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Abstract Wang and Stufken [2020] identified locally D-optimal designs for
Generalized Linear Models with factorial effects and one continuous covariate.
Using an approximate design approach, the design problem consists of select-
ing values for the covariate and design weights for each group formed by the
various factors. For the logistic and probit link, the optimal designs in Wang
and Stufken [2020] use two covariate values for each of the groups and equal
weights. We establish that smaller D-optimal designs can often be obtained
by using orthogonal arrays so that an optimal design uses only some of the
groups with at most two covariate values in those groups. The general theory
is illustrated through an application.
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1 Introduction

Factors play an important role in many experiments. Understanding their
effects on a response variable can be the primary reason for experimentation. If
that response variable is categorical, then the model is typically a Generalized
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Linear Model (GLM). As in Wang and Stufken [2020], we focus on finding
optimal designs for a binary response variable using GLMs in which, besides
factorial effects, a controllable continuous covariate can also effect the response.
We focus on two frequently used link functions: the logistic link and probit
link.

For the scenario described in the previous paragraph, finding an optimal
design is equivalent to selecting combinations for the values and levels of the
covariate and factors, respectively, that are to be used in the experiment. As
noted in Wang and Stufken [2020], an optimal design can improve parameter
estimation for a fixed number of runs or reduce costs to achieve a desired level
of precision. While there are computational approaches to this problem, which
are flexible and useful, theoretical considerations can provide more insight in
the structure of optimal designs. For a model without interactions, Stufken
and Yang [2012] provided an explicit expression for optimal designs under
D-optimality. Then, Tan [2015] obtained smaller D-optimal designs using or-
thogonal arrays (OAs). However, Stufken and Yang [2012] and Tan [2015] are
restricted to models that include all factorial effects up to a certain order.
Wang and Stufken [2020] generalized the results and obtained optimal designs
for models that, for any order, need not include all interactions of that order.

The optimal designs in Wang and Stufken [2020] under an approximate
design approach require the selection of two covariate values in each group
formed by the factorial structure, with all points having equal weight. With a
large number of factors or with some factors that have a large number of levels,
these designs can be quite large. We show that smaller optimal designs can
often be found by using orthogonal arrays. Recall that a N × k array is called
an orthogonal array with s levels and strength t if, for every N×t subarray, all
possible combinations of t symbols occur equally often as a row (Hedayat et al.
[1999]). We denote such an array as OA(N, k, s, t) or OA(N, sk, t) where “sk”
indicates that there are k factors with s levels each. To allow the factors to have
different levels, a slight modification of OA(N, sk, t) defines mixed orthogonal
arrays. A mixed orthogonal array OA(N, sk11 s

k2
2 · · · skvv , t) is a N × k array,

where k = k1 + k2 + · · · + kv is the total number of factors, such that the
first k1 columns have symbols from {1, 2, . . . , s1}, the next k2 columns have
symbols from {1, 2, . . . s2}, and so on, with the property that in any N × t
subarray every possible t-tuple occurs an equal number of times as a row.
We will also write OA(N, s1s2 · · · sk, t) if it is unclear which sl’s are equal.
Tan [2015] already used OAs for finding smaller designs, but was only able
to do this for models that included all factorial effects up to a certain order.
As a result, the required orthogonal arrays needed to be of higher strength,
leading to a smaller reduction in the size of optimal designs. For example, if
a second-order model was under consideration, designs in Tan [2015] would
require the use of strength 4 OAs; if the model includes only some two-factor
interactions, we will see that we may be able to use OAs of strength 2 that
have some additional properties. The latter arrays require, generally, far fewer
runs than the strength 4 arrays, so that fewer groups are needed to build an
optimal designs. Precise results will be presented in Section 3.
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Hedayat [1989] (see also Hedayat [1990]) introduced the concept of strength
t+ OAs. An OA(N, k, s, t+) is an OA(N, k, s, t) that is not of strength t+ 1,
but has one or more subarrays that form an OA(N, k′, s, t + 1). In fractional
factorial experiments, strength t+ OAs can be desirable because they allow
orthogonal estimation of factorial effects for a wider class of models than ar-
bitrary strength t OAs while being more economical than strength t+ 1 OAs.
A similar idea appears in recent work on so called strong OAs (He and Tang
[2013]) for use in computer experiments. The notion of strong OAs of strength
two plus was introduced in He et al. [2018] (see also Zhou and Tang [2019] and
Shi and Tang [2019]). Unlike these authors, who seek properties for strong OAs
that exceed those of strength two without requiring those of strength three,
we do not require the same type of structure that they need for space-filling
properties for their designs.

Under effect sparsity, and supported by subject matter knowledge, it is
plausible that one would have some inkling which interactions, small in num-
ber, might be important. We show that the use of OAs can lead to smaller
optimal designs under such models, which were also studied in Wang and
Stufken [2020]. These models need not include all interactions of a given or-
der. We establish our results by showing that the information matrices for
OA-based designs are equal to those of the larger D-optimal designs obtained
in Wang and Stufken [2020]. In Section 2, we formally present the model and
the structure of the information matrix for the optimal designs as obtained
in Wang and Stufken [2020]. Thereafter, in Section 3, we present the main
results for obtaining smaller D-optimal designs. Subsequently, in Section 4 we
illustrate the theoretical results by using the Electrostatic Discharge (ESD)
failure voltage experiment in Whitman et al. [2006]. We end with a summary
and discussion in the final section.

