

 The Invisibility Issue:
High School Students’ Informal Conceptions of

Everyday Physical Computing Systems

Gayithri Jayathirtha, Yasmin Kafai

gayithri@upenn.edu, kafai@upenn.edu

University of Pennsylvania

Abstract: While making physical computational artifacts such as robots or electronic textiles

is growing in popularity in CS education, little is known about student informal conceptions of

these systems. To study this, we video-recorded think-aloud sessions (~10 minutes each) of 22

novice CS high school students explaining their understanding of everyday physical computing

systems and qualitatively analyzed transcripts and student drawings for their structural,

behavioral, and functional understanding of these systems. Most students identified the presence

of programs in making these systems functional but struggled to account them structurally and

behaviorally. A few students pointed out probable programming constructs in shaping

underlying mechanisms, drawing from their prior programming experiences. To integrate these

systems in computing education, we call for pedagogical designs to address the invisibility of

computation—both of structural interconnections and of program execution.

Introduction
Physical computing systems (PCS) which involve microcontrollers, inputs, and actuators are used for designing

art installations and robotic systems that can interact with the world (O’Sullivan & Igoe, 2004). As computing

education grows in K-12 classrooms, these systems are being adopted across a variety of learning contexts.

Novices’ extensive user experience with everyday PCS may provide productive informal conceptions about these

systems—what constitutes these systems and the mechanisms to realize observed outcomes. Indeed, one hope in

using PCS in education is that in constructing these systems, learners will draw from their experiences as users,

thereby transforming computing learning from being abstract to relevant and concrete (Przybylla & Romeike,

2014). However, relatively few studies have explored how novice learners interpret everyday PCS.

Physical computing systems traditionally consist of input (e.g., buttons and sensors) and output devices

(e.g., actuators such as lights, speakers, motors) connected to a central processing unit. The processing unit

receives input signals, performs required computation based on a program, and sends appropriate signals to the

output devices (e.g., O’Sullivan & Igoe, 2004). PCS can be viewed as consisting of three key dimensions:

structure, behavior, and function (SBF) (Bhatta & Goel, 1997). The physical parts of the system make the

structural composition, while its overall purpose in terms of inputs and outputs covers the functional aspects; and,

the underlying logic that brings together the different components in action accounts for the behavior (Bhatta &

Goel, 1997). Extending this framework to understand PCS such as sensor-based stoplights and interactive toys:

(1) the structural aspects include the different components such as sensors, lights, and the physical connections;

(2) the functional aspects consist of the roles of each of these components and the overall goal; and (3) the

behavioral aspects include the underlying logic causing the functionality.

Prior studies around novices’ informal conceptions of PCS have touched upon certain aspects of SBF

although they shed limited light on students’ understanding of the role of computation. For instance, Cederqvist

(2020) examined middle schoolers’ conceptions of PCS such as car remote key to uncover their structural and

functional understanding and found that most of their understanding pivoted around the visible components such

as buttons and lights. Pancratz and Diethelm (2020) observed a range of ways in which middle and high school

students understood the structural aspects of daily-use PCS such as robotic vacuum cleaners and video game

consoles. But, this analysis—limited to uncovering students’ structural understanding—revealed very little about

how they understood the functional and behavioral aspects of the systems. With PCS making a foray into

introductory computing programs, there is a need to examine students’ informal conceptions of these everyday

PCS, specifically their understanding of computation in shaping their function and behavior.

In this exploratory study, we conducted think-aloud interviews (Ericsson & Simon, 1998) with 22 high

schoolers enrolled in an introductory computing class. We provided pictures of two common PCS, a sensor-based

stoplight and an interactive plush toy, and invited students to explain SBF aspects of each. In this paper, we answer

the following questions: (1) What aspects of computation did students attend to in their descriptions? And, (2)

How did these descriptions qualitatively differ across students?

ICLS 2021 Proceedings 741 © ISLS

 Methods

Context and participants
The study was conducted at a public charter high school located in a large U.S. west coast city. Students were in

a year-long introductory computing course, Exploring Computer Science (Goode, Chapman, & Margolis, 2012).

