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Estimating Regions of Attraction for Transitional
Flows Using Quadratic Constraints

Aniketh Kalur, Talha Mushtaq , Peter Seiler , and Maziar S. Hemati , Member, IEEE

Abstract—This letter describes a method for estimating
regions of attraction and bounds on permissible perturba-
tion amplitudes in nonlinear fluids systems. The proposed
approach exploits quadratic constraints between the inputs
and outputs of the nonlinearity on elliptical sets. This
approach reduces conservatism and improves estimates
for regions of attraction and bounds on permissible per-
turbation amplitudes over related methods that employ
quadratic constraints on spherical sets. We present and
investigate two algorithms for performing the analysis:
an iterative method that refines the analysis by solv-
ing a sequence of semi-definite programs, and another
based on solving a generalized eigenvalue problem with
lower computational complexity, but at the cost of some
precision in the final solution. The proposed algorithms are
demonstrated on low-order mechanistic models of transi-
tional flows. We further compare accuracy and computa-
tional complexity with analysis based on sum-of-squares
optimization and direct-adjoint looping methods.

Index Terms—Region of attraction, transitional fluid
flows, quadratic constraints.

I. INTRODUCTION

ENVIRONMENTAL disturbances can cause fluid flows
to transition from a low-skin-friction laminar state to

a high-skin-friction turbulent state when the Reynolds num-
ber (Re) is sufficiently large. Yet, precisely predicting the onset
of transition is notoriously difficult, even in the simplest of
geometries [1]–[3]. An ability to reliably estimate if and when
transition will arise is directly related to the problem of identi-
fying the region of attraction (ROA) of the system. To this end,
in this work we investigate systems-theoretic analysis meth-
ods for estimating the ROA of a laminar equilibrium flow and
for determining associated bounds on permissible perturbation
amplitudes for remaining in this ROA.
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Recent efforts for nonlinear stability analysis of the
incompressible Navier-Stokes equations (NSE) have exploited
a Lur’e decomposition [4] of the system dynamics into
a feedback interconnection between the non-normal linear
dynamics and quadratic energy-conserving nonlinearity. Such
approaches include dissipation inequalities [5], passivity anal-
ysis [6], and sum-of-squares (SOS) optimization [7], all of
which generalize the classical energy-based methods of hydro-
dynamic stability theory [1], [8]. Methods for the analysis of
systems with quadratic nonlinearities have also been proposed
in prior works [9], [10]; however, these methods scale com-
binatorially with the state dimension, prohibiting their use on
high-dimensional fluids systems.

Most recently, a series of studies have proposed exploiting
quadratic constraints (QCs) between the inputs and outputs of
the nonlinearity to conduct global and local stability analy-
sis with reduced-complexity [11]–[13]. The trade off for this
computational expediency is a larger degree of conservatism
in estimating the ROA and associated bounds on permissi-
ble perturbation amplitudes relative to more computationally
demanding methods, such as SOS [7] and direct-adjoint
looping (DAL) [3]. The QC formulation in [13] reduces
conservatism compared to the approach in [12], but some
conservatism remains because of a restriction to spherical
sets.

In this work, we generalized the QCs presented
in [11], [12], and [13] to arbitrary ellipsoidal sets. As
we will show, these new QCs reduce conservatism and
improve estimates of both the ROA and the largest permis-
sible perturbation. We propose algorithms for performing
this analysis: one is an iterative algorithm that solves a
semi-definite program at each iteration to refine the ROA
estimate, and the other is based on solving a single general-
ized eigenvalue problem (GEVP). Using the QCs generalized
on ellipsoidal sets, we analyze ROA estimates and the
largest permissible perturbation for system stability; the
inner estimate of the ROA captures this perturbation. As an
example, we will demonstrate our approach on two low-
dimensional mechanistic transitional flow models: the 4-state
Walleffe-Kim-Hamilton (WKH) model of shear flow [14] and
the 9-state model of Couette flow [15]. Finally, we measure
the computational run-time and show that the proposed
QC method obtains improved estimates over previous QC
approaches [12], [13], while reducing computational time
over SOS and DAL methods.
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Fig. 1. Lur’e decomposition of nonlinear system.