2 The model and information matrix

For clarity, and since we need to introduce the notation, we now describe the
model considered in Wang and Stufken [2020]. We also present their main
result about optimal designs and the structure of the information matrix for
those optimal designs. In doing so, we refer to experimental units as subjects.
Considering L factors with s1, s2, · · · , sL levels respectively, each subject could
belong to one of s = s1 · s2 · · · sL groups. Further, we assume that the slope
for the continuous covariate in the linear predictor is the same across all of
the groups. The model under consideration can then be written as

Prob(Yi1i2...iLu = 1) = P (α0 + αi11 + · · ·+ αiLL

+
L∑
t=2

∑
(l1,l2,··· ,lt)∈Gt

α
il1 il2 ···ilt
l1l2···lt + βxi1i2···iLu),

(1)

where Yi1i2...iLu is the response from the uth subject in group (i1, i2, · · · , iL),
il = 1, · · · , sl; u = 1, · · · ,Mi1i2···iL , and Mi1i2···iL is the number of subjects in
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group (i1, i2, · · · , iL). Further, P (·) is a cumulative distribution function; α0

is the overall mean, αill is the effect of the ithl level of factor l, α
il1 il2 ···ilt
l1l2···lt is

the effect of the level combination (il1 , il2 , · · · , ilt) for the t-th order effect for
the factors (l1, l2, · · · , lt), t = 2, · · · , L; and Gt is a set of t-tuples representing
the t-th order effects included in the model. Since we take all main effects
to be in the model, we also write G1 = {1, 2, · · · , L}. Moreover, β is the
common slope parameter; and xi1i2···iLu is the covariate value for the uth
subject in group (i1, i2, · · · , iL), which must be in the design region denoted
by [Li1i2···iL , Ui1i2···iL ]. The endpoints Li1i2···iL and Ui1i2···iL can be −∞ or∞,
respectively.

We can also write the model in (1) in vector notation as

Prob(Yi1i2...iLu = 1) = P ((Xi1···iLu)Tθ). (2)

Here θ = (α0,α
T
1 , · · · ,αTL, · · · ,αTl1l2 , · · · ,α

T
l1l2···lt , · · · , β)T , and terms in θ

correspond to those in the model where for any 1 ≤ l1 < · · · < lt ≤ L and t =

1, · · · , L, αl1···lt = (α1···1
l1···lt , · · · , α

1···slt
l1···lt , · · · , α

sl1 ···slt
l1···lt )T . Further, Xi1···iLu =

(1, (Xi1
1 )T , · · · , (XiL

L )T , · · · , (Xil1 il2
l1l2

)T , · · · , (Xil1 il2 ···ilt
l1l2···lt )T , · · · , xi1i2···iLu)T ,

where terms inXi1···iLu correspond again to those in the model andX
il1 il2 ···ilt
l1l2···lt

is a (sl1×· · ·×slt)×1 vector with a 1 in position (il1 , · · · , ilt) and 0’s elsewhere.
While the model is relatively easy to understand as presented, it is overpa-

rameterized. Hence, we follow Wang and Stufken [2020] by introducing a bit
more notation and by reparameterizing the model. Some subjects in the same
group could be assigned to the same covariate value, and we need a notation
for the distinct numbers of covariate values within the groups. We use mi1i2···iL
to denote the distinct number of covariate values used in group (i1, i2, · · · , iL).
Also, let ni1i2···iLj denote the number of subjects in group (i1, i2, · · · , iL) who
are assigned to the jth covariate value in that group, j = 1, · · · ,mi1i2···iL .
With n as the total number of subjects in the experiment, replace ni1i2···iLj/n
by the design weights wi1i2···iLj . Then a design can be written as

ξ = {(Xi1···iLj , wi1i2···iLj), il = 1, ..., sl, l = 1, ..., L, j = 1, ...,mi1i2···iL}.

By allowing the wi1i2···iLj ’s to take any non-negative values that sum to 1,
the design becomes an approximate design, and finding an optimal design no
longer depends on the value of n.

For model (2) with approximate design ξ, the corresponding information
matrix for θ is

Iξ(θ) =

s1∑
i1

· · ·
sL∑
iL

mi1i2···iL∑
j=1

wi1i2···iLjIXi1···iLj (θ), (3)

where IXi1···iLj (θ) is the information matrix for the design that places all
weight on the single design point Xi1···iLj . If interest lies in the estimation of
a function of θ, say g(θ), then the information matrix for g(θ) is

Iξ(g(θ)) = (Σξ(θ))−1 =

((
∂g(θ)

∂θT

)
Iξ(θ)−

(
∂g(θ)

∂θT

)T)−1
. (4)
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For design selection, we focus on D-optimality. A design ξ is called D-
optimal for g(θ) if it minimizes the determinant of the covariance matrix
Σξ(θ), or equivalently, maximizes the determinant of the information matrix
Iξ(g(θ)). Note that Iξ(g(θ)) depends on θ, which is unknown before conducting
the experiment. We therefore consider locally D-optimal designs where θ is
replaced by its best guess in Iξ(g(θ)). The values of these best guesses for θ
are usually based on prior experiments.

Since the model in (2) is overparameterized, we consider a maximal set of
linearly independent estimable functions of θ. D-optimality is invariant under
reparameterization, so that optimal design results are invariant to the choice
of this maximal set. Let g(θ) = Bθ = η denote one particular maximal set.
We will only consider models that contain the overall mean, all of the main
effects, a slope parameter, and some of the two-factor interactions, so that
Gt = ∅ for t ≥ 3. In that case,

r = rank(B) = 1 +
L∑
l=1

(sl − 1) +
∑

(l1,l2)∈G2

(sl1 − 1)(sl2 − 1) + 1. (5)

Additionally, define ci1···iLj = (Xi1···iLj)Tθ, which belongs to the de-
sign region [Di1···iL1, Di1···iL2] induced by the region [Li1i2···iL , Ui1i2···iL ] for
xi1i2···iLj . Then, Lemma 1 provides a locally D-optimal design for η under
models as in (2).

