1)-lag

rthogonal design would perform good for estimating the k HRF heights in a model where errors have an AR(2) error
tructure. For the parameters where we know that a g-lag orthogonal design exists (same n and g as in Table 1), we now
valuate the efficiencies of actual g-lag orthogonal design against GA design for the models where one can only estimate
p to k = g − 1 HRF heights. These efficiencies are then listed in Table 2, for specific values of λ1 = {0.1, 0.3, 0.5} and
2 = {0.1, 0.3}, while keeping the values of n and g the same as in Table 1. We observe that as long as the parameters for
R(2) structure are not too large, these g-lag orthogonal designs remain highly efficient (the efficiencies are greater than
.75). Therefore, in conclusion, g-lag orthogonal designs perform reasonably well with errors assuming both the AR(1)
orrelation structure (when interest is in the estimation of k = g HRF heights) and AR(2) correlation structure (when
nterest is in the estimation of k = g − 1 HRF heights).

For the results in the paper, we restrict ourselves to designs with n divisible by 4. We also made efficiency comparisons
ith other designs in literature such as circulant almost orthogonal array (CAOA) designs of Lin et al. (2017) with n = 4t+2

or any positive t . Our comparison resulted in a similar conclusion. For smaller values of λ parameter, even though CAOA
esigns might sometimes perform better than the g-lag orthogonal designs, one does not lose too much on efficiency
ith the use of g-lag orthogonal designs.
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Table 2
Relative efficiencies of g-lag orthogonal designs to GA designs for 100 ≤ n ≤ 200, AR(2) structure, and
k = g − 1.
n g eff (λ1 = 0.1, eff (λ1 = 0.1, eff (λ1 = 0.3, eff (λ1 = 0.3, eff (λ1 = 0.5, eff (λ1 = 0.5,

λ2 = 0.1) λ2 = 0.3) λ2 = 0.1) λ2 = 0.3) λ2 = 0.1) λ2 = 0.3)

100 13 1.0079 0.9825 0.9695 0.9354 0.8925 0.8075
104 19 1.0322 0.9837 0.968 0.9356 0.9029 0.7782
108 13 0.9980 0.9956 0.9744 0.9306 0.8951 0.8048
112 22 1.0359 0.9916 0.9876 0.9456 0.9173 0.7960
116 13 1.0076 0.9844 0.9764 0.9399 0.8932 0.8082
120 16 1.0183 0.9901 0.9825 0.9237 0.8926 0.7961
124 13 1.0056 0.9791 0.9640 0.9247 0.8929 0.8223
128 13 0.9999 0.9817 0.9655 0.9276 0.8935 0.8211
132 15 0.9984 0.9808 0.9605 0.9248 0.8893 0.7960
136 13 1.0002 0.9826 0.9649 0.9303 0.8845 0.8264
140 13 0.9976 0.9871 0.9692 0.9237 0.8933 0.8121
144 16 1.0028 0.9735 0.9701 0.9219 0.8852 0.8054
148 13 1.0051 0.9782 0.9645 0.9262 0.8978 0.8141
152 13 0.9986 0.9818 0.9659 0.9290 0.8885 0.7979
156 19 1.0097 0.9803 0.9641 0.9298 0.8994 0.7767
160 16 1.0015 0.9838 0.9677 0.9417 0.8896 0.8036
164 13 0.9986 0.9836 0.9623 0.9347 0.8956 0.7987
168 22 1.0089 1.0007 0.9640 0.9296 0.8878 0.7703
172 13 0.9971 0.9819 0.9640 0.9289 0.8946 0.8030
176 15 1.0036 0.9826 0.9709 0.9167 0.9045 0.8166
180 13 0.9986 0.9742 0.9652 0.9227 0.8857 0.8079
184 13 1.0002 0.9798 0.9684 0.9263 0.8941 0.8173
188 13 0.9980 0.9786 0.9654 0.9222 0.8877 0.8215
192 16 0.9987 0.9766 0.9657 0.9246 0.8802 0.8005
196 13 0.9976 0.9853 0.9623 0.9270 0.8873 0.7998
200 16 0.9989 0.9796 0.9602 0.9184 0.8908 0.7852

