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ABSTRACT

With vast mmWave spectrum and narrow
beam antenna technology, precise position loca-
tion is now possible in 5G and future mobile com-
munication systems. In this article, we describe
how centimeter-level localization accuracy can
be achieved, particularly through the use of map-
based techniques. We show how data fusion of
parallel information streams, machine learning,
and cooperative localization techniques further
improve positioning accuracy.

INTRODUCTION

Precise position location (also called positioning
or localization) is a key application for the fifth
generation (5G) of mobile communications and
beyond, wherein the position of objects is deter-
mined to within centimeters. With the rapid adop-
tion of Internet of Things (IoT) devices, a variety
of new applications that require centimeter-level
precise positioning shall emerge, such as auto-
mated factories that require precise knowledge of
machinery and product locations to within centi-
meters. Geofencing is the creation of a virtual geo-
graphic boundary surrounding a region of interest
to monitor people, objects, or vehicles, and by
using sensors on a moving object, the location
of the object may be continually and adaptive-
ly “geofenced” to trigger a software notification
immediately when the object enters or leaves the
virtual geographic boundary. Position location to
within 1-2 m will enable accurate geofencing,
such that users entering/leaving a room or equip-
ment and people may be tracked in hospitals, fac-
tories, within and outside buildings.

Today’s fourth generation (4G) cellular net-
works rely on LTE signaling and the global
positioning system (GPS) (which is accurate to
within 5 m). However, in indoor obstructed envi-
ronments, or in underground parking areas and
urban canyons, GPS signals are attenuated and
reflected such that user equipment (UE) cannot
be accurately localized. To further refine the posi-
tioning capabilities of GPS indoors and in urban
canyons, SnapTrack “wireless assisted GPS”
(WAG) improved the sensitivity of GPS receiv-
ers. Additionally, databases of geo-tagged Wi-Fi
hotspots have been used by companies such
as Apple and Google. The UE may be localized
using the known positions of all Wi-Fi hotspots
that the UE can hear, where the UE position esti-
mate is formed from the weighted average of the
received signal strengths, providing an accuracy

of tens of meters. Although FCC requirements
specify a horizontal localization error of less than
50 m for 80 percent of enhanced 911 (E911)
callers, a localization error less than 3 m will be
required for positioning applications of the future.
Additionally, FCC requires a vertical localization
error less than 3 m for 80 percent of E911 callers
by April 2021, to identify the caller’s floor level,
which is achievable using barometric pressure
sensors present in modern cell phones (see FCC’s
Fifth Report and Order PS Docket 07-114.).

In addition to infrastructure-based positioning
systems, other sensor-based technologies such as
vision-based localization using cameras (common-
ly utilized by drones [1]) can provide accurate
positioning capabilities when fused with inertial
sensors. However, in low-visibility environments,
localization systems at cellular frequencies work
better since they are not blocked when visibility is
hampered. Ultrasound indoor positioning systems
such as Forkbeard are able to achieve a preci-
sion level of 10 cm within an office environment.
Autonomous vehicles utilize light detection and
ranging (LIDAR) to estimate the relative distances
to other vehicles with sub-millimeter accuracy [2],
while factory-based systems using infrared have
shown good accuracy [3].

Position location solutions are being devel-
oped using other media such as ultra wideband
(UWB), RFID, visible light, and Bluetooth. UWB
signals, in the 3.1-10.6 GHz band, have a band-
width of more than 500 MHz. Rapid strides in uti-
lizing UWB for localization are expected, with the
iPhone 11 currently carrying UWB chips that are
typically capable of achieving a ranging accuracy
on the order of centimeters [4].

The advent of millimeter-wave (mmWave)
communications enables a paradigm shift in local-
ization capabilities by allowing joint communi-
cation and position location, utilizing the same
infrastructure. As shown in this article, the mas-
sive bandwidths, coupled with the high gain
directional, steerable multiple-input multiple-out-
put (MIMO) antennas at mmWave frequencies,
enable unprecedented localization accuracy
in smartphones of the future. We demonstrate
how the utilization of cooperative localization,
machine learning, user tracking, and multipath
enables precise centimeter-level position location.

FUNDAMENTAL LOCALIZATION TECHNIQUES

Today’s localization solutions primarily focus on
geometric localization with augmented assistance,
wherein the position of the base station (BS) is
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known and the UE location is determined based
on geometric constraints such as the BS-UE dis-
tances and physical angular orientations between
BS and UE.