Lemma 1 (Theorem 1 of Wang and Stufken [2020]) For a model of the form
(2) with the logistic or probit link, if {c∗,−c∗} ⊂ [Di1···iL1, Di1···iL2] for all
groups (il, ..., iL), where c∗ > 0 maximizes f(c) = c2(Ψ(c))r on (−∞,∞), the
design ξ∗ = {(ci1···iL1 = c∗, wi1···iL1 = 1

2s ), (ci1···iL2 = −c∗, wi1···iL2 = 1
2s ), il =

1, ..., sl, l = 1, ..., L} is a locally D-optimal design for η . Here s = s1×· · ·×sL
and Ψ(x) is given by

Ψ(x) =

{
ex

(1+ex)2 , for the logistic link
[Φ′(x)]2

Φ(x)(1−Φ(x)) , for the probit link
. (6)

Remark 1 Observe that Lemma 1 requires two support points for each of the
s groups formed by the L factors. Thus, the optimal designs in Lemma 1 have
2s support points. This number becomes quite large if either L or any of the
si’s are large.

Remark 2 Lemma 1 does not only hold for the special case in this paper, but
is valid for general sets Gt. However, as noted in Remark 3, the formula for
the rank r in Wang and Stufken [2020] needs some correction in that case.

Remark 3 The expression for the rank r in (5) is in agreement with that in
Equation (6) of Wang and Stufken [2020], but for the special case that Gt = ∅
for t ≥ 3. However, the general expression in Wang and Stufken [2020] is
incorrect. To correct it, Gt should be replace by Ht as defined in their Equation
(8). For the special case that we consider here, Gt = Ht for all t, so that this
correction makes no difference.
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The reparametrization of model (2) in vector notation (cf. Wang and
Stufken [2020]) is, for the special case that Gt = ∅ for t ≥ 3,

Prob(Yi1i2...iLj = 1) = P ((Zi1···iLj)Tθ1), (7)

with θ1 = (γ0,γ
T
1 , · · · ,γTL , · · · ,γTl1l2 , · · · , β)T , where γl = (γ1l , · · · , γ

sl−1
l )T

and, for (l1, l2) ∈ G2, γl1l2 = (γ11l1l2 , · · · , γ
(sl1−1)(sl2−1)
l1l2

)T . Note that the length

of θ1 is equal to r in (5). Further, we define Zi1···iLj = (1, (Zi1
1 )T , · · · , (ZiL

L )T ,

· · · , (Zil1 il2
l1l2

)T , · · · , xi1i2···iLj)T , where for each factor l,

Zil
l =


(− 1

sl−1 , · · · ,−
1

sl−1 , 1,−
1

sl−1 , · · · ,−
1

sl−1 )T , for 1 ≤ il ≤ sl − 1 and

the 1 is in position il

(− 1
sl−1 , · · · ,−

1
sl−1 )T , for il = sl

and Z
il1 il2
l1l2

= Z
il1
l1
⊗Zil2

l2
, where the notation ⊗ denotes the Kronecker prod-

uct.
With Di1···iLj = (1, (Zi1

1 )T , · · · , (ZiL
L )T , · · · , (Zil1 il2

l1l2
)T , · · · , xi1i2···iLj)T ,

it follows as in Wang and Stufken [2020] that the information matrix for θ1
takes the form A(θ1)Mξ(θ1)AT (θ1) for a matrix A(θ1) that does not depend
on design ξ and with

Mξ(θ1) =

s1∑
i1=1

· · ·
sL∑
iL=1

mi1···iL∑
j=1

wi1···iLjΨ(ci1···iLj)D
i1···iLj(Di1···iLj)T . (8)

Hence, if Mξ1(θ1) = Mξ2(θ1) for designs ξ1 and ξ2, then they have identical
information matrices for θ1. This holds for any link function Ψ(x). For the
logistic or probit link, Wang and Stufken [2020] established Mξ∗(θ1) for their
optimal design ξ∗ from Lemma 1.

Lemma 2 (Lemma 1 of Wang and Stufken [2020]) For the logistic or probit
link, Mξ∗(θ1) is equal to Ψ(c∗) times a block-diagonal matrix with (1) the top-
left element equal to 1; (2) the bottom-right element equal to (c∗)2; (3) the
block corresponding to γTl equal to Bl = 1

(sl−1)2 (slI − J), where J is a matrix

of ones; and (4) the block corresponding to γl1l2 equal to

Bl1l2 = Bl1 ⊗Bl2 .

3 Main results

As observed in Remark 1, the optimal designs ξ∗ in Lemma 1 can have a large
number of support points. Smaller optimal designs can be found, but their
structure depends on the interactions that are present in model (1), that is,
on the sets Gt. As already noted in Section 2, we restrict attention to models
that include the overall mean, all of the main effects, the slope parameter, and
some two-factor interactions. We first present a general result for such a model
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with an arbitrary number of two-factor interactions. The set G2 can be any
set of pairs for this result. We write θ1 = θg1 for the corresponding parameter
vector (see Theorem 1). After presenting results for a few special choices of G2

as corollaries, we present additional results to further reduce the number of
support points for these special choices. For each case, to show that a design
ξ is optimal for a vector θ1, we show that Mξ(θ1) and Mξ∗(θ1) for design ξ∗

in Lemma 2 are identical. We consider the following special cases:

(i) G2 = {(1, 2)}. So, θ1 = θ11, say, contains only one two-factor interaction,
which we have taken without loss of generality to be γ12, besides the overall
mean, main effects and slope parameter (see Corollary 1, Theorems 2 and
3).

(ii) G2 = {(1, 2), (1, 3)}. So, θ1 = θ21, say, contains two two-factor interactions
that have one factor in common (see Corollary 2 and Theorem 4).

