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Abstract
With vast mmWave spectrum and narrow 

beam antenna technology, precise position loca-
tion is now possible in 5G and future mobile com-
munication systems. In this article, we describe 
how centimeter-level localization accuracy can 
be achieved, particularly through the use of map-
based techniques. We show how data fusion of 
parallel information streams, machine learning, 
and cooperative localization techniques further 
improve positioning accuracy.

Introduction
Precise position location (also called positioning 
or localization) is a key application for the fifth 
generation (5G) of mobile communications and 
beyond, wherein the position of objects is deter-
mined to within centimeters. With the rapid adop-
tion of Internet of Things (IoT) devices, a variety 
of new applications that require centimeter-level 
precise positioning shall emerge, such as auto-
mated factories that require precise knowledge of 
machinery and product locations to within centi-
meters. Geofencing is the creation of a virtual geo-
graphic boundary surrounding a region of interest 
to monitor people, objects, or vehicles, and by 
using sensors on a moving object, the location 
of the object may be continually and adaptive-
ly “geofenced” to trigger a software notification 
immediately when the object enters or leaves the 
virtual geographic boundary. Position location to 
within 1–2 m will enable accurate geofencing, 
such that users entering/leaving a room or equip-
ment and people may be tracked in hospitals, fac-
tories, within and outside buildings.

Today’s fourth generation (4G) cellular net-
works rely on LTE signaling and the global 
positioning system (GPS) (which is accurate to 
within 5 m). However, in indoor obstructed envi-
ronments, or in underground parking areas and 
urban canyons, GPS signals are attenuated and 
reflected such that user equipment (UE) cannot 
be accurately localized. To further refine the posi-
tioning capabilities of GPS indoors and in urban 
canyons, SnapTrack “wireless assisted GPS” 
(WAG) improved the sensitivity of GPS receiv-
ers. Additionally, databases of geo-tagged Wi-Fi 
hotspots have been used by companies such 
as Apple and Google. The UE may be localized 
using the known positions of all Wi-Fi hotspots 
that the UE can hear, where the UE position esti-
mate is formed from the weighted average of the 
received signal strengths, providing an accuracy 

of tens of meters. Although FCC requirements 
specify a horizontal localization error of less than 
50 m for 80 percent of enhanced 911 (E911) 
callers, a localization error less than 3 m will be 
required for positioning applications of the future. 
Additionally, FCC requires a vertical localization 
error less than 3 m for 80 percent of E911 callers 
by April 2021, to identify the caller’s floor level, 
which is achievable using barometric pressure 
sensors present in modern cell phones (see FCC’s 
Fifth Report and Order PS Docket 07-114.). 

In addition to infrastructure-based positioning 
systems, other sensor-based technologies such as 
vision-based localization using cameras (common-
ly utilized by drones [1]) can provide accurate 
positioning capabilities when fused with inertial 
sensors. However, in low-visibility environments, 
localization systems at cellular frequencies work 
better since they are not blocked when visibility is 
hampered. Ultrasound indoor positioning systems 
such as Forkbeard are able to achieve a preci-
sion level of 10 cm within an office environment. 
Autonomous vehicles utilize light detection and 
ranging (LIDAR) to estimate the relative distances 
to other vehicles with sub-millimeter accuracy [2], 
while factory-based systems using infrared have 
shown good accuracy [3]. 

Position location solutions are being devel-
oped using other media such as ultra wideband 
(UWB), RFID, visible light, and Bluetooth. UWB 
signals, in the 3.1–10.6 GHz band, have a band-
width of more than 500 MHz. Rapid strides in uti-
lizing UWB for localization are expected, with the 
iPhone 11 currently carrying UWB chips that are 
typically capable of achieving a ranging accuracy 
on the order of centimeters [4].

The advent of millimeter-wave (mmWave) 
communications enables a paradigm shift in local-
ization capabilities by allowing joint communi-
cation and position location, utilizing the same 
infrastructure. As shown in this article, the mas-
sive bandwidths, coupled with the high gain 
directional, steerable multiple-input multiple-out-
put (MIMO) antennas at mmWave frequencies, 
enable unprecedented localization accuracy 
in smartphones of the future. We demonstrate 
how the utilization of cooperative localization, 
machine learning, user tracking, and multipath 
enables precise centimeter-level position location.

Fundamental Localization Techniques
Today’s localization solutions primarily focus on 
geometric localization with augmented assistance, 
wherein the position of the base station (BS) is 
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known and the UE location is determined based 
on geometric constraints such as the BS-UE dis-
tances and physical angular orientations between 
BS and UE. 

