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Competition in Electric Autonomous Mobility on
Demand Systems
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Abstract—This paper investigates the impacts of competition
in autonomous mobility-on-demand systems. By adopting a
network-flow based formulation, we first determine the optimal
strategies of profit-maximizing platform operators in monopoly
and duopoly markets, including the optimal prices of rides.
Furthermore, we characterize the platform operator’s profits
and the consumer surplus. We show that for the duopoly, the
equilibrium prices for rides have to be symmetric between
the firms. Then, in order to study the benefits of introducing
competition in the market, we derive universal theoretical bounds
on the ratio of prices for rides, aggregate demand served, profits
of the firms, and consumer surplus between the monopolistic and
the duopolistic setting. We discuss how consumers’ firm loyalty
affects each of the aforementioned metrics. Finally, using the
Manhattan network and demand data, we quantify the efficacy
of static pricing and routing policies and compare it to real-time
model predictive policies.

I. INTRODUCTION

In the past decade, growing popularity of mobility-on-
demand (MoD) platforms has extensively altered the paradigm
of urban mobility. Owing to the rapid evolution of enabling
technologies for autonomous driving and advancements in
eco-friendly electric vehicles (EVs), it is possible for MoD
platforms to employ self-driving electric vehicles and therefore
preserve the benefits of private automobiles while reducing the
consumption of non-renewable energy resources. Given this,
the vision of an electric and autonomous mobility-on-demand
(AMoD) fleet serving urban customers’ mobility needs is gain-
ing traction within the transportation industry, with multiple
companies now heavily investing in AMoD technology [1].

Unlike modern ride-sharing platforms that establish a two-
sided market between drivers and customers such as Uber
and Lyft and rely only on pricing schemes to manage the
demand-supply balance, self-driving technology allows AMoD
systems to operate in a single-sided market in which the
customers are directly served by the platform operator rather
than the drivers. This allows the platforms to centrally manage
their fleets of vehicles and hence efficiently dispatch them
to where they are needed the most without the need to
incentivize drivers, including rebalancing the idle passenger-
free vehicles throughout the network to match supply and
demand. Furthermore, autonomous vehicles can better exploit
diversity in electricity prices for cheaper operation.

In this paper, we study the effects of competition in electric
AMoD systems that are operated by profit-maximizing plat-
form operators. Owing to the opportunities that autonomous
electric vehicles create for efficient control schemes and cost-
effective operation, it is possible for a single platform operator
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to provide cheap rides through optimizing the prices of rides
for geographical load balancing as well as optimally routing
and charging the fleet of electric vehicles. However, a mo-
nopolistic market with a single AMoD provider is in general
disadvantageous for customer welfare. Therefore, introduction
of another AMoD service provider to the market results in
firms competing over the customers, hence forcing them to
charge fairer prices and provide a higher quality of service.
Our primary goal is to investigate the optimal behaviour of the
firms in a monopoly and duopoly and quantify the impacts of
competition on the customers as well as the firms.

Our contributions can be summarized as follows:

• We formalize the platform operator’s profit maximization
problem by adopting a static network-flow based model
that captures the characteristics of an AMoD fleet, and
derive expressions for the ride prices, profits, and con-
sumer surplus under the optimal static policy.

• We prove that if the competitors have identical costs, then
the duopoly equilibrium prices have to be symmetric. We
show that under a mild sufficient condition on maximum
travel costs that can be met with electric vehicles, the
duopoly prices in equilibrium are never larger than the
optimal monopoly prices. Furthermore, we derive theo-
retical bounds for the ratio of prices, induced demand,
profits, and consumer surplus in the monopoly and the
duopoly equilibrium.

• We study a real-time pricing and fleet management policy
using model predictive control, and demonstrate the per-
formance numerically on real network and demand data.

Related work: Research on AMoD systems concentrates on
optimal fleet control, with a particular focus on rebalancing.
Scholars have tackled the rebalancing problem using queueing
theoretical [2], fluidic [3], network flow [4], and Markovian
models [5]. These works develop time-invariant policies by
relying on the steady-state of the system, which may not be
able to address real-world challenges such as variability in cus-
tomer arrivals or integrality requirements in real-time dispatch.
As a consequence, studies aiming to develop efficient real-
time control policies using model predictive control (MPC)
have emerged in the literature, e.g., [6]–[8]. The authors of [7]
design a data-driven MPC algorithm by predicting the future
demand, whereas the authors of [8] develop a stochastic MPC
algorithm that leverages uncertain travel demand forecasts.
In [6], the authors also consider a fleet of EVs and hence
propose an MPC approach that optimizes vehicle routing and
scheduling subject to energy constraints. EV charging problem
in electric AMoD systems has also been studied using dynamic
programming [9] and online heuristics [10]. None of these
studies however adopt a price-responsive demand model and
exploit pricing to further optimize the system. Lately, benefits
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of joint pricing and rebalancing in AMoD systems have been
demonstrated using macroscopic steady-state models [11], [12]
as well as microscopic dynamic models [12].

Research on competition in ride-sharing markets is also
relevant to ours. In terms of a broader scope on platform
competition in two-sided markets, [13] and [14] introduce gen-
eral frameworks and provide in-depth analysis. The impacts of
single/multi-homing users on the market equilibria have been
investigated in [15]. Theoretical studies on dynamic platform
competition [16] and spatial platform competition [17] in two
sided markets further provide insights towards competition
in ride-sharing markets. Besides these, scholars examine the
competition between ride-sharing and taxis [18], [19], where
Uber is considered to be a monopoly. These works however do
not capture the competition among ride-sharing platforms, yet
ride-sharing markets are rather oligopolies in many countries
[20]. Accordingly, a recent work [21] presents a head-to-head
comparison of Uber, Lyft, and taxis using statistical methods.
Another line of work related to ours focuses on the benefits
of spatial price discrimination [22] and dynamic pricing in
ride-sharing networks [23], [24]. These however do not study
a competitive market. Closest to our work is [25], which
studies the effects of thickness (i.e., the mass of drivers) and
competition on the equilibria of ride-sharing markets. It shows
that competition always increases the welfare of the drivers,
whereas it decreases the welfare of the customers if the market
is not sufficiently thick.

To the best of our knowledge, there is no existing work on
competition in electric AMoD systems. Our study aims to form
the bridge between AMoD and competition literature with our
theoretical findings. We hope that the closed form bounds
quantifying the impacts of competition would help investors
make informed policy decisions about competing AMoD plat-
forms and investing in efficient AMoD technologies.

II. SYSTEM MODEL AND PROBLEM DEFINITION

Network and Demand Models: We consider two fleets of
AMoD EVs operated by two competitors within a transporta-
tion network characterized by a complete graph consisting of
N = {1, . . . , n} nodes. Each of these nodes can serve as a
trip origin or destination.

We study a discrete-time system with time periods nor-
malized to integral units t ∈ {0, 1, 2, . . . }. In each pe-
riod, potential riders of mass θij seek rides between origin-
destination (OD) pair (i, j), where θii = 0. We assume that
customers have different valuations for riding with each firm,
represented by the tuple (v1, v2) where vf is the customer’s
valuation for firm f . To capture customer heterogeneity, we let
(v1, v2) ∼ V , where V denotes the PDF of the joint distribution
with support [0, `max]2. Here, `max is the maximum valuation
of the customers for both firms, i.e. the maximum willingness
to pay1. To characterize the distribution V , we adopt the
model proposed by [25] and assume that the distribution of
the random variables (v1, v2) is defined implicitly through:

1For brevity of notation, we uniformly set `max to be the maximum
willingness to pay for all OD pairs without loss of generality. Our results
can be derived in a similar fashion by replacing `max with `ijmax, where
`ijmax is the maximum willingness to pay for OD pair (i, j).