In angle of arrival (AoA) localization tech-
nique, the UE estimates the angle of the strongest
received signal. AoA positioning was conceived
for E911 in the early days of cellular [5]. In time of
arrival (ToA) (or time difference of arrival, TDoA)
localization techniques, the UE estimates the
distance (or difference in distance) from the BS
by estimating travel time (or differences in travel
time) of the reference signal from the BS. The UE
may then be localized to the point where the cir-
cles (or hyperbolas) corresponding to the BS-UE
distances intersect. A spatial resolution of up to
2.44 m and 4.88 m is achievable with 5G New
Radio (NR) waveforms for ToA and TDoA mea-
surements, respectively [6]. In addition to utilizing
GPS for UE localization, 4G (and future 5G) net-
works implement TDoA localization and utilize
the barometric pressure sensors in UE for altitude
estimation [1]. The operation of AoA, ToA, and
TDoA localization techniques is illustrated in Fig. 1
and is well understood.

ACCURATE LOCALIZATION IN 56 NETWORKS WITH
DIRECTIONAL ANTENNA ARRAYS AND WIDE BANDWIDTHS

In the 5G era, it is now possible to achieve very
accurate localization performance with highly
directional antenna arrays having narrow beam-
widths and wide bandwidths [7]. The frequency
range (FR) 2 of 5G NR covers mmWave frequen-
cies ranging from 24.25 GHz to 52.6 GHz. Addi-
tionally, the IEEE 802.11 ad standard supports the
use of the 60 GHz mmWave band indoors, from
57 GHz to 71 GHz.

The short wavelength in the mmWave frequen-
cy band allows electrically large (but physically
small) antenna arrays to be deployed at both the
UE and BS. MmWave BS antenna arrays with 256
antenna elements and 32-element mobile anten-
na arrays are already commercially available. The
frequency-independent half-power beamwidth
(HPBW) of a uniform rectangular array (URA)
antenna with half-wavelength element spacing is
approximately (102/N)°, where N is the number
of antenna elements in each linear dimension of
the planar array [8], as seen in Fig. 2.

Narrower HPBWs of antenna arrays allow the
AoA of received signals to be estimated precise-
ly, and further signal processing provides better
accuracy. For example, the sum-and-difference
for an infrared system technique achieved sub-de-
gree angular resolution with two overlapping and
slightly offset antenna arrays [3], showing it is pos-
sible to very accurately detect precise AoA at UEs
or BSs.

Although mmWave frequencies suffer from
higher path loss in the first meter of propagation
and experience greater blockage losses compared
to lower frequencies, the greater gain provided
by the directional antennas coupled with smaller
serving cells (100-200 m radius) compensates for
the additional path loss. Indeed, recent research
[9] demonstrates the feasibility of using mmWave
for outdoor localization.

Utilization of mmWave frequency bands will
enable unprecedented positioning accuracy due

FIGURE 1. The UE may be localized based on ToA (black circles), TDoA (red hyperbola), or AoA (black dotted lines)
localization techniques [5,10].
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FIGURE 2. The normalized antenna gain (with respect to boresight — the axis of maximum gain) of URAs with 8 x 8,
16 16,32 x 32,and 64 x 64 array elements. Note the half power beamwidths (HPBWS) are 12.76°, 6.34°, 3.17°,
and 155° respectively.

to the ultra-wide bandwidths available, since the
larger bandwidths allow finer time resolution of
multipath signals transmitted from the BS to the
UE, on the order of a nanosecond, where a 1 ns
time resolution implies a spatial resolution of 30
cm before additional processing that can further
improve accuracy.

PERFORMANCE OF FUNDAMENTAL LOCALIZATION TECHNIQUES IN
DENSE MULTIPATH ENVIRONMENTS

ToA, TDoA, and AoA localization techniques
were designed for line-of-sight (LoS) propaga-
tion. In indoor/outdoor non-line-of-sight (NLoS)
environments however, multipath arrives at dif-
ferent angles with larger delays, yielding position-
ing error. Without using any advanced correction
techniques, a poor mean error of 10 m was
observed with well-known AoA localization based
on NLOS indoor office measurements [10]. Simi-
lar enormous mean errors of 8-10 m inside build-
ings were observed in NLoS when the localization
performance was tested using traditional meth-
ods from outdoor E-911 [5] via simulations in
NYURay, a 3D mmWave ray tracer [7]. The poor
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With the introduction of
device-to-device (D2D)
communication protocols in
5G [1], an exciting avenue
for cooperative localization
has opened up. UEs may
now directly communicate
with one another instead

of communicating with the

BS alone in order to achieve
localization of all UE.

