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Abstract. The primary objective of this work is to study the inverse problem of identifying a stochastic pa-
rameter in partial differential equations with random data. In the framework of stochastic Sobolev
spaces, we prove the Lipschitz continuity and the differentiability of the parameter-to-solution map
and provide a new derivative characterization. We introduce a new energy-norm based modified
output least-squares (OLS) objective functional and prove its smoothness and convexity. For stable
inversion, we develop a regularization framework and prove an existence result for the regularized
stochastic optimization problem. We also consider the OLS based stochastic optimization prob-
lem and provide an adjoint approach to compute the derivative of the OLS-functional. In the
finite-dimensional noise setting, we give a parameterization of the inverse problem. We develop a
computational framework by using the stochastic Galerkin discretization scheme and derive explicit
discrete formulas for the considered objective functionals and their gradient. We provide detailed
computational results to illustrate the feasibility and efficacy of the developed inversion framework.
Encouraging numerical results demonstrate some of the advantages of the new framework over the
existing approaches.
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1. Introduction. Numerous models in applied and social sciences employ the broad spec-
trum of partial differential equations (PDEs) involving parameters that characterize the phys-
ical features of the model. For instance, the diffusion coefficient in the second-order PDEs,
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the rigidity coefficient in fourth-order PDEs emerging from plate models, and the Lamé pa-
rameters in linear elasticity describe characteristics of the underlying medium. In the applied
models, these parameters are estimated based on experiments that involve noise. Indeed the
commonly assumed properties of the parameters, which provide a convenient analytical frame-
work, are simplifications of the experimental feedback of these parameters. Unfortunately, in
many cases, the simplifications dilute certain essential features of the material parameters.
A sensible way is to treat these parameters as random variables. However, it would make
the solutions of the PDEs also random, giving rise to severe mathematical and theoretical
challenges. Although, even in the early sixties, several authors raised related important ques-
tions (see [6, 36]), it is only in recent years that significant advancements in the numerical
treatment of PDEs with random data have been made. Improvements in high-performance
computational capabilities have substantially enhanced these developments.

This work focuses on the inverse problem of identifying a random coefficient in a PDE
with random data. Assume that (€2, F, u) is a probability space, that is, { is a nonempty set
whose elements are termed as elementary events, F is a o-algebra of subsets of €2, and pu is
a probability measure. Assume that D C R™ is a bounded domain and 9D is its sufficiently
smooth boundary. Given random fields a: Q2 x D — R and f : Q2 x D — R, the direct problem
in this work consists of finding a random field u : 2 x D — R that almost surely satisfies the
following PDE with random data:

(1.1a) -V - (a(w,z)Vu(w,z)) = f(w,z) in D,
(1.1b) u(w,z) =0 on OD.

The above PDE models interesting real-world phenomena and has been studied in great detail.
For example, in (1.1), u may represent the steady-state temperature at a given point of a body;
then a would be a variable thermal conductivity coefficient and f the external heat source.
The system (1.1) also models underground steady-state aquifers in which the parameter a is
the aquifer transmissivity coefficient, u is the hydraulic head, and f is the recharge.

A natural interpretation of (1.1) is that realizations of the data lead to deterministic
PDEs. That is, for a fixed w € Q, PDE (1.1), under appropriate conditions, admits a weak
solution u(w, ) € HY(D).

The inverse problem of identifying stochastic parameters in a PDE from a noisy mea-
surement of the PDE solution has attracted a great deal of attention in the last few years.
The most commonly adopted approach for inverse problems is a Bayesian formulation, which
conditions a prior distribution on the coefficient function on observations of the PDE so-
lution. The so-called variational approach that attracted quite a bit of attention in recent
years was inspired by some of the Bayesian approach’s challenges; see [25]. The variational
approach is appropriate for identifying distributed and spatially correlated parameters in
PDEs. It consists of posing a stochastic optimization problem whose solution can provide
information concerning the unknown parameter’s stochasticity/statistics. The variational
approach’s key advantages include access to a wide-ranging arsenal of efficient and reliable
optimization algorithms, a rigorous functional analytic framework for convergence analysis,
and easy amalgamation of the parameter’s structural characteristics into the inversion frame-
work. There are mainly two approaches to obtaining a stochastic optimization formulation
in the variational approach: either defining an unconstrained stochastic optimization prob-
lem or introducing a constrained stochastic optimization problem in which the PDE itself is
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the constraint. The variational approach minimizes the following output least-squares (OLS)
objective functional:

(1.2) Tofa) = /Q /D o (w, ) — 2(w,2)|2da dpu(w),

where u,(w, z) is the solution of (1.1) for a(w,z) and z(w, ) is the data.

