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The dynamics of incompressible fluid flows are governed by a non-normal linear dynamical
system in feedbackwith a static energy-conserving nonlinearity. These dynamics can be altered
using feedback control but verifying performance of a given control law can be challenging. The
conventional approach is to perform a campaign of high-fidelity direct numerical simulations
to assess performance over a wide range of parameters and disturbance scenarios. In this
paper, we propose an alternative simulation-free approach for controller verification. The
incompressible Navier-Stokes equations are modeled as a linear system in feedback with a
static and quadratic nonlinearity. The energy conserving property of this nonlinearity can
be expressed as a set of quadratic constraints on the system, which allows us to perform a
nonlinear stability analysis of the fluid dynamics with minimal complexity. In addition, the
Reynolds number variations only influence the linear dynamics in the Navier-Stokes equations.
Therefore, the fluid flow can be modeled as a parameter-varying linear system (with Reynolds
number as the parameter) in feedback with a quadratic nonlinearity. The quadratic constraint
framework is used to determine the range of Reynolds numbers over which a given flow will
be stable, without resorting to numerical simulations. We demonstrate the framework on a
reduced-order model of plane Couette flow. We show that our proposed method allows us to
determine the critical Reynolds number, largest initial disturbance, and a range of parameter
variations over which a given controller will stabilize the nonlinear dynamics.

I. Introduction
The recent rise in popularity of turbulence-suppressing controllers [1–6] is largely due to their positive financial

impact on the aerospace field. Surfaces of engineering systems interacting with turbulent flows deteriorate over time and
thus can reduce the system’s operating life. Therefore, synthesizing turbulence-suppressing controllers to prevent system
performance degradation is necessary to improve the financial economics of the aerospace industry. Verifying whether
or not a given control law will successfully suppress turbulence is challenging, often requiring extensive simulation and
experimental campaigns. This paper demonstrates a framework that can verify these turbulence-suppressing controllers.
We extend the Quadratic Constraint (QC) framework developed in [7–9] to verify controller performance in nonlinear
fluid systems. We show that the QC-framework is a useful intermediary tool for obtaining stability guarantees of a
controlled fluid system without the use of any flow simulations. The results in this paper show that the framework can
predict the critical Reynolds number ('42A ) below which the controlled flow is always stable as well as a range of
Reynolds numbers over which stability is guaranteed. Moreover, we also estimate the largest initial disturbance, which
is also referred to as the perturbation magnitude threshold in this paper. Beyond this perturbation threshold, the flow
can potentially transition to turbulence. The flow model used is a 9-state reduced-order model of plane Couette flow
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reported in [10]. This low-order model is used as a proof of concept for our work as the ultimate goal is to extend our
framework to the full incompressible Navier-Stokes equation.

The QC-framework allows us to address the various shortcomings of obtaining stability guarantees from running
multiple Direct Numerical Simulations (DNS) for nonlinear fluid systems [8]. In practice, the turbulence suppression
capabilities of a controller are often verified through the extensive use of DNS in nonlinear shear-flows. The complexity
involved in obtaining numerical solutions of the Navier-Stokes equation results in large run-times, which can often be on
the order of days. Additionally, fluid systems are highly sensitive to various parameters such as the operating Reynolds
number and initial perturbations, which require a large set of these simulations for adequate assessment. Hence, the
QC-framework can be used to verify a controlled nonlinear fluid system in lieu of running multiple DNS for system
verification, which can be tedious and time-consuming. It should be noted that the QC-framework is not proposed
as a replacement for the DNS but rather as an additional verification tool, which can provide an estimate of system
stability to effectively reduce simulation time. Various full-state Linear Quadratic Regulators (LQR) or static output
feedback LQR (SOF-LQR) do not guarantee stability of a nonlinear system, due to the use of linearized dynamics in
their synthesis process [1], [11]. Thus, the QC-framework can be used to verify these optimal controllers before testing
their turbulence suppression capabilities using DNS.

We formulate the QC-framework by exploiting the conservative property of the nonlinearity in the Navier-Stokes
[12], which can be expressed as a constraint on the system dynamics using the Lyapunov stability theorem. Thus, we
can guarantee global stability of the system because the conservative nonlinearity defines the global behaviour of an
incompressible fluid [8]. Global stability analysis is of particular interest to us because it guarantees flow stability for
any perturbation size. Fluid systems are generally globally stable below a certain critical Reynolds number, which is
sometimes also referred to as the global stability limit. These limits can be further increased with the help of feedback
controllers to give us a larger range of operating Reynolds number. Furthermore, the QC-framework can also be used to
assess the local stability of the system beyond the global stability limit. Local stability analysis provides information
about the perturbation magnitude threshold below which the fluid system is locally stable. Both the global stability
limit and the perturbation magnitude threshold are important parameters that are often not available prior to running
simulations, which makes the QC-framework a very powerful simulation-free tool, as it can provide knowledge of these
parameters prior to running any DNS.

Stability analysis frameworks have been previously studied in the works of [13] and [14], where Sum-of-Squares
(SOS) optimization and Direct-Adjoint-Looping (DAL) methods were used, respectively. These methods allow for
obtaining stability guarantees of a system similar to our framework; however, the computational cost in implementing
these methods can increase dramatically with an increase in system dimension. Specifically, the SOS method scales
poorly with an increase in system dimension as has been noted in [7]. The authors showed that computing the perturbation
magnitude threshold for the 9-state plane Couette flow model [10] instead of the 4-state WKH model [15] resulted in at
least two orders of magnitude increase in computational time. Furthermore, the SOS and DAL methods require exact
knowledge of the dynamical equations of the system. The DAL method is specifically sensitive to this requirement
because the method involves integration of the system dynamics to obtain state information, which also negates the
simulation-free requirement for obtaining stability guarantees. Additionally, the DAL method is extremely sensitive to
the tolerances on some of the DAL-framework parameters, and the simulation stop times, which require rigorous fine
tuning. Nonetheless, at the expense of the computational intensity, the SOS and DAL methods are less conservative in
providing estimates of the stability parameters as compared to the QC-framework. A detailed comparison between the
estimation methods is given in [7], where the authors discuss the conservatism of the stability parameter estimates and
the differences in the computational complexity of the estimation approaches.