The class had 38 students, 22 of whom the teacher chose to participate in interviews (14-18 years; 11 female, 11

male; 8 White, 6 Latino/Hispanic, 6 Asian, and 2 African-American). At the time of the interview, they had 10

weeks of Scratch programming experience and this was the only programming experience for most of them.

Data collection and analysis
The first author conducted and video-recorded semi-structured think-aloud interviews (Ericsson & Simon, 1998)

where every student was asked to draw and explain their understanding of two different PCS: a sensor-based

stoplight and an interactive toy (see Fig. 1)—the former present within a mile radius of the school and the latter,

an artifact that students can relate to. Each interview lasted about 10 minutes.

The first author annotated the interview transcripts to capture student gestures and gaze, and drawings to

capture related utterances. These were analyzed initially deductively and later inductively (Creswell & Poth,

2016). Deductive analysis involved categorizing descriptions for SBF. Another researcher independently coded 3

student transcripts and drawings (~10% of data), reaching ~90% agreement. After discussing disagreements, the

revised codebook was applied, and themes were generated to capture qualitatively differences among descriptions:

simplistic descriptions that discounted any computation or automated control; qualified descriptions that only

identified a control mechanism without elaborating on its nature or details, and constructive descriptions that

involved details about computation such as specific programming constructs. Another researcher then coded 10%

of the student responses with the new coding scheme, reaching ~85% agreement. Disagreements were discussed,

and the first author coded all the student responses. Each student explanation of every PCS was considered as a

unit of analysis in which SBF aspects were identified and a qualitative descriptor was assigned to each, resulting

in 6 codes for each student across the two interview artifacts (6 circles per student in Fig. 2).

Figure 1. Interview artifacts: Sensor-based stoplight (left) and an interactive toy bird (right).

Findings
Qualitative variations within student explanations and relationships between SBF aspects revealed three student

groups: one with qualified functional descriptions for at least one of the two PCS (n=15; middle group in Fig. 2);

another with constructive articulation of computational unit structurally and functionally, and specific

programming-related details within behavioral descriptions (n=5; left-most group in Fig. 2); yet another group

with simplistic explanations (n=6; right-most group and Jade in Fig. 2).

Figure 2. Visualization of student descriptions; red, blue, and green for structural, behavioral, and functional

descriptions respectively; small, medium, and large circles for simplified, qualified, and constructive

descriptions respectively (all student names are pseudonyms).

 “They programmed it…[but] not sure:” Qualified functional descriptions
More than half of the students identified computation in their functional descriptions. They listed an automated

mechanism that shaped the overall system functionality (n=15; students with at least one medium green circle,

mostly in the middle group in Fig. 2). However, these students struggled to articulate the role of computation in

the underlying behavior (medium or small blue circles in Fig. 2). Students identified components such as lights

and audio devices as outputs, and the sensors, buttons, and cameras as input devices while describing the system’s

ICLS 2021 Proceedings 742 © ISLS

 functionality; most of them (n=9) extended their structural descriptions to acknowledge some form of a

computational unit in organizing these inputs and outputs (medium or large red circles in Fig. 2). For instance,

Sally identified the control mechanism as a “machine behind [the stoplight]” to coordinate sensors and lights

while others acknowledged the presence of a “motherboard,” “chip,” or a “control panel” structurally.

 However, identifying the presence of a computational unit structurally or acknowledging its role

functionally did not mean they connected it to system behavior. Many students in this group (first 8 of 13 in the

middle group in Fig. 2), informed by their prior Scratch programming experience, thought of computation as

distributed across different components such as input/output devices, similar to how sprites are associated with

code fragments in Scratch (Maloney et al., 2010). This was evident in Zuri’s descriptions of programs as residing

in the toy’s sensors that will control signals sent to the lights (see Fig. 3, middle). Others (last 5 of 13 in the middle

group in Fig. 2) slipped back to simplistic descriptions, barely acknowledging any computation. For instance,

Sally, who initially noted the presence of a computational machine controlling the system, dropped it in her

behavioral description, and told that the sensors and the lights directly communicate with each other. Overall,

students’ struggles with articulating the role of computation in system behavior despite identifying its functional

presence points to the accessibility of the functional compared to the behavioral or even structural aspects.