One of the main motivations of this work is to circumvent the significant deficiency of the
OLS functional of being nonconvex, in general. However, before describing our approach, we
briefly discuss some of the related developments. We begin by noting that Narayanan and
Zabaras [5] investigate the inverse problem in the presence of uncertainties in the material
data and develop an adjoint-approach based identification process by employing the spectral
stochastic finite element method. They compute the gradient of the OLS-type objective func-
tional and use a conjugate gradient strategy to provide promising numerical results. In [48],
the authors develop a scalable methodology for the stochastic inverse problem using a sparse
grid collocation approach. The inverse problem, posed as a stochastic optimization prob-
lem, is converted into a deterministic optimization in a high-dimensional space. Numerical
examples are given to illustrate various aspects of the study. In [42], the authors develop a
robust and efficient approach by employing generalized polynomial chaos expansion to identi-
fying uncertain elastic parameters from experimental modal data. In [32], the authors give an
implicit sampling for parameter identification. In [46], the authors develop a general frame-
work for solving inverse problems under uncertainty using stochastic reduced-order models.
They study the inverse problem as a constrained stochastic optimization problem. As an
example, the authors identify random material parameters in elasto-dynamical systems. In
[40], the authors study the parameter identification in a Bayesian setting for the elastoplas-
tic problem. In [37], the authors focus on the inverse problem of parameter identification,
where the parameters are random. They develop a sampling method that exploits the sen-
sitivity derivatives of the control variable with respect to the random parameters. In [35],
the authors study the optimal control problem for the stochastic diffusion equation. Us-
ing the Karhunen—Loeve (KL) expansion, they separate the stochastic and the deterministic
components and couple the finite element method and the polynomial chaos expansion for
a numerical solution of the problem. In [26], the authors focus on determining the optimal
thickness of a cylindrical shell subjected to stochastic forcing. The authors pose the prob-
lem as a stochastic optimization problem and derive necessary optimality conditions. For
the numerical computation of a cylindrical shell’s optimal thickness, they develop a gradient-
based numerical scheme and provide numerical examples. In [1], the authors investigate
the impact of errors and uncertainties of the conductivity on the electrocardiography imag-
ing solution. They conduct the study in a stochastic optimization framework by using an
OLS-type function. They use the stochastic Galerkin method for the numerical treatment
of the direct and the inverse problem. Some of the related developments are available in
2, 3,39,8,7,9, 10, 11, 16, 21, 13, 14, 15, 17, 22, 28, 31, 30, 33, 34, 38, 43, 44, 27, 41, 47] and
the cited references therein.

We note that whereas only the OLS approach is available for the stochastic inverse prob-
lems, other formulations exist for the identification of deterministic parameters. For example,
the equation error approach, which results in a quadratic optimization problem (cf. [12]),
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and the coefficient-dependent OLS (see [18, 19, 24]), which leads to a convex minimization
problem.

The primary objective of this paper is to propose a new energy least-squares (ELS) for-
mulation for identifying stochastic parameters. The main contributions of this work are as
follows:

1. We study the topological properties of the parameter-to-solution map. In particular,
we establish its Lipschitz continuity and give a new Fréchet derivative characteriza-
tion. We propose a new objective functional and prove its smoothness and convexity
by using the derivative characterization. We devise a regularization framework and
give an existence result for the regularized ELS-based stochastic optimization prob-
lem. For comparison, we also study the OLS-based stochastic optimization problem.
We develop an adjoint approach to obtain the derivative of the OLS-functional. We
emphasize that the derivative of the ELS objective does not involve the derivative of
the parameter-to-solution map.

2. Under the finite-dimensional noise assumption, we obtain a parametrization of the
stochastic variational problem and the associated stochastic optimization problems.

3. We give a stochastic Galerkin based discretization scheme for the continuous inverse
problem. We provide explicit discrete formulas for the OLS and the ELS functionals
and their gradients. We provide detailed computational results.

This work is mainly concerned with the inverse problem’s mathematical aspects and how
the discrete formulas from deterministic cases can be extended to stochastic cases. There is
one critical issue that we have not addressed in this work, and that is the estimation of the
noise distribution. We note that the unknown noise distribution can be dealt with in practice
as follows: From the data for the inverse problem, which would be in the form of a random
sample, one computes the covariance operator’s eigenpairs. The decay of the eigenvalues
suggests the size of the discrete KL expansion at the sample points, leading to the finite-noise
vector {Y;} in the KL expansion. For the computation of the density function from {Y;}, it is
then possible to employ the so-called parametric or nonparametric methods; see [45] for more
details.