Another closely related method to our QC-framework is the passivity-based method studied in [16], [2] and [3].
The method exploits the conservative property of the nonlinearity and uses the fact that the feedback of two passive
systems is itself passive and hence stable [16]. Since the nonlinearity is inherently conservative (i.e., it is passive), then
to achieve global stability, only the linear dynamics need to be input-output passive to satisfy the passive-feedback
condition. The authors of [2] and [3] use controllers to force the linear dynamics to be passive in contrast to the authors
of [16], where the passivity framework is used to determine the critical Reynolds number for the uncontrolled system.
In general, the feedback of the nonlinear and linear dynamics must be passive to guarantee global stability below the
critical Reynolds number for any controlled and uncontrolled fluid system. Our QC framework similarly exploits the
input-output properties of the nonlinearity, however, it is an energy based method. Authors of [16] discover that the
critical Reynolds number obtained using the passivity-based method is equal to the one obtained using the energy-based
method, which reveals a close relation between the passivity-based and the energy-based methods. However, our method
can also be extended to guarantee local stability, which involves determining the perturbation magnitude threshold. This
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local analysis introduces additional constraints on the system, which is an advantage of the QC-framework as it lets us
incorporate additional constraints that pertain to the quadratic nonlinearity of the system.

The remainder of the paper is organized as follows. In Section II, we formulate the quadratic constraints for a
controlled fluid system. Sections III includes results demonstrating the QC-framework, where we calculate the critical
Reynolds number, range of operating Reynolds number and perturbation magnitude threshold. Section IV talks about the
important findings of the paper and some of the challenges that can come up using Linear Matrix Inequality (LMI)-based
frameworks.

II. Formulating the Verification Method
Consider the state-space representation of a fluid flow model:

¤x = A('4)x + Bu + z
z = N(x)x
y = Cx

(1)

where x ∈ R= and u ∈ R@ are states and control inputs, respectively. The superscripts = and @ denote the number of
states, and the number of control inputs. A('4) ∈ R=×= is a linear non-normal system matrix that depends on Reynolds
number '4 and is asymptotically stable for all '4. B ∈ R=×@ and C ∈ RA×= are the control input and measurement
output matrices, respectively. Here A represents the number of outputs, which are given by the output vector y ∈ RA .
N(x) : R= → R=×= is a linear function of x so that each entry of z = N(x)x is a quadratic function of x. Moreover, this
quadratic nonlinearity is conservative, i.e. x) z = 0. This property is similar to the nonlinearity of the incompressible
Navier-Stokes equation, which is also conservative and quadratic, hence the development of the QC-framework [12].
The conservatism of the nonlinearity results in the distribution of system energy among the linear modes without
creating any of its own energy. This behavior of the system can be written in a Lur’e Decomposition form as shown in
Figure 1, where the nonlinear term is in feedback with the linear dynamics [17]. Therefore, we can use the input-output
properties of the nonlinearity to develop a set of QCs, which can be used to bound the nonlinear dynamics of the
controlled system.

Fig. 1 Lur’e Decomposition of a flow model

A. Verifying Global Stability

1. Static Reynolds Number
The goal is to verify a controlled system’s global stability by analyzing its critical Reynolds number ('42A ) for a given

controller gain F. The authors of [8] show that an uncontrolled system is globally stable if it satisfies ¤+ (x) ≤ −n+ (x) for
some n > 0 and a candidate Lyapunov function+ (x) = x) Px. Here n denotes the rate of exponential decay of the system,
which can be chosen arbitrarily, and P = P) > 0 is an unknown Lyapunov matrix. To ensure that ¤+ (x) ≤ −n+ (x),
a Lagrange multiplier b> ∈ R is introduced for the conservative property of the nonlinearity such that we have the
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following inequality condition:
¤+ (x) + 2b>x) z ≤ −n+ (x) (2)

The condition given in (2) is used to analyze global stability of uncontrolled systems in [8] by writing it out in a quadratic
form: [

x
z

]) { [
A ('4)) P + PA ('4) P

P 0

]
+ b>

[
0 I
I 0

]
≤ −

[
nP 0
0 0

] } [
x
z

]
(3)

It is sufficient to show that for a given P = P) > 0 and b> satisfying the following LMI ensures global stability of an
uncontrolled system. [

A ('4)) P + PA ('4) P
P 0

]
+ b>

[
0 I
I 0

]
+

[
nP 0
0 0

]
≤ 0 (4)

In this paper, we extend (4) to analyzing global stability of controlled systems. For a given control law, u = Fy = FCx,
the controller gain F provides global stability to the controlled system if it satisfies (2). We can write a QC as shown
below that is derived from the quadratic form of the condition given in equation (2).[

(A ('4) + BFC)) P + P (A ('4) + BFC) P
P 0

]
+ b>

[
0 I
I 0

]
+

[
nP 0
0 0

]
≤ 0 (5)

Thus, for a given '4, if there exists a solution P = P) > 0 and b> satisfying equation (5) then the controller gain F
provides global stability to the controlled system. Detailed derivation of the QCs is given in [8] but it is important to
realize that we can use the QC as shown in (5) to verify controller gain F for global stability. The solution to the LMI in
equation (5) can be posed as a feasibility problem:[

(A ('4) + BFC)) P + P(A ('4) + BFC) P
P 0

]
+ b>

[
0 I
I 0

]
+

[
nP 0
0 0

]
≤ 0

P > 0

(6)

where P ∈ R=×=, and b> ∈ R and is indefinite, respectively. Any feasible solution for (6) requires that the off-diagonal
elements are 0 to satisfy the inequality. We can always normalize to have Lagrange multiplier b> = −1. Thus, P = I will
be the only solution for the inequality given in (6). Therefore, all you need to check is that the (1, 1) block of the LMI is
feasible for global stability. The feasibility LMI can be written as:

(A('4) + BFC)) + (A('4) + BFC) + nI ≤ 0 (7)

This feasibility LMI can be solved over a grid of '4 values to obtain a '42A such that for '4 > '42A the problem in
equation (7) is infeasible. Thus, solving this one feasibility problem will provide a '42A solution for a given input and
controller matrix pair (B,F).