(iii) G2 = {(1, 2), (3, 4)}. So, θ1 = θ31, say, contains also two two-factor in-
teractions, but now involving four different factors (see Corollary 3 and
Theorem 5).

We start with the general result, presenting its proof in the Appendix.

Theorem 1 Let c∗ be as in Lemma 1 for model (7) with the logistic or probit
link and with θ1 = θg1 consisting of an overall mean, all main effects, the slope
parameter and two-factor interactions specified by a set G2 of pairs. Define
sets C3 and C4 such that

C3 = {(j1, j2, j3)|1 ≤ j1 < j2 < j3 ≤ L such that at least one of (j1, j2),

(j1, j3) and (j2, j3) is in G2} and

C4 = {(j1, j2, j3, j4)|1 ≤ j1 < j2 < j3 < j4 ≤ L and they can be grouped

into 2 pairs that are both in G2}.

Let H be the collection of rows for an OA(N, s1 · · · sL, 2+) with the prop-
erty that for any triplet (j1, j2, j3) ∈ C3 the corresponding columns in H form
an OA(N, sj1sj2sj3 , 3) and for any quadruplet (j1, j2, j3, j4) ∈ C4 the corre-
sponding columns in H form an OA(N, sj1sj2sj3sj4 , 4). Define

ξg = {(ci1···iL1 = c∗, wi1···iL1 =
1

2N
), (ci1···iL2 = −c∗, wi1···iL2 =

1

2N
),

for all (i1, · · · , iL) ∈ H}.

Then, ξg is D-optimal for θg1.

We emphasize that the optimality result in Theorem 1 requires that c∗ and
−c∗ are in the design regions [Di1···iL1, Di1···iL2] for all groups (i1, · · · , iL) ∈ H.
This is less restrictive than what is needed in Wang and Stufken [2020]. Results
in the next theorems provide even more flexibility, but all cases have the
constraint that the optimality result only holds if the design points are in the
design region. If the design region does not allow the required design structure,
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then an algorithm like that in Lukemire et al. [2019] can be considered to obtain
D-optimal designs.

For special cases with few interactions, we formulate the following corol-
laries of Theorem 1.

Corollary 1 Let c∗ be as in Lemma 1 for model (7) with the logistic or probit
link and with θ1 = θ11, that is, with γ12 as the only interaction effect. Let
H be the collection of rows for an OA(N, s1 · · · sL, 2+) with the property that
columns (1, 2, j), j ≥ 3, form an OA(N, s1s2sj , 3). Define

ξ1 = {(ci1···iL1 = c∗, wi1···iL1 =
1

2N
), (ci1···iL2 = −c∗, wi1···iL2 =

1

2N
),

for all (i1, · · · , iL) ∈ H}.

Then, ξ1 is D-optimal for θ11.

Corollary 2 Let c∗ be as in Lemma 1 for model (7) with the logistic or probit
link and with θ1 = θ21, that is, with γ12 and γ13 as the only two interaction ef-
fects. Let H be the collection of rows for an OA(N, s1 · · · sL, 2+) with the prop-
erty that columns (1, 2, j), j ≥ 3, and (1, 3, j), j ≥ 4, form an OA(N, s1s2sj , 3)
and OA(N, s1s3sj , 3), respectively. Define

ξ2 = {(ci1···iL1 = c∗, wi1···iL1 =
1

2N
), (ci1···iL2 = −c∗, wi1···iL2 =

1

2N
),

(i1, · · · , iL) ∈ H}.

Then ξ2 is D-optimal for θ21.

Corollary 3 Let c∗ be as in Lemma 1 for model (7) with the logistic or probit
link and with θ1 = θ31, that is, with γ12 and γ34 as the only two interaction ef-
fects. Let H be the collection of rows for an OA(N, s1 · · · sL, 2+) with the prop-
erty that columns (1, 2, j) and (3, 4, j), j ≥ 5, form an OA(N, s1s2sj , 3) and
OA(N, s3s4sj , 3), respectively, and that columns (1, 2, 3, 4) form an OA(N, s1s2s3s4, 4).
Define

ξ3 = {(ci1···iL1 = c∗, wi1···iL1 =
1

2N
), (ci1···iL2 = −c∗, wi1···iL2 =

1

2N
),

(i1, · · · , iL) ∈ H}.

Then ξ3 is D-optimal for θ31.

Two other cases are worth mentioning: (i) the model has no interactions,
and (ii) the model includes all two-factor interactions. For (i), both C3 and
C4 are empty, and, based on Theorem 1, any OA of strength 2 is sufficient to
reduce the support size. For (ii), C4 contains all quadruplets, so that Theorem
1 requires an OA of strength 4.

While Theorem 1 identifies D-optimal designs with a reduced support size,
any group with a support point also includes a second support point. The next
theorem shows that this is not always necessary. Its proof can be found in the
Appendix.
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Theorem 2 Let c∗ be as in Lemma 1 for model (7) with the logistic or probit
link and with θ1 = θ11, that is, with γ12 as the only interaction effect. Let H
be the collection of rows for an OA(N, s1 · · · sL21, 2+) with the property that
columns (1, 2, j), 3 ≤ j ≤ L + 1, form an OA(N, s1s2sj , 3). Let H1 and H2

denote the N
2 ×L collections obtained by partitioning the rows in H into those

with final entry equal to 1 and 2, respectively, and then deleting that final entry
from each row. Define

ξ1a ={(ci1···iL = c∗, wi1···iL =
1

N
), for all (i1, · · · , iL) ∈ H1, and

{(ci1···iL = −c∗, wi1···iL =
1

N
), for all (i1, · · · , iL) ∈ H2} .

Then ξ1a is D-optimal for θ11.

Sometimes, it might be difficult to have an additional 2-level column,
whereas an OA might exist with the extra column having an odd number
of levels. If that happens, then an optimal design with less than 2N support
point can be constructed as in the following result.

