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Abstract— Numerous modern optimization and machine
learning algorithms rely on subgradient information being
trustworthy and hence, they may fail to converge when such
information is corrupted. In this paper, we consider the setting
where subgradient information may be arbitrarily corrupted
(with a given probability) and study the robustness properties
of the normalized subgradient method. Under the probabilistic
corruption scenario, we prove that the normalized subgradient
method, whose updates rely solely on directional information of
the subgradient, converges to a minimizer for convex, strongly
convex, and weakly-pseudo convex functions satisfying certain
conditions. Numerical evidence on linear regression and logistic
classification problems supports our results.

I. INTRODUCTION
Gradient-based methods are the most commonly used op-

timization algorithms in many modern applications including
machine learning, control, and signal processing. Owing to
their convenience for theoretical analysis and implementa-
tion, extensive research focusing on accelerating gradient
descent has emerged in the literature. Existing algorithms aim
to accelerate gradient descent by choosing adaptive stepsizes
[1]–[7]. In addition to their practical success, these methods
are supported by strong theoretical guarantees such as fast
convergence rates. Furthermore, distributed implementations
of optimization algorithms, where the data is stored in worker
machines, are gaining traction to preserve privacy. In these
schemes, the gradients are computed at the worker machines
and communicated to a master machine [8].

However, the above algorithms rely on the assumption that
the gradients are trustworthy. In reality, the gradients might
be erroneous due to computational errors at the machines
or data corruption caused by an adversary. Moreover, dis-
tributed implementations of these algorithms require reliable
communication between the machines. Such schemes are
susceptible to man-in-the-middle attacks, where an adversary
can take over network sub-systems and arbitrarily alter the
information communicated between the machines to prevent
convergence to the optimal solution, i.e., a Byzantine attack
[9]. In these situations, gradient-based methods that use
the exact gradient information may fail to converge, as the
erroneous gradient can have an arbitrarily large effect on the
algorithm.

This paper studies the robustness property of the nor-
malized subgradient method (NSM) [10], which performs
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a subgradient update with an adaptive step size scaled as
the reciprocal of the norm of subgradient. We consider
a probabilistic corruption scenario where the subgradients
received are arbitrarily corrupted at random. As the NSM
only uses the directional information of the subgradient,
the effects of corrupted subgradients will be limited. We
show that when the subgradient corruption probability is
below a certain threshold, the NSM converges to an optimal
solution for convex and weakly pseudo-convex problems. In
particular, let t be the iteration number and let the stepsize
decay at O(1/t), then the NSM finds an optimal solution at
the rate of O(log(t)/t).

Related Work: There is an extensive literature on developing
and analyzing the convergence of optimization algorithms,
including those that consider adversarial manipulation. Lim-
ited by space, we review categories of prior art that we
believe are most related to this work.

1) Normalized (sub)gradient method: NSM is a well-studied
algorithm for optimization and is supported by theoretical
convergence guarantees [10], [11]. When restricted to op-
timizing differentiable functions, the NSM has been shown
to evade saddle points quickly in non-convex optimization
problems [12], [13]. Moreover, [14] studies a stochastic
version of NSM and shows convergence to a global mini-
mum for quasi-convex functions. A recent work [15] studies
an online learning problem and establishes regret bounds
for normalized gradient methods for weakly pseudo-convex
functions. Scholars have also used normalization of the
gradient in first-order optimization algorithms to accelerate
the convergence [16], [17].
2) Learning under adversarial corruption: The task of
learning under adversarial corruption has been a popular
research topic. The authors of [18] provide a comprehensive
survey on effective learning techniques against an adversar-
ial opponent and give a taxonomy for classifying attacks.
Commonly studied tasks for adversarial machine learning
have been classification [19]–[22] and linear regression [23]–
[26], where the adversarial corruption is usually due to data
manipulation. Closest to our setup would be [27], [28],
which consider a probabilistic corruption scenario called p-
tampering. However, in these works the adversary is re-
stricted to choosing valid tampered data with correct labels
instead of the arbitrary corruption we study in this paper.
3) Robust distributed optimization: This line of work [29]–
[37] focuses on developing robust algorithms for distributed
optimization/federated learning by means of robust aggrega-
tion techniques. In these studies, there is assumed to be a
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constant α fraction of Byzantine worker machines that are
being controlled by an adversary, who alters the messages
transmitted from workers to the master machine in order
to prevent convergence of distributed implementation of
optimization algorithms. The popular solution idea is to filter
out the adversarial messages by robust mean estimation of
the messages received from all the worker machines.
There is no existing work on robust optimization in a
probabilistically and arbitrarily corrupted subgradient setting
to the best of our knowledge. In this paper, we study the
robustness of the NSM in this context.
Paper Organization: The remainder of the paper is orga-
nized as follows. In Section II, we formalize the problem
setup and demonstrate how faulty subgradients can affect the
convergence. In Section III, we describe the normalized sub-
gradient method (Algorithm 1) and analyze its convergence
in a randomly corrupted subgradient setting for convex,
strongly convex, and weakly pseudo-convex functions. In
Section IV, we provide numerical experiments demonstrating
the robustness of the normalized subgradient method.
Notations. Unless otherwise specified, ‖ · ‖ denotes the
standard Euclidean norm. Given a vector xt, xt,i indicates
the i’th entry of xt. The abbreviation a.s. indicates almost
sure convergence.