II. PROBLEM FORMULATION

Consider a nonlinear system of the following form:

ẋ(t) = Ax(t) + N(x(t)) (1)

where x(t) ∈ R
n is the state and the state matrix A ∈ R

n×n is
Hurwitz. The nonlinearity N : R

n → R
n is assumed to be a

quadratic function of the form:

N(x) =
⎡
⎢⎣

xTQ1x
...

xTQnx

⎤
⎥⎦ (2)

where Q1, . . . , Qn ∈ R
n×n are symmetric (but not necessarily

sign definite) matrices. Moreover, the nonlinearity is assumed
to be lossless: xTN(x) = 0 ∀ x ∈ R

n. This lossless prop-
erty is observed in the nonlinear terms of the incompressible
NSE and other reduced-order models that mimic transitional
flows [15], [16].

It also follows that N(0) = 0. Hence x̄ = 0 is an equilibrium
point of the nonlinear system (1). This is an asymptotically sta-
ble equilibrium point because A is Hurwitz (see [4, Th. 4.5]).
Let φ(t, x(0)) denote the solution of (1) at time t from the ini-
tial condition x(0). The region of attraction (ROA) for x̄ = 0
is defined as:

R := {x(0) ∈ R
n : φ(t, x(0)) → 0 as t → ∞}. (3)

In other words, the ROA is the set of initial conditions for
which the trajectory asymptotically converges back to the
equilibrium point. The equilibrium point x̄ = 0 is globally
asymptotically stable if R = R

n. In general, the equilibrium
point will be locally but not globally asympotitically stable.
The objective is to obtain an inner estimate R̂ of the ROA R,
i.e., to compute a set R̂ ⊂ R.

III. STABILITY ANALYSIS

The stability analysis is based on separating the nonlinearity
from the remaining linear dynamics:

ẋ(t) = Ax(t) + z(t) (4)

z(t) = N(x(t)). (5)

This system can be represented as the Lur’e decomposition [4]
as shown in Figure 1.

A. Local Quadratic Constraints

The input-output properties of the nonlinearity can be
bounded using a set of QCs on (x, z). The lossless property

yields the following global QC:
[

x
z

]T[
0 I
I 0

][
x
z

]
= 0 ∀x ∈ R

n, z = N(x). (6)

To study the effects of nonlinearities locally, additional QCs
were formulated in [12] and in [13]. The local QCs in both
of these works were defined on a spherical set. In this work,
we reduce the conservatism of the aforementioned approaches
by generalizing to constraints on an ellipsoidal set. The
next lemma generalizes the result in [13] to provide local
constraints on an ellipsoidal set.

Lemma 1: Let E = ET � 0 be given and define the ellipsoid
Eα := {x ∈ R

n : xTEx ≤ α2}. The nonlinearity N given in (2)
satisfies the following local QC for i = 1, . . . , n:

[
x
z

]T[
α2(QiE−1Qi) 0

0 −eieT
i

][
x
z

]
≥ 0, ∀x ∈ Eα, (7)

where ei ∈ R
n is the ith standard basis vector.

Proof: Note that zTeieT
i z = z2

i , where zi := xTQix is the ith

entry of z = N(x). Define w := E
1
2 x and Q̂i := E− 1

2 QiE− 1
2 so

that zi = wTQ̂iw. The Cauchy-Schwartz inequality yields the
following bound:

z2
i ≤ ‖w‖2

2 · ‖Q̂iw‖2
2. (8)

Note that ‖Q̂iw‖2
2 = xTQiE−1Qix. Moreover, if x ∈ Eα then

‖w‖2
2 = xTEx ≤ α2. Combining these facts with Eq. (8) yields

z2
i ≤ xT [α2(QiE−1Qi)]x for any x ∈ Eα .

