Received: 3 August 2020

'.) Check for updates

Accepted: 1 March 2021

DOI: 10.1111/bjet.13079

ORIGINAL MANUSCRIPT

British Journal of
Educational Technology

Debugging by design: A constructionist
approach to high school students' crafting and
coding of electronic textiles as failure artefacts

Deborah A. Fields'

| Yasmin B. Kafai?® |

Luis Morales-Navarro? | Justice T. Walker®

"Instructional Technology and Learning
Sciences, Utah State University, Logan,
UT, USA

zTeaching, Learning, and Leadership
Division, University of Pennsylvania,
Philadelphia, PA, USA

3Teacher Education, University of Texas, El
Paso, TX, USA

Correspondence
Deborah A. Fields, Utah State University,

2830 Old Main Hill, Logan, UT 84322, USA.

Email: deborah.fields@usu.edu

Funding information
National Science Foundation, Grant/Award
Number: 1742140

© 2021 British Educational Research Association

Abstract

Much attention in constructionism has focused on
designing tools and activities that support learners
in designing fully finished and functional applications
and artefacts to be shared with others. But helping
students learn to debug their applications often takes
on a surprisingly more instructionist stance by giving
them checklists, teaching them strategies or provid-
ing them with test programmes. The idea of designing
bugs for learning—or debugging by design—makes
learners agents of their own learning and, more im-
portantly, of making and solving mistakes. In this
paper, we report on our implementation of ‘Debugging
by Design’ activities in a high school classroom over
a period of 8 hours as part of an electronic textiles
unit. Students were tasked to craft the electronic tex-
tile artefacts with problems or bugs for their peers to
solve. Drawing on observations and interviews, we
answer the following research questions: (1) How did
students participate in making bugs for others? (2)
What did students gain from designing and solving
bugs for others? In the discussion, we address the
opportunities and challenges that designing person-
ally and socially meaningful failure artefacts provides

EaBERA

Br J Educ Technol. 2021;00:1-15.

wileyonlinelibrary.com/journal/bjet

1

www.wileyonlinelibrary.com/journal/bjet
mailto:﻿
https://orcid.org/0000-0003-1627-9512
https://orcid.org/0000-0003-4018-0491
https://orcid.org/0000-0002-4356-0396
mailto:deborah.fields@usu.edu
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fbjet.13079&domain=pdf&date_stamp=2021-03-31

British Journal of
2 Educational Technology FIELDS ET AL.

for becoming objects-to-think-with and objects-to-
share-with in student learning and promoting new
directions in constructionism.

KEYWORDS

computer science education, debugging, e-textiles, physical
computing, productive failure

Practitioner notes

What is already known about this topic

» There is substantial evidence for the benefits of learning programming and de-
bugging in the context of constructing personally relevant and complex artefacts,
including electronic textiles.

» Related, work on productive failure has demonstrated that providing learners with
strategically difficult problems (in which they ‘fail’) equips them to better handle
subsequent challenges.

What this paper adds

* In this paper, we argue that designing bugs or ‘failure artefacts’ is as much a con-
structionist approach to learning as is designing fully functional artefacts.

* We consider how ‘failure artefacts’ can be both objects-to-learn-with and
objects-to-share-with.

» We introduce the concept of ‘Debugging by Design’ (DbD) as a means to expand
application of constructionism to the context of developing ‘failure artifacts’.

Implications for practice and/or policy

* We conceptualise a new way to enable and empower students in debugging—by
designing creative, multimodal buggy projects for others to solve.

» The DbD approach may support students in near-transfer of debugging and the
beginning of a more systematic approach to debugging in later projects and should
be explored in other domains beyond e-textiles.

* New studies should explore learning, design and teaching that empower students
to design bugs in projects in mischievous and creative ways.

INTRODUCTION

Much attention in constructionism has focused on designing tools and activities that support
learners as creators of fully finished and functional artefacts or applications—games, sto-
ries, robots or sandcastles—to be shared with others (Papert, 1991). Prior studies provide
substantial evidence for the benefits of learning programming in this context: constructing
personally relevant and complex applications rather than in writing short pieces of code or
solving classic code puzzles (Harel & Papert, 1990; Kafai & Burke, 2014). However, less at-
tention in constructionism has been paid to the potential of learners as creators of personal-
ised failure artefacts when the constructed applications have deliberate bugs or mistakes in
them that need fixing. Furthermore, failure artefacts can also incorporate the constructionist
priority of an authentic audience, if they are shared with others that engage in fixing the bugs
to make the artefacts fully functional. While this approach provides a different perspective

DEBUGGING BY DESIGN Educational Tachnology | 3

on constructionist learning, it makes equally transparent functions and structures of compu-
tational designs.

We argue that designing failure by intentionally including mistakes or bugs can be as much
a constructionist approach to learning as is designing fully functional artefacts. Drawing on
constructionist philosophy (eg, Papert, 1980) we build on a long-standing tradition of putting
learners in control of their own learning by designing applications for others (Harel & Papert,
1990; Kafai, 1995). We propose having learners intentionally design buggy (rather than func-
tional) computational artefacts for their peers to fix. The idea of designing buggy artefacts for
learning—or ‘Debugging by Design’ (DbD)—builds on two core principles of construction-
ism that artefacts of learning are (1) objects-to-think-with (Papert, 1980) and (2) objects-to-
share-with others (Kafai & Burke, 2014). DbD also provides students with control over bugs, a
contrast to school cultures where failure can be a very negative experience rather than a pro-
ductive one (eg, Dahn & DeLiema, 2020). In the context of designing projects with mistakes,
DbD brings both consideration of audience and student control over design of mistakes.