Theorem 3 Let c∗ be as in Lemma 1 for model (7) with the logistic or probit
link and with θ1 = θ11, that is, with γ12 as the only interaction effect. Let H
be the collection of rows for an OA(N, s1 · · · sL(2u+1)1, 2+) with the property
that columns (1, 2, j), 3 ≤ j ≤ L + 1, form an OA(N, s1s2sj , 3). Denoting
the levels of the last column as 1, 2, . . . , (2u + 1), let H1, H2 and H3 be the
uN

2u+1 ×L, uN
2u+1 ×L and N

2u+1 ×L collections obtained by partitioning the rows
in H into those with final entry in the sets {1, 2, . . . , u}, {u+ 1, u+ 2, . . . , 2u}
and {2u+ 1}, respectively, and then deleting that final entry. Define

ξ1b = {(ci1···iL = c∗, wi1···iL =
1

N
), (i1, · · · , iL) ∈ H1} ∪

{(ci1···iL = −c∗, wi1···iL =
1

N
), (i1, · · · , iL) ∈ H2} ∪

{(ci1···iL1 = c∗, wi1···iL1 =
1

2N
), (ci1···iL2 = −c∗, wi1···iL2 =

1

2N
),

(i1, · · · , iL) ∈ H3} .

Then ξ1b is D-optimal for θ11.

Theorem 2 provides optimal designs with N support points for the special
case of θ1 = θ11. Similarly, the following two theorems provide smaller optimal
designs with N support points for the special cases of θ1 = θ21 and θ1 = θ31.
Proofs of these are omitted since they follow along the same lines as the proof
of Theorem 2.

Theorem 4 Let c∗ be as in Lemma 1 for model (7) with the logistic or probit
link and with θ1 = θ21. Let H be the collection of rows for an OA(N, s1 · · · sL21, 2+)
with the property that columns (1, 2, j), 3 ≤ j ≤ L + 1, and (1, 3, j), 4 ≤ j ≤
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l+ 1, form an OA(N, s1s2sj , 3) and an OA(N, s1s3sj , 3), respectively. Let H1

and H2 denote the N
2 × L collections obtained by partitioning the rows in H

into those with final entry equal to 1 and 2, respectively, and then deleting that
final entry from each row. Define

ξ2a ={(ci1···iL = c∗, wi1···iL =
1

N
), for all (i1, · · · , iL) ∈ H1, and

(ci1···iL = −c∗, wi1···iL =
1

N
), for all (i1, · · · , iL) ∈ H2} .

Then ξ2a is D-optimal for θ21.

Theorem 5 Let c∗ be as in Lemma 1 for model (7) with the logistic or probit
link and with θ1 = θ31. Let H be the collection of rows for an OA(N, s1 · · · sL21, 2+)
with the property that columns (1, 2, j) and (3, 4, j), 5 ≤ j ≤ L + 1, form an
OA(N, s1s2sj , 3) and OA(N, s3s4sj , 3), respectively, and the columns (1, 2, 3, 4)
form an OA(N, s1s2s3s4, 4). Let H1 and H2 denote the N

2 × L collections ob-
tained by partitioning the rows in H into those with final entry equal to 1 and
2, respectively, and then deleting that final entry from each row. Define

ξ3a = {(ci1···iL = c∗, wi1···iL =
1

N
), for all (i1, · · · , iL) ∈ H1, and

(ci1···iL = −c∗, wi1···iL =
1

N
), for all (i1, · · · , iL) ∈ H2}.

Then ξ3a is D-optimal for θ31.

When an OA with the additional two-level factor as needed in Theorems 4
and 5 does not exist, one may consider whether adding a factor with an odd
number of levels is possible. Results along the line of Theorem 3 can then be
obtained as expansions of Theorems 4 and 5. Details are omitted here.

4 An Illustrative Example

For the example studied by Wang and Stufken [2020], using results obtained
in Section 3, we now obtain optimal designs that are smaller than the ones in
Wang and Stufken [2020]. The study assesses the effect of four factors and a
covariate on the failure rate of semiconductors when exposed to electrostatic
discharge (ESD). Since the response variable is binary, the study, originally
reported in Whitman et al. [2006], uses a logistic model. The four two-level
factors are:

(i) Lot A (Location 1 or Location 2),
(ii) Lot B (Location 1 or Location 2),

(iii) ESD Handling (No or Yes), and
(iv) Pulse Polarity (Negative or Positive).
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The continuous covariate is the voltage used to test a wafer and the binary
response variable is pass or fail for a wafer. Taking the factor levels as 1 and
−1 and denoting them by x1 through x4 (in the order listed above), with p
and x denoting the probability of a wafer passing the test and the voltage,
respectively, the model that was used is

logit(p) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β34x3x4 + β5x. (9)

Thus, the linear predictor includes an interaction term, and G2 = {(3, 4)}. We
take θ1 = (β0, β1, β2, β3, β4, β34, β5). While this model is a reparameterization
of a model used for the theoretical results, D-optimality is invariant to this.
Since G2 contains only one interaction, Theorems 1 through 3 are applicable
provided that the required orthogonal arrays exist.

The original experimenter used a full factorial design in the four factors,
and ran each combination at 5 voltage levels: 25, 30, 35, 40 and 45 Volt.
This resulted in 24 × 5 = 80 runs. No discussion about reasons for selecting
the voltage range as [25, 45] or for selecting 5 levels was provided. Therefore,
following Wang and Stufken [2020], we continue to treat voltage as a continuous
covariate that is not necessarily restricted to the range used in the experiment.

