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Abstract: While making physical computational artifacts such as robots or electronic textiles 

is growing in popularity in CS education, little is known about student informal conceptions of 

these systems. To study this, we video-recorded think-aloud sessions (~10 minutes each) of 22 

novice CS high school students explaining their understanding of everyday physical computing 

systems and qualitatively analyzed transcripts and student drawings for their structural, 

behavioral, and functional understanding of these systems. Most students identified the presence 

of programs in making these systems functional but struggled to account them structurally and 

behaviorally. A few students pointed out probable programming constructs in shaping 

underlying mechanisms, drawing from their prior programming experiences. To integrate these 

systems in computing education, we call for pedagogical designs to address the invisibility of 

computation—both of structural interconnections and of program execution. 

Introduction 
Physical computing systems (PCS) which involve microcontrollers, inputs, and actuators are used for designing 

art installations and robotic systems that can interact with the world (O’Sullivan & Igoe, 2004). As computing 

education grows in K-12 classrooms, these systems are being adopted across a variety of learning contexts. 

Novices’ extensive user experience with everyday PCS may provide productive informal conceptions about these 

systems—what constitutes these systems and the mechanisms to realize observed outcomes. Indeed, one hope in 

using PCS in education is that in constructing these systems, learners will draw from their experiences as users, 

thereby transforming computing learning from being abstract to relevant and concrete (Przybylla & Romeike, 

2014). However, relatively few studies have explored how novice learners interpret everyday PCS.  

Physical computing systems traditionally consist of input (e.g., buttons and sensors) and output devices 

(e.g., actuators such as lights, speakers, motors) connected to a central processing unit. The processing unit 

receives input signals, performs required computation based on a program, and sends appropriate signals to the 

output devices (e.g., O’Sullivan & Igoe, 2004). PCS can be viewed as consisting of three key dimensions: 

structure, behavior, and function (SBF) (Bhatta & Goel, 1997). The physical parts of the system make the 

structural composition, while its overall purpose in terms of inputs and outputs covers the functional aspects; and, 

the underlying logic that brings together the different components in action accounts for the behavior (Bhatta & 

Goel, 1997). Extending this framework to understand PCS such as sensor-based stoplights and interactive toys: 

(1) the structural aspects include the different components such as sensors, lights, and the physical connections; 

(2) the functional aspects consist of the roles of each of these components and the overall goal; and (3) the 

behavioral aspects include the underlying logic causing the functionality.  

Prior studies around novices’ informal conceptions of PCS have touched upon certain aspects of SBF 

although they shed limited light on students’ understanding of the role of computation. For instance, Cederqvist 

(2020) examined middle schoolers’ conceptions of PCS such as car remote key to uncover their structural and 

functional understanding and found that most of their understanding pivoted around the visible components such 

as buttons and lights. Pancratz and Diethelm (2020) observed a range of ways in which middle and high school 

students understood the structural aspects of daily-use PCS such as robotic vacuum cleaners and video game 

consoles. But, this analysis—limited to uncovering students’ structural understanding—revealed very little about 

how they understood the functional and behavioral aspects of the systems. With PCS making a foray into 

introductory computing programs, there is a need to examine students’ informal conceptions of these everyday 

PCS, specifically their understanding of computation in shaping their function and behavior. 

In this exploratory study, we conducted think-aloud interviews (Ericsson & Simon, 1998) with 22 high 

schoolers enrolled in an introductory computing class. We provided pictures of two common PCS, a sensor-based 

stoplight and an interactive plush toy, and invited students to explain SBF aspects of each. In this paper, we answer 

the following questions: (1) What aspects of computation did students attend to in their descriptions? And, (2) 

How did these descriptions qualitatively differ across students?  
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 Methods 

Context and participants 
The study was conducted at a public charter high school located in a large U.S. west coast city. Students were in 

a year-long introductory computing course, Exploring Computer Science (Goode, Chapman, & Margolis, 2012). 

The class had 38 students, 22 of whom the teacher chose to participate in interviews (14-18 years; 11 female, 11 

male; 8 White, 6 Latino/Hispanic, 6 Asian, and 2 African-American). At the time of the interview, they had 10 

weeks of Scratch programming experience and this was the only programming experience for most of them.  