We divide the contents of this paper into seven sections. Section 2 describes the variational
formulation of the PDE with random data and gives the derivative characterization for the
stochastic parameter-to-solution map. We study the new ELS approach in section 3. We
present the parameterized stochastic inverse problem and the adjoint approach in section 4.
We develop the computational framework in section 5 and give the numerical examples in
section 6. The paper concludes with some general remarks and future research goals.

2. Variational problem and derivative characterization for the parameter-to-solution
map. An appropriate functional setting to study variational problems emerging from stochas-
tic PDEs is provided by Bochner spaces of random variables; see [29]. Given a real Banach
space X, a probability space (2, F, 1), and an integer p € [1,00), the Bochner space LP(; X)
consists of Bochner integrable functions u : 2 — X with finite pth moment, that is,

1/p
lullrn = ( [ Iu@ldut)) =B [luw)li]” < o
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If p = 0o, then L*°(£; X) is the space of Bochner measurable functions u : € — X such that
esssup,,cqllu(w)|x < oo.

Intrinsic features of LP(D) spaces of Lebesgue integrable functions translate naturally to
Bochner spaces LP(€; X). It is known that (see [23]) L>(Q;L>°(D)) C L*°(Q2 x D), but

L>®(Q; L>(D)) # L>*(Q2 x D), in general. Furthermore, the space LP(Q; LY(D)), for p,q €
[1,00), is isomorphic to

{v:QxD—>]Rn|/Q</D|v(w,a:)]qu>p/qdu(w)<oo}.

The variational formulation of (1.1) seeks u € V := L?(Q; H}(D)) such that

(2.1) E [/ a(w,z)Vu(w,x) - Vv(w,a:)dx] =E [/ fw,z)v(w, x) d:v} for allv € V.
D D
In the following, we will assume that there are constants ky and k; such that

(2.2) 0 < ko < a(w,x) < k1 < oo almost everywhere in Q x D.

In particular, a € L*(Q2 x D).
By the aid of a bilinear form s: V x V — R and a functional £ : V — R given by

(2.3) s(u,v) :=E [/ a(w, z)Vu(w,x) - Vv(w,x)dm] ,
D
(2.4) Lv) =E [/ f(w,z)v(w, x) daz} ,
D
variational problem (2.1) can be written as a problem of finding u € V' such that

(2.5) s(u,v) = £L(v) for every v € V.

It follows that

|s(u,v)| = ‘E [/D a(w, z)Vu(w, x) - Vv(w,a:)dx]
< /QXD la(w, )Vu(w, z) - Vo(w, x)|dz dp(w)

<l )lim@e) [ [Vulo,)- Tolo,a)lde du(e)
X
< Nla(w, )l @emylllv el

which establishes the continuity of the bilinear form s(-, ).
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Furthermore, the bilinear form s(-,-) is coercive as well because
s(v,v) =E [/D a(w, 2)|Vo(w, z)|*dx
:/ a(w, z)|Vo(w, z)|?dz du(w)
QxD

2%/ Vo(w, 2)|2de du(w)
QOxD
= a”v(wv x)H%/,

where « is a positive constant involving the Poincaré constant of the domain D.
For the given f € L?(2; H'(D)*) and for any v € V, for the functional £(-), we have

) = & [ stwnapotenas]

< f(w, @)l 2@sm (pys) llo(ws 2) v,

which proves the continuity of £.

Consequently, by the Lax—Milgram lemma, variational problem (2.5) is uniquely solvable.
Furthermore, it can be shown that there is a constant ¢; > 0, involving the Poincaré constant,
such that

(2.6) u(w, z)llv < el f(w, 2) | L2 m1 (D)*)-

Remark 2.1. Implicitly in the existence of the solution of variational problem (2.5), the
measurability of the w-wise solutions has to be verified; otherwise u does not necessarily belong
to V.

At the core of inverse problems are the continuity and the differentiability properties of
the parameter-to-solution map a — u,(w, z), which assigns to a the unique solution wug(w, x)
of (2.1). For this, let A C B := L*(2; L>(D)) be the set of feasible parameters with a
nonempty interior.

The following result proves the Lipschitz continuity of the parameter-to-solution map.

Proposition 2.2. For any a(w,z) € A, the map a(w,x) — uq(w, x) is Lipschitz continuous.