II. PROBLEM SETUP

In this section, we formally set up our problem and
introduce key concepts and definitions that will be used
in the paper. Let f(·) : Rd → R be a cost function of a
parameter vector x ∈ X ⊆ Rd, where X is the parameter
set that is assumed to be convex and compact with diameter
R, i.e., ‖x1−x2‖ ≤ R,∀x1, x2 ∈ X . Our goal is to find the
parameter that minimizes the cost function:

x? = arg min
x∈X

f(x). (1)

(Sub)gradient-based methods are effective for iteratively
solving (1). At each iteration t, the iterate xt is updated upon
observing the feedback g(xt), where g(xt) ∈ ∂f(xt) such
that ∂f(xt) is the subdifferential of f at xt; note that if f is
differentiable, then ∂f(xt) = {∇f(xt)} (We use the notation
g(xt) = ∇f(xt) even if f is differentiable but non-convex).
For simplicity of exposition, we will use subdifferential and
gradient interchangeably depending on whether the function
is differentiable or not.

Gradient-based methods however rely on the feedback
received being a trustworthy subgradient information. In this
paper, we consider the case where at each iteration t, the
feedback received is corrupt with probability p, potentially
due to an adversarial attack. Therefore at each iteration t,
the feedback is determined as:

ht =

{
g(xt) with probability 1− p,
bt with probability p. (2)

We let the corrupt feedback bt to be chosen potentially by
an adversary, who is assumed to have full knowledge of the
problem. The adversary’s goal is to prevent the iterates xt
from converging to the optimal solution. We note that this

Algorithm 1 Normalized Subgradient Method (NSM)
Input: Initialize x1 ∈ X , step size γt, and T

for t = 1 to T do
Given xt, receive feedback ht according to (2).
if ‖ht‖ > 0 then

xt+1 = ΠX

(
xt − γt ht

‖ht‖

)
else

xt+1 = xt
end if

end for

model encompasses all the cases where the feedback can
become corrupt (e.g., communication errors, computational
errors, noise) since we set no restrictions on bt. It is important
to mention that because bt is assumed to be arbitrary, existing
subgradient methods under stochastic errors, e.g., [38]–[40],
are not applicable in this setting. This literature models the
error on the gradients as additive noise with bounded mean
and the variance, whereas the adversarial manipulation we
consider in this work can be unbounded and arbitrary.
A toy example: In order to make the problem
setup clearer and to demonstrate how corrupt sub-
gradients can affect the convergence, let us study
a simple example. Let x ∈ X ⊂ Rd, where
X = {x|x0 = x1 = · · · = xd−1; |xi| ≤ R}, and
f(x) = x4d−1. The optimal solution is x? = [0, · · · , 0]T .
The function f is differentiable, the gradient at iteration t is:

g(xt) = [0, 0, . . . , 0, 4x3t,0]T . (3)

Suppose that xt,0 > 0 and we are applying the
regular gradient descent algorithm. Given stepsize γt,
if ht = g(xt), the next iterate after projection is
xt+1 = [xt,0 − 4x3t,0γt/d, . . . , xt,0 − 4x3t,0γt/d]T . Suppose
that at each iteration t, the adversary has full knowledge and
sets the corrupt gradient as

bt = [−c, − c, − c, . . . , − c, − c]T , (4)

and therefore if ht = bt, the next iterate is
xt+1 = min{[R, . . . , R]T , [xt,0 + γtc, . . . , xt,0 + γtc]

T }.
We can observe that if the adversary sets
c > (1/p− 1)(4R3/d), then xt+1,i ≥ xt,i in expectation
and the adversary will prevent convergence (since xt ≤ R).