6. Conclusions

Event-related fMRI studies are an important tool for studying brain activity in response to stimuli. In such studies, a
ubject is given a sequence of stimuli with the objective of discovering how this activates different parts of the brain.
s with experiments in other fields, the choice of design matters in terms of the information that one obtains from the
xperiment. In this setting, a design consists of the sequence of stimuli to be given to the subject.
Our work is inspired by Kao (2015), who showed that, for a single stimulus type, (k − 1)-lag orthogonal designs are

niversally optimal for estimation of k HRF parameters if the errors in model (1) are independent. The primary question
ddressed in our work focuses on identifying optimal and efficient designs for the same setting, except that we use the
ore realistic assumption of an autoregressive error structure.
For an AR(1) error structure, it turns out that different (k − 1)-lag orthogonal designs can have different information

atrices for estimation of the k HRF parameters, and that these matrices depend in general on the parameter λ. For a
ixed value of λ, Theorem 3 identifies the best design in the class of (k−1)-lag orthogonal designs under the A-optimality
riterion. Such a design may be called locally A-optimal for that fixed value of λ. Whether such designs actually exist is
nclear, but their value under the A-optimality criterion can be used as a benchmark in obtaining the efficiency of other
esigns. We do this for k-lag orthogonal designs, which have an information matrix under the AR(1) error structure that
s only dependent on λ. It turns out that these k-lag orthogonal designs are highly efficient for most values of λ, and even
-optimal for values of λ in a neighborhood of 0. Moreover, provided that λ is not too large, the k-lag orthogonal designs
emain highly efficient when compared to non-orthogonal designs, which is seen by comparing them to designs obtained
y a genetic algorithm. We also note that (k + 1)-lag orthogonal designs are highly efficient for smaller values of the
arameters under an AR(2) error structure. While the information matrices for (k − 1)-lag and k-lag orthogonal designs
epend on the design as well as the parameters, all (k+1)-lag orthogonal designs have the same information matrix that
s dependent only on these parameters.

While not shown here, in general we expect (k+ p− 1)-lag orthogonal designs to perform well under an AR(p) error
tructure, if the parameters are not too large.
Since g-lag orthogonal designs play such a central role in our considerations and recommendations, we also provide

method for the construction of larger g-lag orthogonal designs from smaller designs of this type. Our method gives
lternate designs to the ones available in the literature. This is still a wide-open research area. For a given length n of the
esign, what is the maximal value of g for which a g-lag orthogonal design exists? General answers may remain elusive,
ut clever construction methods for g-lag orthogonal designs might be able to improve the best values that are currently
vailable.
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ppendix

A Hankel matrix Hℓ is a square matrix in which each ascending skew-diagonal from left to right is constant. If Jℓ is
ℓ × ℓ matrix such that the elements of the main NE-SW diagonal are ones and the rest of the elements are zeros,

hen a Hankel matrix could be obtained corresponding to its Toeplitz matrix. In what follows, we assume that Hℓ = TℓJℓ,
where Tℓ is a Toeplitz matrix. Let, e1, eℓ, z, and y be column vectors of length ℓ such that e1 = (1 0ℓ−1)T , eℓ = (0ℓ−1 1)T ,
z = (z0, . . . , zℓ−1)T , y = (y0, . . . , yℓ−1)T .

Lemma A.1 (Formula 5 of Glasa, 2002). Let Hℓ = TℓJℓ be a ℓ× ℓ Hankel matrix. Also, let Tℓz = e1, and Tℓy = eℓ, and z0 ̸= 0.
Then, the inversion of the Hankel matrix is given by

H−1
ℓ =

1
z0

⎡⎢⎢⎣
zℓ−1 zℓ−2 · · · z0

...
...