In angle of arrival (AoA) localization tech-
nique, the UE estimates the angle of the strongest 
received signal. AoA positioning was conceived 
for E911 in the early days of cellular [5]. In time of 
arrival (ToA) (or time difference of arrival, TDoA) 
localization techniques, the UE estimates the 
distance (or difference in distance) from the BS 
by estimating travel time (or differences in travel 
time) of the reference signal from the BS. The UE 
may then be localized to the point where the cir-
cles (or hyperbolas) corresponding to the BS-UE 
distances intersect. A spatial resolution of up to 
2.44 m and 4.88 m is achievable with 5G New 
Radio (NR) waveforms for ToA and TDoA mea-
surements, respectively [6]. In addition to utilizing 
GPS for UE localization, 4G (and future 5G) net-
works implement TDoA localization and utilize 
the barometric pressure sensors in UE for altitude 
estimation [1]. The operation of AoA, ToA, and 
TDoA localization techniques is illustrated in Fig. 1 
and is well understood. 

Accurate Localization in 5G Networks with  
Directional Antenna Arrays and Wide Bandwidths

In the 5G era, it is now possible to achieve very 
accurate localization performance with highly 
directional antenna arrays having narrow beam-
widths and wide bandwidths [7]. The frequency 
range (FR) 2 of 5G NR covers mmWave frequen-
cies ranging from 24.25 GHz to 52.6 GHz. Addi-
tionally, the IEEE 802.11 ad standard supports the 
use of the 60 GHz mmWave band indoors, from 
57 GHz to 71 GHz.

The short wavelength in the mmWave frequen-
cy band allows electrically large (but physically 
small) antenna arrays to be deployed at both the 
UE and BS. MmWave BS antenna arrays with 256 
antenna elements and 32-element mobile anten-
na arrays are already commercially available. The 
frequency-independent half-power beamwidth 
(HPBW) of a uniform rectangular array (URA) 
antenna with half-wavelength element spacing is 
approximately (102/N)°, where N is the number 
of antenna elements in each linear dimension of 
the planar array [8], as seen in Fig. 2. 

Narrower HPBWs of antenna arrays allow the 
AoA of received signals to be estimated precise-
ly, and further signal processing provides better 
accuracy. For example, the sum-and-difference 
for an infrared system technique achieved sub-de-
gree angular resolution with two overlapping and 
slightly offset antenna arrays [3], showing it is pos-
sible to very accurately detect precise AoA at UEs 
or BSs.

Although mmWave frequencies suffer from 
higher path loss in the first meter of propagation 
and experience greater blockage losses compared 
to lower frequencies, the greater gain provided 
by the directional antennas coupled with smaller 
serving cells (100–200 m radius) compensates for 
the additional path loss. Indeed, recent research 
[9] demonstrates the feasibility of using mmWave 
for outdoor localization.

Utilization of mmWave frequency bands will 
enable unprecedented positioning accuracy due 

to the ultra-wide bandwidths available, since the 
larger bandwidths allow finer time resolution of 
multipath signals transmitted from the BS to the 
UE, on the order of a nanosecond, where a 1 ns 
time resolution implies a spatial resolution of 30 
cm before additional processing that can further 
improve accuracy. 

Performance of Fundamental Localization Techniques in 
Dense Multipath Environments

ToA, TDoA, and AoA localization techniques 
were designed for line-of-sight (LoS) propaga-
tion. In indoor/outdoor non-line-of-sight (NLoS) 
environments however, multipath arrives at dif-
ferent angles with larger delays, yielding position-
ing error. Without using any advanced correction 
techniques, a poor mean error of 10 m was 
observed with well-known AoA localization based 
on NLOS indoor office measurements [10]. Simi-
lar enormous mean errors of 8-10 m inside build-
ings were observed in NLoS when the localization 
performance was tested using traditional meth-
ods from outdoor E-911 [5] via simulations in 
NYURay, a 3D mmWave ray tracer [7]. The poor 

FIGURE 1. The UE may be localized based on ToA (black circles), TDoA (red hyperbola), or AoA (black dotted lines) 
localization techniques [5, 10].



d d1 – d3

d = d2 – d1

(x2,y2)
BS 2

(x,y)
UE

(x1,y1)
BS 1

(x3,y3)
BS 3

d2
d1

d3

hyperbola

circle

1,3
1,2

FIGURE 2. The normalized antenna gain (with respect to boresight — the axis of maximum gain) of URAs with 8  8, 
16  16, 32  32, and 64  64 array elements. Note the half power beamwidths (HPBWs) are 12.76°, 6.34°, 3.17°, 
and 1.55°, respectively.
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localization accuracy of known approaches, in 
the face of multipath and an obstructed or weak 
LoS signal, motivates the need to develop more 
accurate and robust localization approaches that 
exploit the wide bandwidth and narrow beam-
widths of 5G and beyond for multipath-rich NLoS 
environments.