Data collection and analysis 
The first author conducted and video-recorded semi-structured think-aloud interviews (Ericsson & Simon, 1998) 

where every student was asked to draw and explain their understanding of two different PCS: a sensor-based 

stoplight and an interactive toy (see Fig. 1)—the former present within a mile radius of the school and the latter, 

an artifact that students can relate to. Each interview lasted about 10 minutes. 

The first author annotated the interview transcripts to capture student gestures and gaze, and drawings to 

capture related utterances. These were analyzed initially deductively and later inductively (Creswell & Poth, 

2016). Deductive analysis involved categorizing descriptions for SBF. Another researcher independently coded 3 

student transcripts and drawings (~10% of data), reaching ~90% agreement. After discussing disagreements, the 

revised codebook was applied, and themes were generated to capture qualitatively differences among descriptions: 

simplistic descriptions that discounted any computation or automated control; qualified descriptions that only 

identified a control mechanism without elaborating on its nature or details, and constructive descriptions that 

involved details about computation such as specific programming constructs. Another researcher then coded 10% 

of the student responses with the new coding scheme, reaching ~85% agreement. Disagreements were discussed, 

and the first author coded all the student responses. Each student explanation of every PCS was considered as a 

unit of analysis in which SBF aspects were identified and a qualitative descriptor was assigned to each, resulting 

in 6 codes for each student across the two interview artifacts (6 circles per student in Fig. 2).  

 

     
Figure 1. Interview artifacts: Sensor-based stoplight (left) and an interactive toy bird (right).  

Findings 
Qualitative variations within student explanations and relationships between SBF aspects revealed three student 

groups: one with qualified functional descriptions for at least one of the two PCS (n=15; middle group in Fig. 2); 

another with constructive articulation of computational unit structurally and functionally, and specific 

programming-related details within behavioral descriptions (n=5; left-most group in Fig. 2); yet another group 

with simplistic explanations (n=6; right-most group and Jade in Fig. 2).  

 

 
Figure 2. Visualization of student descriptions; red, blue, and green for structural, behavioral, and functional 

descriptions respectively; small, medium, and large circles for simplified, qualified, and constructive 

descriptions respectively (all student names are pseudonyms).  

 “They programmed it…[but] not sure:” Qualified functional descriptions 
More than half of the students identified computation in their functional descriptions. They listed an automated 

mechanism that shaped the overall system functionality (n=15; students with at least one medium green circle, 

mostly in the middle group in Fig. 2). However, these students struggled to articulate the role of computation in 

the underlying behavior (medium or small blue circles in Fig. 2). Students identified components such as lights 

and audio devices as outputs, and the sensors, buttons, and cameras as input devices while describing the system’s 
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 functionality; most of them (n=9) extended their structural descriptions to acknowledge some form of a 

computational unit in organizing these inputs and outputs (medium or large red circles in Fig. 2). For instance, 

Sally identified the control mechanism as a “machine behind [the stoplight]” to coordinate sensors and lights 

while others acknowledged the presence of a “motherboard,” “chip,” or a “control panel” structurally. 

         However, identifying the presence of a computational unit structurally or acknowledging its role 

functionally did not mean they connected it to system behavior. Many students in this group (first 8 of 13 in the 

middle group in Fig. 2), informed by their prior Scratch programming experience, thought of computation as 

distributed across different components such as input/output devices, similar to how sprites are associated with 

code fragments in Scratch (Maloney et al., 2010). This was evident in Zuri’s descriptions of programs as residing 

in the toy’s sensors that will control signals sent to the lights (see Fig. 3, middle). Others (last 5 of 13 in the middle 

group in Fig. 2) slipped back to simplistic descriptions, barely acknowledging any computation. For instance, 

Sally, who initially noted the presence of a computational machine controlling the system, dropped it in her 

behavioral description, and told that the sensors and the lights directly communicate with each other. Overall, 

students’ struggles with articulating the role of computation in system behavior despite identifying its functional 

presence points to the accessibility of the functional compared to the behavioral or even structural aspects. 

 “The sensor tells the lights:” Simplistic SBF descriptions 
A number of students missed accounting for any computation across their SBF descriptions for at least one of the 

two PCS (6 out of 22; right-most group and Jade in Fig. 2). The perceptual aspects of the artifacts were the most 

accessible for learners as they anchored their descriptions around visible inputs (e.g., sensors or buttons) and 

outputs (e.g., lights and speakers) while leaving out any processing unit. For instance, Bash drew (Fig. 3, left) 

buttons, a “tape recorder,” lights, and wires, and directly connected them to each other without any computing 

unit. Simplistic structural descriptions led to simplistic functional explanations. In this case, Bash continued to 

explain buttons as simple electronic switches directly controlling the lights and the “tape recorder.” leaving no 

room for any explanation related to its conditional outcomes based on different degrees of presses. 