This result corresponds to [13, Lemma 1] for the special
case E = I. This special case corresponds to a local constraint
on a sphere of radius α. The generalization to local constraints
on arbitrary ellipsoids will be used to improve our estimates
of the ROA.

B. ROA Estimation

We can combine Lyapunov theory with the local QCs from
the previous section in order to compute an inner estimate
R̂ for the ROA. Roughly, we will define a Lyapunov can-
didate V(x) = xTPx and use the QCs to show that V̇ is
negative definite along the trajectories of Eq. (1) in a neigh-
borhood of the equilibrium point x̄ = 0. The inner estimate
of the ROA will be given by a sphere of radius R, denoted
R̂R := {x ∈ R

n : xTx ≤ R2}. The next theorem gives a matrix
inequality condition to estimate the ROA using local QCs.
This is based on a standard Lyapunov result [5, Th. 4.1]. To
simplify notation, define the following matrices that appear in
the QCs:

M0 :=
[

0 I
I 0

]
, Mi(α, E) :=

[
α2(QiE−1Qi) 0

0 −eieT
i

]
. (9)

Theorem 1: Let E = ET � 0, α > 0, ε > 0 be given. If
∃P = PT ∈ R

n×n, R > 0, and ξ0, . . . , ξn ∈ R such that:
[

AT P + PA P
P 0

]
+ ξ0M0 +

n∑
i=1

ξiMi(α, E) 

[−εI 0

0 0

]
(10)

1

α2
E 
 P 
 1

R2
I (11)

ξi ≥ 0 for i = 1, . . . , n (12)
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Fig. 2. 2-D visualization of a spherical local region for the QCs cor-
responding to E = I and α > 0 (yellow), Lyapunov function level set
{x ∈ R

n : xT Px ≤ 1} (red), and ROA inner estimate RR (purple).

then R̂R ⊂ R.
Proof: Define the Lyapunov function V(x) := xTPx. Note

that 1
α2 E 
 P implies P � 0. Multiply (10) on the left/right

by
[
x(t)T z(t)T

]
and its transpose to obtain:

d

dt
V(x(t)) + ξ0

[
x(t)
z(t)

]T

M0

[
x(t)
z(t)

]

+
n∑

i=1

ξi

[
x(t)
z(t)

]T

Mi

[
x(t)
z(t)

]
≤ −ε‖x(t)‖2

2.

The second term with ξ0 and M0 is equal to zero due to
the global lossless property of N(x). Here, the scalar term ξ0
can be either positive or negative. While the quadratic terms
with ξi and Mi (i = 1 to n) are each non-negative for any
x(t) ∈ Eα by Lemma 1 and ξi ≥ 0. Thus x(t) ∈ Eα implies
d
dt V(x(t)) ≤ −ε‖x(t)‖2

2.
The constraint 1

α2 E 
 P implies that if V(x) ≤ 1 then
xTEx ≤ α2, i.e., {x ∈ R

n : V(x) ≤ 1} ⊂ Eα . Hence x̄ = 0 is
locally asymptotically stable and the level set {x ∈ R

n : V(x) ≤
1} is contained in the ROA R (in [4, Th. 4.1]). Finally, the
constraint P 
 1

R2 I implies that if xTx ≤ R2, then V(x) ≤ 1.
This yields the desired set containment:

R̂R ⊂ {x ∈ R
n : V(x) ≤ 1} ⊂ R.