NLoS Mitigation for Accurate Positioning
To combat the poor performance of traditional 
ToA-, TDoA-, and AOA-based localization tech-
niques in NLoS environments, NLoS mitigation 
techniques can identify and then discard NLoS sig-
nals to only use the LoS BSs for localization. This 
subsection describes a variety of techniques to 
selectively identify and discard the NLoS signals. 

In [11] the authors observed that with conven-
tional WiFi radios operating at 2.4 GHz, the AoA 
was stable over small UE movements (5 cm) in 
LoS environments, while in NLoS environments, 
the AoA varied by more than 5° if the UE was 
moved by 5 cm. If the AoA of the received power 
varied by more than 5° when the UE was moved 
by 5 cm, the signal was assumed to correspond to 
an NLoS path and thus discarded from use in esti-
mating position. By suppressing NLoS multipath 
and only using the LoS path, a median localization 
accuracy of 23 cm was achieved with six 2.4 GHz 
WiFi access points [11].

Estimating the BS-UE distance, a critical step 
for ToA localization, may additionally be utilized 
to determine whether the BS-UE link is in NLoS. 
The running variance of the BS-UE distance esti-
mates (s2) in NLoS is greater than LoS; hence, 
NLoS BS-UE links may be identified based on the 
running variance observed in real time. The UE 
can accurately be assumed to be in NLoS (and 
the UE-BS link is not used for localization) when 
s2 is greater than a calibrated threshold g [12]. 
The variance of distance estimates is greater for a 
mobile user than for a stationary user due to the 
change in the true BS-UE distance when the UE is 
in motion. To account for user motion, g must be 
increased, and in [12], a constant proportional to 
the square of the velocity of the user was added 
to g to account for user motion. 

Channel features such as maximum received 
power, root mean square (RMS) delay spread, 
Rician-K factor, and the angular spread of depar-
ture/arrival may be utilized to determine whether 
the UE is in NLoS [13]. NLoS channels typically 
have lower maximum received power over the 
power delay profile (PDP) due to the presence of 
obstructions and reflectors. The delay spread of 
multipath components is higher in NLoS environ-
ments. The K-factor of a channel is equal to the 
ratio of the square of the peak amplitude of the 
dominant signal and the variance in the channel 
amplitude and is known to indicate the degree 
of multipath in a signal [13]. In NLoS channels, 
due to the absence of a direct path, the K-fac-
tor is close to 0 dB. The angular spread of NLoS 
channels is wider since the multipath components 
arrive from varied directions.

NLoS classification accuracy is improved when 
multiple channel characteristics are used in tan-
dem [13]. A support vector machine (SVM) is a 
popular classifier capable of classifying data based 
on multiple parameters. An SVM utilizes channel 
characteristics to determine a hyperplane, which 

divides data into two classes. For NLoS identifi-
cation, the SVM determines the optimal hyper-
plane to divide data into LoS and NLoS classes. In 
[13], an SVM was shown to outperform individual 
channel features, reducing the NLoS identification 
error rate from 10 percent to 5 percent.

Sub-Meter Precise Position Location
Identifying and discarding NLoS signals to only 
use LoS signals for localization wastes multipath 
signal energy, and requires dense BS deployment 
since the UE must be in LoS of two or more BSs 
for classical LoS positioning techniques to work. 
However, such over-deployment of BSs may be 
cost-prohibitive. We shall now look at alternative 
localization techniques wherein the UE utilizes 
information from neighboring UEs, and exploits 
NLoS BSs, and multipath.

Cooperative Localization
With the introduction of device-to-device (D2D) 
communication protocols in 5G [1], an exciting 
avenue for cooperative localization has opened 
up. UEs may now directly communicate with one 
another instead of communicating with the BS 
alone in order to achieve localization of all UE. 

Due to dedicated communication resources 
allocated for D2D communication in 5G, UEs may 
conduct range and angular measurements on each 
D2D link. Since UEs are typically located closer to 
one another than to BSs, the probability of D2D 
links being LoS and having higher signal-to-noise 
ratio (SNR) is greater, providing better positioning 
accuracy. In a network with N UEs, up to (N

2) addi-
tional D2D link measurements are possible. 