(a) Duopoly demand functions (b) Monopoly demand function

Fig. 1: Graphical illustration of the demand functions for (a)
duopoly, and (b) monopoly. The axes correspond to the uniform
random variables x and y scaled by 1/`max. In duopoly, the line
σx+(1−σ)y = `1ij corresponds to the customers who earn 0 pay-off
buying a ride from firm 1, and the line σx+(1−σ)(`max−y) = `2ij
corresponds to the customers who earn 0 pay-off buying a ride from
firm 2. As such, for the price tuple (`1ij , `

2
ij), the blue shaded area

corresponds to the demand function for firm 1, whereas the red
corresponds to the demand function for firm 2. Monopoly is the
special case of duopoly, where the prices for rides set by firm 2
are set to infinity: `2ij =∞.

v1 = σx+ (1− σ)y, (1)
v2 = σx+ (1− σ)(`max − y), (2)

where x and y are iid uniform random variables with support
[0, `max] and σ ∈ [0, 1]. We refer to x as the common value
component and y as the idiosyncratic component, with σ as
the measure of correlation over customers’ preferences2. In
particular, x can be viewed as a customer’s valuation of the
ride itself and y (or `max − y) can be viewed as a customer’s
valuation of firm 1 itself (or firm 2 itself). A customer is
identified by the draws from distributions of x and y, which are
then mapped to that customer’s valuations for riding with firms
1 and 2 via (1) and (2). A customer with valuations (v1, v2)
makes a decision upon observing the prices for rides. If the
prices for rides between OD pair (i, j) in period are set to be
`1ij and `2ij by firm 1 and 2, respectively, the customer buys a
ride from firm f if vf − `fij > 0 and vf − `fij > v−f − `−fij
(given firm f , −f denotes the other firm), i.e., the customer
gains a positive pay-off for purchasing a ride from firm f and
this pay-off is higher than the pay-off that the customer would
gain by buying from the other firm. Otherwise they do not buy
a ride from either of the firms and leave the system. Hence,
for a price tuple (`1ij , `

2
ij) for OD pair (i, j), the induced mass

of arrivals for firm f is given by Θf
ij := θijD(`fij , `

−f
ij ),

where D : [0, `max]2 → [0, 1] is the demand function of
customers which determines the fraction of customers that
would buy a ride from firm f upon observing the prices.
This function has a simple geometric interpretation depicted in
Figure 1. We plot the demand function and the willingness to
pay distribution as a function of ride prices for several values
of σ in the monopolistic setting in Figure 2. Note that the
demand function is concave if `1ij < (1− σ)`max, is linear if
(1− σ)`max ≤ `1ij < σ`max, and is convex if σ`max ≤ `1ij .

2In the monopolistic setting, σ measures the correlation between customers’
valuation of riding with the monopolistic firm and customers’ valuation of
riding with outside options (e.g., public transport).
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Fig. 2: Demand function (left) and willingness to pay distribution
(right) as a function of ride prices for several values of σ ∈ [0.5, 1].

Vehicle Model: In order to best serve its customers and
maximize its profits, each operator needs to dispatch its fleet,
including vehicle routing and charging. To implicitly capture
the effect of trip demand and the associated charging and
routing decisions on the fleet size and hence the operational
costs incurred by each operator, we assume that each vehicle
in charging or trip-making mode has a per period operational
cost of βc and βt, respectively. A trip-making vehicle can
either be occupied by a customer, which we refer to as a
customer carrying vehicle; or can be empty, which we refer
to as a rebalancing vehicle. We note that in this work, we set
the capacity of a vehicle to be one passenger. Furthermore,
as the vehicles are electric, they have to sustain charge in
order to operate, which needs to be purchased from the power
grid. Without loss of generality, we assume there is a charging
station placed at each node i ∈ N . To charge at node i, the
operator pays a price of electricity pi per unit of energy. We
assume that all EVs in the fleet have a battery capacity denoted
as emax ∈ Z+; therefore, each EV has a discrete battery energy
level e ∈ E , where E = {e ∈ N|0 ≤ e ≤ emax}. In our
discrete-time model, we assume each vehicle takes one period
to charge one unit of energy and τij periods to travel between
OD pair (i, j), while consuming eij units of energy.
Platform Operator’s Problem: We consider a profit-
maximizing AMoD operator that manages a fleet of EVs that
make trips to provide transportation services to customers. The
operator’s goal is to maximize profits by 1) setting prices for
rides and hence managing customer demand at each node; 2)
optimally operating the AMoD fleet (i.e., charging and routing)
to minimize operational and charging costs. Next, we study the
static planning problem for both the monopoly and the duopoly
settings in order to characterize the optimal static prices and to
examine the effects of competition in electric AMoD systems.

III. ANALYSIS OF THE STATIC PROBLEM

In this section, we establish and discuss the static planning
problems considering a single operator (i.e., monopoly) and
two competing operators (i.e., duopoly) in order to study
the effect of competition in an electric AMoD system. We
consider the fluid scaling of the network and characterize the
static planning problem via a network flow formulation. The
static problem is convenient for determining the optimal static
pricing, routing, and charging policy of the platform operator.

A. Monopoly Static Planning Problem

We define the monopoly to be the setting where the firm
2 is removed. In order to make the comparison between the
monopoly and the duopoly consistent, we keep the customer

behaviour and the demand function D same. Hence, removing
firm 2 from the system is equivalent to setting prices for rides
posted by firm 2 to be ∞, and the induced demand for rides
for OD pair (i, j) to be D(`1ij ,∞) for a given `1ij .

The goal of the platform operator is to maximize its profits
by setting prices for rides and making routing and charging
decisions such that the induced demand is served. Let xeij be
the number of vehicles at node i with energy level e being
routed to node j and xeic be the number of vehicles charging
at node i and currently at energy level e. We state the platform
operator’s problem as follows:

max
xeic,x

e
ij ,`

1
ij

n∑
i=1

n∑
j=1

θij`
1
ijD(`1ij ,∞)

−
n∑
i=1

emax−1∑
e=0

(βc+pi)x
e
ic−βt

n∑
i=1

n∑
j=1

emax∑
e=eij

xeijτij (3a)

subject to θijD(`1ij ,∞) ≤
emax∑
e=eij

xeij ∀i, j ∈ N , (3b)

xeic +
n∑
j=1

xeij = xe−1
ic +

n∑
j=1

x
e+eji
ji ,

∀i ∈ N , ∀e ∈ E , (3c)
xemax
ic = 0, ∀i ∈ N , (3d)
xeij = 0, ∀e < eij , ∀i, j ∈ N , (3e)

xeic ≥ 0, xeij ≥ 0, ∀i, j ∈ N , ∀e ∈ E , (3f)

xeic = xeij = 0, ∀e /∈ E , ∀i, j ∈ N . (3g)

The objective function (3a) corresponds to the profits earned
by the firm per period. In particular, the first term in (3a)
accounts for the aggregate revenue the platform generates by
providing rides for θijD(`1ij ,∞) number of riders with a price
of `1ij . The second term is the operational and charging costs
incurred by the charging vehicles, and the last term is the
operational costs of the trip-making vehicles.

The constraint (3b) requires the platform to operate at least
as many vehicles to serve all the induced demand between
any two nodes i and j (The rest are the vehicles travelling
without passengers, i.e., rebalancing vehicles). We will refer
to this as the demand satisfaction constraint. We let λij be the
dual variable associated with (3b) and λmij be the optimal dual
variable. The constraint (3c) is the flow balance constraint for
each node and each battery energy level, which restricts the
number of available vehicles at node i and energy level e to
be the sum of arrivals from all nodes and vehicles that are
charging with energy level e− 1. The constraint (3d) ensures
that the vehicles with full battery do not charge further, and
the constraint (3e) ensures the vehicles sustain enough charge
to travel between OD pair (i, j).