The feasibility problem can be further posed as a Semi-Definite Program (SDP) to obtain the energy bound of the
system, which is useful to study the energy growth in fluid systems. The authors of [18] provide the energy bound as a
constraint on P such that I ≤ P ≤ @I, where @ is the upper bound on the energy growth of the system. The energy
growth specifically bounded by @ is the Maximum Transient Energy Growth (MTEG). MTEG is the most commonly
studied energy parameter in the Fluid Dynamics literature [1],[8],[19], and [18], which is defined as:

MTEG = maxC≥0 max‖x(0) ‖2=1 ‖x(C)‖2 (8)

where ‖.‖ is the 2-norm of a vector. MTEG represents the maximum distance attained by a state trajectory at some
later time C = ) from its initial point at C = 0 [18]. In other words, it is the maximum kinetic energy attained by a fluid
system. An increase in MTEG of the system can cause the states to wander beyond the stability threshold and settle at
an unstable equilibrium point. The state trajectories settling at an unstable equilibrium point is considered a CA0=B8C8>=
to turbulence scenario [20]. Therefore, by minimizing the energy bound in the following SDP, we obtain the smallest @
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such that the system is globally stable:

min
P,@, b>

@

subject to[
(A ('4) + BFC)) P + P(A ('4) + BFC) P

P 0

]
+ b>

[
0 I
I 0

]
+

[
nP 0
0 0

]
≤ 0

I ≤ P ≤ @I

(9)

The SDP in equation (9) can be solved over a grid of '4 values to obtain '42A , similar to the feasibility problem. The
'42A values determined from the solution of the feasibility problem and the SDP are identical, however, in the latter
case, we are able to obtain the energy bound of the system.

In general, global stability and MTEG are related to each other. For a given '4 ≤ '42A , the SDP in equation (9)
always has a solution for @ = 1 and consequently MTEG = 1 ∀C ≥ 0. Hence, MTEG must be unity ∀C ≥ 0 for global
stability. This also implies that any perturbation provided to the system would always result in a monotonic decay in
energy i.e. � (C) ≤ � (0) ∀C ≥ 0. On the contrary, when '4 > '42A , the SDP in equation (9) is no longer feasible, thus
the input and controller matrix pair (B,F) can no longer provide global stability. In this case, both @ and MTEG will be
greater than unity for some C ≥ 0, which could result in either unbounded energy growth or bounded energy growth
with eventual decay to zero as C →∞. Therefore, a necessary condition for global stability of a fluid system is that the
energy must monotonically decay with an energy bound of @ = 1.

2. Varying Reynolds Number
The SDP in equation (9) assumes a static '4 for the global stability verification of a controller. This SDP can be

further generalized to an instantaneously time-varying Reynolds number. An equivalent QC can be derived to the
one shown in (5), which assumes an instantaneous variations of '4. Instantaneous or arbitrarily fast variations in '4
are sufficient for formulating a varying '4 QC as it encompasses the case where '4 varies at a non-instantaneous
rate. For real flows '4 variations would translate to a bounded base flow velocity modulation. Since we are working
with mechanistic models, we are modelling the base flow variations as '4 variations to showcase that our method can
capture parametric variations. However, as mentioned before, the variational analysis would require formulating the
QC-framework for bounded base flow velocity variations.

For the controlled system defined in (1), the matrix A('4) can be decomposed into two constant matrices A0 and
A1, which is generally the case for the flow models:

A('4(C)) = A1
1

'4(C) + A0 (10)

Let d(C) = 1
'4 (C) so that (10) is affine in d, hence:

A(d(C)) = A1d(C) + A0 (11)

Assuming Reynolds number varies in time such that:

'4(C) ∈
[
'4, '4

]
∀C (12)

We can map (12) to the bounds on d as:

d(C) ∈
[
d, d

]
=

[
1
'4
,

1
'4

]
∀C (13)

Theorem
If ∃P > 0 and b>,1, b>,2 such that:

¤
+ (x) + 2b>,1x) z ≤ −n1x) Px (14)
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¤+ (x) + 2b>,2x) z ≤ −n2x) Px (15)

where ¤+ (x) = 2x) P(A(d) + z) and ¤+ (x) = 2x) P(A(d) + z) then (14) and (15) ensure stability of the system for all
instantaneous variations of '4 that satisfy assumptions in (12). The equations (14) and (15) can be written in a quadratic
constraint form as the following:[

(A (d))) P + P (A (d)) P
P 0

]
+ b>,1

[
0 I
I 0

]
≤ −

[
n1P 0
0 0

]
(16)


(
A

(
d

)))
P + P

(
A

(
d

))
P

P 0

 + b>,2
[
0 I
I 0

]
≤ −

[
n2P 0
0 0

]
(17)

Proof
Note that if '4(C) satisfies (12) then ∃U(C) ∈ [0, 1] such that:

d(C) = U(C)d + (1 − U(C))d (18)

Also note that because A(d) depends affinely on d, then:

A(d(C)) = U(C)A(d) + (1 − U(C))A(d) (19)

By multiplying (16) by U(C) and (17) by (1 − U(C)) and then adding them together, we get:[
(A (d(C)))) P + P (A (d(C))) P

P 0

]
+ b> (C)

[
0 I
I 0

]
≤ −

[
n (C)P 0

0 0

]
(20)

where b> (C) = U(C)b>,1 + (1 − U(C))b>,2 and n (C) = U(C)n1 + (1 − U(C))n2. Now, if we multiply from the left by

[
x
z

])
and from the right by

[
x
z

]
, we get:

¤+ (x) + b> (C)x) (C)z(C) ≤ −n (C)x) Px (21)

where + (x) = x) Px is the Lyapunov function and the second term on the left-hand side of the equation vanishes because
the nonlinearity is lossless at every point in time. It does not use any rate bound so it holds for arbitrarily fast variations
in d. This is a vertex result with a common Lyapunov function for rate-unbounded linear parameter varying systems
[21].