The relative UE location information, extracted 
from the D2D link measurements, may be sent 
to a central localization unit co-located at one 
of the serving BS or a central server (i.e., cen-
tralized cooperative localization). The position 
of all the UEs in the network is simultaneously 
determined by nonlinear least squares (LS) estima-
tion, wherein the positions of the UEs that jointly 
minimize the deviation from the physical angular 
orientation and distance-based link constraints 
are determined. Optimization techniques such as 
the Levenberg-Marquardt algorithm (LMA) [14], 
which combines the Gauss-Newton algorithm and 
the method of gradient descent, may be used for 
nonlinear LS estimation.

Centralized cooperative localization in future 
dense IoT networks may lead to network conges-
tion if all localization messages are routed to a 
central server. In distributed algorithms, UEs are 
localized based on local measurements exchanged 
by neighboring nodes (as is done in centralized 
localization). The location estimates of the UEs are 
then iteratively refined until all neighboring UEs 
reach an agreement [1]. While not as accurate as 
infrared methods [3], a root mean square error of 
2.5 m and 3 m was achieved in an indoor environ-
ment with centralized and distributed cooperative 
localization, respectively, over an area of approxi-
mately 40 m  20 m with four BS with known loca-
tions and 13 unknown UE locations [1]. 

Machine Learning for Localization
In contrast to geometry-based localization algo-
rithms, machine learning provides a data-centric 
view of the UE localization problem. Localization 

With the introduction of 
device-to-device (D2D) 

communication protocols in 
5G [1], an exciting avenue 

for cooperative localization 
has opened up. UEs may 

now directly communicate 
with one another instead 

of communicating with the 
BS alone in order to achieve 

localization of all UE.
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algorithms that employ machine learning first 
create a “fingerprinting database” of the environ-
ment during the training (offline) phase [9]. A fin-
gerprint is a vector containing channel parameters 
such as the received signal strength (RSS), chan-
nel state information (CSI), and the AoA of the 
strongest signal of all BS links measured a priori at 
known locations called reference points, distribut-
ed throughout the environment. A fingerprinting 
database is constructed by storing the fingerprint 
measured at each reference point with the coordi-
nates of the reference point.

Once the fingerprinting database is construct
ed, then in the real-time online position location 
step the BS-UE channel is measured by the UE. 
The channel measurements are matched to the 
fingerprinting database (stored in the UE or in the 
network) to determine the UE position. Matching 
may be done via maximum a posteriori (MAP) 
estimation.

Alternatively, matching may be performed 
by utilizing a similarity criterion to compare 
the online measurements to the fingerprinting 
database. A common similarity criterion is the 
distance, such as the Euclidean (L2) or the Man-
hattan (L1) distance, of the online measurements 
from the channel measurement at the reference 
points. In the k-nearest neighbor (k-NN) algo-
rithm, the user position is the weighted average of 
the k “nearest” reference points.

The UE localization problem can be restat-
ed as determining the nonlinear function that 
transforms the channel parameters into a posi-
tion estimate. A neural network determines the 
nonlinear function, based on data available in 
the fingerprinting database. A neural network is 
a series of multi-level nonlinear functional trans-
formations of the input, which can be used to 
approximate a target function. For user local-
ization, the inputs to the neural network are the 
measured channel parameters, and the target 
function is the positional coordinates of the user. 
Successive layers of a neural network are com-
bined linearly by weights. The optimal weights 
that transform the inputs (channel parameters) 
as close as possible to the target function (user 
position) are found in the offline training phase 
by minimizing the closeness of the output of the 
neural network to the target function at the ref-
erence points.

Machine-learning-based localization algorithms 
require the availability of a dense fingerprinting 
database, the creation of which is a time-intensive 
process. The localization accuracy of fingerprint-
ing algorithms depends on the distance between 
reference points, with the localization accuracy 
typically on the order of the distance between 
the reference points. Additionally, changes in the 
environment such as the addition of new furni-
ture require the fingerprinting database to be 
re-created. Transfer learning may be leveraged to 
reduce the amount of data required. Theoretical 
radio wave propagation models are leveraged 
to replace data collection partially by ray tracing.  
The ray tracer, once calibrated to the environment 
based on the limited measurements conducted, 
may be used to predict channel parameters at 
the reference points. Minor changes to the prop-
agation environment may be quickly incorporat-
ed into the environment map utilized by the ray 

tracer, expediting the process of creating (and 
updating) the fingerprinting database. A neural 
network may be first trained on the synthetic data 
generated by the ray tracer, with the weights of 
the neural network refined by further training on 
real-world measurements.