In this paper, we explore the feasibility of DbD for learning and teaching about debugging
in classrooms in which students created and then, exchanged and solved buggy electronic
textiles projects. A physical computing activity, electronic textiles (e-textiles) involve stitch-
ing circuits with conductive thread to connect sensors and actuators to microcontrollers
(Buechley et al., 2013) and provide multiple opportunities for bugs across modalities of hard-
ware and software (Resnick et al., 2000). We implemented DbD over a period of 8 hours
within an introductory high school computing class with 25 consenting ninth grade students
(ages 14—15) in the United States. Since this was our very first exploration of the DbD unit,
we sought to understand: (1) How did students participate in making bugs for others? (What
did they create; what unexpected directions did they take; what challenges did they face in
the process?) To answer this first question we conducted close video analysis of four case
studies of student teams participating in DbD, documenting their step-by-step design, cre-
ation and solving of buggy projects. (2) What did students perceive as gains from designing
and solving bugs for others? (How did students feel about the experience afterward; what
benefits did they see?) To answer the second question, we analysed the individual reflec-
tions written immediately after the DbD unit and focus group interviews conducted a few
weeks after the unit was complete. In the discussion, we address how debugging by design
provides a new perspective on artefact construction and constructionist learning.

BACKGROUND

Debugging skills are difficult to develop. When students create complex applications, they
often make errors—or bugs—of various types which hinder their programme completion.
These bugs can range from simple syntactic problems such as forgetting commas or making
typos to more complex challenges that involve dealing with thorny run-time errors or logic
design (eg, McCauley et al., 2008). Designing activities and tools that support students in
these challenges are important because debugging requires not just considerable technical
skills and programme understanding but also emotional intelligence and perseverance (eg,
Patil & Codner, 2007). However, helping students learn to debug often takes on a surprisingly
instructionist stance by giving them checklists, teaching them strategies or providing them
with test programmes or buggy programmes to fix (eg, Prather et al., 2019). Furthermore,
debugging is often done with small, isolated bugs (ibid.), which while effective in demonstrat-
ing specific techniques, miss the challenges that occur in open-ended projects, the latter a
hallmark of constructionist activities.

In the design of our DbD approach, we addressed these challenges in multiple ways. First,
we adopted a more positive stance towards debugging: bugs became an intentional feature of

British Journal of
4 | Educational Technology FIELDS ET AL.

the learning product rather than an accidental stumbling block. This stance is inspired by the
‘productive failure’ instructional approach (Kapur, 2008), whereat learners performed better
on subsequent tasks after first engaging with more difficult ill-structured tasks, in part, be-
cause they had developed problem-solving strategies that could be leveraged, or transferred,
to solve future problems. While much of the extensive research on productive failure focuses
on identifying which dimensions are most productive for which students and under what con-
ditions (Kapur & Bielaczyc, 2012), it is often limited to failure in the context of well-structured
canonical problems. Our DbD approach differs from classic productive failure by encouraging
more open-ended, creative bug design. Further it focuses on bugs within whole, aesthetically
motivated projects rather than on individual, isolated bugs. This draws on the constructionist
ethos of personally driven projects and provides students with extra motivation to persist in
problem solving and troubleshooting (Dahn & DeLiema, 2020; Hughes et al., 2019).

Second, we situated DbD in a nontraditional area for computing education: physical com-
puting, namely e-textiles. In e-textiles, multiple bugs often co-occur in students’ designs,
presenting across on-screen and off-screen modalities (eg, within and across circuitry, craft-
ing and coding). This creates challenging situations for students seeking to isolate, identify
and fix problems (Searle et al., 2018). Debugging e-textile projects thus presents a particular
opportunity to consider buggy projects as objects-to-think-with in their own rite, with multiple
debugging challenges in a single design (eg, Maltese et al., 2018). These intersecting fail-
ures provide within-task feedback that supports the generation of a wide array of successful
and unsuccessful solutions. The task of making a buggy project functional provides a prac-
tical means of constructing knowledge about debugging strategies.

Third, we put learners (rather than teachers or researchers) in charge of creating
productive—and personally meaningful—failure projects. Earlier studies have demonstrated
the rich learning opportunities researcher-designed problem artefacts in physical computing
contexts offer. For instance, Sullivan (2008) presented students with a carefully designed set
of robotics dilemmas and examined students’ intricate inquiry skills. Others have developed
e-textile problem sets for students to solve collaboratively as a means to assess student
knowledge and skills (eg, Fields et al., 2016; Jayathirtha et al., 2020). While these studies
have revealed the utility of solving bugs as assessments and explorations of student think-
ing, the control of bug design was always in the hands of researchers. Building on previous
constructionist approaches where students became instructional software designers (Harel
& Papert, 1991), we turned students into instructional bug designers and encouraged cre-
ativity and personal expression in their designs.

As such the Debuglts—our name for the failure artefacts—became objects-to-think-with
as students contemplated what kind of bugs and where to include them, as well as objects-
to-share-with as students considered those who would find and solve the bugs. With stu-
dents free to design their e-textiles, we expected variety in the kind of Debuglt artefacts as
well as in the type, location, combination and intentions of bugs, challenging both the bug
designers and debuggers. Furthermore, we were interested in exploring the emotional side
of failure artefacts. What students designed, how they went about those designs, and what
they felt they learned from the whole process is the focus of this exploratory study.