 “The sensor tells the lights:” Simplistic SBF descriptions
A number of students missed accounting for any computation across their SBF descriptions for at least one of the

two PCS (6 out of 22; right-most group and Jade in Fig. 2). The perceptual aspects of the artifacts were the most

accessible for learners as they anchored their descriptions around visible inputs (e.g., sensors or buttons) and

outputs (e.g., lights and speakers) while leaving out any processing unit. For instance, Bash drew (Fig. 3, left)

buttons, a “tape recorder,” lights, and wires, and directly connected them to each other without any computing

unit. Simplistic structural descriptions led to simplistic functional explanations. In this case, Bash continued to

explain buttons as simple electronic switches directly controlling the lights and the “tape recorder.” leaving no

room for any explanation related to its conditional outcomes based on different degrees of presses.

Simplistic structural and functional descriptions further led to simplistic behavioral explanations. Some

students adjusted their simple circuits connecting inputs and outputs to make up for computation-based sensing

functionality. For instance, Nola, similar to Bash, thought of the toy in simplistic terms as consisting of buttons,

lights, and a microphone connected through wires. When asked about the conditional outcomes, she included

computation within her simplistic structural descriptions by adding a set of wires between the buttons and the

lights that could send “two different types of signals.” She continued to explain the mechanism as one where the

button allows for two different kinds of presses and sends different sets of signals for the lights to display patterns.

Overall, visible aspects of the PCS such as input and output devices were most accessible to these students, similar

to Cederqvist’s (2020) observation, and this limited students’ ability to see interconnections and computation

across the structural, functional, and behavioral aspects of the systems.

Figure 3. Annotated student drawings: Bash’s simplistic connections between the buttons, lights and “tape

recorder” (left); Zuri’s qualified drawing of wings with computing abilities (middle); Sang’s constructive

drawing showing “motherboard” connecting the inputs and outputs (right).

“I remember how we use Scratch:” Constructive SBF descriptions
Although most students faced challenges in either identifying or integrating computation into their descriptions,

a small proportion of them (5 of 22 in the left-most group in Fig. 2) described specific aspects of computation.

They acknowledged the presence of a central processing unit in their drawings and explained its function as

receiving inputs and sending signals to respective devices. Further, they drew from their limited prior

programming experience to predict probable programming constructs controlling the system behavior. As seen

above, Sang’s explanation of the “motherboard” connecting the lights, “sound box,” and the buttons in the toy

bird clarified the connections between microcontroller-like processing, input, and output devices and supported

his further functional and behavioral explanations (see Fig. 3, right). He connected the sensor-based interactive

functionality to programming constructs by including if-else statements to explain conditional outcomes.

ICLS 2021 Proceedings 743 © ISLS

 Similar to Sang, most of his peers elicited their explanations from their recent and yet limited Scratch

programming experience: pointing to if-else, delay, and forever blocks while explaining the underlying behavior.

For example, Asa employed these constructs to explain how stoplights work. “You do make a loop where certain

things happen then certain activities occur… someone presses the button on the crosswalk, the green light will go

a little bit faster,” she said describing the loop and conditional constructs mediating interactions between human

users and stoplights. Others identified the forever loop block in Scratch (e.g., Jade), the delay block to count down

time for the lights (e.g., Leah), or the if-else conditional blocks to manage the input signals and affect outputs

appropriately (e.g., Sunil). Though these students’ descriptions were relatively advanced compared to their peers,

they were limited too in further elaborating on the data and control flow between the computational unit, inputs,

and outputs to account for the overall system behavior. In sum, students’ initial articulation of different aspects of

PCS promises its potential integration with computing teaching while pointing at pedagogical designs to meet

where students are to relate computation to everyday PCS.