We can set n2 = n1 and then simply denote n1 by n in equations (16) and (17). Moreover, the A('4) matrix can be
replaced with the closed loop system matrix, Ac (d) = A(d) + BFC. Hence, we must satisfy the following LMIs for
controlled system’s global stability:[

(A(d) + BFC)) P + P (A(d) + BFC) P
P 0

]
+ b>,1

[
0 I
I 0

]
+

[
nP 0
0 0

]
≤ 0


(
A(d) + BFC

))
P + P

(
A(d) + BFC

)
P

P 0

 + b>,2
[
0 I
I 0

]
+

[
nP 0
0 0

]
≤ 0

(22)

where A(d) and A(d) represent the system matrices for lower and upper Reynolds number bounds, respectively. Similar
to the static Reynolds number LMI in equation (7), the feasibility problem reduces to determining the feasibility of the
(1,1) block of the LMIs. Both Lagrange multipliers can be normalized to b>,1 = −1 and b>,2 = −1 with P = I as the
only solution. Thus, the feasibility problem reduces to satisfying the following LMIs for a given range [d, d]:
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(A(d) + BFC)) + (A(d) + BFC) + nI ≤ 0 (23)

(A(d) + BFC)) + (A(d) + BFC) + nI ≤ 0 (24)

For varying '4 analysis, we only require the critical upper bound of Reynolds number variation d
2A ,E0A

to verify
controlled system’s global stability. We can show that only equation (24) is required to obtain d

2A ,E0A
because when d

satisfies equation (24) such that d
2A ,E0A

≤ d then equation (23) is also satisfied given d < d and consequently, '4 < '4.
We can see that equation (24) is satisfied if and only if (A(d) + BFC)) + (A(d) + BFC) + nI is a semi-negative
definite matrix for any d chosen such that 0 < d

2A ,E0A
≤ d. Thus, equation (24) implies that the eigenvalues of

(A(d) +BFC)) + (A(d) +BFC) must be strictly negative for the controlled system to be globally stable. For any given
d, such that d < d

2A ,E0A
, equation (24) is not satisfied because _<0G ((A(d) + BFC)) + (A(d) + BFC)) ≮ 0, where

_<0G (.) is the maximum eigenvalue of a matrix. However, equation (23) is either satisfied or not satisfied because d
can be chosen as d < d

2A ,E0A
≤ d or d < d < d

2A ,E0A
. Note that in both the inequality conditions d is always less

than d
2A ,E0A

, which makes it a critical condition to check for global stability. We can also observe that if d is chosen
such that d

2A ,E0A
≤ d then equation (23) and (24) are always satisfied because d

2A ,E0A
≤ d < d. Therefore, the only

condition to check for global stability is that equation (24) is satisfied for a given d. Hence, the LMI condition to solve
for parameter-varying global stability is:

(A(d) + BFC)) + (A(d) + BFC) + nI ≤ 0 (25)

We can simply solve equation (25) over a grid of d values to obtain d
2A ,E0A

such that for d < d
2A ,E0A

(25) is infeasible.
Notice that equation (25) is identical to (7) as we are only varying a single parameter to verify controller global stability.
Although both LMIs in equations (7) and (25) are derived assuming different parameter conditions, the global stability
solutions obtained using either of the equations (7) or (25) should be identical as they are identical equations because
d = 1

'4
. Thus, solving either of the equations guarantees static '4 and varying '4 global stability.

Similar to the SDP in equation (9), we can determine the energy bound @ for the time-varying '4 using the following
SDP:

min
P,@, b>,2

@

subject to


(
A(d) + BFC

))
P + P

(
A(d) + BFC

)
P

P 0

 + b>,2
[
0 I
I 0

]
+

[
nP 0
0 0

]
≤ 0

I ≤ P ≤ @I

(26)

where q is the upper-bound on the maximum energy growth of the system. For the rest of the paper, we will be using
only equation (9) to check for global stability of the system and also obtain values of @ for a given input and controller
matrix pair (B,F) as this one SDP encompasses the static and time-varying '4 case. Furthermore, the QC-framework
allows us to analyze the local stability provided by the controller for '4 > '42A . The local analysis would allow us to
determine the perturbation magnitude threshold '∗ given '4 > '42A .

B. Verifying Local Stability

1. Static Reynolds Number
For '4 > '42A , QCs can be defined over a local region around the origin, which allows for locally bounding the

system. Local bounds are useful for determining the perturbation magnitude threshold for which the system energy
stays bounded. We can use the quadratic form of the nonlinearity z to formulate a set of local constraints that would
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allow us to determine this threshold. As mentioned before, the nonlinearity z is quadratic in our model and therefore
can be expressed as:

z = N(x)x =


xTN1x
xTN2x
...

xTNnx


(27)

where N8 = N)
8
∈ '=×= for 8 = 1, 2..., = and = is the state dimension. We can develop a local constraint matrix M8 ,

which would bound the system in an =-dimensional ellipsoidal set defined as SU := {x ∈ R= : x)Lx ≤ U2} for each of
the states. We can determine each M8 matrix by using Lemma 1 in [7]. For each z8 and the symmetric matrices N8 , we
get z)