Let us study how the normalized subgradient method
outlined in Algorithm 1 would potentially solve this problem.
At iteration t, the normalized gradient is:

g(xt)

‖g(xt)‖
= [0, 0, . . . , 0, 1]T . (5)

The normalized corrupt gradient is:

bt
‖bt‖

=
[−1, − 1, − 1, . . . , − 1, − 1]T√

d
(6)

If ht = g(xt), xt+1 = [xt,0 − γt/d, . . . , xt,0 − γt/d]T . If
ht = bt, xt+1 = [xt,0+γt/

√
d, . . . , xt,0+γt/

√
d] assuming

that xt,0 + γt/
√
d ≤ R. Therefore, in expectation:

E[xt+1|xt] = [xt,0 − (1− p)γt/d+ pγt/
√
d, . . . ]T . (7)
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Hence, if p < 1/(1 +
√
d), the iterates will converge; if

p > 1/(1 +
√
d) they will diverge in expectation. This is

not the case for the regular gradient descent, where the
adversary can set the magnitude of the corrupt gradient large
enough to prevent convergence even for low p. Furthermore,
the threshold probability p, below which the normalized
subgradient method succeeds, is an inherent feature of the
cost function that we will discuss later in Section IV-C.

In the next section, we will analyze the convergence of
the NSM in the previously described randomly corrupted
subgradient setting for (a) convex, (b) strongly convex,
and (c) weakly pseuodo-convex functions. We conclude this
section defining the class of functions studied in this paper.

Definition 1. A differentiable function f(·) is said to be β-
smooth if there exists β > 0 such that

‖g(x1)− g(x2)‖ ≤ β‖x1 − x2‖ (8)

holds for all x1, x2 ∈ X .

Definition 2. A differentiable function f(·) is said to be µ-
strongly convex if there exists µ > 0 such that

〈g(x1)− g(x2), x1 − x2〉 ≥ µ‖x1 − x2‖2 (9)

holds for all x1, x2 ∈ X .

Definition 3. A function f(·) is said to satisfy the acute
angle condition if there exists some φ satisfying 0 ≤ φ < π

2
such that

〈g(x), x− x?(x)〉 ≥ cosφ‖g(x)‖‖x− x?(x)‖ (10)

holds for all x ∈ X and g(x) ∈ ∂f(x), where x?(x) is the
point in the set of minima of f that is nearest to x.

As an example, the cost function studied in the simple
example f(x) = x4d−1 satisfies the acute angle condition
with cosφ = 1/

√
d. Another example is f(x) = |x1|+ |x2|,

which satisfies the acute angle condition with cosφ = 1/
√

2.

Definition 4. A differentiable function f(·) is said to be
weakly pseudo-convex if there exists K > 0 such that

f(x)− f(x?) ≤ K 〈g(x), x− x?(x)〉
‖g(x)‖

(11)

holds for all x ∈ X , with the convention that
g(x)/‖g(x)‖ = 0 if g(x) = 0, where x?(x) is the point
in the set of minima of f that is nearest to x.

Some examples of weakly pseudo-convex functions are:
• Differentiable, Lipschitz continuous, and pseudo-convex

functions [10];
• Star-convex [41] and smooth functions (e.g.,
f(x) = |x|(1− e|x|));

• Functions with bounded gradient that satisfy the acute
angle condition;

• Functions with bounded gradient that satisfy the α-
homogeneity with respect to its minimum; ( [15], Propo-
sition 3), i.e., there exists α > 0 such that

f(t(x− x?) + x?)− f(x?) = tα(f(x)− x(x?)) (12)

holds for all x ∈ X and t ≥ 0. For instance,
f(x) = (x21 +x22)2 + 10(x21−x22)2 satisfies this condition
and is not convex.