... 0
z1 z0 0 0
z0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
yℓ−1 yℓ−2 · · · y0
0 yℓ−1 · · · y1
...

...
...

...

0 0 · · · yℓ−1

⎤⎥⎥⎦−
1
z0

⎡⎢⎢⎣
yℓ−2 · · · y0 0

...
...

... 0
y0 0 0 0
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
0 zℓ−1 · · · z1
0 0 · · · z2
...

...
...

...

0 0 · · · 0

⎤⎥⎥⎦
Lemma A.2. Let Hℓ = TℓJℓ be a ℓ × ℓ Hankel matrix and Tℓ be the corresponding Toeplitz matrix. Additionally, let Tℓz = e1,
and Tℓy = eℓ, and z0 ̸= 0. Then

trace(T−1
ℓ ) =

⎧⎨⎩ℓyℓ−1 +
1
z0

∑ ℓ
2−1
u=1 (ℓ − 2u)(zuyℓ−1−u − zℓ−uyu−1) for ℓ even,

ℓyℓ−1 +
1
z0

∑ ℓ−1
2

u=1 (ℓ − 2u)(zuyℓ−1−u − zℓ−uyu−1) for ℓ odd.

Proof. Since Jℓ = J−1
ℓ , we have that T−1

ℓ = JℓH−1
ℓ , and then it is not very hard to see that trace(T−1

ℓ ) would be the sum of
the entries of NE-SW diagonal of H−1

ℓ . The sum of the entries of NE-SW diagonal of the first product of two matrices in
Lemma A.1 is

∑ℓ−1
u=0(u+ 1)zℓ−1−uyu. The sum of the entries of NE-SW diagonal of the second product of two matrices in

Lemma A.1 is
∑ℓ−1

u=1 uyℓ−1−uzu. Then,

trace(T−1
ℓ ) =

1
z0

ℓ−1∑
u=0

(u+ 1)zℓ−1−uyu −
1
z0

ℓ−1∑
u=1

uyℓ−1−uzu.

Upon rearrangements, and simplification, we get the required result. ■

For the information matrix C in (7), the Toeplitz matrix 4
nC has the generating vector as (bλ, 0, . . . ,−λ, 1 +

λ2,−λ, . . . , 0, bλ), that is, the matrix is⎡⎢⎢⎢⎣
1+ λ2

−λ 0 · · · bλ
−λ 1+ λ2

−λ · · · 0
...

...
... · · ·

...

bλ 0 0 · · · 1+ λ2

⎤⎥⎥⎥⎦ . (A.1)

The proof of the following lemma follows upon application of any equation solving technique like Gauss Jordan
elimination, triangularization, etc.

Lemma A.3. Let h =
∑k

i=0 λ2i
+ 2bλk

− b2
∑k−1

i=1 λ2i. Then, with Tk denoting the matrix in (A.1) and e1 = (1 0k−1)T , a
solution z = (z0, . . . , zk−1)T for Tkz = e1 is given by the following:

Case (i) For k even, s = 0, . . . , ( k2 − 1):

z2s =
1
h

k−s−1∑
u=s

λ2u
−

b
h

k
2+s−1∑

k

λ2u, and z2s+1 =
1
h

k−s−1∑
u=s+1

λ2u−1
−

b
h

k
2+s∑
k

λ2u−1.
u= 2−s u= 2−s
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C

C

P

C

h

ase (ii) For k odd, s = 0, . . . , ( k−3
2 )

z2s =
1
h

k−s−1∑
u=s

λ2u
−

b
h

k−1
2 +s−1∑

u= k−1
2 −s

λ2u+1, z2s+1 =
1
h

k−s−1∑
u=s+1

λ2u−1
−

b
h

k−1
2 +s∑

u= k−1
2 −s

λ2u, and

zk−1 =
1
h
λk−1

−
b
z

k−2∑
u=0

λ2u+1.