MATERIALS AND METHODS
Participants
The participating class was located in a high school in a large metropolitan area in the

southwestern United States. This ninth grade (primarily ages 14—15) introductory computing
class included 25 consenting students (out of 26 students total): 11 girls and 14 boys aged

DEBUGGING BY DESIGN Educational Tachnology | s

14—18 years old: 72% speaking languages other than English at home, 80% with no prior
computer science experience and 20% with no family members with college experience.
The class was racially diverse, with 48% Latino, 36% Asian American/Pacific Islander, 8%
White, 4% Other and 4% race not reported. The teacher (Ben) had 3 years of experience
teaching the e-textile unit and helped co-develop DbD. Students were assigned to 12 groups
(2 groups of 3 students and 10 groups of 2 students). From the class, four collaborative
groups were selected by the teacher for further study in order to represent a range of student
interaction and performance: two groups of two and two groups of three.

Debugging by design context

The DbD unit was situated about three-fourths of the way through the e-textiles unit of
Exploring Computer Science (ECS), a year-long, equity-focused and inquiry-based course
providing an introduction to computing (Goode et al., 2012; http://exploringcs.org/e-textiles).
The e-textiles unit lasted 12 weeks and consisted of a series of four projects that allow
increasing flexibility in design and personalisation while learning challenging new techni-
cal skills: (1) a paper-card using a simple circuit, (2) a wristband with a parallel circuit, (3) a
classroom-wide collaborative mural project that incorporated switches to computationally
create light patterns and (4) a project that used handmade sensors to create lighting effects.

The DbD unit took place over eight, 50-minute long class periods between projects 3 and
4 (see Table 1 for the DbD timeline). The student-designed Debuglts had to contain at least
six bugs, including two coding bugs, with one undetectable by the Arduino compiler. This
latter constraint helped students to move beyond simple syntax problems in their designs.
Debuglts also had to involve either a switch or a sensor to ensure a level of coding challenge
with conditionals and functions. Finally, students had to include a description of how the
project should function when fixed. This allowed for the inclusion of design errors (or ‘inten-
tion errors’ as the class named them) where a project might function but not as desired. The
final Debuglt design included: a list of problems and solutions, a circuit design showing any
circuitry errors, code and a statement of how the Debuglt should work.

The design of the DbD unit has several characteristics: First, it was situated in the latter
half of the larger e-textile unit, allowing students to build on earlier bug experiences in de-
signing their Debuglts and to apply their DbD experiences on their final projects. Second,
the unit began with group discussions where students named problems that had come up
in their own previous designs and categorised these problems. This promoted class-wide
transparency of problems across students' prior projects. Third, students received teacher
approval on their Debuglt designs before they could construct them. The approval process
enabled the teacher to challenge students to either make problems more interesting and
creative or consider whether the problems they created were potentially solvable within a
single class period. In other words, students received feedback on both the difficulty level
and number of problems they introduced. Fourth, after students exchanged and solved each
other's problems, they presented their solutions to the class, letting the designers see to
what degree and how their peers had solved the designed problems. Finally, the class par-
ticipated in reflective journaling and discussion about how they felt designing and solving
Debuglts and the kinds of strategies they employed in solving problems.

Data collection and analysis

Data for our analyses were drawn from daily observations (field notes and videos, including
cameras on each of four case study groups), recorded teacher reflections during the DbD

http://exploringcs.org/e-textiles

British Journal of
6 Educational Technology FIELDS ET AL.

TABLE 1 Debugging by design unit

Class 1 ‘Hall of Problems’: As partners then as a whole class, students list e-
textile problems. Then they categorised these problems into groups,
which are written on posters on the classroom walls.

Class 2 Debuglt Design: Students plan their Debuglts, turning in a list of
problems with solutions as well as a circuit diagram showing any
circuitry bugs. Designs had to be approved by the teacher. Most
groups revised their designs after teacher feedback, which continued

into Class 3

Classes 3-5 Debuglt Construction: After receiving teacher approval on their
design, students created their Debuglts, sewing and coding their
projects

Classes 6-7 Debuglt Solving: Directed by the teacher, students exchanged projects

and had 1.5 class periods. Students then reflected on what the best,
most frustrating and surprising parts of the entire debugging by
design experience were

Class 8 Reflection on Problem-Solving Strategies: Individually then as pairs
and as a class, students reflected on the kinds of strategies they
used to solve Debuglts

unit, pictures of student projects, code files, student reflections (n = 24 students) written
after the unit and post-interviews with students in focus groups (n = 21 students). Case study
groups included a total of 10 students (two groups of three and two groups of two students
each).

Analysis was completed in two parts. First, to obtain a closer look at student participation
during the DbD unit, we analysed the moment-by-moment designing and debugging pro-
cesses of the case study groups (Yin, 2017). We assembled all available data about each
group from daily videos and field notes, end-of-unit participant interviews, daily teacher
reflections and daily documentation of students' designs (pictures of physical products at
different stages of creation and students' code). This provided rich, detailed data for creating
design narratives that included multiple perspectives on each group's Debuglt design, in-
cluding contextual details that influenced design decisions, such as peer interactions (within
and between groups), teacher support and whole class instruction. We further analysed the
design narratives to uncover: (1) how students developed a bug from idea to implementa-
tion, (2) what kinds of conversation/engagement occurred surrounding bug design and (3)
how students responded to others' bug design (ie, debugging exchanges). We followed the
creation of each designed bug from start to finish (including bugs that were dropped for a va-
riety of reasons and bugs that students accidentally designed). Importantly, this analysis al-
lowed us to trace the intention behind different bugs and student groups' holistic approaches
in considering the audience (or end-user) of their designs.