It is worthwhile to mention that unlike traditional minimum-
cost flow problems, where the objective is to minimize total
travel cost, the objective of (3) is to maximize the total rev-
enue minus the costs, i.e., profits. Furthermore, in traditional
minimum-cost flow problems, demand elasticity in response
to price is not explicit and the elasticity is often modeled
in response to travel times [26], [27], whereas the explicit
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dependency of the induced demand to prices via D(`1ij ,∞)
results in a more challenging task. The prices affect the
induced demand, which affects the routing decisions and this
causes a complex interplay between the decision variables.
Optimal Pricing: The prices for rides are a crucial component
of the profits generated. The next proposition highlights how
the optimal prices `mij := `1∗ij for rides are related to the
network parameters, prices of electricity, and the operational
costs. In the following results, we investigate this intercon-
nection by providing upper bounds on the prices that a profit-
maximizing monopolist may charge customers, as well the
corresponding profits generated. We highlight the fact that
the monopolist’s profits are in fact a decreasing function of
the optimal prices for rides. The higher the monopolist has
to charge its customers, the lower its generated profits. This
could be a motivation for the monopolist to invest in efficient
vehicle technology and cheap charging solutions.

Proposition 1. Define

λij := βt(τij + τji) + eij(pj + βc) + eji(pi + βc).

Let λmij be the optimal dual variable corresponding to the
demand satisfaction constraint (3b) for OD pair (i, j). The
optimal monopoly prices `mij are:

`mij=


λmij+
√

(λmij )
2+6σ(1−σ)`2max

3 ,
λmij
`max

< 3−5σ
2

(1+σ)`max+2λmij
4 , 3−5σ

2 ≤ λmij
`max

< 3σ−1
2

2λmij+`max

3 , 3σ−1
2 ≤ λmij

`max
≤ 1.

(4)
These prices can be upper bounded by:

`mij ≤


λij+
√

(λij)2+6σ(1−σ)`2max

3 ,
λij
`max

< 3−5σ
2

(1+σ)`max+2λij
4 , 3−5σ

2 ≤ λij
`max

< 3σ−1
2

2λij+`max

3 , 3σ−1
2 ≤ λij

`max
≤ 1.

(5)
The proof can be found in Appendix A. We can interpret

the dual variables λmij as the cost of providing a single ride
between i and j to the platform. In the worst case scenario,
every single requested ride from node i requires rebalancing
and charging both at the origin and the destination. Hence
the upper bounds on (5) include the operational costs of
passenger-carrying, rebalancing and charging vehicles (both
at the origin and the destination); and the energy costs of
both passenger-carrying and rebalancing trips multiplied by
the price of electricity at the trip destinations (This is exactly
what λij consists of).

Similar to the taxes applied on products, whose burden
is shared among the supplier and the customer; the costs
associated with rides are shared among the platform operator
and the riders (which is why the price paid by the riders
include some fraction of the cost of the ride).

We note that if the optimal dual variables λmij fall in the
region [(3 − 5σ)`max/2, (3σ − 1)`max/2], then the optimal
prices given by (4) fall in the region [(1− σ)`max, σ`max]. In
this region, the demand function D(`mij ,∞) is linear. Hence,
the optimization problem (3) (with the additional constraint
(1 − σ)`max ≤ `1ij ≤ σ`max, ∀i, j ∈ N , without losing
global optimality) becomes a convex quadratic program and

can be solved in polynomial time. The following assumptions
guarantee this:

Assumption 1. Assume that σ ≥ 3/5, i.e., the customers’
preferences over the two firms are highly correlated.

Assumption 2. We assume max
i,j

λij ≤ (3σ−1)(3−σ)
4(5−3σ) `max as

an upper bound on the maximum cost of a ride in the network.

Remark 1. Assumption 1 implies that at least 3/5 (60%) of
the customers’ valuations between the firms are correlated.
Higher correlation implies that riders’ valuations of the rides
provided by a firm depend less on the identity of the firm. This
is reasonable for ride-sharing platforms, where majority of the
customers decide depending heavily on the price rather than
the identity of the firm.
Assumption 2 imposes an upper bound on the maximum cost
of a ride. This can be satisfied in practice, especially with
electric vehicles. Observe that the bound is increasing with
σ, hence it is tightest when σ = 3/5. To give numbers with
a simple calculation, consider a network with farthest OD
pair of 15 miles and 30 minutes away (with average speed
30mph), σ = 3/5 and `max = $50. An average EV consumes
34kWh energy to drive for 100 miles. For an average price
of electricity of $0.11 per kWh and a charger with 20kW
charging speed, the EV charges 10kWh in 30 minutes for
$1.1, that allows for 30 miles of range. If we amortize the
cost of a very expensive EV of $100k over 5 years, we get
per minute operational cost of $0.04. In total, to do the trip
and the rebalancing, the vehicle drives for 30 miles for 1
hour and charges for 30 minutes. In total, this yields a cost of
90× $0.04 + $1.1 = $4.7 = max

i,j
λij ≤ (3σ−1)(3−σ)

4(5−3σ) = $7.5.

Whereas the fuel for gasoline vehicles costs about 4 times more
(around $0.16 per mile), which would yield max

i,j
λij = $8.00.

Next, we relate the optimal prices `mij to the profits generated
by the operator and the consumer surplus. The profits are
defined by the objective function in (3a). The consumer surplus
is defined as the difference between the price that customers
pay and the price that they are willing to pay, i.e., the aggregate
pay-off of the customers.

Proposition 2. Suppose that Assumptions 1 and 2 hold. With
the optimal monopoly prices `mij , the profits per period are:

Pm =
n∑
i=1

n∑
j=1

θij
4σ`max

(`max(1 + σ)− 2`mij )
2. (6)

The consumer surplus with the optimal prices is:

CSm=
n∑
i=1

n∑
j=1

θij
`max(σ2+σ+1)−3`mij (1+σ− `mij

`max
)

6σ
. (7)

The proof can be found in Appendix B. Notice that the
profits in (6) are decreasing as the prices for rides increase.
Thus expensive rides generate less profits compared to the
cheaper rides and it is more beneficial if the optimal dual
variables λmij are small and prices are close to `max(1 +σ)/4.
Thus, the operator has incentive to use more efficient routing
and charging policies so they can lower ride prices as much
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as possible. Moreover, by computing ∂CSm
∂`mij

using (7), one
identifies that lower prices generate higher consumer surplus,
which is an intuitive result.

B. Duopoly Static Planning Problem

We study the duopoly as a game between two firms. At
a high level, the game is described by firm f observing
firm −f ’s prices and solving the optimization problem (3)
(by considering firm −f ’s prices to be `−fij rather than ∞
for the demand function). We consider two competitors with
identical operational costs βt and βc, and study the optimal
pricing strategy when the firms are at an equilibrium. In an
equilibrium, no firm benefits from unilaterally changing the
prices for any number of OD pairs (and as a result the optimal
solution to their static planning problem). Given {`−fij }∀i,j∈N ,
the best response of firm f is the best pricing, routing and
charging strategy of f , which is the solution of (3) (with `−fij
instead of ∞ in the demand function). Since the operational
costs and the prices of electricity are identical for both of the
firms, their best response to their competitor’s prices are the
same. As such, it is intuitive that there exists an equilibrium in
which both firms set the prices equal (`fij = `−fij ,∀i, j ∈ N ),
and we show that this is in fact the case. Such an equilibrium
is commonly referred to as a symmetric duopoly equilibrium.
Furthermore, we show that no asymmetric equilibria can exist
under this setting, i.e., identical firms will not set different
prices for the same OD pair at equilibrium.