8
z8 ≤ U2x)N8L−1N8x. Hence, we can formulate a local constraint matrix M8 such that:[

x
z

]) [
U2N8L−1N8 0

0 −E8

]
︸                    ︷︷                    ︸

[
x
z

]
≥ 0

M8

(28)

where E8 is a diagonal matrix with one at the (8, 8) position. We can then replace (5) with the following constraint in (9):[
(A ('4) + BFC)) P + P (� ('4) + BFC) P

P 0

]
+ b>

[
0 I
I 0

]
+

=∑
8=1

b8M8 < 0 (29)

where b8 ≥ 0 is a Lagrange multiplier for each of the matrices M8 . The local constraints allow us to analyze solutions
over SU, which is centered at the origin of the system. It is important to note that all the local QCs above are defined
over the ellipse SU. The objective is to determine the perturbation magnitude threshold '∗ such that the state trajectories
are contained within the Region of Attraction (ROA) defined as:

R := {x(0) ∈ R= : q(C, x(0)) → 0 as C →∞}. (30)

where q(C, x(0)) is the solution to (1) for a given x(0). In general, the sphere of radius ' defined as x) x ≤ '2 is contained
within a Lyapunov level set {x ∈ R= : + (x) ≤ 1} for which ¤+ (x) < 0. This sphere is a set of initial disturbances defined
as R̂' := {x ∈ R= : x) x ≤ '2}. Hence, we have the following set containment R̂' ⊂ {x ∈ R= : + (x) ≤ 1} ⊂ R.
Theorem 1 defined in [7] gives a matrix inequality condition, which can be used to determine the largest ' denoted as '∗,
which is the perturbation magnitude threshold and consequently, the largest possible set R̂' inside {x ∈ R= : + (x) ≤ 1}.
The matrix variable P can be bounded as 1

U2 L ≤ P ≤ 1
'2 I, where the lower bound is defined by the ellipse x)Lx ≤ U2

and the upper-bound is defined by the sphere x) x ≤ '2. We can formulate a maximization SDP for a given input and
controller matrix pair (B,F) as the following:

max
P,', b> , b8

'2

subject to[
(A ('4) + BFC)) P + P (� ('4) + BFC) P

P 0

]
+ b>

[
0 I
I 0

]
+

#∑
8=1

b8M8 < 0

0 ≤ b8

1
U2 L ≤ P ≤ 1

'2 I

(31)

This SDP can be solved using algorithm 1 developed in [7] for a fixed U2. The algorithm is given in the Appendix D of
this paper to estimate '∗. The algorithm can be implemented with any SDP solver. The results obtained in our paper
use the mincx solver in MATLAB’s LMI toolbox in order to compute '∗.
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2. Varying Reynolds Number
A similar SDP can be formulated to determine '∗ for the time-varying '4. The constraints in (29) can be further

generalized for time variation in Reynolds number similar to (22) as:[
(A (d) + BFC)) P + P (A (d) + BFC) P

P 0

]
+ b>,1

[
0 I
I 0

]
+

=∑
8=1

b8,1M8 < 0 (32)


(
A

(
d

)
+ BFC

))
P + P

(
A

(
d

)
+ BFC

)
P

P 0

 + b>,2
[
0 I
I 0

]
+

=∑
8=1

b8,2M8 < 0 (33)

where b8,1 ≥ 0 and b8,2 ≥ 0 are the Lagrange multipliers for the LMIs associated with lower and upper bounds of
Reynolds number, respectively. The LMIs in equations (32) and (33) can be used to formulate a maximization SDP
similar to (31) as:

max
P,', b>,1 , b>,2 , b8,1 , b8,2

'2

subject to[
(A (d) + BFC)) P + P (� (d) + BFC) P

P 0

]
+ b>,1

[
0 I
I 0

]
+

#∑
8=1

b8,1M8 < 0


(
A

(
d

)
+ BFC

))
P + P

(
�

(
d

)
+ BFC

)
P

P 0

 + b>,2
[
0 I
I 0

]
+

#∑
8=1

b8,2M8 < 0

0 ≤ b8,1, 0 ≤ b8,2

1
U2 L ≤ P ≤ 1

'2 I

(34)

This SDP can be solved (34) using the same algorithm developed in [7] to compute '∗. The algorithm is given in
Appendix D of this paper. It is important to note that the local analysis allows us to determine the perturbation magnitude
threshold '∗ without the use of any simulations for both '4 cases. This analysis is important because we can obtain
an a priori estimate of the largest initial disturbance for which the system energy is bounded. Although the estimates
of '∗ tend to be conservative using the QC-framework as compared to some of the other known methods such as the
Sum-Of-Squares (SOS) [13] and Direct Adjoint Looping (DAL) [14]. However, our method is orders of magnitude faster
than the SOS and DAL methods in estimating '∗ with only a few factor of difference in the estimate [7]. Comparison
between different estimation methods is outside the scope of this paper, however, it is given in our paper [7].

III. Results
In this section, we will be using the 9-state model of the form given in equation (1) to demonstrate our QC-framework.

The details of the model are given in [10] and Appendix C of this paper. We will first perform a static Reynolds number
('4) analysis for a Static Output Feedback Linear Quadratic Regulator (SOF-LQR) and a Linear Quadratic Regulator
(LQR). The SOF-LQR controller has an identical cost function as the LQR controller:

� =

∫ ∞

0
x) Q̃x + u) R̃u 3C (35)

where Q̃ and R̃ are the state and input weight matrices. However, the control law for the SOF-LQR differs from the
LQR controller. In SOF-LQR control, input is directly mapped from the output information as compared to the full state
information in LQR control. Thus, u = Fsof−lqry and u = Flqrx for SOF-LQR and LQR control, respectively.
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For the static '4 analysis, we will be using B =

[
I6×6

03×6

]
, where I6×6 is a 6 × 6 identity matrix and 03×6 is a 3 × 6

zero matrix, for the SOF-LQR and LQR controllers . The C matrix for the LQR will be C = I9×9, which represents
the full-state output case, and for the SOF-LQR will be C = B) , which represents the case with limited number of
outputs. Same B and C matrices will be used for the varying '4 analysis, which we will perform after the static '4
analysis. All the simulation analysis in this paper is done using optimal initial disturbances for the static and varying
'4 analyses. Additionally, all the controlled cases will be compared to the uncontrolled case to demonstrate the effect of
using control on the critical Reynolds number and the perturbation magnitude threshold.