This theorem provides an inner estimate of the ROA char-
acterized by a sphere of radius R. A convex optimization can
be used to compute the largest feasible R for given values
of (E, α, ε). Define λ := 1

R2 and note that maximizing R
is equivalent to minimizing λ. Equations (10)-(12) are linear
matrix inequalities (LMIs) in variables (P, ξ, λ). The following
optimization is a semidefinite program (SDP):

λ∗ := min
P,ξ,λ

λ subject to (10)−(12). (13)

An SDP is convex and the global optimum λ∗ can be computed
efficiently using freely available solvers [17], [18]. The radius
R∗ = 1√

λ∗ provides the largest spherical inner estimate of the
ROA for the given local QC region (E, α) and ε > 0. The
parameter ε > 0 is chosen to be a “small” positive number to
ensure V̇ < 0. This term can be dropped if Eq. (10) is feasible
with a strict inequality.

The main issue with this numerical method is that it requires
the choice of the local QC region in terms of the ellipsoidal
shape E and size α. If E = I, then the QCs are enforced on

Algorithm 1 : Semi-Definite Program Algorithm for
Determining the Largest R∗

1) Initial Estimate: Define Mi(α, E) using E(1) = I.
Find the best α(1) for the given local QCs E(1). Let
(P(1), ξ (1), R(1)) be the corresponding solutions of the
SDP with (E(1), α(1)).

2) Refinement: Align the local QC set with the Lyapunov
function solution: E(2) = P(1). Find the best α(2) for
the updated local QCs E(2). Let (P(2), ξ (2), R(2)) be the
corresponding solutions of the SDP with (E(2), α(2))

3) Iterate: Repeat the refinement step with E(i+1) = P(i) to
yield (α(i), P(i), ξ (i), R(i)). This can be performed a fixed
number of iterations or until the radius R(i) converges.

a sphere of radius α as shown in Figure 2. A small value of
α will restrict the size of both the Lyapunov function level
set and the spherical ROA inner estimate. On the other hand,
a large value of α may cause the SDP to be infeasible. This
occurs because the QC bounds on N(x) become more conser-
vative (less tight) for larger local regions. A one-dimensional
line search can be used to compute the best value of α for a
given local ellipsoid shape E. For example, the SDP in Eq. (13)
can be solved with E = I on a grid of values {α1, . . . , αf }.
Each solution yields an inner ROA estimate with radius R∗(αi).
The best αi is the one that yields the largest inner ROA
estimate: maxi R∗(αi).

We can further improve on this inner ROA estimate
by exploiting the shape of the ellipsoid as specified
by E. Unfortunately Equations (10)-(12) are non-convex in
(P, ξ, R, E, α). The first approach, denoted Algorithm 1, iter-
atively updates the ellipsoid shape based on the Lyapunov
function obtained from the previous iterate.

The optimal solutions from the first step (P(1), ξ (1), R(1))

are also feasible for the second step when α(2) = 1. The
reason is that the constraint 1

α2 E ≤ P in Eq. (11) holds
with equality when using (P, E, α) = (P(1), P(1), 1). Hence
the inner estimate of ROA cannot shrink at the second step:
R(2) ≥ R(1). Repeating this process gives a monotonically non-
decreasing sequence of spherical inner estimates for the ROA:
R(i+1) ≥ R(i). Note that each step of the iterative method has
roughly the same computational cost as the first step. We have
to solve one SDP for each value of αi.

The second approach, denoted Algorithm 2 below, effec-
tively performs only a single refinement of the local
shape parameter E. This restriction allows the single refine-
ment step to be formulated as a generalized eigenvalue
problem (GEVP) (see [12, eq. (19)]). This will typically
reduce the computational cost, but possibly yield more con-
servative results (smaller estimates for R̂R) as compared to
Algorithm 1. To formulate Algorithm 2, first decompose the
quadratic constraint matrix in Eq. (9) into two matrices as
follows:

Mi(α, E) = α2
[

QiE−1Qi 0
0 0

]

︸ ︷︷ ︸
ME

i

+
[

0 0
0 −eieT

i

]

︸ ︷︷ ︸
Me

i

. (14)

Authorized licensed use limited to: University of Minnesota. Downloaded on October 05,2021 at 17:10:09 UTC from IEEE Xplore.  Restrictions apply. 