Lemma A.4. With Tk denoting the matrix in (A.1) and Tkz = e1, and Tky = ek, where e1 = (1 0k−1)T , and ek = (0k−1 1)T ,
we have that

zu = yk−u−1 for all u = 0, . . . , k− 1.

Proof. Substitute zu = yk−u−1, for all u = 0, . . . , k − 1 in each of the k equations corresponding to Tkz = e1; call these
first set of k equations. Also, call the k equations corresponding to Tky = ek the second set of equations. It is then simple
to see that the first equation from first set is same as the last equation of the second set, similarly second equation from
the first set is equal to the second last equation of the second set, and so on. This completes the proof. ■

The following is a corollary to Lemma A.2 using Lemma A.4.

Corollary A.1. For the information matrix C in (7), and 4
nCz = e1 with e1 = (1 0k−1)T and z = (z0, . . . , zk−1)T , it holds that

n
4
trace(C−1) =

⎧⎨⎩kz0 + 1
z0

∑ k
2−1
u=1 (k− 2u)(z2u − z2k−u) for k even,

kz0 + 1
z0

∑ k−1
2

u=1(k− 2u)(z2u − z2k−u) for k odd.

We are now ready to provide the proof of Theorem 1 by substituting the values of z as obtained in Lemma A.3 in
orollary A.1.

roof of Theorem 1. We divide the proof into two cases based on the value of k.

ase when k is even: We first find the values for (z2u − z2k−u) for u = 1, . . . , k
2 − 1. Note that if u is even, then k − u is

even, and if u is odd, then k − u is odd. Consider u to be odd first. Then (z2u − z2k−u) = (z22s+1 − z2
2( k2−s−1)+1

). Then, from
Lemma A.3,

z2s+1 + z2( k2−s−1)+1 =
(1− b)

h

(k−s−1∑
ℓ=s+1

λ2ℓ−1
+

k
2+s∑

ℓ= k
2−s

λ2ℓ−1
)

.

Or,

z2s+1 + z2( k2−s−1)+1 =
(1− b)λ2s+1

h

(k−2s−2∑
ℓ=0

λ2ℓ
+

k
2−1∑

ℓ= k
2−2s−1

λ2ℓ
)

.

Note that, the terms from λ2( k2−2s−1), . . . , λ2( k2−1) come twice and the rest of the terms come once. Divide the terms
into two sets λ2(0), . . . , λ2( k2−1), and λ2( k2−2s−1), . . . , λ2(k−2s−2). The second set of terms is the same as the first set except
aving a multiple of λ2( k2−2s−1) in each term. Therefore, we get,

z2s+1 + z2( k2−s−1)+1 =
(1− b)λ2s+1(1+ λ(k−4s−2))

h

( k
2−1∑
ℓ=0

λ2ℓ
)

.

Now, similarly, subtracting the common terms and dividing the remaining terms into two appropriate sets, we get,

z2s+1 − z2( k2−s−1)+1 =
(1+ b)λ2s+1(1+ λk)

h

( k
2−2s−2∑

ℓ=0

λ2ℓ
)

.

Also, note that z0 = 1
h (1+ λk)

∑ k
2−1
ℓ=0 λ2ℓ, and (1+ λ(k−4s−2))(

∑ k
2−2s−2
ℓ=0 λ2ℓ) =

∑k−4s−3
ℓ=0 λ2ℓ. Therefore, we have,

z2 − z2 k =
z0(1− b2)λ4s+2(

∑k−4s−3
ℓ=0 λ2ℓ)

.
2s+1 2( 2−s−1)+1 h
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Or, in other words,

z2u − z2k−u =
z0(1− b2)λ2u(

∑k−2u−1
ℓ=0 λ2ℓ)

h
. (A.2)

It is then not too hard to see that for u even, as well, we get,

z2u − z2k−u = z22s − z2
2( k2−s)