To find locally D-optimal designs, we use a guess for the parameter vector
θ1 given by (−7.50, 1.50,−0.20,−0.15, 0.25, 0.40, 0.35)T as in Lukemire et al.
[2019] and Wang and Stufken [2020]. This is based on estimates from the
original study. The D-optimal design reported in Wang and Stufken [2020]
with 32 runs uses two support points in each group corresponding to a full
factorial in four factors. For convenience, this design is given in Table 1.

Table 1 D-optimal design for the ESD experiment using a full factorial.

x1 x2 x3 x4 Volt1 Volt2 x1 x2 x3 x4 Volt1 Volt2

-1 -1 -1 -1 22.07 26.50 1 -1 -1 -1 13.50 17.93
-1 -1 -1 1 22.93 27.36 1 -1 -1 1 14.36 18.78
-1 -1 1 -1 25.22 29.64 1 -1 1 -1 16.64 21.07
-1 -1 1 1 21.50 25.93 1 -1 1 1 12.93 17.36
-1 1 -1 -1 23.22 27.64 1 1 -1 -1 14.64 19.07
-1 1 -1 1 24.07 28.50 1 1 -1 1 15.50 19.93
-1 1 1 -1 26.36 30.78 1 1 1 -1 17.79 22.21
-1 1 1 1 22.64 27.07 1 1 1 1 14.07 18.50

Corollary 1 gives a smaller D-optimal design that requires only 16 sup-
port points, whereas Theorem 2 gives a D-optimal design with only 8 support
points. These two designs are given in the left and right panel of Table 2,
respectively. For each design, all support points have the same weight. To pro-
duce an 80-run design as reported in the original study, we can simply use each
of the support points multiple times. In terms of structure, these designs are
much simpler. They also allow pure error estimates. But there is a trade-off
because the smaller designs are not robust to model-misspecification.
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Table 2 Smaller D-optimal designs for the ESD experiment using orthogonal arrays.

LotA LotB ESD Pulse Volt1 Volt2

-1 -1 1 -1 25.22 29.64
-1 -1 1 1 21.50 25.93
-1 1 -1 -1 23.22 27.64
-1 1 -1 1 24.07 28.50
1 -1 -1 -1 13.50 17.93
1 -1 -1 1 14.36 18.78
1 1 1 -1 17.79 22.21
1 1 1 1 14.07 18.50

LotA LotB ESD Pulse Volt

-1 -1 1 -1 29.64
-1 -1 1 1 21.50
-1 1 -1 -1 27.64
-1 1 -1 1 24.07
1 -1 -1 -1 13.50
1 -1 -1 1 18.78
1 1 1 -1 17.79
1 1 1 1 18.50

Using approximate designs again, the D-efficiency of the design used in the
study, ξ0, relative to any of the optimal design, such as ξ∗ in Table 1, can be
computed as

RE(ξ0) =
[det(Iξ0)

det(Iξ∗)

]1/p
, (10)

where p = 7 is the number of parameters in the model. We find that RE(ξ0) =
24.22%, suggesting that an optimal design is more than four times as efficient
as the design that was used.

5 Summary and Discussion

Even though GLMs with factorial effects have been widely used in many re-
search areas, limited results exist on optimal designs. In this paper, we pro-
posed theorems to obtain smaller D-optimal designs for models with the overall
mean, all the main effects, a slope parameter, and some or all two-factor inter-
actions using strength 2+ orthogonal arrays. The theoretical results provide
great insight into the structure of families of D-optimal designs, irrespective
of the number of factors and their levels. The usefulness of our theorems has
been demonstrated through a real-life example. The results indicate that the
designs based on the proposed theorems are not only more efficient than the
original design but require far fewer support points (the three designs we ob-
tained required 32, 16, and 8 support points, respectively, compared to 80
support points in the original design).

The results in this paper would require knowledge about the existence of
OAs of strength 2+ and their construction. There are special cases where such
results are readily available, such as when the required OAs are regular OAs
that have a defining relation. For example, for the 25−2 fraction I = ABCD =
ABE = CDE of strength 2, with respect to factors A, C and any third factor,
the array has strength 3. This is precisely the type of condition that we need
in some of the results in Section 3. If C4 in Theorem 1 is not empty, then we
need a requirement that certain two-factor interactions are not aliased with
each other. This will be satisfied for clear two-factor interactions (cf. Chen and
Hedayat [1998] and Wu et al. [2012]), but that is a stronger requirement than
needed here.
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Finally, while the theoretical results provide insight into the desired struc-
ture of D-optimal designs, when the values of c∗ or −c∗ are not within the
design region for groups where they are needed, it may be necessary to search
for D-optimal designs by using an algorithm such as in Lukemire et al. [2019].
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Appendix

Proof of Theorem 1. From Equation (8), we have that

Mξg (θg1) =
1

2N
Ψ(c∗)

∑
(i1,··· ,iL)∈H

2∑
j=1

Di1···iLj(Di1···iLj)T ,

where, for any (i1, · · · , iL) ∈ H, the matrix Di1···iLj(Di1···iLj)T is



1 (Zi1
1 )T · · · (ZiL

L )T · · · (Z
il1 il2
l1l2

)T · · · ci1···iLj

Zi1
1 (Zi1

1 )T · · · Zi1
1 (ZiL

L )T · · · Zi1
1 (Z

il1 il2
l1l2

)T · · · ci1···iLjZ
i1
1

. . .
...

...
...

ZiL
L (ZiL

L )T · · · ZiL
L (Z

il1 il2
l1l2

)T · · · ci1···iLjZ
iL
L

. . .
...

...

Z
il1 il2
l1l2

(Z
il1 il2
l1l2

)T · · · ci1···iLjZ
il1 il2
l1l2

. . .
...

c2i1···iLj


Since H has N rows, the top-left element of Mξg (θg1) is

1

2N
Ψ(c∗)

∑
(i1,··· ,iL)∈H

2∑
j=1

1 = Ψ(c∗),

while the bottom-right element is

1

2N
Ψ(c∗)

∑
(i1,··· ,iL)∈H

2∑
j=1

(c∗)2 = (c∗)2Ψ(c∗).