Let the following static planning problem characterize the
state in which both firms serve equal number of customers for
all OD pairs and have identical pricing strategies:

max
xeic,x

e
ij ,`

1
ij

n∑
i=1

n∑
j=1

θij`
1
ijD(`1ij , `

2
ij)
∣∣∣
`1ij=`

2
ij

−
n∑
i=1

emax−1∑
e=0

(βc + pi)x
e
ic−βt

n∑
i=1

n∑
j=1

emax∑
e=eij

xeijτij (8a)

subject to θijD(`1ij , `
2
ij)
∣∣∣
`1ij=`

2
ij

≤
emax∑
e=eij

xeij , ∀i, j ∈ N , (8b)

(3c)− (3g).
We note that the optimization problem (8) is in general non-
convex due to D(`1ij , `

2
ij). Since there are no constraints on the

fleet size and furthermore prices that control the demand are
decision variables, a feasible solution to the above optimization
problem always exists. Moreover, the optimal solution to (8)
specifies an equilibrium of the duopoly.

Proposition 3. Suppose that σ ≥ 1/2 and Assumption 2 holds.
The firms are in an equilibrium when their routing, charging,
and symmetric pricing strategy follows the solution of (8).

Proof outline: We first determine the optimal pricing strat-
egy {`dij}i,j∈N of (8) using the first and second order opti-
mality conditions (similar to proof of Proposition 1). Then,
by stating the first order optimality condition for firm f we
show that when firm −f sets prices as `−fij = `dij , ∀i, j ∈ N ,
then the best response of firm f is to set `fij = `dij , ∀i, j ∈ N .
Hence, they are in an equilibrium. �

The complete proof can be found in Appendix C, which
is provided in the online version [28]. Accordingly, there
exists a duopoly equilibrium characterized as the optimal
solution of (8), in which the firms set identical prices. The
optimal solution to (8) is however not necessarily unique and
there can be many solutions yielding the same profits. For
instance, if pi = pj ,∀i, j ∈ N , then the optimal charging
strategy is not unique. We let {`dij}i,j∈N to be the equilibrium
prices determined as an optimal solution of (8) and say that
the firms are in a symmetric duopoly equilibrium as long
as `1ij = `2ij = `dij ,∀i, j ∈ N . Furthermore, in the next
proposition, we state that if both firms serve all OD pairs,
equilibrium prices can not be asymmetric.

Proposition 4. Suppose that σ ≥ 1/2 and Assumption 2 holds.
There exists no asymmetric equilibrium prices, in which both
firms serve nonzero demand for all OD pairs with nonzero
potential riders.

Proof outline: We let `1ij = `2ij + δ for some δ > 0
and show by contradiction that the first-order optimality
condition can not simultaneously be satisfied for both firms.
Since the demand function D(`1ij , `

2
ij) has different expres-

sions for `1ij ≤ (1 − σ)`max and `1ij > (1 − σ)`max, we
separately study three cases: (i) `1ij , `

2
ij ≤ (1 − σ)`max,

(ii) `1ij , `
2
ij > (1 − σ)`max, and (iii) `1ij > (1 − σ)`max,

`2ij ≤ (1−σ)`max. For all cases, we first assume that the first-
order optimality condition hold for both firms and bound the
difference between the dual variables leading to `1ij and `2ij in
terms of δ. For cases (i) and (ii), we show by using the bound
on the dual variables that if the first-order condition for firm 2
is satisfied (i.e., is equal to 0), then the first-order condition for
firm 1 is always less than 0, which is a contradiction. For case
(iii), we show that with first-order condition satisfying prices,
`2ij + δ is always less than `1ij , which is a contradiction. �

The complete proof is provided in Appendix D of the online
version [28]. As we have identified that the duopoly can only
be in a symmetric equilibrium, we analyze the effects of
competition in state of a symmetric equilibrium.

The next set of results characterize the effects of competition
on the ride prices, the operators’ profits, the total societal ride
demand served, and the consumer surplus. In the first result,
we provide lower and upper bounds on the price reduction the
customers will see with the introduction of the second firm and
moving from a monopoly to a symmetric duopoly equilibrium.

Proposition 5. Suppose that Assumptions 1 and 2 hold. Let
λij be defined as in Proposition 1. Define

∆1(λij) := 4`2max+(2λij+(15σ−3)`max)(2λij+(1−σ)`max),

∆2(λij) := 2(σ`max−λij)2+2(`max−λij)2+11(σ−1)2`2max.

Let λdij be the optimal dual variable corresponding to the
demand satisfaction constraint (8b). The symmetric duopoly
equilibrium prices are determined as:

`dij =


(3−5σ)`max+2λdij+

√
∆1(λdij)

8 ,
λdij
`max

≤ 3(1−σ)2

2(σ+1)

(5−3σ)`max+2λdij−
√

∆2(λdij)

4 , o.w.,
(9)

Moreover, denote the difference between optimal monopoly
and symmetric duopoly equilibrium prices for OD pair (i, j)
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as ∆`ij := `mij − `dij . Then:

∆`ij≥


(7σ−1)`max−2λij−

√
∆1(λij)

8 ,
λij
`max

≤ 3(1−σ)2

2(σ+1)

(4σ−4)`max−2λij+
√

∆2(λij)

4 , o.w.,
(10)

and

∆`ij≤
(7σ−1)`max+4λij−`max

√
−15σ2+18σ+1

8
. (11)

Proof outline: We state the first and the second order
optimality conditions on (8) to get the duopoly equilibrium
prices. To lower bound the price difference, we evaluate the
monopoly prices at λmij = 0 and the duopoly equilibrium prices
at λdij = (3σ−1)(3−σ)

4(5−3σ) `max (and to upper bound, vice versa).�
The complete proof can be found in Appendix E, which is

provided in the online version [28]. An interesting observation
is how σ affects the prices. For the optimal monopoly prices,
∂`mij/∂σ > 0, i.e., the monopolist serving a population with
higher σ charges more for the rides with identical costs
(i.e., identical λmij ). The reason is that larger σ shifts the
distribution of customers’ valuations for the monopolist from
intermediate to extreme values (as σ increases from 1/2 to 1,
the distribution shifts from triangular to uniform). This shift
in the distribution modifies the demand function D(`1ij ,∞),
which leads to an increase on the optimal prices. Simply put,
larger σ, i.e., lack of firm loyalty, leads to an increase in
the prices for the monopoly. On the contrary for the duopoly
equilibrium prices, ∂`dij/∂σ < 0. That is, the duopoly serving
a population with higher σ charges less for the rides with
identical costs (i.e., identical λdij). The intuition behind is
that larger σ indicates a lack of firm loyalty (when σ = 1,
the customers buy from the firm that offers lower prices).
Hence, higher σ strengthens the competition and causes the
firms to charge less. The reader can observe that when σ = 1,
`dij = λdij , i.e., the equilibrium prices are equal to the costs
of providing the rides to the platform, which is the lowest the
firms can go without losing money but make no profit.

Observe that the lower bounds in (10) are decreasing
functions of λij . Given the maximum value of λij equal
to λij = (3σ−1)(3−σ)

4(5−3σ) `max, the lower bound on the price
difference is 0. Hence, we can conclude that the duopoly prices
are never higher than the monopoly prices, for all OD pairs.

Proposition 5 characterizes the effect of competition on the
prices depending on the network parameters and therefore the
dual variables. The next series of results aim to determine
universal bounds on the ratio of prices, induced demand,
profits and consumer surplus in the monopoly and the duopoly,
independent of the network parameters.

Proposition 6 (Price Bounds). Suppose that Assumptions 1
and 2 hold. For all OD pairs, the optimal monopoly prices
obey the following:

2`max/5 ≤ `m ≤ `mij ≤ `
m ≤ 3`max/4, (12)

where `m := 1+σ
4 `max and `

m
:= 7+14σ−9σ2

40−24σ `max. Further-
more, the symmetric duopoly equilibrium prices obey:

0 ≤ `d ≤ `dij ≤ `
d ≤ `max/2, (13)

where `d := 3−5σ+
√
−15σ2+18σ+1

8 `max and `
d

:= 1+σ
4 `max.