Second, to better understand the breadth of student experiences in the class, we anal-
ysed student reflections: more immediate written reflections and retrospective interview re-
flections. This part of analysis involved two-step, open coding of reflections and transcribed
interviews (Charmaz, 2014). We began by identifying overarching themes from reflections
and interviews, then followed by creating sub-categories within codes and comparing across
codes to develop a richer coding scheme. This was done iteratively across several meetings
amongst the research team (four people) until we reached interpretive agreement. Finally
we applied the revised coding scheme across all the data and looked for frequency across
students (ie, how many students spoke to a particular theme) to identify how prevalent or
rare trends were.

DEBUGGING BY DESIGN Educational Technology | 7

FINDINGS

The 12 student teams successfully designed personalised Debuglts with varying dysfunc-
tionality intended to befuddle their peers. Projects ranged from flat pieces to plushies (see
Figure 1) with nearly 200 bugs that varied in number and complexity. These bugs ranged
from simpler problems in short circuits (long threads stretching between active circuit lines)
and missing semicolons in code to more complex problems in conditional logic and mis-
matches between code and crafted circuits. Several groups used the projects to advance
into new domains of e-textiles, not previously covered in the class, pursuing interests such
as fading lights, playing music or using sensors. Figure 1 presents a sampling of students'
Debuglts to convey the range of personally meaningful projects with aesthetics that repre-
sented students’ interests and were carefully designed for their peer audience.

To illustrate the complex and nuanced ways that student teams participated in the
Debugging by Design unit, we present two case studies (limited because of space), chosen
because they provide clear illustrations of a commonality across the e-textile Debuglts in the
class, namely using the aesthetics and distributed modalities of e-textiles to challenge their
peers. Throughout the descriptions we highlight the complex histories and intent behind
specific bugs and the combination of bugs as whole, including the role that consideration of
audience played in design.

Case 1: Evelyn and Nicolas

For their Debuglt, Evelyn and Nicolas created a ‘sick cloud throwing up a colorful rainbow’
(see Figure 2, upper left). In the description they gave to their peers, they explained that
the project was supposed to ‘blink all together at half a second when button 1 (pin19) is
pressed with the colors of the rainbow’, otherwise the lights should all be on. Overall, within

FIGURE 1 Examples of student teams' Debuglts (clockwise from upper left): Smiley face, peace
sign, Pokémon ball, two suns, Mario star and ‘Starry Night’, which illustrate different aesthetic choices
and configurations of circuit designs, LEDs and functionalities in code.

British Journal of
8 | Educational Technology FIELDS ET AL.

this seemingly simple project, the pair included several bugs in the code and a few in the
physical craft and circuitry. Some bugs were simple coding bugs, eg, missing semicolons
and misspellings of variable names. Other bugs included circuit bugs such as one light with
reversed polarity (negative and positive mixed up) and crafting bugs such as loose thread
creating a short circuit and one gap in a circuit connection. These are typical bugs many
novices make in crafting, designing circuits and writing code for their e-textiles (Fields et al.,
2016).

A critical feature of many Debuglts was a type of design bug which the class emergently
named ‘intention errors’: where the project is functional but does not work according to the
intention of the designers. For instance, in Evelyn and Nicolas' Debuglt, a comparison of the
sick cloud intention with its original buggy code and project design reveals three intention
errors. First, pin19 is the button the group intends to trigger their project, but the actual but-
ton that was coded was different (pin4). Second, the description clearly explained that all
the lights should blink at once, even though the code had five variables for lights: rainbow,
yellow, green, blue and pink. Third, the primary conditional statement in the code utilises
two button values (butt1Val and butt2Val) when, according to the project description, only
one is needed.

The decision making behind selecting and creating bugs was thoughtful and complex.
Early on in design, Evelyn and Nicolas brainstormed ways to create a bug that would involve
nuisance crafting, with the idea that stitches are ‘easy to fix’ (Video Day 2). However, during
the ensuing design time, the pair began to discuss how long it would take for others to solve
their project. For this pair, a major challenge in each crafting bug was making sure that it
would not require too much restitching so that the receiving team could fix it in the time avail-
able (Video Day 2). In the end, the ‘sharing’ part of objects-to-share-with played a key part in
the pair's decision making to keep crafting bugs very limited: one light sewed on backwards
(reverse polarity), one short circuit and one area of unknotted thread (ie, an open circuit).

This consideration of audience came up many times, even when the pair problem-solved
their own accidental bugs. For instance, while sewing the negative side of the lights on the
rainbow, Evelyn neglected to pull thread all the way through in one of the stitches, creating
a giant knot with several inches of extra thread at the back of the project. In admitting to her
partner that, ‘l messed up’, Evelyn suggested that they turn her accidental mistake into a bug
for their audience (Video Day 4). However, after examining the issue and how others might
resolve it, Nicolas disagreed. The pair debated together how difficult it would be to solve this
bug—how much time it might take—and then, decided to fix it by pulling the extra thread
through and weaving it behind the negative thread going through the other lights (Video
Day 4). This fix actually turned out to be a confusing element for the team that solved their
project (see below), but it was also a clever, time-saving choice in a situation where design
time was highly limited,

Evelyn and Nicolas' consideration of their peers played out both in generous and mis-
chievous ways. The more considerate attention described above aligned with the teacher's
coaching to think through whether their peers would be able to reasonably solve all the
designed bugs within one class period, though we should note that not all students were as
mindful as Evelyn and Nicolas in limiting errors. The more roguish attitude of the pair came
out in their attempts to confuse the peers who received their ‘sick cloud’ project. In fact,
the design of one parallel circuit for the rainbow lights with five individual variables for said
lights in the code was purposefully to ‘throw people off’ as was the decision to leave in the
two-condition logic with two buttons, when only one was needed (FN Days 5 & 7). Here, we
see the situated and social dimensions of personally significant objects-to-share-with: both
students expressly voiced their desire to confound their peers through these extraneous
pieces of code—and succeeded in ways intended and unintended.