Simplistic structural and functional descriptions further led to simplistic behavioral explanations. Some 

students adjusted their simple circuits connecting inputs and outputs to make up for computation-based sensing 

functionality. For instance, Nola, similar to Bash, thought of the toy in simplistic terms as consisting of buttons, 

lights, and a microphone connected through wires. When asked about the conditional outcomes, she included 

computation within her simplistic structural descriptions by adding a set of wires between the buttons and the 

lights that could send “two different types of signals.”  She continued to explain the mechanism as one where the 

button allows for two different kinds of presses and sends different sets of signals for the lights to display patterns. 

Overall, visible aspects of the PCS such as input and output devices were most accessible to these students, similar 

to Cederqvist’s (2020) observation, and this limited students’ ability to see interconnections and computation 

across the structural, functional, and behavioral aspects of the systems. 

 

   

Figure 3. Annotated student drawings: Bash’s simplistic connections between the buttons, lights and “tape 

recorder” (left); Zuri’s qualified drawing of wings with computing abilities (middle); Sang’s constructive 

drawing showing “motherboard” connecting the inputs and outputs (right). 

“I remember how we use Scratch:” Constructive SBF descriptions 
Although most students faced challenges in either identifying or integrating computation into their descriptions, 

a small proportion of them (5 of 22 in the left-most group in Fig. 2) described specific aspects of computation. 

They acknowledged the presence of a central processing unit in their drawings and explained its function as 

receiving inputs and sending signals to respective devices. Further, they drew from their limited prior 

programming experience to predict probable programming constructs controlling the system behavior. As seen 

above, Sang’s explanation of the “motherboard” connecting the lights, “sound box,” and the buttons in the toy 

bird clarified the connections between microcontroller-like processing, input, and output devices and supported 

his further functional and behavioral explanations (see Fig. 3, right). He connected the sensor-based interactive 

functionality to programming constructs by including if-else statements to explain conditional outcomes. 
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 Similar to Sang, most of his peers elicited their explanations from their recent and yet limited Scratch 

programming experience: pointing to if-else, delay, and forever blocks while explaining the underlying behavior. 

For example, Asa employed these constructs to explain how stoplights work. “You do make a loop where certain 

things happen then certain activities occur… someone presses the button on the crosswalk, the green light will go 

a little bit faster,” she said describing the loop and conditional constructs mediating interactions between human 

users and stoplights. Others identified the forever loop block in Scratch (e.g., Jade), the delay block to count down 

time for the lights (e.g., Leah), or the if-else conditional blocks to manage the input signals and affect outputs 

appropriately (e.g., Sunil). Though these students’ descriptions were relatively advanced compared to their peers, 

they were limited too in further elaborating on the data and control flow between the computational unit, inputs, 

and outputs to account for the overall system behavior. In sum, students’ initial articulation of different aspects of 

PCS promises its potential integration with computing teaching while pointing at pedagogical designs to meet 

where students are to relate computation to everyday PCS. 

Discussion 
Contexts such as stoplights have a potential to draw from students’ user experience. At a functional level, they 

allow students to make connections to microprocessor-based learning systems such as Arduino construction kits. 

However, these user-facing PCS intentionally black-box complex underlying connections and this stands in the 

way of effective utilization of these systems for educational purposes. One way to get around this is to explore 

the affordances of student-generated drawings in revealing certain underlying aspects. As noted above, student 

drawings were effective in surfacing structural understanding and mediating functional and behavioral 

explanations when combined with the “what” and the “how” questions. Teachers can adopt similar practices to 

highlight the invisible processing unit and the interconnections and facilitate discussions about systems’ function 

and behavior. To surface the invisible program execution that controls the system behavior, teachers can employ 

notional machines i.e., pedagogical devices to communicate program execution (Sorva, 2013) and be informed 

by students’ prior programming experiences (e.g., Scratch in the examples above). Future research can explore 

learning activities to integrate everyday PCS with computing education. To conclude, future research, as well as 

careful pedagogical design can make room for everyday PCS within computing education. 
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