Moreover for all OD pairs (i, j), the ratio between the sym-
metric duopoly equilibrium prices and the optimal monopoly
prices obey the following:

`d

`
m ≤

`dij
`mij
≤ `

d

`m
= 1. (14)

Proof outline: The proof is done by evaluating the op-
timal monopoly prices given by (4) at λmij = 0 and
λmij = (3σ−1)(3−σ)

4(5−3σ) `max as well as the duopoly equilibrium

prices given by (9) at λdij = 0 and λdij = (3σ−1)(3−σ)
4(5−3σ) `max to

get the bounds on the prices in terms of σ. Then, we impose
the condition σ ∈ [3/5, 1] to get the uniform bounds.

The complete proof can be found in Appendix F, which
is provided in the online version [28]. An observation is that
increasing σ increases both the upper and the lower bounds
for the optimal monopoly prices, whereas decreases the lower
bound on the duopoly equilibrium prices and increases the
upper bound. This is because for the optimal monopoly prices,
∂`mij/∂σ > 0. However, because it strengthens the competition
between the firms in the duopoly, it can cause the prices
to go much lower, hence decreasing the lower bound (when
σ = 1: if λdij = 0, then `dij = 0). The upper bound on the
duopoly equilibrium prices still increases, because according
to Assumption 2 a larger σ permits a larger λdij and hence
higher prices. Consequently, the upper bound on the price
ratio is always 1 independent of σ while the lower bound
is decreasing with σ.

The next result characterizes the effect of competition on the
total customer demand for rides that are served by either firm.
We show that the aggregate demand served by the duopoly
is at least equal to and can be up to 4 times higher than the
demand served by the monopoly.

Proposition 7 (Demand Bounds). Suppose that Assumptions 1
and 2 hold. For all OD pairs (i, j), the monopoly demand
functions evaluated at the optimal monopoly prices obey:

1/4 ≤ Dm ≤ D(`mij ,∞) ≤ Dm ≤ 2/3, (15)

where Dm := 13−3σ2−6σ
40σ−24σ2 and D

m
:= 1+σ

4σ . The duopoly
demand functions at the duopoly equilibrium prices obey:

1/4 ≤ Dd ≤ D(`dij , `
d
ij) ≤ D

d ≤ 1/2, (16)

where Dd := 1
4σ and D

d
:= 1

2 −
(−(1+σ)+

√
−15σ2+18σ+1)

2

128σ(1−σ) .
Furthermore, the ratio between the total demand served be-
tween any OD pair

2D(`dij ,`
d
ij)

D(`mij ,∞) obeys the following:

1 ≤ 2

1 + σ
=

2Dd

D
m ≤

2D(`dij , `
d
ij)

D(`mij ,∞)
≤ 2D

d

Dm ≤ 4 (17)

Proof outline: The proof is done by evaluating the de-
mand functions for the monopoly and the duopoly at the
price bounds given by (12) and (13), and then imposing the
condition σ ∈ [3/5, 1] to get uniform bounds.

The complete proof can be found in Appendix G, which
is provided in the online version [28]. Taking into account
that induced demand is inversely proportional to prices, the
impact of σ on the demand function bounds is in accordance
with price bounds in Proposition 6.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 09,2021 at 22:39:01 UTC from IEEE Xplore.  Restrictions apply. 



2325-5870 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2021.3100392, IEEE
Transactions on Control of Network Systems

7

Remark 2. The upper bound in (17) is achieved when σ = 1,
λmij = (3σ−1)(3−σ)

4(5−3σ) `max and λdij = 0. Although it is achievable
for some OD pairs, it is not possible to achieve it for all OD
pairs simultaneously. This is because for λdij to be 0, constraint
(8b) has to be slack, meaning node i has excess supply of
vehicles that are being rebalanced to node j. This however
can not hold simultaneously for all OD pairs, since that would
mean there are empty vehicles being routed between all OD
pairs, which would not be optimal.

Interestingly, we see that this potential increase in the
aggregate demand never translates into a profit increase for the
firms because of the competition. As expected, profits decrease
in the presence of competition. According to the next result,
the profits generated by a single firm in duopoly is always less
than 85% of the profits generated by the monopoly.

Proposition 8 (Profit Bounds). Suppose that Assumptions 1
and 2 hold. Let profits earned by serving the induced demand
between OD pair (i, j) in the monopoly be Pmij . With the
optimal monopoly prices, Pmij for all (i, j) obey the following:

θij`max/16 ≤ θijPm ≤ Pmij ≤ θijP
m ≤ θij`max/4, (18)

where

Pm =
(3σ2 + 6σ − 13)2

64σ(5− 3σ)2
`max, P

m
=

(1 + σ)2

16σ
`max.

Similarly, let profits earned by serving the induced demand
between OD pair (i, j) by a single firm in the duopoly be P dij .
With the duopoly equilibrium prices, P dij for all (i, j) obey:

0 ≤ θijP d ≤ P dij ≤ θijP
d ≤ (4 +

√
10)`maxθij/48 (19)

where

P d=

(
`
d − (3σ − 1)(3− σ)

4(5− 3σ)
`max

)
×Dd=

1− σ
2σ(5− 3σ)

`max,

P
d

= `dD
d
.

Furthermore, for all OD pairs, the ratio
Pdij
Pmij

obeys:

8(1− σ)

(σ + 1)2(5− 3σ)
=

P d

P
m ≤

P dij
Pmij
≤ P

d

Pm
/ 0.85. (20)

Proof outline: The proof is done by evaluating the profits for
the monopoly given by (6) at the price bounds given by (12).
For the duopoly, we first derive the dual objective, show that
it decreases with `dij , and evaluate at the duopoly equilibrium
price bounds given by (13). Then, we impose the condition
σ ∈ [3/5, 1] to get the uniform bounds.

The complete proof can be found in Appendix H, which
is provided in the online version [28]. Since lower prices
generate more profits in the monopoly and the price bounds
are increasing with σ, the profit bounds of the monopoly are
decreasing with σ. Similarly, the duopoly profit bounds are
decreasing with σ too. Since σ increases the upper bound
on prices, the lower bound on the profits decrease. However,
although σ decreases the lower bound on the prices, the upper
bound on the profits still decrease. This is because competition
in the duopoly is a downward driving force on the prices.
Consequently, lower prices in the duopoly do not only result
from lower λdij , but also stronger competition. Hence, although
lower prices increase the aggregate demand, because the firms

are now competing over the customers, neither of the firms
serve enough customers to compensate for the decrease in the
prices. Hence, the profits decrease.

The upper bound in (20) is achieved when σ = 3/5,
λmij = (3σ−1)(3−σ)

4(5−3σ) `max, and λdij = 0. Due to the same
argument in Remark 2, it can not be achieved simultaneously
by all the OD pairs. Consequently, the ratio of total profits can
not achieve this upper bound with equality.

How do the customers benefit from the introduction of com-
petition? We saw that a reduction in ride prices is expected.
Next, we show that the consumer surplus in the duopolistic
setting is at least equal to and can be up to 16 times the
consumer surplus in the monopoly.

Proposition 9 (Consumer Surplus Bounds). Suppose that
Assumptions 1 and 2 hold. Let the consumer surplus of
customers requesting a ride between OD pair (i, j) in the
monopoly be CSmij . With the optimal monopoly prices, CSmij
for all (i, j) obey:

θij
`max

32
≤ θijCSm ≤ CSmij ≤ θijCS

m ≤ θij
13

90
`max, (21)

where

CSm =
171σ4 − 660σ3 + 1378σ2 − 1748σ + 907

384σ(5− 3σ)2
`max,

CS
m

= (7σ2 − 2σ + 7)`max/(96σ).