A. Verifying Global Stability of a Controller
We can first determine the uncontrolled critical Reynolds number '42A ,D2 for which the system is no longer globally

stable. This can be easily done by setting the controller and input matrix pair as (0, 0) and solving the SDP (9) over a
grid of '4. For the 9-state model given by equation (38) in Appendix C, '42A ,D2 = 7.90. Thus, we need to synthesize
SOF-LQR and LQR controllers for '4 > '42A ,D2 . We use '4 = 8, Q̃ = I9×9 and R̃ = I6×6 to compute the SOF-LQR
and LQR controller gains Fsof−lqr and Flqr, respectively.

The LQR and SOF-LQR controller synthesis methods require linear dynamics, thus, the dynamical equation (38)
is first linearized ∗. The optimal controller gains are determined by solving the classic Algebraic Riccati Equations
(ARE), which yields the minimum cost solution of equation (35). Simply using the ;@A () function in MATLAB allows
for obtaining an optimal LQR controller gain Flqr. On the contrary, the SOF-LQR synthesis is more involved as
u = Fsof−lqrCx contains a non-square C matrix. Thus, the solution of ARE becomes a non-convex problem. However,
we can solve the problem by using a gradient descent-based method such as the Anderson-Moore algorithm with
Armĳo-type adaptation [11]. The algorithm solves for a stable Fsof−lqr gain such that m�

mFsof−lqr
= 0 after a number of

iterations. For each of the synthesized controllers, we can solve the SDP (9) over a grid of '4 to obtain the static
critical Reynolds number '42A ,BC for the static '4 analysis. Table (1) contains the '42A ,BC information for each of the
controlled cases and '42A ,D2 information for the uncontrolled case. We can see in the Table that all the controlled cases
have '42A ,BC > '42A ,D2 . Hence, introducing control allows for further increasing the critical Reynolds number of the
system as was discussed in earlier sections.

The SDP in (9) is infeasible for '4 > '42A ,BC , thus indicating that no b> and P exist such that the LMI (5) is
satisfied for the controlled system. Hence, the dynamics are not globally stable beyond '42A ,BC . As mentioned in earlier
discussions that the global stability is defined as the monotonic decay in energy of the system. Specifically, it is the
monotonic decay of the transient energy growth (TEG) defined as:

E(C) = � (C)
� (0) =

x(C))Qx(C)
x(0))Qx(0) (36)

where Q is the weighting matrix. Q = I for the example model in this paper. Thus, the MTEG defined in equation (8) is
precisely the maximum of the TEG in equation (36) ∀C ≥ 0. The MTEG bound @ = 1 is obtained ∀'4 ≤ '42A ,BC and
∀'4 ≤ '42A ,D2 when solving the SDP (9). This indicates that the maximum growth for the uncontrolled and controlled
systems will always be at most unity. Hence, using the definition of TEG in equation (36) indicates that maximum in
TEG occurs at C = 0, when � (C) = � (0).

To prove that our method indeed provides an accurate estimate of the critical Reynolds number. We can simulate our
controlled and uncontrolled systems for a given optimal initial disturbance of size ‖x(0)‖ = 0.5 at '4;@A = '42A ,BC + X,
'4B> 5 −;@A = '42A ,BC + W and '4D2 = '42A ,D2 + a, where X, W and a are small increments from the critical Reynolds
number for the LQR, SOF-LQR, and uncontrolled system, respectively. Figure 2 contains simulations for the controlled
and uncontrolled cases for the increments chosen as X = 0.75, W = 0.83, and a = 0.6. We can observe that the energy of
the controlled and uncontrolled systems increases slightly above E(C) > 1 for C > 0. This increase in energy indicates
that the system is not globally stable as MTEG > 1 for C > 0. However, the system is still locally stable around the
origin as we can see in figure 2 that as C →∞ the TEG is zero i.e. E(C) → 0 for all the cases, thus indicating that the
state trajectories are contained inside the ROA R. The trajectories that are outside the ROA will "wander" away to
unstable equilibrium points and we will have E(C) converge to a steady-state value, which is not observed here. This
diverging behavior of trajectories has been studied in [20] and is considered to be a CA0=B8C8>= to turbulence scenario.
The question we can ask is what is the size of the initial perturbation which will kick the system outside the ROA R?
This precise question can be answered by performing a local stability analysis of the system.

∗See Appendix A for linearization
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Table 1 The Table shows the Critical Reynolds number for the Global Stability of the system i.e. monotonic
decay in energy.

(a) Uncontrolled at 𝑅𝑒 = 8.5 (b) SOF-LQR at 𝑅𝑒 = 18 (c) LQR at 𝑅𝑒 = 22

Fig. 2 The optimal disturbance responses were determined for ‖x(0)‖2 = 0.5. The simulations indicate that
for 𝑅𝑒 > 𝑅𝑒𝑐𝑟 ,𝑠𝑡 the system has a slight increase in TEG. The 1000 monte-carlo runs (Blue) indicate that we
indeed computed the optimal response for the system as the optimal response encapsulates all the monte-carlo
responses.

B. Verifying Local Stability of a Controller

1. Static Reynolds Number
The local analysis involves finding the largest 𝑅, which pertains to the set of permissible initial perturbations R̂𝑅.

This region can be easily found by solving the algorithm described in section II.B. To solve equation (31), we will
be choosing a grid of 200 logarithmically spaced 𝛼 values between 10−5 and 101 for the initial estimate step of the

algorithm and 200 logarithmically spaced 𝛼 values between 10−2 and 102 for the refinement step of the algorithm.