DEBUGGING BY DESIGN Educational Technology | 9

; Evelyn’s woven over
~ thread did not
\ . Preventthe project
gl from working as
S s|intended

generated.short
circuits

int rainbow = 5; P “rainbow” should be
int yellow = 7; assigned to pin 6

int green = 8; § Nuisance variables
int blue = 9;
int pink = 10;

int buttonl = 4; p “button1” should be
assigned to pin 19

void setupQ)

pinMode(rainbow, OUTPUT);
|[pinMode(button2, INPUT) PUnnecessary

: . code: “button2” is
pinMode(buttonl, INPUT); Cotsed iRt
} project and it is
not declared

void loop() \

int buttlVal = digitalRead(buttonl);

if(buttlVal ==[LOW[R& butt2Val == HIGH|)
o, v

All LEDs are connected

- Should be Unnecessary code:
blink1() | HIGH butttt}ZVaI is not uze_? to pin 6 of the circuit
In the project and |
Missing is not gecjlared) playground
semicolon
}
void blink1() Misspelled
i X?ﬁames
digitalWrite(ranbow,| HIGH);
delay(500);
digitalWrite(rinbow,| HIGH);
delay(500);
} -

FIGURE 2 Evelyn and Nicolas' Debuglt (clockwise from upper left): (1) Front of e-textile: ‘sick cloud
throwing up a colorful rainbow’; (2) Back of e-textile: the two loose threads are causing a short circuit; (3)

Circuit diagram: In the diagram all LEDs are connected to pin 6 of the microcontroller; and (4) Code (near top):
declaring nuisance variables in their code solely to confuse their audience as these variables did not prevent the
programme from running as expected.

As intended, the receiving team—Emma, Lucas and Lily—spent nearly 10 valuable min-
utes debating whether the five LEDs in the rainbow needed to be resewn because they were
in parallel. After cutting the loose threads (ie, short circuits) and puzzling over this issue they
decided to ask their teacher for advice. The teacher pointed out that bugs depend on the

British Journal of
10 | Educational Technology FIELDS ET AL.

intention of the project, that is, what Evelyn and Nicolas intended when they designed them
(FN Day 6). After reading the intention statement of the project, Lucas expressed ‘that's what
they want’, and the issue was resolved with little effort. In contrast, the accidental knot with
the extra thread woven into the back of the project, unintentionally befuddled the receiving
team. They debated whether to cut the threads and resew the connections ‘because it looks
wrong’ (FN Day 6) before Emma summarily cut the connection to ground and spent consid-
erable time resewing the entire long connection. Ironically, the bugs intended to confuse the
audience successfully kept Lucas, Emma and Lily occupied for many minutes, but it was the
deliberate attempt to make their peers’ problem solving easier that took most of their time.
Through both designing and solving, the ‘sick cloud’ became an object-to-think-with that
required examining and revising connections between old and new knowledge, it introduced
each group to new problems across modes of crafts, circuit and code and challenged each
to new solutions.

Case 2: Lucas, Emma and Lily

For their Debuglt, Lucas, Emma and Lily created a heart with two sheets of felt, one over
the other. On one side of the heart, they attached the microcontroller and, on the other side
of the heart, four LEDs (see Figure 3). Similar to Evelyn and Nicolas, their project contained
a number of simple code bugs: missing semicolons, mismatched variable names and mis-
matched pin number assignments (ie, circuit pin numbers did not match the programmed
pins). They also designed a number of common circuitry and crafting bugs: a light with re-
versed polarity, loose knots, a short circuit and an open circuit (with a ripped thread). One
coding bug was a little unusual: the trio wrote a comment in the code that did not match the
conditional statement: ‘button 1 on and button 2 on’ when it should have been ‘button 1 on
and button 2 off’. However, the group was particularly devious in the spatial placement of
their crafting/circuitry bugs: the bugs were inside the heart (ie, between the two layers of felt)
and one LED was placed upside down, with the light shining in towards the fabric.

In contrast to Evelyn and Nicolas, much of the trio's Debuglt design was set from their
earliest discussions. Lily and Emma (Lucas was absent) identified bugs, wrote them in a
list, and started planning where they would go. Although creating a diagram of the project
was not required, Lily convinced Emma that the best way to plan the project was by draw-
ing out an aesthetic and circuit diagram (see Figure 3), and created new ways to annotate
items such as torn threads, crossed circuit lines and reversed polarity. As an object-to-think
with, this diagram helped guide their discussions and kept them on track in their design.
One major concern of the group was time—how much time would different parts take to
complete? For this reason they kept the main canvas of the Debuglt simple: the form of a
heart. They reused code from a prior project (eg, the superhero variable names like (Thor)
came from Lucas' prior project) and added mistakes. Besides concern about their own time
management, the team also considered the other team's time to solve the bugs (Video Day
4), worrying that the number of crafting bugs would be ‘too much’ (Emma, Video Day 7).