localization accuracy of known approaches, in
the face of multipath and an obstructed or weak
LoS signal, motivates the need to develop more
accurate and robust localization approaches that
exploit the wide bandwidth and narrow beam-
widths of 5G and beyond for multipath-rich NLoS
environments.

NL0S MITIGATION FOR ACCURATE POSITIONING

To combat the poor performance of traditional
ToA-, TDoA-, and AOA-based localization tech-
niques in NLoS environments, NLoS mitigation
techniques can identify and then discard NLoS sig-
nals to only use the LoS BSs for localization. This
subsection describes a variety of techniques to
selectively identify and discard the NLoS signals.

In [11] the authors observed that with conven-
tional WiFi radios operating at 2.4 GHz, the AoA
was stable over small UE movements (5 cm) in
LoS environments, while in NLoS environments,
the AoA varied by more than 5° if the UE was
moved by 5 cm. If the AoA of the received power
varied by more than 5° when the UE was moved
by 5 cm, the signal was assumed to correspond to
an NLoS path and thus discarded from use in esti-
mating position. By suppressing NLoS multipath
and only using the LoS path, a median localization
accuracy of 23 cm was achieved with six 2.4 GHz
WiFi access points [11].

Estimating the BS-UE distance, a critical step
for ToA localization, may additionally be utilized
to determine whether the BS-UE link is in NLoS.
The running variance of the BS-UE distance esti-
mates (62) in NLoS is greater than LoS; hence,
NLoS BS-UE links may be identified based on the
running variance observed in real time. The UE
can accurately be assumed to be in NLoS (and
the UE-BS link is not used for localization) when
o2 is greater than a calibrated threshold y [12].
The variance of distance estimates is greater for a
mobile user than for a stationary user due to the
change in the true BS-UE distance when the UE is
in motion. To account for user motion, y must be
increased, and in [12], a constant proportional to
the square of the velocity of the user was added
to y to account for user motion.

Channel features such as maximum received
power, root mean square (RMS) delay spread,
Rician-K factor, and the angular spread of depar-
ture/arrival may be utilized to determine whether
the UE is in NLoS [13]. NLoS channels typically
have lower maximum received power over the
power delay profile (PDP) due to the presence of
obstructions and reflectors. The delay spread of
multipath components is higher in NLoS environ-
ments. The K-factor of a channel is equal to the
ratio of the square of the peak amplitude of the
dominant signal and the variance in the channel
amplitude and is known to indicate the degree
of multipath in a signal [13]. In NLoS channels,
due to the absence of a direct path, the K-fac-
tor is close to 0 dB. The angular spread of NLoS
channels is wider since the multipath components
arrive from varied directions.

NLoS classification accuracy is improved when
multiple channel characteristics are used in tan-
dem [13]. A support vector machine (SVM) is a
popular classifier capable of classifying data based
on multiple parameters. An SVM utilizes channel
characteristics to determine a hyperplane, which

divides data into two classes. For NLoS identifi-
cation, the SVM determines the optimal hyper-
plane to divide data into LoS and NLoS classes. In
[13], an SVM was shown to outperform individual
channel features, reducing the NLoS identification
error rate from 10 percent to 5 percent.

SUB-METER PRECISE PosiTION LOCATION

Identifying and discarding NLoS signals to only
use LoS signals for localization wastes multipath
signal energy, and requires dense BS deployment
since the UE must be in LoS of two or more BSs
for classical LoS positioning techniques to work.
However, such over-deployment of BSs may be
cost-prohibitive. We shall now look at alternative
localization techniques wherein the UE utilizes
information from neighboring UEs, and exploits
NLoS BSs, and multipath.

COOPERATIVE LOCALIZATION

With the introduction of device-to-device (D2D)
communication protocols in 5G [1], an exciting
avenue for cooperative localization has opened
up. UEs may now directly communicate with one
another instead of communicating with the BS
alone in order to achieve localization of all UE.