All other elements in the last column of Mξg (θg1) are 0 because each cell
has c-values c∗ and −c∗ with equal weights.

Other off-diagonal blocks in Di1···iLj(Di1···iLj)T are of the form (Zil
l )T ,

(Z
il1 il2
l1l2

)T , Z
il1
l1

(Z
il2
l2

)T for l1 6= l2, Zil
l (Z

il1 il2
l1l2

)T , (Z
il1 il2
l1l2

)(Z
il3 il4
l3l4

)T for
(l1, l2) 6= (l3, l4), or their transposes. Considering what this means for Mξg (θg1),

first, from the definition of Zil
l and since each level of factor l appears equally

often, we see that

1

2N
Ψ(c∗)

∑
(i1,··· ,iL)∈H

2∑
j=1

(Zil
l )T =

1

2N
Ψ(c∗)

2N

sl

sl∑
il=1

(Zil
l )T = 0T .
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Now, corresponding to (Z
il1 il2
l1l2

)T , since all level combinations for any two
factors (l1, l2) appear equally often, we have

1

2N
Ψ(c∗)

∑
(i1,··· ,iL)∈H

2∑
j=1

(Z
il1 il2
l1l2

)T

=
1

2N
Ψ(c∗)

2N

sl1sl2

sl1∑
il1=1

sl2∑
il2=1

(Z
il1
l1
⊗Zil2

l2
)T

=
1

2N
Ψ(c∗)

2N

sl1sl2

sl1∑
il1=1

(Z
il1
l1
⊗

sl2∑
il2=1

Z
il2
l2

)T = 0.

Next, using that the elements of H form an OA of strength 2 and that
l1 6= l2,

1

2N
Ψ(c∗)

∑
(i1,··· ,iL)∈H

2∑
j=1

Z
il1
l1

(Z
il2
l2

)T

=
1

2N
Ψ(c∗)

2N

sl1sl2

 sl1∑
il1=1

Z
il1
l1

 sl2∑
il2=1

(Z
il2
l2

)T

 = 0.

Further, if l = l1, again using that the elements of H form an OA of strength
2,

1

2N
Ψ(c∗)

∑
(i1,··· ,iL)∈H

2∑
j=1

Zil
l (Z

il1 il2
l1l2

)T

=
1

2N
Ψ(c∗)

2N

sl1sl2

sl1∑
il1=1

sl2∑
il2=1

Z
il1
l1

(Z
il1
l1
⊗Zil2

l2
)T

=
1

2N
Ψ(c∗)

2N

sl1sl2

sl1∑
il1=1

Z
il1
l1

(Z
il1
l1
⊗ (

sl2∑
il2=1

Z
il2
l2

))T = 0.

A similar argument applies for l = l2. If l 6= l1 and l 6= l2, then

1

2N
Ψ(c∗)

∑
(i1,··· ,iL)∈H

2∑
j=1

Zil
l (Z

il1 il2
l1l2

)T

=
1

2N
Ψ(c∗)

2N

sl1sl2sl

sl1∑
il1=1

sl2∑
il2=1

(
sl∑
il=1

Zil
l

)
(Z

il1 il2
l1l2

)T = 0,

where we have used that (l, l1, l2) ∈ C3 and H is an OA of strength 3 for such
a set of 3 columns.

Finally, for the off-diagonal blocks corresponding to (Z
il1 il2
l1l2

)(Z
il3 il4
l3l4

)T for
(l1, l2) 6= (l3, l4), we could have two situations: the two interactions have one
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factor in common, say l1 = l3 (and l2 6= l4), or they represent four different
factors. Looking at the first case, we have

1

2N
Ψ(c∗)

∑
(i1,··· ,iL)∈H

2∑
j=1

(Z
il1 il2
l1l2

)(Z
il3 il4
l3l4

)T

=
1

2N
Ψ(c∗)

2N

sl1sl2sl4

sl1∑
il1=1

sl2∑
il2=1

sl4∑
il4=1

(Z
il1
l1

⊗Z
il2
l2

)(Z
il1
l1

⊗Z
il4
l4

)T

=
1

2N
Ψ(c∗)

2N

sl1sl2sl4

sl1∑
il1=1

sl2∑
il2=1

(Z
il1
l1

⊗Z
il2
l2

)(Z
il1
l1
⊗

sl4∑
il4=1

Z
il4
l4

)T = 0,

where we have used that (l1, l2, l4) ∈ C3 and H is an OA of strength 3 for such
a set of 3 columns.

For the second case, with no common factors, (l1, l2, l3, l4) ∈ C4 and H is
an OA of strength 4 for such a set of factors. Hence,

1

2N
Ψ(c∗)

∑
(i1,··· ,iL)∈H

2∑
j=1

(Z
il1 il2
l1l2

)(Z
il3 il4
l3l4

)T

=
1

2N
Ψ(c∗)

2N

sl1sl2sl3sl4

sl1∑
il1=1

sl2∑
il2=1

sl3∑
il3=1

sl4∑
il4=1

(Z
il1
l1

⊗Z
il2
l2

)(Z
il3
l3

⊗Z
il4
l4

)T

=
1

2N
Ψ(c∗)

2N

sl1sl2sl3sl4

sl1∑
il1=1

sl2∑
il2=1

sl3∑
il3=1

(Z
il1
l1

⊗Z
il2
l2

)(Z
il3
l3
⊗

sl4∑
il4=1

Z
il4
l4

)T = 0.