User Tracking and Data Fusion
Localization accuracy of a stationary target may 
be improved by averaging the position estimate, 
reducing the variance of the estimate. For mobile 
targets, the location must be estimated in a short-
er period of time, which can be achieved via user 
tracking. User tracking refers to continuously esti-
mating the position of a mobile UE, due to which 
sudden changes in the user’s apparent position 
from one sampling instant to another, caused by 
positioning errors, may be smoothed out.

Modern cell phones are equipped with a vari-
ety of sensors. UEs possess an inertial measure-
ment unit (IMU), consisting of a gyroscope to 
measure rotation, an accelerometer to measure 
acceleration, and a magnetometer to measure 
the magnetic field intensity. Given the initial posi-
tion of the user, the current user position may 
be obtained by integrating the measured accel-
eration twice to get the user position. However, 
errors in IMU measurements grow with time — a 
constant offset in acceleration measurement leads 
to a quadratic error in position. 

Data from the sensors may be fused with 
channel measurement data using a Kalman fil-
ter/extended Kalman filter (KF/EKF) to correct 
the drift in IMU measurements. A KF is a recur-
sive linear estimator of the state (position and 
velocity) of a user. The current state of the user 
is modeled as a linear transformation of the state 
of the user at the previous time instant, based on 
kinematic equations derived from Newton’s laws 
of motion, whereas sensor measurements are 
modeled as a linear transformation of the current 
state of the user. A KF is the optimal estimator of 
a linear process, given the mean and variance of 
the noise. If the relation is not linear, an EKF may 
be used to locally linearize the process via Tay-
lor series expansion [1]. The KF/EKF minimizes 
the mean square error of the position estimate 
based on measurements obtained from all sen-
sors up to the current time instant. When new 
information is obtained by the user in the form 
of new channel measurements or new sensor 
data, the KF/EKF recursively updates the position 
estimate based on the old position estimate and 
the new data.

In conjunction with a map of 
the environment, multipath 
components provide addi-
tional useful information 
regarding the location of 
the UE. For example, with 
a map of the environment 
available, “forbidden tran-

sitions” of a UE wherein the 
UE moves through walls or 
from one floor to another in 
consecutive time steps may 
be detected and discarded.

FIGURE 3. Map of the environment may be uploaded or generated on the 
fly and used for imaging through walls using narrow beam antennas 
and multipath.
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Localization Algorithms Exploiting Multipath

As discussed earlier, multipath components are 
conventionally thought to be a hindrance to accu-
rate localization. However, in conjunction with 
a map of the environment, multipath compo-
nents provide additional vital useful information 
regarding the location of the UE. For example, 
with a map of the environment available (Fig. 3), 
“forbidden transitions” of a UE wherein the UE 
moves through walls or from one floor to another 
in consecutive time steps may be detected and 
discarded. 

Multipath components from the BS may 
arrive at the UE via a direct path or via indirect 
paths along which the source ray suffers multi-
ple reflections or scattering. Virtual anchors (VAs) 
are successive reflections of the BS on walls in 
the environment [1], which are treated as an LoS 
BS in place of the physical NLoS BS. Future wire-
less devices will exploit real-time ray tracing [10] 
for multipath propagation prediction in order to 
determine the VA locations. If the user’s location 
is continuously tracked with an EKF, each mul-
tipath component received by the UE may be 
associated with a VA based on the previously esti-
mated UE location. Once the correspondence 
between each multipath component and the VAs 
is known, any of the fundamental localization 
techniques (AoA, ToA, or TDoA) may be used to 
localize the UE.

With large bandwidths and narrow beam-
widths at mmWave frequencies, more multipath 
components are resolvable, which makes the task 
of associating the multipath components with the 
VA more difficult. Ray tracing may be used to 
take advantage of NLoS multipath components 
arriving at a UE, providing single-shot user loca-
tion estimation without user tracking. With knowl-
edge of the AoA at the BS, the ToA of the source 
rays, and a map of the surrounding environment, 
the BS may determine the location of the UE via 
ray tracing each multipath component. Since it is 
not known whether the signal is reflected or trans-
mitted through each obstruction along the traced 
signal path, two possible locations are recursively 
stored as “candidate locations” at each obstruc-
tion encountered while ray tracing a multipath 
component. A majority of the candidate locations 
will be clustered near the true UE location, so the 
user may be localized to the centroid of the larg-
est cluster of candidate locations [7].