III. ROBUSTNESS ANALYSIS

In this section, we study the normalized subgradient
method and show that it can be used to solve the problem
defined in Section II. The idea behind is that by normaliza-
tion, the feedback is restricted to contain only a directional
information. This allows us to limit the adversary’s attack
potential by not allowing arbitrarily large updates, which
would have been possible without normalization.

We summarize the normalized subgradient method in
Algorithm 1. At each iteration t, the algorithm uses the
feedback ht to compute the normalized vector ht/‖ht‖ as
the update direction. Similar to a standard gradient descent
method, it moves the iterate along that direction with stepsize
γt and then projects the point back to the decision set X .

In order to prove the convergence of Algorithm 1 in
a randomly corrupted subgradient setting, we will use the
Robbins-Siegmund Theorem [42] as an auxiliary result:

Theorem 1 (Robbins-Siegmund). Let (Vt)t≥1, (αt)t≥1,
(χt)t≥1, (ηt)t≥1 be four nonnegative (F)t≥1-adapted pro-
cesses such that

∑
t αt <∞ and

∑
t χt <∞ almost surely.

If for each t ∈ N,

E [Vt+1|Ft] ≤ Vt(1 + αt) + χt − ηt (13)

then (Vt)t≥1 converges almost surely to a random variable
V∞ and

∑
t ηt is finite almost surely.

We can now state the main result on the convergence of the
normalized subgradient method for convex (but possibly non-
smooth) functions that meet the acute angle condition (i.e.,
functions that meet Definition 3) in a randomly corrupted
subgradient setting.

Theorem 2. Let f(·) be a convex function defined on X
satisfying the acute angle condition for some φ ∈ [0, π/2).
Suppose that the corruption probability p satisfies

p <
cosφ

1 + cosφ
.

Let γ = R
2((1−q) cosφ−q) for some q ∈ [p, cosφ

1+cosφ ) and set
the step size as γt = γ/t. Then, the iterates generated by
Algorithm 1 have the following properties:

E
[
‖xT+1 − x?(xT+1)‖2

]
≤ γ2(1 + log T )

T
(14)

and

lim
t→∞
‖xt − x?(xt)‖2 = 0, a.s. (15)

Proof: Let Yt be a Bernoulli(p) random variable, which
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indicates whether the subgradient is trustworthy or corrupt:

‖xt+1 − x?(xt+1)‖2
(a)

≤ ‖xt+1 − x?(xt)‖2 (16)

= ‖ΠX (xt − γt
ht
‖ht‖

)− x?(xt)‖2 (17)

(b)

≤ ‖xt − x?(xt)− γt
ht
‖ht‖

‖2 (18)

= ‖xt − x?(xt)‖2 + γ2t − 2γt〈xt − x?(xt),
ht
‖ht‖

〉 (19)

= ‖xt − x?(xt)‖2 + γ2t − 2γtYt〈xt − x?(xt),
bt
‖bt‖
〉

− 2γt(1− Yt)〈xt − x?(xt),
g(xt)

‖g(xt)‖
〉

(20)

(c)

≤ ‖xt − x?(xt)‖2 + γ2t + 2γtYt‖xt − x?(xt)‖

− 2γt(1− Yt)〈xt − x?(xt),
g(xt)

‖g(xt)‖
〉

(21)

(d)

≤ ‖xt − x?(xt)‖2 + γ2t + 2γtYt‖xt − x?(xt)‖

− 2γt(1− Yt)
‖g(xt)‖

cosφ‖xt − x?(xt)‖‖g(xt)‖
(22)

= ‖xt − x?(xt)‖2 + γ2t

− 2γt‖xt − x?(xt)‖(cosφ(1− Yt)− Yt),
(23)

where (a) follows by definition of x?(x), (b) is due
to nonexpansiveness Euclidean projection, (c) is due to
Cauchy–Schwarz inequality, and (d) uses (10). Taking ex-
pectation of both sides and noting that xt and Yt are
independent:

E
[
‖xt+1 − x?(xt+1)‖2

]
≤ E

[
xt − x?(xt)‖2

]
+ γ2t

− 2γt(cosφ(1− p)− p)E [‖xt − x?(xt)‖] .
(24)

Since p < cosφ
1+cosφ ; (cosφ(1−p)−p) > 0. Therefore, to upper

bound the inequality, we lower bound E [‖xt − x?(xt)‖] as:

E [‖xt − x?(xt)‖] = E
[
‖xt − x?(xt)‖2

‖xt − x?(xt)‖

]
≥

E
[
‖xt − x?(xt)‖2

]
R

(25)

Therefore (24) becomes

E
[
‖xt+1 − x?(xt+1)‖2

]
≤ γ2t

+ E
[
xt − x?(xt)‖2

](
1− γt

2(cosφ(1− p)− p)
R

)
.