For a diagonal block of Mξg (θg1) that corresponds to a main effect, say for
factor l, we obtain

1

2N
Ψ(c∗)

∑
(i1,··· ,iL)∈H

2∑
j=1

Zil
l (Zil

l )T =
Ψ(c∗)

sl

sl∑
il=1

Zil
l (Zil

l )T = Ψ(c∗)Bl,

where Bl = 1
(sl−1)2 (slI−J). The first equality follows since every level of factor

l comes N/sl times. The second equality follows as in the proof of Lemma 1
in Wang and Stufken [2020].

For a diagonal block of Mξg (θg1) that corresponds to a two-factor interac-
tion, say for factors (l1, l2), we get

=
1

2N
Ψ(c∗)

∑
(i1,··· ,iL)∈H

2∑
j=1

Z
il1 il2
l1l2

(Z
il1 il2
l1l2

)T

=
1

2N
Ψ(c∗)

2N

sl1sl2

sl1∑
il1=1

sl2∑
il2=1

Z
il1 il2
l1l2

(Z
il1 il2
l1l2

)T

=
1

2N
Ψ(c∗)

2N

sl1sl2
(sl1 ·Bl1)⊗ (sl2 ·Bl2) = Ψ(c∗)(Bl1 ⊗Bl2),
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where the penultimate equality follows as in Wang and Stufken [2020].
Combined, the previous steps show that Mξg (θg1) is identical to Mξ∗(θ

g
1)

in Lemma 2, so that ξg is also D-optimal for θg1 .

Proof of Theorem 2. As in the proof of Theorem 1, we now need to show
that Mξ1a(θ11) is the same as Mξ∗(θ

1
1) in Lemma 2. Since H is an OA as in

Corollary 1, our work is simplified. Only the entries in Mξ1a(θ11) that depend
on the c-values need verification. In other words, we only need to consider the
last column in Mξ1a(θ11).

First, the bottom-right diagonal element in Mξ1a(θ11) is

1

N
Ψ(c∗)

∑
(i1,··· ,iL)∈H1∪H2

(c∗)2 = (c∗)2Ψ(c∗).

Further, for the entry in the final column of Mξ1a(θ11) that corresponds to
the main effect of factor l, using Equation (8), we get∑
(i1,··· ,iL)∈H1

wi1···iLΨ(ci1···iL)ci1···iLZ
il
l +

∑
(i1,··· ,iL)∈H2

wi1···iLΨ(ci1···iL)ci1···iLZ
il
l

=
1

N
Ψ(c∗)

N

2sl

(
sl∑
il=1

c∗Zil
l −

sl∑
il=1

c∗Zil
l

)
= 0.

The first equality follows because every level of factor l appears equally often
in both H1 and H2.

The only other entry in the final column of Mξ1a(θ11) corresponds to the
interaction of factors 1 and 2. Because H is an orthogonal array of strength
3 for factors 1, 2 and the additional 2-level column (the (L+ 1)st column), it
follows that every level combination (i1, i2) for the first two factors appears
equally often in H1 and H2. Hence,∑
(i1,··· ,iL)∈H1

wi1···iLΨ(ci1···iL)ci1···iLZ
i1i2
12 +

∑
(i1,··· ,iL)∈H2

wi1···iLΨ(ci1···iL)ci1···iLZ
i1i2
12

=
1

N
Ψ(c∗)

(
N

2s1s2

) s1∑
i1=1

s2∑
i2=1

(c∗Zi1i2
12 − c∗Zi1i2

12 ) = 0.

Therefore, all entries in the last column of Mξ1a(θ11) are also equal to those of
Mξ∗(θ

1
1). This concludes the proof.

Proof of Theorem 3. As in the proof of Theorem 2, it suffices to verify that
entries in the final column of Mξ1b(θ11)) are equal to those in Mξ∗(θ

1
1) in

Lemma 2. For the bottom-right diagonal element in Mξ1b , using Equation (8),
we get

Ψ(c∗)

(
1

N

∑
(i1,··· ,iL)∈H1

(c∗)2 +
1

N

∑
(i1,··· ,iL)∈H2

(c∗)2 +
1

2N

∑
(i1,··· ,iL)∈H3

2∑
j=1

(c∗)2
)

= (c∗)2Ψ(c∗),
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by counting the sizes of the Hi’s.
Further, for the entry in the final column of Mξ1b(θ11) that corresponds to

the main effect of factor l, we get

Ψ(c∗)
1

N

(
uN

(2u+ 1)sl

) sl∑
il=1

(c∗Zil
l − c

∗Zil
l )

+ Ψ(c∗)
1

2N

(
N

(2u+ 1)sl

) sl∑
il=1

(c∗Zil
l − c

∗Zil
l ) = 0,

where we have used that each level of factor l appears uN
(2u+1)sl

times in each

of H1 and H2 and N
(2u+1)sl

times in H3.

The only other entry in the final column of Mξ1b(θ11) corresponds to the
interaction of factors 1 and 2. Because H is an orthogonal array of strength 3
for factors 1, 2 and the additional (2u+1)-level column (the (L+1)st column),
it follows that every level combination (i1, i2) for the first two factors appears

Nu
(2u+1)s1s2

times in each of H1 and H2 and N
(2u+1)s1s2

times in H3. Using

Equation 8, we obtain that the final entry in the final column is equal to

Ψ(c∗)
1

N

(
uN

(2u+ 1)s1s2

) s1∑
i1=1

s2∑
i2=1

(
c∗Zi1i2

12 − c∗Zi1i2
12

)
+ Ψ(c∗)

1

2N

(
N

(2u+ 1)s1s2

) s1∑
i1=1

s2∑
i2=1

(
c∗Zi1i2

12 − c∗Zi1i2
12

)
= 0.

Therefore, all entries in the last column of Mξ1b(θ11) are also equal to those of
Mξ∗(θ

1
1). This concludes the proof.
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