Similarly, let the consumer surplus of customers requesting a
ride between OD pair (i, j) in the duopoly be CSdij . With the
duopoly equilibrium prices, CSdij for all (i, j) obey:

θij
`max

8
≤ θijCSd ≤ CSdij ≤ θijCS

d ≤ θij
`max

2
, (22)

where
CSd = (σ2 − 2σ + 13)`max/(96σ),

CS
d

=
`max

24σ(1− σ)

(
(2σ)3 − (σ + 1− 2

`d

`max
)3

− 24σ(1− `d

`max
)(σ − 1 +

`d

`max
)
)
.

Furthermore, for all OD pairs, the ratio
CSdij
CSmij

obeys:

1 ≤ σ2 − 2σ + 13

7σ2 − 2σ + 7
≤ CSd

CS
m ≤

CSdij
CSmij

≤ CS
d

CSm
≤ 16. (23)

Proof outline: The proof is done by evaluating the consumer
surplus for the monopoly given by (7) at the price bounds
given by (12). For the duopoly, we compute the consumer
surplus at the price bounds given by (13) in a similar fashion to
the the proof of Proposition 2. Then, we impose the condition
σ ∈ [3/5, 1] to get the uniform bounds.

The complete proof can be found in Appendix I, which
is provided in the online version [28]. Considering the fact
that lower prices (both in the duopoly and the monopoly)
increase the consumer surplus by inducing more customers
and increasing the surplus per customer, the dependency of the
price bounds on σ reflects to the consumer surplus bounds.

Remark 2 applies for the upper bound in (23) too, and thus it
can not be achieved for all OD pairs simultaneously. Therefore,
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the ratio of total consumer surplus cannot achieve this upper
bound with equality.

So far, we have studied the effects of competition in an
electric AMoD system by adopting a static network-flow for-
mulation. Although very convenient for analysis, this formula-
tion does not reflect the randomness in arrivals nor constrains
vehicles dispatch decisions to be integer valued (e.g., 0.25
customer may be served). To address these discrepancies with
the real environment, in the next section, we modify our model
to account for the randomness in arrivals and furthermore
design a control policy that can be implemented in real-time.

IV. REAL-TIME CONTROL

To accommodate for the stochastic nature of the arrivals,
we model the arrival of the potential customers OD pair (i, j)
as a Poisson process with an arrival rate of θij . Moreover,
we allow the firms to set prices real-time and use the same
price-responsive demand model. In particular, during period
t, for a price tuple (`1ijt, `

2
ijt) for OD pair (i, j), the induced

arrival rate for firm f is given by Θf
ijt = θijD(`fijt, `

−f
ijt ).

Thus, the number of new ride requests in time period t for firm
f is Afijt ∼ Pois(Θf

ijt) for OD pair (i, j). As a consequence
of this randomness in the customer arrivals, the platform
operator might not be able to assign every customer to a
ride immediately (if the number of induced arrivals exceed the
number of available vehicles). In order to address this nuance,
we adopt the following ride-sharing model:
Ride Hailing Model: Customers that purchase a ride during
period t are not immediately matched with a ride, but enter
the queue for OD pair (i, j) to be served at the beginning
of period t + 1. After the platform operator executes routing
decisions for the fleet at the beginning of period t + 1, the
customers in the queue for OD pair (i, j) are matched with
rides and served on a first-come, first-served basis.

Under these additional modeling modifications, our goal
is to establish a real-time pricing and fleet management
policy that can be implemented in a real environment and
provides stability of the queues3. In fact, the model studied
in Section III is the static planning problem associated with
this real environment, where we ignored the stochasticity of
the arrivals and used the expected values, while allowing the
vehicle routing decisions to be flows (real numbers) rather
than integers. For the monopoly (or the symmetric duopoly),
the solution to this static planning problem in (3) (or (8)) is
the optimal static policy that consists of optimal prices as well
as optimal vehicle routing and charging decisions. This policy
can not directly be implemented in a real environment because
it does not yield integer valued solutions. In an earlier work
[12], it was proven that randomizing the vehicle decisions
according to the optimal solution of the static problem to
get integer-valued actions guarantees stability of the queues.
However, considering random arrivals, this method may not
execute the most profitable actions since it does not take
the real-time queue lengths into consideration. Although it
guarantees stability of the queues, it does not seek to minimize

3The stability condition that we are interested in is rate stability of all
queues. A queue for OD pair (i, j) is rate stable if lim

t→∞
qij(t)/t = 0.

the queue lengths and hence the wait time of the passengers,
which would negatively affect the business.

Instead of using the randomized solution to implement real-
time actions, it is possible to realize a real-time policy that
acknowledges the queue lengths and hence aims to maximize
the profits while minimizing the total wait time of the cus-
tomers. To achieve this, we propose to apply finite-horizon
model predictive control (MPC) in our numerical experiment
(albeit with no performance guarantee).
MPC Procedure: The idea of finite-horizon MPC is to
observe the current state of the environment and determine
the best control strategy for a planning horizon of T by
predicting the state path of the environment. Then, only the
control strategy at the initial time period is implemented and
the process is repeated. Specifically, let S be the state of
the vehicles (locations, energy levels) and {Qij}i,j∈N be the
outstanding customer demand (i.e., people who have requested
a ride but not yet served) at the beginning of planning time.
The MPC Algorithm is summarized as follows:

Algorithm 1: MPC Procedure
1: S ← Get vehicle states (locations, energy levels)
2: Qij ← Count outstanding customers
3: {xeijt, xeict, `ijt}∀i,j,e,t ← Solve (24)
4: Execute {xeij0, xeic0, `ij0}∀i,j,e

At each period, Algorithm 1 is run and the system state is
observed. Using this information, the optimal fleet manage-
ment and pricing strategy is computed for the next T periods
by solving (24). Vehicle routing/charging and pricing decisions
are executed for the initial time period and the environment
transitions into next state. Then, Algorithm 1 is re-run and this
process is repeated during the entire operation of the system.

Next, we state the optimization problem (24) for the con-
troller using a dynamic pricing scheme in monopoly. Let the
decision variable `1ijt be the price for rides between OD pair
(i, j) in period t, xeijt be the number of vehicles at node i
with energy level e being routed to node j in period t, xeict be
the number of vehicles charging at node i starting with energy
level e in period t, and qijt be the people waiting in the queue
for OD pair (i, j) in period t. We state the problem as follows:

max
xeict,x

e
ijt,qijt,`

1
ijt

∑
ijt

`1ijtθijD(`1ijt,∞)−
∑
ijt

wijtqijt

− βt
∑
ijet

τijx
e
ijt −

∑
iet

(βc + pi)x
t
ic (24a)

s.t. qijt0 ≥ Qij −
∑
e

xeijt0 , ∀i, j ∈ N (24b)

qijt ≥ qijt−1 + θijD(`1ijt−1,∞)−
∑
e

xeijt,

∀i, j ∈ N , ∀t > t0, (24c)∑
j

xeijt + xeict −
∑
j

x
e+eji
jit−τji − x

e−1
ict−1 = seit,

∀i ∈ N , ∀e ∈ E , ∀t ≥ t0 (24d)
xemax
ict = 0, ∀i ∈ N , ∀t ≥ t0, (24e)
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xeijt = 0, ∀e < eij ,∀i, j ∈ N ,∀t ≥ t0, (24f)

xeijt, x
e
ict, qijt ≥ 0, xeijt, x

e
ict ∈ N,

∀i, j ∈ N , ∀e ∈ E , ∀t ≥ t0 (24g)
xeijt = xeict = 0,∀e /∈ E ,∀t < t0,∀i, j ∈ N . (24h)

The first term in the objective function (24a) corresponds to
the expected revenue gained by setting prices `1ijt. The second
term assigns a cost to the queue lengths, where wijt is the
cost per person in the queue for OD pair (i, j) at the time
period t. The third term is the operational costs of the trip-
making vehicles, and the last term is the operational and the
charging costs of the charging vehicles. Hence, the objective
is to maximize the profits minus the queue penalty.