(26)

Plugging γt, we obtain:

E
[
‖xt+1 − x?(xt+1)‖2

]
≤ γ2

t2

+ E
[
xt − x?(xt)‖2

](
1− (cosφ(1− p)− p)

(cosφ(1− q)− q)
1

t

) (27)

≤ γ2

t2
+ E

[
xt − x?(xt)‖2

](
1− 1

t

)
, (28)

where the last inequality uses cosφ(1−p)−p
cosφ(1−q)−q ≥ 1 for

q ∈ [p, cosφ
1+cosφ ). Finally, a telescopic sum gives:

E
[
‖xT+1 − x?(xT+1)‖2

]
≤ γ2

T∑
t=1

1

t2

T∏
i=t+1

(1− 1

i
)

+ ‖x1 − x?(x1)‖2
T∏
t=1

(1− 1

t
)

(29)

= γ2
T∑
t=1

1

t2
t

T
=
γ2

T

T∑
t=1

1

t
≤ γ2(1 + log T )

T
, (30)

which completes the first part of the proof. To prove the
almost sure convergence of ‖xt − x?(xt)‖2, we go back
to (23) and take the expectation conditioned on xt to obtain:

E[‖xt+1 − x?(xt+1)‖2|xt] ≤ ‖xt − x?(xt)‖2 + γ2t

− 2γt
cosφ(1− p)− p

R
‖xt − x?(xt)‖2

(31)

= ‖xt − x?(xt)‖2
(

1− 2γt
cosφ(1− p)− p

R

)
+ γ2t

(32)

≤ ‖xt − x?(xt)‖2
(

1− 1

t

)
+
γ2

t2
(33)

We now apply Theorem 1 with Vt = ‖xt − x?(xt)‖2,
αt = 0, ηt = ‖xt − x?(xt)‖2/t, and χt = γ2/t2 to
conclude that ‖xt − x?(xt)‖2 converges almost surely and∑
t ‖xt − x?(xt)‖2/t is finite almost surely. In order to

determine where ‖xt − x?(xt)‖2 converges as well, we
use (30) to obtain:

lim
t→∞

E
[
‖xt − x?(xt)‖2

]
= 0. (34)

Finally, since ‖xt − x?(xt)‖2 ≥ 0, lim
t→∞
‖xt − x?(xt)‖2 = 0

almost surely and therefore xt converges to a minimum
point x? almost surely.

Theorem 2 is a general result for convex functions satis-
fying the acute angle condition (i.e., convex functions that
meet Definition 3). The next corollary states a similar result
for strongly convex and smooth functions (i.e., functions that
meet Definitions 1 and 2).

Corollary 1. Suppose that f(·) is µ-strongly convex and
β-smooth. Assume that the parameter set X contains a
non-empty ball centered at x?. Define condition number of
f(·) as κ := β/µ. If the corruption probability satisfies
p < 1

1+κ , then the iterates generated by Algorithm 1 with
γ = κR

2((1−q)−qκ) , γt = γ/t for some q ∈ [p, 1
1+κ ) have the

following properties:

E
[
‖xT+1 − x?‖2

]
≤ γ2(1 + log T )

T
(35)

and
lim
t→∞

xt = x?, a.s. (36)

where x? is the unique minimizer of f(·).

Proof: If the parameter set contains a non-empty ball
centered at x?, then g(x?) = 0. Using strong convexity and
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smoothness properties, we write:

〈g(x), x− x?〉 ≥ µ‖x− x?‖2 =
µ‖x− x?‖2‖g(x)‖

‖g(x)‖

≥ µ‖x− x?‖2‖g(x)‖
β‖x− x?‖

=
1

κ
‖x− x?‖‖g(x)‖. (37)

By setting cosφ = 1
κ , we get the required condition in (10)

and hence the results from Theorem 2 follow.
The class of functions for which Algorithm 1 provides

convergence in a randomly corrupted subgradient setting
go beyond convex and strongly convex functions. The next
corollary is for weakly pseudo-convex functions satisfying
the acute angle condition (i.e., functions that meet Defini-
tions 3 and 4).