All the 𝑅∗ estimates for the controlled and uncontrolled cases required only one iteration refinement as there were

no significant improvements in the 𝑅∗ estimates for iteration > 1. Figure 3 gives a plot generated from solving the

algorithm for each of the test cases. We can see that an increase in 𝑅𝑒 results in the decrease of 𝑅∗, thus the region
R̂𝑅 shrinks when 𝑅𝑒 > 𝑅𝑒𝑐𝑟 ,𝑠𝑡 . Moreover, the controlled cases in figure 3 show that R̂R increases as compared to the

uncontrolled cases. The LQR controller specifically has the largest increase in R̂𝑅, which was expected as LQR uses

full-state information. Note that the solution to the SDP in equation (31) for 𝑅𝑒 > 𝑅𝑒𝑐𝑟 ,𝑠𝑡 yields 𝑞 > 1. Thus, we have

MTEG > 1 for all the test cases shown in figure 2 but the systems are still asymptotically stable because x(0) ≤ 𝑅∗.

2. Varying Reynolds Number
The varying 𝑅𝑒 local analysis can be performed by solving the SDP in equation (34). As mentioned before, this one

SDP can be solved by using the algorithm defined in Appendix D to obtain 𝑅∗. Each of the 𝑅∗ estimates in this case will

correspond to a given 𝑅𝑒 and an arbitrarily small 𝑅𝑒, which is 𝑅𝑒 = 0.1 in this case. We will only be changing 𝑅𝑒 or 𝜌
to be more consistent with the notation of the SDP. We can see in figure 4 that the 𝑅∗ estimates are identical to the ones

determined for static 𝑅𝑒 in figure 3. This was an interesting finding as it shows that despite variations in 𝑅𝑒, the 𝑅∗

estimates are unaffected. This result also shows a relation between the solutions of static and varying 𝑅𝑒 SDPs given by

the equations (31) and (34) as is given for global stability in section II.A. Similar to the static 𝑅𝑒 analysis, the LQR
controlled system has the largest 𝑅∗ estimate and consequently, the largest region R̂𝑅 followed by R̂𝑅 for the SOF-LQR

controlled and the uncontrolled cases, respectively.

11
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Uncontrolled

Fig. 3 The plot shows the largest initial disturbance region defined by x) x ≤ '2. Here '∗ is the perturbation
magnitude threshold, which is the optimal estimate of ' using the algorithm in Appendix D. We can see that as
'4 increases the region of largest initial conditions ('∗) shrinks.

40 60 80 100 120 140

10
-3

10
-2

10
-1

10
0 LQR

SOF-LQR

Uncontrolled

Fig. 4 The plot shows the largest initial disturbance region defined by x) x ≤ '2. Here '∗ is the perturbation
magnitude threshold, which is the optimal estimate of ' using the algorithm in Appendix D. We can see that as
'4 increases the ('∗) estimates decrease.
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IV. Conclusion
The QC approach allows us to obtain some guarantees about the controller. We can use this approach to determine

the stability region for a designed controller as well as study the effect of Reynolds number variations. The MTEG
bound (@) provides insight about the energy suppression quality of the controller as @ = 1 tells us that the controller
will always suppress the energy, whereas for @ > 1, the controller can eventually suppress the energy if ‖x(0)‖2 ≤ '∗.
Furthermore, we can compute critical Reynolds number using the QC for which we can guarantee global stability of
the controlled system. In this paper, we have demonstrated these results on a reduced-order model of plane Couette
flow controlled with LQR and SOF-LQR controllers. Future work will focus on applications involving the full-order
Navier-Stokes equations. The LMI methods can become intractable for very large systems. These challenges require
further investigation and can potentially be overcome using dedicated solvers and appropriately devised reduced-order
models.
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Appendix A
The LQR and SOF-LQR controller gains can only be found if the system is linear. Hence, we need to linearise our

system in (1) to be able to solve the Algebraic Riccati Equations. The linearised system has the form:

X ¤x = AXx + BXu
where

A =


m 51 (G,D)
mG1

m 51 (G,D)
mG2

m 51 (G,D)
mG3

. . .
m 51 (G,D)
mG=

...
...

...
...

...
m 5= (G,D)
mG1

m 5= (G,D)
mG2

m 5= (G,D)
mG3

. . .
m 5= (G,D)
mG=


B =


m 51 (G,D)
mD1

m 51 (G,D)
mD2

m 51 (G,D)
mD3

. . .
m 51 (G,D)
mD?

...
...

...
...

...
m 5= (G,D)
mD1

m 5= (G,D)
mD2

m 5= (G,D)
mD3

. . .
m 5= (G,D)
mD?



(37)

where n and p are the number of states and control inputs, respectively. The control law has the form Xu = KXx, where
Xx = x − x4@ and Xu = u − u4@; u4@ = 0 and x4@ = 0 are the equilibrium points. Now, the linearised system in (37)
can be used to find the LQR gain Flqr and SOF-LQR gain Fsof−lqr. To simulate the full response of the system, we are
using the Runga-Kutta 4Cℎ order integration scheme to simulate the nonlinear system defined in equation (1) for a given
controller gain.

Appendix B
The following are the basis s8 for the 9-state model given in [10]:

The basic profile:

1) s1 =


√

2B8=(cH/2)
0
0


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The streak:

2) s2 =


4√
3
2>B2 (cH/2)2>B(WI)

0
0


The downstream vortex:

3) s3 = 2√
4W2+c2


0

2W2>B(cH/2)2>B(WI)
cB8=(cH/2)B8=(WI)


The spanwise flows:

4) s4 =


0
0

4√
3
2>B(UG)2>B2 (cH/2)


5) s5 =


0
0

2B8=(UG)B8=(cH/2)


The normal vortex modes:

6) s6 = 4
√

2√
3(U2+W2)


−W2>B(UG)2>B2 (cH/2)B8=(WI)

0
UB8=(UG)2>B2 (cH/2)2>B(WI)


7) s7 = 2

√
2√

U2+W2


WB8=(UG)B8=(cH/2)B8=(WI)

0
U2>B(UG)B8=(cH/2)2>B(WI)


Three-dimensional mode:

8) s8 = 2
√

2√
(U2+W2) (4U2+4W2+c2)


cB8=(UG)B8=(cH/2)B8=(WI)

2(U2 + W2)2>B(UG)2>B(cH/2)B8=(WI)
−c2>B(UG)B8=(cH/2)2>B(WI)


Modification to the basic profile due to turbulence:

9) s9 =


√

2B8=(3cH/2)
0
0


The normal vortex mode and the three-dimensional mode result from the advection of s4 and s5 by the streak mode

s2 and vortex mode s3.