This concern about audience also stretched to playfully imagining how to confuse their
peers and how they would react, further emphasising how the Debuglt was also an object-
to-share-with. This is one reason behind the decision to flip an LED so that the light was
directed inwards (Video Day 2). Indeed, Lucas only half-jokingly suggested flipping all the
LEDs and even the microcontroller upside down (Video Day 4)! The group considered sev-
eral other sly bugs that mercifully did not make it into the final Debuglt, including adding
more pin errors to confuse their audience (Video Day 3) and glueing the project edges to-
gether. Notably, in their design trajectory the group shifted from hesitation about designing

DEBUGGING BY DESIGN Educational Tachnology | 1

LEDs connected
to/pins 9 and 10

down LED

LEDs connected
to pins 6 and 12 &

Upside & : /

33
2 have spaces, variable names do not match
L'!.ght 2=0; names of variables used in the program, wrong " ‘
Light 3 = 10;| pin assignments (in the circuit LEDs are e ~)=onn«c4.~m
- N X
x,

nght A i 12 connected to pins 6, 9,10, 12) |t
[

Int button = P ata type “int” should be lowercase = / TN \

int buttonl9 = 19; S i e

Light 1 = 3; P Missing data types, variable names should not =

void setupQ{ —7/ / LS ‘
pinMode(cap, OUTPUT); e ' @ /
[pinMode(Iman, QUTPUT)PMissing semicolon 4 T
pinMode(thor, OUTPUD); = ; / @
pinMode(wolf, OUTPUT) PMissing semicolon — 1 [/ y
pinMode(button4, INPUT) hgg;gggﬂgg{fnis“buﬂon", o 2 4
pinMode(buttonl9, INPUT); e = Ry
1 — BN

void loopO){ Reclared variable is “button” /

int buttlVal =[digitalRead(buttond);] R
int butt2Val = digitalRead(buttonl9); 2 s T +
//both buttons on e iy
if(buttlVal == HIGH && butt2Val == HIGH){ . ¢
side2sideQ); Mismatch between !~ £=) :
}//button 1 on, button 2 onpcomment and conditional N
else if(buttlVal == HIGH &% butt2Val == LOW){] A LT £
|flash()PMissing semicolon % ol
}//button 1 off, button 2 on i

else if(buttlval == LOW && butt2Val == HIGH){ - (&
side2side(); s,
}//both buttons off g T
else{ ~/% 4 =
flashQ; e
} J
}

FIGURE 3 Lucas, Emma and Lily's Debuglt (clockwise from upper left): (1) Front of e-textile: a white

heart with four LEDs, one LED is flipped with the light directed towards the felt; (2) Back of e-textile: the
microcontroller is sewn over a second layer of felt, threads are loose and LEDs are attached to pins 9, 12, 6 and
10; (3) Circuit diagram: student annotations show the crafting bugs, some of these bugs were created between
the two sheets of felt; and (4) Code: including a mismatch between the first conditional statement and the
comment next to it.

bugs (on the first day Lucas wrote in his journal that ‘creating bugs feels very wrong’) to
gleeful delight in their mischievous design.

When Evelyn and Nicolas, the receiving team, worked on debugging the heart they found
the spatial bugs the most problematic. They easily breezed through the coding errors—they

British Journal of
12 | Educational Technology FIELDS ET AL.

were already adept at designing similar bugs themselves. The misleading comment in the
code did not even draw their notice since nothing was actually dysfunctional in the con-
ditional logic. They also quickly resolved the backwards LED by simply flipping the light
(twisting it in place)—thereby avoiding having to resew it and saving a ‘good twenty minutes’
(Video Day 7). However, the circuitry errors inside the two pieces of felt were entirely origi-
nal to Nicolas and Evelyn; they had never encountered ‘double felt’ before and it genuinely
confused them (FN Day 8). Getting the code running helped the pair isolate the probable
circuitry errors inside the project, since the outside looked fine. Another clue was that the
heart was discernibly hot from a short circuit—Nicolas reported feeling ‘burned’ (no injuries
occurred in making or solving this project). Applying prior expertise to develop new abilities
in problem solving, Evelyn and Nicolas eventually solved the Debuglt and presented a work-
ing project to the class.

Student reflections

While the case studies illustrated the processes in which two teams participated in mak-
ing and fixing Debuglts, there was a marked difference in students' feelings about the DbD
process immediately and several weeks after their final projects were complete. In written
reflections after solving their peers' Debuglts, most students in the class explicitly expressed
frustration. They noted that the errors were difficult to detect, often involved a lot of cut-
ting and re-sewing to fix and left them without enough time to solve everything. As Avery
expressed, ‘It felt weird debugging someone else's project because they INTENTIONALLY
(sic) put more bugs than a normal project...| felt uncomfortable and MAD'. Some students
also found it interesting or even fun to debug, but the most repeated word (by 18 students)
was ‘frustrating’.

However, these feelings were drastically different several weeks later after students com-
pleted their final e-textile project in the unit. Indeed, all students interviewed expressed
feelings of increased comfort and competence with solving and designing problems. They
said that the DbD unit should be done again next year because it was such a good learning
experience, and several even asked for it earlier and more often! As for what they appreci-
ated about the unit, many students remembered creating problems ‘challenging enough to
stress someone out’ as ‘funny and good’ (Nicolas), claiming that this gave them a ‘new per-
spective on coding’ (Liam) that was the ‘opposite’ of what they normally experienced, making
debugging both challenging and interesting. As Evelyn said, ‘it helped me realize | knew if |
saw the errors in the next one, | knew how to fix it’. Being more comfortable with problems
also helped students feel better able to ask for help from others since they became more
aware that ‘a lot of people make mistakes’ (Camila). Students located this sense of power
over problems as a direct consequence of DbD.