Corollary 2. Suppose that f(·) is weakly pseudo-convex and
satisfies the acute angle condition for some φ ∈ [0, π/2). If
the corruption probability p satisfies p < cosφ

1+cosφ , then the
iterates generated by Algorithm 1 with γ = R

2((1−q) cosφ−q) ,
γt = γ/t for some q ∈ [p, cosφ

1+cosφ ) satisfy:

E
[
‖xT+1 − x?(xT+1)‖2

]
≤ γ2(1 + log T )

T
(38)

and
lim
t→∞
‖xt − x?(xt)‖2 = 0, a.s. (39)

Proof: By Definition 4, if f(·) is weakly pseudo-
convex, then it does not have local extrema nor saddle points.
Therefore, g(x) = 0 only if x ∈ arg min

x∈X
f(x). The proof is

then identical to that of Theorem 2.

Remark 1. The class of non-convex smooth functions satis-
fying the acute angle condition also meet Corollary 2. If f
is smooth and the diameter of X is bounded, then ‖g(·)‖
is bounded. By Proposition 2 in [15], if f has bounded
gradient and satisfies the acute angle condition, then f is
weakly pseudo-convex. Therefore, Corollary 2 holds for f .

We would like to highlight the implication of the sufficient
condition on the corruption probability, which sets an upper
bound on p for Theorem 2 and Corollaries 1 & 2. Observe
that the upper bound is a decreasing function of the angle
φ of the acute angle condition (or κ, the condition number
for strongly convex functions). The acute angle condition
determines an upper bound on the angle between g(x) and
x − x?(x), ∀x ∈ X . Therefore, the smaller the angle
between g(x) and x − x?(x), the more accurate the update
direction, since the goal is to find x?(x). This reflects to
the upper bound on p: The functions that meet the acute
angle condition with small φ (or small condition number
κ, i.e., well-conditioned problems) can tolerate a higher
corruption probability and therefore NSM is more robust to
adversarial corruption. The intuition behind is that because
the worst adversary may know the optimal solution, they
can set the feedback along the direction of x?(x)−x (which
meets the Cauchy-Schwarz inequality used for Equation (20)
to (21)). Therefore, the more aligned the direction of the
trustworthy subgradient with x − x?(x), the more effective

0 1 2 3 4 5 6 7 8 9 10
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10
-10

10
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10
0
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Fig. 1. Performances of first-order algorithms for Linear Regression using
mean squared error as metric.

the trustworthy updates and the NSM can tolerate higher
corruption probabilities.

In the next section, we present the experiments on the
robustness of the normalized subgradient method.

IV. NUMERICAL EXPERIMENTS

In this section, we demonstrate the robustness of the
normalized subgradient method in an adversarial setting by
applying it to linear regression and logistic classification
problems. Furthermore, we include performances of sev-
eral other first-order algorithms for comparison. Lastly, we
demonstrate the effect of the threshold corruption probability
using the toy example discussed in Section II.

A. Linear Regression

Consider the following problem:

min
x∈X

‖y −Ax‖2, (40)

where A ∈ RN×d is a matrix containing the N data vectors
in its rows and y ∈ RN is the vector containing the N
associated label values or outputs. The task is to minimize
the empirical quadratic error between a function yi = g(Ai)
of d variables and its linear regression ĝ(Ai) = Aix on the
original dataset (for i = 1, . . . , N ), where Ai denotes the
i’th row of A. We picked d = 100, N = 1000 and randomly
generated the entries of A from N (0, 1). To generate the
output yi for data point Ai, we first sampled a vector w
from the interior of the d-ball with radius R = 10 and added
noise: yi = Aiw + ξi, where ξ ∼ N (0, R2/16) is the noise.
We determined the optimal solution x? using the closed-form
solution x? = (ATA)−1AT y.

The problem is strongly convex with condition number
κ = σmax(A)/σmin(A), where σmax(A) and σmin(A) are the
maximal and the minimal singular values of A, respectively.
We set p = (1/2)(1/(1 + κ)) and q = (3/4)(1/(1 + κ)).
At each iteration, we picked the corrupt gradient as
bt = (R/γt)((x

? − xt)/‖x? − xt‖), which can be shown to
be worst possible adversarial value at iteration t.