Due to dedicated communication resources
allocated for D2D communication in 5G, UEs may
conduct range and angular measurements on each
D2D link. Since UEs are typically located closer to
one another than to BSs, the probability of D2D
links being LoS and having higher signal-to-noise
ratio (SNR) is greater, providing better positioning
accuracy. In a network with N UEs, up to (5) addi-
tional D2D link measurements are possible.

The relative UE location information, extracted
from the D2D link measurements, may be sent
to a central localization unit co-located at one
of the serving BS or a central server (i.e., cen-
tralized cooperative localization). The position
of all the UEs in the network is simultaneously
determined by nonlinear least squares (LS) estima-
tion, wherein the positions of the UEs that jointly
minimize the deviation from the physical angular
orientation and distance-based link constraints
are determined. Optimization techniques such as
the Levenberg-Marquardt algorithm (LMA) [14],
which combines the Gauss-Newton algorithm and
the method of gradient descent, may be used for
nonlinear LS estimation.

Centralized cooperative localization in future
dense loT networks may lead to network conges-
tion if all localization messages are routed to a
central server. In distributed algorithms, UEs are
localized based on local measurements exchanged
by neighboring nodes (as is done in centralized
localization). The location estimates of the UEs are
then iteratively refined until all neighboring UEs
reach an agreement [1]. While not as accurate as
infrared methods [3], a root mean square error of
2.5 m and 3 m was achieved in an indoor environ-
ment with centralized and distributed cooperative
localization, respectively, over an area of approxi-
mately 40 m x 20 m with four BS with known loca-
tions and 13 unknown UE locations [1].

MACHINE LEARNING FOR LOCALIZATION

In contrast to geometry-based localization algo-
rithms, machine learning provides a data-centric
view of the UE localization problem. Localization
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algorithms that employ machine learning first
create a “fingerprinting database” of the environ-
ment during the training (offline) phase [9]. A fin-
gerprint is a vector containing channel parameters
such as the received signal strength (RSS), chan-
nel state information (CSl), and the AoA of the
strongest signal of all BS links measured a priori at
known locations called reference points, distribut-
ed throughout the environment. A fingerprinting
database is constructed by storing the fingerprint
measured at each reference point with the coordi-
nates of the reference point.

Once the fingerprinting database is construct-
ed, then in the real-time online position location
step the BS-UE channel is measured by the UE.
The channel measurements are matched to the
fingerprinting database (stored in the UE or in the
network) to determine the UE position. Matching
may be done via maximum a posteriori (MAP)
estimation.

Alternatively, matching may be performed
by utilizing a similarity criterion to compare
the online measurements to the fingerprinting
database. A common similarity criterion is the
distance, such as the Euclidean (L,) or the Man-
hattan (L) distance, of the online measurements
from the channel measurement at the reference
points. In the k-nearest neighbor (k-NN) algo-
rithm, the user position is the weighted average of
the k “nearest” reference points.

The UE localization problem can be restat-
ed as determining the nonlinear function that
transforms the channel parameters into a posi-
tion estimate. A neural network determines the
nonlinear function, based on data available in
the fingerprinting database. A neural network is
a series of multi-level nonlinear functional trans-
formations of the input, which can be used to
approximate a target function. For user local-
ization, the inputs to the neural network are the
measured channel parameters, and the target
function is the positional coordinates of the user.
Successive layers of a neural network are com-
bined linearly by weights. The optimal weights
that transform the inputs (channel parameters)
as close as possible to the target function (user
position) are found in the offline training phase
by minimizing the closeness of the output of the
neural network to the target function at the ref-
erence points.

Machine-learning-based localization algorithms
require the availability of a dense fingerprinting
database, the creation of which is a time-intensive
process. The localization accuracy of fingerprint-
ing algorithms depends on the distance between
reference points, with the localization accuracy
typically on the order of the distance between
the reference points. Additionally, changes in the
environment such as the addition of new furni-
ture require the fingerprinting database to be
re-created. Transfer learning may be leveraged to
reduce the amount of data required. Theoretical
radio wave propagation models are leveraged
to replace data collection partially by ray tracing.
The ray tracer, once calibrated to the environment
based on the limited measurements conducted,
may be used to predict channel parameters at
the reference points. Minor changes to the prop-
agation environment may be quickly incorporat-
ed into the environment map utilized by the ray
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FIGURE 3. Map of the environment may be uploaded or generated on the

fly and used for imaging through walls using narrow beam antennas
and multipath,

tracer, expediting the process of creating (and
updating) the fingerprinting database. A neural
network may be first trained on the synthetic data
generated by the ray tracer, with the weights of
the neural network refined by further training on
real-world measurements.