Discussion
Contexts such as stoplights have a potential to draw from students’ user experience. At a functional level, they

allow students to make connections to microprocessor-based learning systems such as Arduino construction kits.

However, these user-facing PCS intentionally black-box complex underlying connections and this stands in the

way of effective utilization of these systems for educational purposes. One way to get around this is to explore

the affordances of student-generated drawings in revealing certain underlying aspects. As noted above, student

drawings were effective in surfacing structural understanding and mediating functional and behavioral

explanations when combined with the “what” and the “how” questions. Teachers can adopt similar practices to

highlight the invisible processing unit and the interconnections and facilitate discussions about systems’ function

and behavior. To surface the invisible program execution that controls the system behavior, teachers can employ

notional machines i.e., pedagogical devices to communicate program execution (Sorva, 2013) and be informed

by students’ prior programming experiences (e.g., Scratch in the examples above). Future research can explore

learning activities to integrate everyday PCS with computing education. To conclude, future research, as well as

careful pedagogical design can make room for everyday PCS within computing education.

References
Bhatta, S. R., & Goel, A. (1997). Learning generic mechanisms for innovative strategies in adaptive design. The

Journal of the Learning Sciences, 6(4), 367-396.

Cederqvist, A. M. (2020). Pupils’ ways of understanding programmed technological solutions when analysing

structure and function. Education and Information Technologies, 25(2), 1039-1065.

Creswell, J. W., & Poth, C. N. (2016). Qualitative inquiry and research design: Choosing among five approaches.

Sage publications.

Ericsson, K. A., & Simon, H. A. (1998). How to study thinking in everyday life: Contrasting think-aloud protocols

with descriptions and explanations of thinking. Mind, Culture, and Activity, 5(3), 178-186.

Goode, J., Chapman, G., & Margolis, J. (2012). Beyond curriculum: the exploring computer science program.

ACM Inroads, 3(2), 47-53.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch programming language

and environment. ACM Transactions on Computing Education (TOCE), 10(4), 1-15.

O'Sullivan, D., & Igoe, T. (2004). Physical computing: sensing and controlling the physical world with computers.

Course Technology Press.

Pancratz, N., & Diethelm, I. (2020). “Draw us how smartphones, video gaming consoles, and robotic vacuum

cleaners look like from the inside" students' conceptions of computing system architecture. In Workshop

in Primary and Secondary Computing Education, 2020, Virtual Event, Germany. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3421590.3421600.

Przybylla, M., & Romeike, R. (2014). Physical Computing and Its Scope--Towards a Constructionist Computer

Science Curriculum with Physical Computing. Informatics in Education, 13(2), 241-254.

Sorva, J. (2013). Notional machines and introductory programming education. TOCE, 13(2), 1-31.

Acknowledgments
We would like to thank Deborah Fields and the PennGSE RAC team for their generous feedback, Luis Morales-

Navarro and Katie Cunningham for help with data analysis, and participating teacher and students for their time.

This project was supported by National Science Foundation (#1742140).

ICLS 2021 Proceedings 744 © ISLS

	1. ICLS Cover 2021
	2. ICLS 2021 Front matter
	Senior Reviewers
	Reviewers
	Acknowledgments

	5. Binded LS Long
	041.
	Introduction
	Learning with additional external support
	Prior knowledge and its effect on visual attention
	Eye-tracking to understand visual attention in learning
	Research questions

	Method
	Procedure
	Measures

	Results
	RQ1: Differences in visual cue utilization
	RQ2: Differences in attention allocation on cued parts
	RQ3: Differences in gaze pattern

	General discussion
	Limitations
	Conclusion and implications
	References

	573.
	Introduction
	Methods
	Context and participants
	Data collection and analysis

	Findings
	“They programmed it…[but] not sure:” Qualified functional descriptions
	“The sensor tells the lights:” Simplistic SBF descriptions
	“I remember how we use Scratch:” Constructive SBF descriptions

	Discussion
	References
	Acknowledgments

	11. Binded LS Posters
	044.