In Figure 1 we compare the performances of several
first-order optimization algorithms using mean squared er-
ror ‖xt − x?‖2 as the performance metric. The first-order
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Fig. 2. Performances of first-order algorithms for Logistic Classification
using training cost as metric.

algorithms such as Gradient Descent (GD), ADAM [6], Nes-
terov’s Accelerated Gradient Method (NAG) [2], RMSprop
[5], and AMSGrad [43] fail to converge; whereas the nor-
malized subgradient method (NSM) outlined in Algorithm 1
succeeds. Algorithms that do not normalize the gradient
fail to converge due to the presence of the adversarial
perturbations in the gradient.

B. Logistic Classification

We study the robustness of Algorithm 1 on L2-
regularized multi-class logistic classification using the
MNIST dataset [44]. The task is to determine m = 10
linear classifiers in order to separate N = 6000 d = 784-
dimensional image vectors. The problem can be stated as:

min
x∈Rm×d

− 1

N

N∑
i=1

log
exyi

AT
i∑m

j=1 e
xyj

AT
j

+ λ‖x‖2, (41)

where A ∈ RN×d is the matrix containing N data vec-
tors in its rows (Ai denotes the i’th row of A) and
y ∈ {0, 1, . . . , 9}N is the vector containing the N associated
classes. The decision parameter consists of m vectors with
dimension d, where each vector corresponds to a class
(hence, xyi corresponds to the yi’th row of x, where yi is
the class of i’th data vector). We note that the problem is
unconstrained since X = Rm×d and therefore the parameter
can go unbounded. Furthermore, although the problem is
convex, it is not trivial to determine whether the cost function
satisfies the acute angle condition. Nevertheless, we numer-
ically experiment whether normalized subgradient method
can provide convergence in an adversarial setting.

We set p = 0.25, γt = 0.1/t, and λ = 100. At each
iteration, we picked the corrupt gradient as bt = −15g(xt),
i.e., 15 times the opposite of the trustworthy gradient. In
Figure 2 we compare the performances of several first order
optimization algorithms using the value of the cost function
f(xt) during training as metric. Similar to Linear Regression
experiment, NSM converges while other algorithms diverge.

C. Threshold Probability

In this experiment, we demonstrate the significance of the
threshold probability, for which our theoretical convergence
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Fig. 3. Iterates generated by NSM for the simple example outlined in
Section II for several corruption probabilities.

results hold, using the toy example outlined in Section II.
Note that for the cost function f(x) = x4d−1, the acute
angle condition holds with equality for cosφ = 1/

√
d.

Therefore, the probability 1/(1 +
√
d) is the exact threshold

below which NSM converges and above which the adversary
can cause NSM to diverge. We test this numerically for
d = 10, R = 10, and pthreshold = 1/(1 +

√
d) = 0.2403.

We initialized x0,i = 5, ∀i ∈ [1, · · · , d], and ran NSM for
p = {0.1, 0.2, pthreshold − 0.01, pthreshold, pthreshold + 0.01, 0.4}
with γt = 200/t. At each iteration, we set bt = −xt if
xt,0 6= 0; and bt = [1, . . . , 1]T otherwise. In Figure 3, we
plot xt,0 versus the iteration index t for each corruption
probability. We observe that for p < pthreshold, the iterate
converges to the optimal solution and for p > pthreshold, the
iterate diverges (saturates at the bound). For p = pthreshold,
the iterate does not diverge, however, it converges to a
suboptimal solution.

V. CONCLUSIONS
In this paper, we investigated the robustness of the normal-

ized subgradient method in a randomly corrupted subgradient
setting, where the subgradient at each iteration is arbitrarily
corrupted with probability p. We have shown that if the cost
function satisfies the acute angle condition for some angle φ
and if p is less than cosφ/(1 + cosφ), then the normalized
subgradient method, with stepsizes that diminish as O(1/t),
converges almost surely to a minimizer of the objective
function. We provide sufficient conditions for convergence
of the normalized (sub)gradient method for convex, strongly
convex, and weakly pseudo-convex cost functions. Numerical
examples show the robustness of the normalized subgradi-
ent method for linear regression and logistic classification
problems.
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