USER TRACKING AND DATA FUSION

Localization accuracy of a stationary target may
be improved by averaging the position estimate,
reducing the variance of the estimate. For mobile
targets, the location must be estimated in a short-
er period of time, which can be achieved via user
tracking. User tracking refers to continuously esti-
mating the position of a mobile UE, due to which
sudden changes in the user’s apparent position
from one sampling instant to another, caused by
positioning errors, may be smoothed out.

Modern cell phones are equipped with a vari-
ety of sensors. UEs possess an inertial measure-
ment unit (IMU), consisting of a gyroscope to
measure rotation, an accelerometer to measure
acceleration, and a magnetometer to measure
the magnetic field intensity. Given the initial posi-
tion of the user, the current user position may
be obtained by integrating the measured accel-
eration twice to get the user position. However,
errors in IMU measurements grow with time — a
constant offset in acceleration measurement leads
to a quadratic error in position.

Data from the sensors may be fused with
channel measurement data using a Kalman fil-
ter/extended Kalman filter (KF/EKF) to correct
the drift in IMU measurements. A KF is a recur-
sive linear estimator of the state (position and
velocity) of a user. The current state of the user
is modeled as a linear transformation of the state
of the user at the previous time instant, based on
kinematic equations derived from Newton’s laws
of motion, whereas sensor measurements are
modeled as a linear transformation of the current
state of the user. A KF is the optimal estimator of
a linear process, given the mean and variance of
the noise. If the relation is not linear, an EKF may
be used to locally linearize the process via Tay-
lor series expansion [1]. The KF/EKF minimizes
the mean square error of the position estimate
based on measurements obtained from all sen-
sors up to the current time instant. When new
information is obtained by the user in the form
of new channel measurements or new sensor
data, the KF/EKF recursively updates the position
estimate based on the old position estimate and
the new data.

In conjunction with a map of
the environment, multipath
components provide addi-
tional useful information
regarding the location of
the UE. For example, with
amap of the environment
available, “forbidden tran-
sitions" of a UE wherein the
UE moves through walls or
from one floor to another in

consecutive time steps may

be detected and discarded.
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Position location method Description BS density Deployment cost Accuracy
Fundamental techniques Use uplink and downlink AQA, TOA, TDoA measurements to calculate High Low [10] Low [10]
position via geometry
Cooperative localization Use side-link (UE-UE) measurements to complement BS-UE mea- Low Low [1] Medium [1]
surements
Machine learning Channel features mapped to values stored in fingerprint database Medium High [9] High [9]
User tracking Refine position estlma'te of func'lamental techniques, predict user Medium Low [1] Medium [1]
trajectory with sensor data
Multipath exploiting E ition inf ) ) ltipath . 714 ;

fechniques xtract position information embedded in multipath components Low Medium [7, 14] High [7, 14]

TABLE 1. Summary of different position location techniques and their complexity, cost, and accuracy.

LOCALIZATION ALGORITHMS EXPLOITING MULTIPATH

As discussed earlier, multipath components are
conventionally thought to be a hindrance to accu-
rate localization. However, in conjunction with
a map of the environment, multipath compo-
nents provide additional vital useful information
regarding the location of the UE. For example,
with a map of the environment available (Fig. 3),
“forbidden transitions” of a UE wherein the UE
moves through walls or from one floor to another
in consecutive time steps may be detected and
discarded.

Multipath components from the BS may
arrive at the UE via a direct path or via indirect
paths along which the source ray suffers multi-
ple reflections or scattering. Virtual anchors (VAs)
are successive reflections of the BS on walls in
the environment [1], which are treated as an LoS
BS in place of the physical NLoS BS. Future wire-
less devices will exploit real-time ray tracing [10]
for multipath propagation prediction in order to
determine the VA locations. If the user’s location
is continuously tracked with an EKF, each mul-
tipath component received by the UE may be
associated with a VA based on the previously esti-
mated UE location. Once the correspondence
between each multipath component and the VAs
is known, any of the fundamental localization
techniques (AoA, ToA, or TDoA) may be used to
localize the UE.