The state variable seit denotes the number of vehicles at
node i with energy level e, at the beginning of time period t.
At the beginning of the planning time t = t0, seit0 is simply
the number of available vehicles at node i with energy level
e. For t > t0, seit denotes the number of vehicles that will
be available at the beginning of time period t, at node i with
energy level e. These are the vehicles that are en route to
another node at the time of planning. Hence, (24d) is the
vehicle balance constraint. The constraints (24c) along with the
non-negativity constraint (24g), implement the queue length
transition qijt = max{0, qijt−1 + θijD(`1ijt−1,∞)−∑e x

e
ijt}

as two linear inequalities. For t = t0, the queue length
is modified via (24b), where Qij denotes the number of
passengers waiting to be served at the planning time.

The MPC controller using a dynamic pricing scheme for the
duopoly can be stated in a similar way to the monopoly. Due
to space limitations, we exclude it here and refer the reader
to the Appendix J of the online version [28].

We end this section by noting that it is possible to implement
a model predictive controller with static prices in monopoly
simply by adding the constraint `1ijt = `mij ,∀t ≥ t0 to (24).
For the duopoly, we replace D(`1ijt,∞) with D(`1ijt, `

2
ijt) and

add the constraint `1ijt = `2ijt = `dij ,∀t ≥ t0.

V. NUMERICAL STUDY

In this section, we discuss the effects of competition and
the performances of the real-time controllers via numerical
examples. To solve the optimization problems we used the
Gurobi Optimizer [29].

In our discrete-time system, we chose one period to be equal
to ∆t = 5 minutes, which is equal to the time it takes to
deliver one unit of battery energy. We chose operational costs
of βt = $0.2 and βc = $0.1 (by taking the amortized average
price of an electric car over 5 years [30] as a reference),
maximum willingness to pay `max = $50, and σ = 3/5. We
chose a battery capacity of 24kWh, and discretized the battery
energy into emax = 6 units, where one unit of battery energy
is 4kWh. Price of electricity per unit of energy (4kWh) ranges
from $0.32 to $1.2 [31], and we randomly sampled pi for all
locations uniformly from this range.

For the network and demand data, we divided Manhat-
tan into 20 regions as in Figure 3. Using the yellow taxi
data from the New York City Taxi and Limousine Com-
mission dataset [32] for May 09, 2019, Thursday between
15.00-17.00, we extracted the average arrival rates for rides,
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Fig. 4: Best response prices for some rides originating from node 6.

Fig. 3: Manhattan di-
vided into n = 20
regions.

average trip durations, and average dis-
tances between the regions (we ex-
cluded the rides occurring in the same
region). Note that the demand data
used is not the data of potential riders,
but the data of realized rides. Although
it is not ideal to impose a demand
function on the data of realized rides,
this is the best data we could use due
to lack of available data on potential
riders. This is a common approach in
the literature of pricing schemes in
ride-sharing platforms [11], [22], as the
realized rides leaving a location can
be seen as a reasonable proxy for the
potential riders at that location.

A. Effects of Competition Under Static Setting

In this study, we analyze the effects of competition using
prices for rides, induced demand, profits, and consumer surplus
as metrics. To get the values of the aforementioned metrics in
the monopoly, we solved (3). For the duopoly, we can not
solve (8) since the problem is non-convex. Therefore, we im-
plemented best-response dynamics to see empirically whether
this process would converge to an equilibrium of the duopoly
so that we could numerically compare the monopoly and the
duopoly. Although we do not have a theoretical guarantee for
convergence of best response dynamics, we know that only
symmetric equilibria exist according to Proposition 4. Fortu-
nately, our experiment converged to a symmetric equilibrium
in a couple of iterations as demonstrated in Figure 4.

In Table I, we display the ratios of performance metrics
in the monopoly and the symmetric duopoly equilibrium.
Moreover, we compute the theoretic upper and lower bounds
derived in Section III for σ = 3/5 for comparison. To
summarize the table, competition results in a 20% decrease in
the average prices of rides, a 44% increase in the total induced
demand, a 43% decrease in the profits of a single firm, and a
100% increase in the consumer surplus.

Metrics Empirical Theoretic LB Theoretic UB
`davg/`

m
avg 0.80 0.67 1

Dd/Dm 1.44 1.25 2.26
P d/Pm 0.57 0.39 0.85

CSd/CSm 2.00 1.46 5.89

TABLE I: Ratios of average prices, induced demand, profits, and
consumer surplus in the monopoly and the symmetric duopoly
equilibrium for σ = 3/5.
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Fig. 5: MPC results. We plot the normalized queue length for the MPC with static prices (left)/MPC with dynamic prices (right).

Impact of σ: The correlation over customers’ preferences is
measured by σ, and the effects of competition depend on
the value of σ. To study how σ influences the effects of
competition, we present the ratios of performance metrics
in the monopoly and the symmetric duopoly equilibrium for
σ = 0.8 and σ = 1 in Table II.

Metrics Empirical Theoretic LB Theoretic UB
σ = 0.8 σ = 1 σ = 0.8 σ = 1 σ = 0.8 σ = 1

`davg/`
m
avg 0.42 0.11 0.29 0 1 1

Dd/Dm 1.73 2.04 1.11 1 2.55 4
P d/Pm 0.32 0 0.19 0 0.74 0
CSd/CSm 2.95 4.18 1.22 1 9.22 16

TABLE II: Ratios of average prices, induced demand, profits, and
consumer surplus in the monopoly and the symmetric duopoly
equilibrium for σ = 0.8 and σ = 1.

The results in Tables I and II indicate that the higher the
σ, the stronger the competition between the firms. A larger
σ indicates higher correlation over customers’ preferences,
which means that the customers care less about the identity
of the firm and more about lower prices when buying a ride
(σ = 1 means they buy from the firm that offers the lower
price). Hence, a stronger competition requires the firms to drop
their prices further, which in turn decreases their profits more.
This is in favor of the customers, since lower prices induce
more demand while generating higher consumer surplus.

B. Real-Time Control

In this study, we demonstrate the performances of the model
predictive controllers utilizing static and dynamic pricing
schemes using profits (minus the queue penalty) and the
average wait time of the customers as metrics. To quantify the
queue penalty, we set queue penalty per person to be wijt = $4
(by doubling the average hourly wage of $24 in the U.S. [33]).
We computed the instantaneous profits in one period as:

Profits = Revenue− (Operational + Charging Costs), (25)
the queue penalty in one period as:

Queue Penalty = w × Outstanding Customers, (26)
and used the objective value of (3) as an upper bound on the
average profits for comparison. We define

Normalized Queue Length :=
Outstanding Customers

Induced Demand
(27)

and compute the instantaneous average wait time of customers
in one period as:

Avg. Wait Time = Normalized Queue Length×∆t. (28)
We implemented the MPC with T = 10×∆t as the planning

horizon, and ran the environment for 50×∆t.
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1) Monopoly: We plot the instantaneous average wait time
for MPC with static prices (MPC-SP) and dynamic prices
(MPC-DP) in Figure 5, and summarize the results in Table III.

Metrics MPC-SP MPC-DP % Impr.

Mean Profits-Queue Penalty ($) 11700.86 11778.13 0.66%% of static 98.36% 99.02%
Mean Avg. Wait Time (sec) 6.91 5.64 18.38%
Var. Avg. Wait Time (sec) 32.58 20.95 35.7%

TABLE III: MPC results in the monopoly. Mean and variance are
computed over time. The static objective value is 11894.9.