=
z0(1− b2)λ4s(

∑k−4s−1
ℓ=0 λ2ℓ)

h
=

z0(1− b2)λ2u(
∑k−2u−1

ℓ=0 λ2ℓ)
h

. (A.3)

Now, from Corollary A.1, for k even, n
4 trace(C

−1) = kz0 + 1
z0

∑ k
2−1
u=1 (k− 2u)(z2u − z2k−u). And, from (A.2) and (A.3), after

summing the terms, we get

1
z0

k
2−1∑
u=1

(k− 2u)(z2u − z2k−u) =
(1− b2)

h

k
2−1∑
u=1

(k− 2u)λ2u(
k−2u−1∑

ℓ=0

λ2ℓ).

Or, in other words,

n
4
trace(C−1) =

1
h

( k
2−1∑
u=0

(k− 2u)
(k−u−1∑

ℓ=u

λ2ℓ)
− b2

k
2−1∑
u=1

(k− 2u)
(k−u−1∑

ℓ=u

λ2ℓ)). (A.4)

Now, consider the terms in the first part of Eq. (A.4) and note that for ℓ = 1, . . . , k
2 , the term λ2(k−ℓ) comes ℓ times

ith the multiplying factors (k − 2ℓ + 2), (k − 2ℓ + 4), . . . , k. Rewrite the term in terms of summations on ℓ and then
use the sum of arithmetic series on ℓ terms with the first term being (k− 2(ℓ − 1)) and with the common difference of
, for ℓ = 1, . . . , k

2 . Similarly, for ℓ =
k
2 + 1, . . . , k, the term λ2(k−ℓ) comes k − ℓ + 1 times with the multiplying factors

ℓ − k, 2ℓ − k+ 2, . . . , k. Rewrite the term in terms of summations on ℓ and then use the sum of arithmetic series on ℓ
erms with the first term being 2ℓ − k and with the common difference of 2, for ℓ =

k
2 + 1, . . . , k. We then get,

k
2−1∑
u=0

(k− 2u)
(k−u−1∑

ℓ=u

λ2ℓ)
=

k∑
ℓ=1

(
ℓ(k− ℓ + 1)λ2(k−ℓ)

)
.

It can similarly be shown that
k
2−1∑
u=1

(k− 2u)
(k−u−1∑

ℓ=u

λ2ℓ)
=

k∑
ℓ=1

(
(ℓ − 1)(k− ℓ)λ2(k−ℓ)

)
.

Therefore, for k even,

n
4
trace(C−1) =

1
h

( k∑
ℓ=1

λ2(k−ℓ)(ℓ(k− ℓ + 1)− (ℓ − 1)(k− ℓ)
))

. (A.5)

ase when k is odd: Following the similar methodology as above, we first find the values for (z2u−z2k−u) for u = 1, . . . , k
2−1.

ote that if u is even, then k− u is odd, and if u is odd, then k− u is even. Consider u to be odd first. Then (z2u − z2k−u) =
(z22s+1 − z2

2( k−1
2 −s)

). Then, from Lemma A.3,

z2s+1 + z2( k−1
2 −s) =

(1− b)
h

(k−s−1∑
ℓ=s+1

λ2ℓ−1
+

k−1
2 +s∑

ℓ= k−1
2 −s

λ2ℓ
)

.

Or,

z2s+1 + z2( k−1
2 −s) =

(1− b)λ2s+1

h

( k−1∑
ℓ=0

λℓ

)(k−4s−3∑
ℓ=0

(−λ)ℓ
)

.

Similarly, we have,

z2s+1 − z2( k−1
2 −s) =

(1+ b)λ2s+1

h

( k−1∑
ℓ=0

(−λ)ℓ
)(k−4s−3∑

ℓ=0

λℓ

)
.