Not only did students feel more comfortable with problems, they also reported learning
several important aspects about problems and problem solving from DbD that emphasise
the potential of Debuglts as objects-to-learn-with. All students interviewed claimed to have
applied their DbD experience to their final projects. They explained this in several ways.
Many students described becoming more familiar with a range of problems: ‘the type of
errors there are, like how errors can be prevented and caused and everything’ (Nicolas).
Knowing more problems also enabled students to avoid problems in creating their final proj-
ect. Gabriel explained that designing your own bugs ‘makes you more aware that the next
time you're creating a project... [you] make sure you don't make that mistake in the project’.
Of course, avoiding some problems in their final projects did not mean that no errors oc-
curred. All students described problems in their final projects. However, students claimed
they were able to identify problems more easily: interpreting compiler feedback on syntax

DEBUGGING BY DESIGN Educational Tachnology | 13

errors, applying a process for detecting errors across physical and digital systems or iso-
lating and testing problems. A few students even described the beginnings of a systematic
approach to debugging that is rare amongst novice coders (McCauley et al., 2008), naming
a series of steps in an order that facilitated isolating problems and comparing code and craft.

DISCUSSION

In this paper, we conceptualise a provocative means to enable and empower students in
debugging in a constructionist fashion—by designing personally meaningful, buggy projects
for others to solve. Case studies of student teams’ design actions, intentions and reflections
demonstrated high levels of interest, thoughtfulness and creativity in design, and illustrated
how students were ‘becoming more articulate about one's debugging strategies and more
deliberate about improving them’ (Papert, 1980, p. 23).

Reflections from across participating students further showed distinct perceived benefits
from DbD, suggesting that constructing buggy projects can be as much objects-to-think-with
as creating other personally meaningful computational objects. As with functional construc-
tionist artefacts, failure artefacts serve as concrete representations of learners' knowledge
and understanding. Easy bugs are easy to design (eg, deleting a semicolon) while difficult
bugs are also difficult to design (eg, logic problems or cross-modal contradictions). The
combination of bugs must be thoughtful so as to confound but not overly discourage re-
cipients. It is in this spirit that we see the idea of designing buggy projects as a rich way to
expand productive constructionist learning in computer science education.

In addition, we observed that buggy projects also acted as objects-to-share-with. This
is evident in the important roles of peer collaboration and consideration of audience in de-
sign. Audience was particularly important as students considered the number, difficulty and
combination of bugs that must be solved within a short period of time. Considering audience
helped students think of the buggy projects more holistically, as a collection of bugs that
interacted with each other. Furthermore, the entire DbD experience resulted in reports of en-
hanced collaborative problem solving, including acute awareness that everyone in the class
made mistakes, was familiar with mistakes and could either offer or might need support with
mistakes. This opens up new possibilities for considering the role of audience in learning
debugging, a contemplation found little in reviews on debugging in computer science edu-
cation (eg, McCauley et al., 2008; Prather et al., 2019). When debugging is framed as the
object of design, audience becomes important and may support students in evaluating the
relative difficulty and combinations of bugs.

One unexpected theme running across our findings was the expression of emotion in
designing and solving failure artefacts. Mischievousness and fun as well as empathy and
sensitivity (for peers receiving Debuglts) were productive emotions exhibited during bug de-
sign, and shifts away from frustration to increased comfort, security and a sense of control
with bugs were expressed retrospectively weeks afterward. Given the problematic conno-
tation of failure in school cultures that rarely value it, this suggests a productive angle of
future research on the role of emotion in Debugging by Design or in dealing with bugs more
generally in constructionist settings (see Dahn & DeLiema, 2020). What is the role of emo-
tion in tackling and/or designing bugs in learner-driven designs? What scaffolds, classroom
support and curricular designs support perseverance, a sense of capability or resoluteness
in debugging? More attention is needed on the roles and ranges of emotion and motiva-
tion in designing for and experiencing failure while making personally meaningful, socially
shared objects.

In future research, we will examine other aspects that contribute to empowering students
to design bugs in projects. For one, we plan to expand the implementation of DbD in the

British Journal of
14 | Educational Technology FIELDS ET AL.

e-textiles unit to multiple teachers. This will enable us to examine variances in and best
teacher practices of implementing DbD. The case study analyses already hint at the impor-
tance of the teacher in providing constructive criticism at key points of design and creating a
space where students can freely share their mistakes and problems. Comparative analyses
may make these and other practices more clear. Furthermore, it is difficult in the analysis
of just one classroom to identify what role DbD had in students' increased comfort with and
sense-making of debugging. A quasi experimental design with some classrooms doing just
the e-textiles unit and others doing the e-textiles unit with DbD is planned to help illuminate
the particular role that DbD may play in students' growth.

CONCLUSIONS

This paper presents a provocative angle on foregrounding debugging in constructionist ac-
tivities. It draws attention to bugs not as accidents to be solved but as objects-to-think-
with and objects-to-share-with. This approach of making students designers of bugs, or
mistakes, is not limited to CS education and could also be applied to other constructionist
contexts in which students design artefacts. We look forward to insights from creative ap-
plications of Debugging by Design or similar interventions to other domains in physical com-
puting, general software design and many other areas of design more broadly.