Appendix C
The 9-state model is a slightly advanced turbulence sustaining model as compared to the 4-state WKH model used

in [8] for analyzing uncontrolled global and local stability. This model was first introduced in [10] and can be found in
other works such as [13] and [9]. This model was originally an 8-state model derived from the Galerkin projection of the
plane Couette flow [22]. Low-order basis functions s8 † were used to determine a state-space form of the system similar
to (1). The additional 9Cℎ state was introduced by the authors of [10], which was determined from a basis function

†See Appendix B
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describing the change in mean velocity profile due to turbulence. The following is the state-space representation of the
model with a controller input u:

¤x =

[
�
'4
+W

]
x + z + Bu (38)

where,
� = −3806

(
V2,

4V2

3 + W
2, ^2

VW
,

3U2+4V2

3 , ^2
UV
,

3U2+4V2+3W2

3 , ^2
UVW

, ^2
UVW

, 9V2
)
,

Wx = N(x)c + N(c)x

z = N(x)x

Model parameters are chosen as the following: U = 2c
!G
, V = c

2 , W = 2c
!I
, !G = 1.75c and !I = 1.25c. The

domain sizes !G and !I are chosen such that they represent the minimal flow unit. A minimal flow unit is consid-
ered the smallest domain for which we can have a numerically sustained turbulence [10]. Similar domain size is
used by the authors in [9] for their QC analysis. Other parameters such as U, V and W are wave numbers. Some
notations are defined as the following for the sake of convenience: ^UVW =

√
U2 + V2 + W2, ^VW =

√
V2 + W2 and

^UV =
√
U2 + V2. To determine W the constants in 2 are chosen such that the steady flow solution s̄ is spanned by the

basis s8 i.e. s̄ = s828 . In our case, it is defined as 2 = E42(1, 0....0), where E42(..) represents a vector of constants.
The quadratic non-linearity z can be decomposed as z = N(x)x. The non-linearity can be fully expressed as the following:

[N(x)x]1 =

√
3
2
VW

^VW
G2G3 −

√
3
2
VW

^UVW
G6G8

[N(x)x]2 = 10
3
√

6
W2

^UW
G4G6 − W2

√
6^UW

G5G7 − UVW√
6^UW ^UVW

G5G8 −
√

3
2
VW

^VW
(G1G3 + G3G9)

[N(x)x]3 =

√
2
3

UVW

^UW ^VW
(G5G6 + G4G7) +

V2 (3U2+W2)−3W2^2
UW√

6^UW ^VW ^UVW

[N(x)x]4 = − U√
6
(G1G5 + G5G9) − 10

3
√

6
U2

^UW
G2G6 −

√
3
2

UVW

^UW ^VW
G3G7 −

√
3
2

U2V2

^UW ^VW ^UVW
G3G8

[N(x)x]5 = U√
6
(G1G4 + G4G9) +

√
2
3

UVW

^UW ^VW
G3G6 + U2

√
6^UW

G2G7 − UVW√
6^UW ^UVW

G2G8

[N(x)x]6 = 10
3
√

6
U2−W2

^UW
G2G4 −

√
2
3

2UVW
^UW ^VW

G3G5 + U√
6
(G1G7 + G7G9) +

√
3
2
VW

^UVW
(G1G8 + G8G9)

[N(x)x]7 =
UVW√

6^UW ^VW
G3G4 + −U

2+W2
√

6^UW

G2G5 − U√
6
(G1G6 + G6G9)

[N(x)x]8 =
W2 (3U2−V2+3W2)√

6^UW ^VW ^UVW

G3G4 +
√

2
3

UVW

^UW ^UVW
G2G5

[N(x)x]9 =

√
3
2
VW

^VW
G2G3 −

√
3
2
VW

^UVW
G6G8

The base flow state of the system is represented as x = [1 0 0 0 0 0 0 0 0]) . Further in-depth details are given in [13]
about the derivation of the non-linearity, however, it is important to realize that the system equation (38) can be written
concisely as:

¤x = A('4)x + Bu + z (39)

where A('4) = �
Re +W. Now this equation has the state-space form with A('4) as the linear system matrix and z as

the quadratic non-linearity.

Appendix D
The algorithm given below solves the SDPs in equations (31) and (34) to determine the perturbation magnitude

threshold '∗:
1) Initial Estimate: Define M8 (U) using L(1) = I. Find the best U (1) using the grid search for the given local QCs

L(1) . Let (P(1) , b (1)> , b
(1)
8
, ' (1) ) be the corresponding solutions of the SDP with (L(1) , U (1) ).
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2) Refinement: Align the local QC set with the Lyapunov function solution: L(2) = P(1) . Find the best U (2) for the
updated local QCs L(2) . Let (P(2) , b (2)> , b

(2)
8
, ' (2) ) be the corresponding solutions of the SDP with (L(2) , U (2) )

3) Iterate: Repeat the refinement step with L(8+1) = P(8) to yield (P(8+1) , b (8+1)> , b
(8+1)
8

, ' (8+1) ). This can be
performed a fixed number of iterations or until the radius ' (8+1) converges i.e. |' (8+1) − ' (8) | < C>;4A0=24.
Then '∗ = ' (8+1) .
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