We observe that both controllers are able to keep the queue
lengths very short (around 2% of the induced demand), and
still generate substantial amount of profits that is close to
the static objective. In particular, MPC-SP generates 98.36%
and MPC-DP generates 99.02% of the static profits, including
the queue penalty. Although the marginal benefits of using
dynamic pricing might seem low, a 0.66% increase in average
profits would make a considerable difference in the long run
(e.g., from Table III, a $77 increase in profits per period adds
up to more than an increase of $900 per hour). Moreover, we
observe that the mean of average wait time for MPC-SP is
6.91 seconds, while that of MPC-DP is 5.64 seconds which is
an improvement of 18.38%. Lastly, a dynamic pricing scheme
reduces the variance of the average wait time by 35.7%, which
indicates a more robust system with predictable wait times.

We furthermore generated integer actions by randomizing
according to the flows of the static solution and implemented
the static policy in the real environment to compare its
performance. In Figure 6 we plot the average wait time using
the static policy. Although it provides stability of the queues, it
results in bad wait times with a mean of 36.9 minutes, which is
more than 300 times longer than both MPC-SP and MPC-DP.

2) Duopoly: We computed the mean value of the metrics
over both firms to get the performances of the controllers. The
results are summarized in Table IV.

Similar to the monopoly, both controllers are able to keep
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Metrics MPC-SP MPC-DP % Impr.

Mean Profits-Queue Penalty ($) 6670.89 6729.2 0.87%% of static 98.56% 99.42%
Mean Avg. Wait Time (sec) 7.27 5.01 31.08%
Var. Avg. Wait Time (sec) 44.68 17.92 59.89%

TABLE IV: MPC results in the duopoly. Mean and variance are
computed over time. The static objective value is 6768.2.

the queues short while generating profits close to the static ob-
jective, with dynamic pricing scheme increasing the efficiency.

VI. CONCLUSION

In this paper, we studied the impacts of competition on
electric AMoD systems by comparing the monopoly and the
duopoly in equilibrium. By formalizing the optimal strategies
of profit-maximizing platform operators, we show that the
identical competitors can only be in a symmetric equilibrium.
In state of a symmetric duopoly equilibrium, the prices for
rides and the profits of the firms are always less than those in
the monopolistic setting, whereas the aggregate demand served
and the consumer surplus are always higher. The closed-
form universal bounds we provide quantify the amount of
increase/reduction on the said metrics. These bounds depend
heavily on correlation between customers’ preferences and
therefore the strength of the competition. The numerical stud-
ies using network and demand data of Manhattan indicate that
stronger competition boosts the amount of increase/reduction
on the metrics. Lastly, we experimentally demonstrate that it
is possible to implement a real-time control policy for fleet
management using model predictive control, and show that a
real-time pricing policy further improves the performance.
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APPENDIX

A. Proof of Proposition 1

For brevity of notation, let βc+pi = Pi. Let λij be the dual
variables corresponding to the demand satisfaction constraints
and µei be the dual variables corresponding to the flow balance
constraints. We can state the dual problem as:

min
λij ,µei

max
`1ij

n∑
i=1

n∑
j=1

θijD(`1ij ,∞)
(
`1ij − λij

)
(29a)

subject to λij ≥ 0, (29b)

λij + µei − µ
e−eij
j − βtτij ≤ 0, (29c)

µei − µe+1
i − Pi ≤ 0 ∀i, j, e. (29d)

For fixed λij and µei , the first order optimality condition is:
∂D(`1ij ,∞)

∂`1ij
(`1ij − λij) +D(`1ij ,∞) = 0 (30)

Depending on the region `1ij is in, the demand function
D(`1ij ,∞) has different forms:

D(`1ij ,∞)=


1− (`1ij)

2

2`2maxσ(1−σ) ,
`1ij
`max

< (1−σ)

1+σ−
2`1ij
`max

2σ , (1− σ) ≤ `1ij
`max

< σ

(1−
`1ij
`max

)2

2σ(1−σ) , σ ≤ `1ij
`max

≤ 1

(31)

First, suppose that
`1ij
`max

< (1 − σ). Solving for `1ij in (30)
using (31), we get:

`mij =
(
λij +

√
λ2
ij + 6`2maxσ(1− σ)

)
/3. (32)

Furthermore, the second order optimality condition satisfies:
∂2D(`1ij ,∞)

∂(`1ij)
2

(`mij − λij) + 2
∂D(`1ij ,∞)

∂`1ij

∣∣∣∣∣
`1ij=`

m
ij

< 0. (33)

Hence, KKT conditions are satisfied and the optimal primal
solution satisfies the dual solution with optimal dual variables
λmij . By checking the condition `mij ≤ (1− σ)`max using (32),
we get the condition that λmij ≤ 3−5σ

2 . The optimal prices for

the regions where
`mij
`max

∈ [1 − σ, σ) and
`mij
`max

∈ [σ, 1] are
derived in a similar fashion using the demand functions in
those regions given in (31).

To get the upper bound on prices, we go through the
following algebraic calculations using the constraints. The
inequality (29d) gives:

µ
e−eji
i ≤ ejiPi + µei , (34)

and equivalently:
µ
e−eij
j ≤ eijPj + µej . (35)

The inequalities (29c) and (29b) yield:
µei − µ

e−eij
j − βtτij ≤ 0,

and equivalently:
µej − µ

e−eji
i − βtτji ≤ 0, (36)

Inequalities (34) and (36):
µej ≤ µei + βtτji + ejiPi. (37)

And finally, the constraint (29c):

λij ≤ βτij + µ
e−eij
j − µei

(35)
≤ βtτij + eijPj + µej − µei

(37)
≤ βtτij + eijPj + βτji + ejiPi.

Replacing Pi = pi + βc and rearranging the terms:
λij≤βt(τij+τji)+eij(pj+βc)+eji(pi+βc)=λij , (38)

where the last equality follows from the definition provided
in the proposition. Hence, we get the desired upper bound on
the prices using the upper bound on the dual variables.

B. Proof of Proposition 2

Using Assumption 2, we see that (3−5σ)
2 ≤ 0 and

(3−5σ)
2 `max ≤ λmij ≤ max

i,j
λij ≤ (3σ−1)(3−σ)

4(5−3σ) `max ≤ 3σ−1
2 `max.

Hence, the optimal prices fall in the region
[(1− σ)`max, σ`max), and are given by:

`mij = ((1 + σ)`max + λmij )/4. (39)
The dual problem with optimal prices in (39) can be stated
as:

min
λij ,µei

n∑
i=1

n∑
j=1

θij
4σ`max

(
(1 + σ)`max − 2λij

2

)2

(40a)

subject to (29b)− (29d). (40b)
The objective function in (40a) with optimal dual variables,
along with (39) suggests:

Pm =
n∑
i=1

n∑
j=1

θij
4σ`max

((1 + σ)`max − 2`mij )
2,

where profits Pm is the optimal value of the objective function
of both primal and dual problems (Since the demand function
is linear in the specified region, the problem is convex and
KKT conditions are satisfied. Hence, strong duality holds).

Consumer surplus is given by the difference between the
price that customers pay and the price that they are willing to
pay. For OD pair (i, j) the customers with v1 > `mij have a
positive surplus of v1 − `mij and the customers with v1 ≤ `mij
have a zero surplus since they either do not take the ride or
have exactly a valuation of `mij . Since v1 = σx + (1 − σ)y
and x and y are iid uniform random variables in [0, `max], the
consumer surplus for a single unit of potential riders between
OD pairs (i, j) is computed as:∫ `max

0

∫ `max

`m
ij

−(1−σ)y
σ

1

`2max

(σx+ (1− σ)y − `mij )dxdy =

`max(σ2 + σ + 1)− 3`mij (1 + σ − `mij
`max

)

6σ
.

(41)

The total consumer surplus is then:

CSm
n∑
i=1

n∑
j=1

θij
`max(σ2 + σ + 1)− 3`mij (1 + σ − `mij

`max
)

6σ
.

(42)
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