KALUR et al.: ESTIMATING REGIONS OF ATTRACTION FOR TRANSITIONAL FLOWS USING QUADRATIC CONSTRAINTS 485

Algorithm 2 : Generalized Eigenvalue Algorithm for
Determining the Largest R∗

1) Initial Estimate: Define Mi(α, E) using E(1) = I.
Find the best α(1) for the given local QCs E(1). Let
(P(1), ξ (1), R(1)) be the corresponding solutions of the
SDP with (E(1), α(1)).

2) Maximize Level Set: Fix P = E = P(1) and solve the
GEVP in Eq. (15) to obtain the maximal level set α∗.

3) Maximize ROA Inner Estimate: Select
R∗ = α∗√

λmax(P(1))
.

Algorithm 2 fixes both the shape E = P(1) and Lyapunov
function P = P(1). This aligns both the local QC ellipsoid
shape E with the level sets of the Lyapunov function. The local
regions for both are parameterized as {x ∈ R

n : xTP(1)x ≤ α}.
A sub-problem is to find the largest local region α over which
the local quadratic constraints are valid and V̇(x(t)) < 0. This
is formulated by the following optimization:

min
γ,ξ0,...,ξn

γ

subject to ξi ≥ 0 (for i = 1 to n)[
AT P + PA P

P 0

]
+ ξ0M0 +

n∑
i=1

ξiM
e
i ≺ γ

n∑
i=1

ξiM
E
i , (15)

where γ = −α2 and ξi (i = 0 to n) are Lagrange multipliers
for the global and local constraints respectively. It is empha-
sized that P = P(1) is fixed and not a decision variable
in the optimization. This is a GEVP [19] in variables α2,
ξ0, . . . , ξn. This one GEVP gives the largest level set α∗
defined by P = P(1) over which the local quadratic constraints
are valid and V̇(x(t)) < 0. Let λmax(P(1)) denote the largest
eigenvalue of P(1). Note that the sphere R̂R is contained in
{x ∈ R

n : xTP(1)x ≤ α∗2} if and only if R ≤ α∗√
λmax(P(1))

. Thus

we can directly compute the largest radius of the inner ROA
estimate R̂R from the optimal α∗. This leads to our second
method to estimate the ROA.

As a test, we apply algorithm 1 on the 2-D example in [10].
We obtain an inner approximation for the ROA of R∗ = 2.6877
while [10] reports a box of [ − 1, 1] × [ − 2, 2]. Our disk and
the box have areas of 22.69 and 8.00, respectively.

IV. NUMERICAL EXAMPLE

We evaluate the proposed analysis methods on two low-
order mechanistic models of transitional flows that were used
to demonstrate the QC analysis method in [13]: the 4-state
Waleffe-Kim-Hamilton (WKH) model [16] and the 9-state
reduced-order model of a plane Couette flow [15]. Both mod-
els have the form in Eq. (1), with non-normal linear dynamics
and a quadratic lossless nonlinearity. We note that the linear
dynamics’ matrix is parameterized by the Reynolds number
Re: i.e., A = A(Re). Additional details on the specific models
used here can be found in [13].

We begin by using the GEVP in Eq. (15) to estimate the size
α∗ of the ROA over a range of Re. This is done by applying
steps 1 and 2 of Algorithm 2. Figures 3(a) and 3(b) show the
results of this analysis (light blue) for the WKH and 9-state

Fig. 3. The ellipsoidal constraints using step 1 and 2 of algorithm 2
shows significant improvement in region of attraction (ROA) estimates.