With large bandwidths and narrow beam-
widths at mmWave frequencies, more multipath
components are resolvable, which makes the task
of associating the multipath components with the
VA more difficult. Ray tracing may be used to
take advantage of NLoS multipath components
arriving at a UE, providing single-shot user loca-
tion estimation without user tracking. With knowl-
edge of the AoA at the BS, the ToA of the source
rays, and a map of the surrounding environment,
the BS may determine the location of the UE via
ray tracing each multipath component. Since it is
not known whether the signal is reflected or trans-
mitted through each obstruction along the traced
signal path, two possible locations are recursively
stored as “candidate locations” at each obstruc-
tion encountered while ray tracing a multipath
component. A majority of the candidate locations
will be clustered near the true UE location, so the
user may be localized to the centroid of the larg-
est cluster of candidate locations [7].

In the absence of a map, with the assumption
that each multipath component is reflected or
scattered at most one time, the problem of deter-

mining the location of a UE can be reformulated
into a nonlinear LS estimation problem [14]. The
scatterer/reflector positions and the UE position
and orientation are estimated by jointly finding
the scatterer and user locations where the expect-
ed distances and angles (geometrically calculated)
match the measured distances and angles most
closely in the least squared sense. Optimization
techniques such as particle swarm optimization
(PSO) and the LMA [14] may be used for nonlin-
ear LS optimization.

CONCLUSION AND FUTURE RESEARCH

This article has provided an overview of existing
and emerging localization techniques, illustrating
how utilizing the wide bandwidths at mmWave
frequencies could lead to unprecedented localiza-
tion accuracies. The narrow antenna beamwidths
at mmWave frequencies require smart beam
management, while optimal localization requires
an exploration of multipath components arriving
from all directions, for which a detailed study of
joint communication and localization is required.
Table 1 provides a summary of the different posi-
tion location methods.

Looking into the future, we predict that a com-
bination of machine learning, data fusion of mea-
surements from multiple sensors, and cooperative
localization will be used for robust, accurate posi-
tion location. The wireless systems will need to
seamlessly transfer the localization responsibility
from one wireless technology (e.g., WiFi access
points indoors) to another (e.g., cellular BSs out-
doors), similar to handovers in current cellular
networks when a user moves in and out of BS
coverage cells.

With centimeter-level localization accuracy in
future cellular networks, privacy will become a
growing concern. Users must be allowed to opt
out of tracking if they so desire, and any user
location data stored in the network must be pro-
tected from hackers. Additionally, the localization
solution must be robust to interference from mali-
cious users, who could, for instance, attempt to
replicate the reference signals transmitted by the
cellular network in order to gain unauthorized
access to user location information.

The computing capabilities of UEs will enable
mapping and ray tracing in real time. We envis-
age that cell phones in the future shall generate a
map of the environment on the fly or have maps
loaded within, enabling map-based localization
algorithms that exploit real-time multipath prop-
agation. The augmentation of human and com-
puter vision will allow users to see in the dark and
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see through walls [7]. Cell phones in the future
will have the capability to either download or gen-
erate a map of the environment on the fly and
“see in the dark” [7]. The UE will behave like a
radar, measuring the distances of prominent fea-
tures in the environment, such as walls, doors,
and other obstructions. Additionally, reflections
and scattering off walls will enable cell phones to
view objects around corners or behind walls [7],
as illustrated in Fig. 3.

For ranging measurements, a radar operates in
the pulsed radar mode, wherein the radar trans-
mits a single pulse, switches from transmit to
receive mode, and waits for the echo back from
the object that is to be range-estimated. Howev-
er, due to constraints on switching speed, only
objects at a sufficient distance from the user may
be ranged. For example, an mmWave phased
array with a TX-RX switching time of ~100 ns
cannot range objects closer than 50 ft (electro-
magnetic waves travel 1 ft/ns). To range closer
objects, a UE must simultaneously transmit and
receive the radar signal, operating in the full
duplex mode, requiring TX-RX isolation [15].
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We predict that a com-
hination of machine
learning, data fusion

of measurements from
multiple sensors, and

cooperative localization will
be used for robust, accurate
position location, The

wireless systems will need

to seamlessly transfer the
localization responsibility
from one wireless tech-
nology to another, similar
to handovers in current
cellular networks when a
user moves in and out of BS
coverage cells.
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