In the absence of a map, with the assumption 
that each multipath component is reflected or 
scattered at most one time, the problem of deter-

mining the location of a UE can be reformulated 
into a nonlinear LS estimation problem [14]. The 
scatterer/reflector positions and the UE position 
and orientation are estimated by jointly finding 
the scatterer and user locations where the expect-
ed distances and angles (geometrically calculated) 
match the measured distances and angles most 
closely in the least squared sense. Optimization 
techniques such as particle swarm optimization 
(PSO) and the LMA [14] may be used for nonlin-
ear LS optimization.

Conclusion and Future Research
This article has provided an overview of existing 
and emerging localization techniques, illustrating 
how utilizing the wide bandwidths at mmWave 
frequencies could lead to unprecedented localiza-
tion accuracies. The narrow antenna beamwidths 
at mmWave frequencies require smart beam 
management, while optimal localization requires 
an exploration of multipath components arriving 
from all directions, for which a detailed study of 
joint communication and localization is required. 
Table 1 provides a summary of the different posi-
tion location methods.

Looking into the future, we predict that a com-
bination of machine learning, data fusion of mea-
surements from multiple sensors, and cooperative 
localization will be used for robust, accurate posi-
tion location. The wireless systems will need to 
seamlessly transfer the localization responsibility 
from one wireless technology (e.g., WiFi access 
points indoors) to another (e.g., cellular BSs out-
doors), similar to handovers in current cellular 
networks when a user moves in and out of BS 
coverage cells. 

With centimeter-level localization accuracy in 
future cellular networks, privacy will become a 
growing concern. Users must be allowed to opt 
out of tracking if they so desire, and any user 
location data stored in the network must be pro-
tected from hackers. Additionally, the localization 
solution must be robust to interference from mali-
cious users, who could, for instance, attempt to 
replicate the reference signals transmitted by the 
cellular network in order to gain unauthorized 
access to user location information.

The computing capabilities of UEs will enable 
mapping and ray tracing in real time. We envis-
age that cell phones in the future shall generate a 
map of the environment on the fly or have maps 
loaded within, enabling map-based localization 
algorithms that exploit real-time multipath prop-
agation. The augmentation of human and com-
puter vision will allow users to see in the dark and 

TABLE 1. Summary of different position location techniques and their complexity, cost, and accuracy.

Position location method Description BS density Deployment cost Accuracy

Fundamental techniques Use uplink and downlink AoA, ToA, TDoA measurements to calculate 
position via geometry High Low [10] Low [10]

Cooperative localization Use side-link (UE-UE) measurements to complement BS-UE mea-
surements Low Low [1] Medium [1]

Machine learning Channel features mapped to values stored in fingerprint database Medium High [9] High [9]

User tracking Refine position estimate of fundamental techniques, predict user 
trajectory with sensor data Medium Low [1] Medium [1]

Multipath exploiting 
techniques Extract position information embedded in multipath components Low Medium [7, 14] High [7, 14]
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see through walls [7]. Cell phones in the future 
will have the capability to either download or gen-
erate a map of the environment on the fly and 
“see in the dark” [7]. The UE will behave like a 
radar, measuring the distances of prominent fea-
tures in the environment, such as walls, doors, 
and other obstructions. Additionally, reflections 
and scattering off walls will enable cell phones to 
view objects around corners or behind walls [7], 
as illustrated in Fig. 3. 

For ranging measurements, a radar operates in 
the pulsed radar mode, wherein the radar trans-
mits a single pulse, switches from transmit to 
receive mode, and waits for the echo back from 
the object that is to be range-estimated. Howev-
er, due to constraints on switching speed, only 
objects at a sufficient distance from the user may 
be ranged. For example, an mmWave phased 
array with a TX-RX switching time of ~100 ns 
cannot range objects closer than 50 ft (electro-
magnetic waves travel 1 ft/ns). To range closer 
objects, a UE must simultaneously transmit and 
receive the radar signal, operating in the full 
duplex mode, requiring TX-RX isolation [15]. 
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We predict that a com-
bination of machine 
learning, data fusion 

of measurements from 
multiple sensors, and 

cooperative localization will 
be used for robust, accurate 

position location. The 
wireless systems will need 
to seamlessly transfer the 
localization responsibility 

from one wireless tech-
nology to another, similar 
to handovers in current 

cellular networks when a 
user moves in and out of BS 

coverage cells.
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