Couette flow models, respectively. These results are com-
pared against ROA estimates based on the quadratic constraints
proposed in Liu and Gayme [13] (green) and those proposed
in Kalur et al. [12] (red). This comparison indicates that the
ROA estimate based on refinement of the local QC region in
steps 1 and 2 of Algorithm 2 leads to less conservative esti-
mates on α∗. Of note here is that although the Liu and Gayme
analysis reduces the conservatism in the analysis relative to the
Kalur et al. analysis, the formulation based on ellipsoidal sets
reduces conservatism relative to both of these methods by a
substantially larger degree for both mechanistic models.

Next, we apply Algorithm 1 and Algorithm 2 to estimate
the inner approximation R∗ as a function of Re. This anal-
ysis is equivalent to computing a bound on the permissible
perturbation amplitude, or sphere of “safe” initial conditions.
In Figure 4, the radius of the largest R̂R is denoted as R∗
and is obtained from solving Algorithm 2 and compared with
SOS and DAL estimates for the WKH and 9-state Couette
flow models, respectively. The DAL method solves a varia-
tional problem for the nonlinear optimal perturbation, which
is used as a benchmark for comparison. The SOS analysis
uses the toolbox available in [20]. To solve Eq. (13) for the
WKH model and 9-state models, we use 200 logarithmically
spaced values of α between 10−5 and 101. We compute the
ROA estimate using the largest radius obtained on this grid,
i.e., R∗ := maxi R(α∗

i ). The results in Figure 4 show that
the ellipsoidal sets improve the estimates of R̂R compared
to the spherical sets given in [12], [13]. This is true even at
the initial iterate, which yields improvements of approximately
4 times and 2.5 times for the WKH and 9-state models, respec-
tively. Additional refinement iterations improve the results
even further. However we set the tolerance for convergence
to 10−4, and also observe only a marginal improvement after
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Fig. 4. The inner estimates of ROA obtained using Algorithm 1 show
improved estimates compared to methods based on spherical sets.

three iterations of Algorithm 1 (gray curve). For the 9-state
model, there is an improvement factor of roughly 2.4 and
3.3 using Algorithm 1 (blue curve) over the QC methods of
Liu and Gayme and Kalur et al. Additionally, the improve-
ment factor of R∗ is ≈ 3.38 using Algorithm 1 as compared
to the other two QC constraints for the WKH model.

In Figure 4, we also compare the results obtained using
Algorithm 1 with SOS and DAL methods. We find that each
iteration of Algorithm 1 reduces the conservatism of the QC
estimates, but the inner estimate is still conservative rela-
tive to the SOS and DAL methods. More specifically, the
largest radius R∗ obtained from the SOS (black dashed curve)
method and Algorithm 1 with 1 iteration (blue curve) dif-
fer by an average factor of ≈ 2.45 and ≈ 6.1 for the WKH
and 9-state models, respectively. The differences in the R∗
estimates become even greater for the DAL approach, with
the DAL estimates (magenta curve) being larger by a factor
of ≈ 3.5 and ≈ 23 than the Algorithm 1 estimates for the
WKH and 9-state models, respectively. We note that SOS and
DAL methods provide superior estimates of R∗ because both
of these methods use precise information of the nonlinearity
and exact equations of motion. This is in contrast to the QC-
based approaches, whereby only input-output properties of the
nonlinear terms are used.

Next, we assess estimates of R∗ using Algorithm 2 (see
Figure 5). The second step in Algorithm 2 avoids the compu-
tationally demanding step of solving over a grid of α, as is
required in Algorithm 1. Instead, Algorithm 2 directly deter-
mines the best α for the given shape E and Lyapunov energy
matrix P, and thus provides an efficient “one-shot” approach to

100 120 140 160 180 200
10-4

10-3

Fig. 5. The inner estimate of ROA obtained using Algorithm 2 for
the 9-state model is conservative compared to the refinement using
Algorithm 1.

estimate R∗. Since Algorithm 2 does not facilitate further itera-
tions, in general it provides conservative results as compared to
Algorithm 1. However, Algorithm 2 substantially reduces con-
servatism to prior formulations of the QC analysis presented
in [12], [13]. In Figure 5, it can be seen that estimates from
Algorithm 1 and 2 differ by a factor of roughly 1.16—on
average—for the 9-state Couette flow model. Although not
reported here, we made similar observations in our analysis of
the WKH model, where the difference was roughly a factor
of 1.06 between Algorithm 1 and 2 estimates of R∗.