ACKNOWLEDGEMENTS

This work was supported by a grant from the National Science Foundation to Yasmin Kafai
(#1742140). Any opinions, findings and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the views of NSF, the University
of Pennsylvania or Utah State University. Special thanks to Lindsay Lindberg for support in
data collection and Gayithri Jayathirtha for feedback on this paper.

CONFLICT OF INTEREST
The authors do not wish to declare any conflict of interest.

ETHICS STATEMENT

Ethics approval for this research was obtained from the University of Pennsylvania
Institutional Review Board (IRB) and procedures were in accordance with U.S. policies for
protection of research subjects. All names in this paper are pseudonyms to protect privacy.

DATA AVAILABILITY STATEMENT
Data for this project are unavailable due to data protection and privacy concerns.

ORCID

Deborah A. Fields © https://orcid.org/0000-0003-1627-9512
Yasmin B. Kafai (2 https://orcid.org/0000-0003-4018-0491
Justice T. Walker (©© https://orcid.org/0000-0002-4356-0396

REFERENCES

Buechley, L., Peppler, K., Eisenberg, M., & Yasmin, K. (Eds.). (2013). Textile messages: Dispatches from the world
of e-textiles and education. Peter Lang.

Charmaz, K. (2014). Constructing grounded theory, Second Edition. Sage Publications.

Dahn, M., & DeLiema, D. (2020). Dynamics of emotion, problem solving, and identity: Portraits of three girl cod-
ers. Computer Science Education, 30(3), 362—389.

https://orcid.org/0000-0003-1627-9512
https://orcid.org/0000-0003-1627-9512
https://orcid.org/0000-0003-4018-0491
https://orcid.org/0000-0003-4018-0491
https://orcid.org/0000-0002-4356-0396
https://orcid.org/0000-0002-4356-0396

DEBUGGING BY DESIGN Educational Technology | 15

Fields, D. A., Searle, K. A., & Kafai, Y. B. (2016). Deconstruction kits for learning: Students' collaborative debug-
ging of electronic textile designs. In FabLearn '16, Proceedings of the 6th Annual Conference on Creativity
and Fabrication in Education (pp. 82—-85). ACM.

Goode, J., Chapman, G., & Margolis, J. (2012). Beyond curriculum: The exploring computer science program.
ACM Inroads, 3(2), 47-53.

Harel, I., & Papert, S. (1990). Software design as a learning environment. Interactive Learning Environments,
1(1), 1-32.

Hughes, J., Morrison, L., Mamolo, A., Laffier, J., & de Castell, S. (2019). Addressing bullying through critical mak-
ing. British Journal of Educational Technology, 50(1), 309-325.

Jayathirtha, G., Fields, D. A., & Kafai, Y. B. (2020). Pair debugging of electronic textiles projects: Analyzing think-
aloud protocols for high school students' strategies and practices while problem solving. In M. Gresalfi & I. S.
Horn (Eds.). The Interdisciplinarity of the Learning Sciences, 14th International Conference of the Learning
Sciences (ICLS) 2020 (Vol. 2, pp. 1047-1054). International Society of the Learning Sciences.

Kafai, Y. B. (1995). Minds in Play: Computer game design as a context for children's learning. Routledge.

Kafai, Y. B., & Burke, Q. (2014). Connected code: Why children need to learn programming. MIT Press.

Kapur, M. (2008). Productive failure. Cognition and Instruction, 26(3), 379—-424.

Kapur, M., & Bielaczyc, K. (2012). Designing for productive failure. Journal of the Learning Sciences, 21(1), 45—-83.

Maltese, A. V., Simpson, A., & Anderson, A. (2018). Failing to learn: The impact of failures during making activi-
ties. Thinking Skills and Creativity, 30, 116—124.

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., & Zander, C. (2008). Debugging:
a review of the literature from an educational perspective. Computer Science Education, 18(2), 67-92.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.

Papert, S. (1991). Situating constructionism. In |. Harel & S. Papert (Eds.). Constructionism (pp. 1-13). Ablex.

Patil, A., & Codner, G. (2007). Accreditation of engineering education: review, observations and proposal for
global accreditation. European Journal of Engineering Education, 32(6), 639—-651.

Prather, J., Pettit, R., Becker, B. A., Denny, P., Loksa, D., Peters, A., Albrecht, Z., & Masci, K. (2019, February).
First things first: Providing metacognitive scaffolding for interpreting problem prompts. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education (pp. 531-537). ACM.

Resnick, M., Berg, R., & Eisenberg, M. (2000). Beyond black boxes: Bringing transparency and aesthetics back
to scientific investigation. The Journal of the Learning Sciences, 9(1), 7-30.

Searle, K. A, Litts, B. K., & Kafai, Y. B. (2018). Debugging open-ended designs: High school students’ perceptions
of failure and success in an electronic textiles design activity. Thinking Skills and Creativity, 30, 125-134.

Sullivan, F. R. (2008). Robotics and science literacy: Thinking skills, science process skills and systems under-
standing. Journal of Research in Science Teaching, 45(3), 373-394.

Yin, R. K. (2017). Case study research and applications: Design and methods. Sage Publications.

How to cite this article: Fields, D. A., Kafai, Y. B., Morales-Navarro, L., & Walker,

J. T. (2021). Debugging by design: A constructionist approach to high school students’
crafting and coding of electronic textiles as failure artefacts. British Journal of
Educational Technology, 00, 1-15. https://doi.org/10.1111/bjet.13079