Also, note that z0 = 1
h (
∑k−1

ℓ=0 λℓ)(
∑k−1

ℓ=0(−λ)ℓ), and (
∑k−4s−3

ℓ=0 λℓ)(
∑k−4s−3

ℓ=0 (−λ)ℓ) =
∑k−4s−3

ℓ=0 λ2ℓ. Therefore, we have,

z2 − z2 k−1 =
z0(1− b2)λ4s+2(

∑k−4s−3
u=0 λ2u)

.
2s+1 2( 2 −s) h
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c

R

G
K
K
K

K

Or, in other words,

z2u − z2k−u =
z0(1− b2)λ2u(

∑k−2u−1
ℓ=0 λ2ℓ)

h
. (A.6)

It is then not too hard to see that for u even, as well, we get,

z2u − z2k−u = z22s − z2
2( k−1

2 −s)+1
=

z0(1− b2)λ2u(
∑k−2u−1

ℓ=0 λ2ℓ)
h

. (A.7)

Now, from Corollary A.1, for k odd, n
4 trace(C

−1) = kz0 + 1
z0

∑ k−1
2

u=1(k − 2u)(z2u − z2k−u). And, from (A.6), and (A.7), after
summing the terms, we get

1
z0

k−1
2∑

u=1

(k− 2u)(z2u − z2k−u) =
(1− b2)

h

k−1
2∑

u=1

(k− 2u)(
k−2u−1∑

ℓ=0

λ2(u+ℓ)).

Then, on similar lines as above, it can be shown that the trace expression in the statement holds for k odd as well.
■

Proof of Lemma 2. Let s1 = c1c5 − c2c3, and s2 = s21 − 4c1c2c24 . Then, we have to prove that s1 > 0 and s2 > 0. Note that
the values of s1 and s2 are the same at |λ| as at −|λ|. This is why, for the purposes of the proof, we can restrict ourselves
to 0 < λ ≤ 1.

We first note that at λ = 1, we have c1 = k(k+ 1)(k+ 2)/6, c2 = c1 − k2 = k(k− 1)(k− 2)/6, c3 = k+ 1, c4 = 1, and
c5 = k− 1. Then, s1 = 2k(k2 − 1)/3, and s2 = k4(k2 − 1)/3. Therefore, at λ = 1, for k > 1, both s1 and s2 are positive.

We now consider the case when λ ∈ (0, 1). It is easy to see that c2 = c1 −
k(1−λ2k)
1−λ2

. Also, after using the
rithmetic–geometric sums, we see that

c1 =
1

(1− λ2)3
((k+ 2)λ2k+2

− kλ2k+4
+ k− (k+ 2)λ2)

c2 =
1

(1− λ2)3
(kλ2k

− (k− 2)λ2k+2
+ (k− 2)λ2

− kλ4)

c3 =
1− λ2k+2

1− λ2

c5 =
λ2

− λ2k

1− λ2 .

Upon simplification, we get that

s1 =
2λ2

(1− λ2)3
(1− λ4k

− kλ2k−2(1− λ4))

s2 =
4λ4(1− λ2k)2

(1− λ2)6
((1− λ2k)2 − k2λ2k−2(1− λ2)2).

Now, s2 can be further simplified to

s2 =
4λ4(1− λ2k)2

(1− λ2)6
(1− λ2k

+ kλk−1(1− λ2))(1− λ2k
− kλk−1(1− λ2)).

If we prove that 1− xk − kx
k−1
2 (1− x) > 0 for x ∈ (0, 1), then it will follow that s1 > 0 (by taking x = λ4) and s2 > 0

by taking x = λ2). Obviously, since λ ∈ (0, 1), then λ2
∈ (0, 1), and λ4

∈ (0, 1).
We observe that 1 − xk − kx

k−1
2 (1 − x) > 0 for x ∈ (0, 1) is equivalent to (1 − x)(

∑k−1
i=0 xi − kx

k−1
2 ) > 0. From simple

convexity argument, it is true that
∑k−1

i=0 xai > kx
k−1
2 provided that

∑
ai = k(k − 1)/2 and that ai’s are not equal. This

ompletes the proof. ■
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