Finally, we assess the computational run-time performance
of the various methods investigated in this study. All computa-
tions were performed on an ASUS ROG M15 laptop with Intel
2.6 GHz i7-10750H CPU and a 16 GB RAM. Overall both
Algorithm 1 and 2 proposed in this paper require less total
run-time compared to DAL and SOS methods. This savings
becomes especially apparent in analyzing the 9-state model.
Although the SOS and DAL methods yield more accurate esti-
mates, these methods scale poorly with the state dimension
compared to the QC analysis methods. The SOS method for
WKH has a wall-time of about 116.8 seconds as compared
to 5.82 × 104 seconds for the 9-state model. Similarly, the
solver run times for each iteration of WKH model is 2.9 sec-
onds compared to 1.45 × 103 seconds for the 9-state model.
Thus, in case of the SOS method, roughly doubling the states
results in the total computation time increasing by a factor
of ≈ 500. In contrast, the total run-time of the QC-based
Algorithm 1 increased by a factor of roughly 20 between the
4-state WKH model and the 9-state model. For the 9-state
model, when we compare the run-time for Algorithm 1 to
the SOS method, we see that the QC method is approx 900
times faster. We note that the run-time for the DAL method
appears to increase by a factor of roughly 15 when going from
the 4-state WKH model to the 9-state model, which actually
seems to scale better than even the QC method; however, it
is important to note that the DAL method can be sensitive
to the final simulation time, perturbation size, tolerances, etc.
Thus, tuning the DAL method can be a time intensive process,
especially when system parameters (e.g., Re) are changed. The
time required to tune the DAL process to obtain the precise
estimates reported in this study is not reflected in the times
listed in Table I. Overall, we conclude that the QC-based
Algorithms 1 and 2 require less end-to-end time than SOS
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TABLE I
TOTAL RUN-TIME AND AVERAGE SOLVER TIME PER ITERATION FOR CALCULATING R∗ BY THE VARIOUS METHODS STUDIED

and DAL methods, and yield R∗ solutions that are approxi-
mately within one order of magnitude of the SOS and DAL
estimates.

V. CONCLUSION

In this work, we have proposed an improvement to the
quadratic constraint (QC) framework for nonlinear fluid flow
analysis. This was done by generalizing the local QCs from
spherical sets (proposed in [11]–[13]) to ellipsoidal sets, which
reduced conservatism and improved estimates of the ROA.
Additionally, we proposed and investigated two algorithms
for performing the ROA analysis. The less conservative but
more computationally demanding algorithm—Algorithm 1—
iteratively refines the solution by solving a sequence of
semi-definite programs. In contrast, the more computationally
efficient algorithm—Algorithm 2—solves a single general-
ized eigenvalue problem (GEVP) and yields estimates of the
ROA and permissible perturbation amplitude in a single pass.
Both Algorithms 1 and 2 were found to outperform the QC
analysis methods proposed in [12] and [13] in terms of accu-
racy. Algorithm 2 did so at no additional computational cost
over these prior QC-based analysis methods. Both of the
proposed algorithms surpassed prevailing SOS and DAL meth-
ods in terms of computational run-time. Although the proposed
methods did not attain the same degree of accuracy as the
computationally demanding SOS and DAL methods, both
Algorithms 1 and 2 estimated results on the same order of
magnitude as DAL and SOS for the models considered here.
It may still be possible to refine the QC method beyond what
we have presented in this study. Future work may benefit from
incorporating additional constraints to refine the proposed QC
analysis even further.
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