Proof. Let uq(w,z) € V be the solution of (2.1) corresponding to a(w,z) € A and
up(w, x) € V be the solution of (2.1) corresponding to b(w,z) € A. The definitions of uy(w, x)
and up(w, x) yield

E [/D a(w,x)Vua(w,x)-Vv(w,x)dx} ~E [/D F(w, 2)v(w, z) d:c] for every v € V,

E [/D b(w,x)vub(w,x).vu(w,x)dm} =E [/D f(w, 2)v(w, z) dw] for everyv € V,

and by subtracting the second equation from the first, for every v € V, we obtain

E [/D a(w,:L‘)Vua(w,x)-Vv(w,:v)dx] _E UD b(w,x)Vub(w,x)-Vv(w,x)dx] ~0,
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which, after a rearrangement of the terms, leads to the following identity:
E [/D a(w, )V (ug(w,z) — up(w, x)) - Vo(w, x)dx]
+E [/D(a(w,x) — b(w, x))Vup(w, ) - Vv(w,:r)dw] =0, for everyv € V.
We set v(w, z) = uq(w, ) — up(w, ) in the above equation to obtain
Ko [[|V (tta(, ) = un(w, )22
<

| [ o)V (ualona) - wfo,0) P

| [ (alr2) = b)) V) - Tt 2) = 2|
<8 | [ I(a(,) - b)) Vs ) - Fua(ir2) — s )| ]

< () = b)) | [ [Vn(,2) - Vun(or2) = e, 0) o
< Jlafw, 2) — b, 2)l| = oyl 2) v a0, ) — (e, )
and by using (2.6), we have
a0, 2) — (w0, )y < ellaer 2) — b, )| (@)

for a constant ¢ > 0. The proof is complete. |

The following result gives a derivative characterization (in Fréchet sense) of the parameter-
to-solution map.

Theorem 2.3. For each a(w,x) in the interior of A, the map a(w,x) — uq(w,x) is dif-
ferentiable at a(w,x). The derivative du, := Dug(da) of uq(w,x) at a(w,x) in the direction
da(w, ) is the unique solution of the variational problem: Find duq(w,x) € V' such that for
every v(w,x) € V, we have

(2.7) E [/ a(w, z)Viug(w, ) - Vv(w,x)dac} =-E {/ da(w, z)Vug(w, ) - Vo(w, x) dw} .
D D
Proof. Note that a proof of the unique solvability of (2.7) is similar to the unique solvability
of (2.1). To prove (2.7), for a(w,z) € A, let da(w,x) be sufficiently small so that a(w,z) +

da(w,x) € A. Therefore, the quantity dw(w, z) = ugtsq(w, ) — uq(w, x) is well-defined.
By the definition of u,(w,x) and ugsq(w, x), for every v(w,z) € V, we have

(2.8) E[ /D a(w,x)Vua(w,x)-Vv(w,x)da:] :E[ /D f(w,:c)v(w,x)dx],
(2.9) IE[/D(a(w,a:)+5a(w,m))Vua+5a(w,x)-Vv(w,x)dm] :E[/Df(w,a:)v(w,x)dx].
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We subtract (2.8) from (2.9) to get
E {/D(a(w,x) + da(w, z))Véw(w, ) - Vv(w,a:)da:] =-E {/D da(w, z)Vug(w, x) ~Vv(w,a:)dx}
and subtract (2.7) from the above equation to obtain
E {/D a(w, )V (dw(w, z) — dug(w, z)) - Vu(w,x)dm} =-E {/D da(w, z)Viw(w, x) - Vv(w,x)dx} .

By setting v(w, z) = dw(w, ) — dus(w, x), we have

E a(w, )|V (dw(w, z) — dug(w, z)) [2dx
/, |
=-E da(w, z)Vow(w, z) - V (dw(w, z) — dug(w,x)) dx| .
J. |

As before, the above identity implies that for a constant ¢ > 0, we have
15w (w, x) = dua(w, z)llv < clldw(w, z)[[vIIda(w, 2)]| Lo @xp) < cllda(w, 2)[|7xp)»
where we used the Lipschitz continuity of the solution map, and consequently

ltta-5a(e, 7) — (e, 2) — dufw,2) v _

”5a(wa$)||L°°(Q><D)

o (6a(w, )| L @x D)) »

which by taking [[da(w, z)||Le@xpy — 0 confirms that du(w, ) is the sought derivative. W

3. A new convex inversion framework. We propose the following new ELS objective
functional:

(3.1) Jo(a) = %E [/D a(w, )|V (ug(w, x) — 2(w,z))|*dz| ,

where u,(w, 7) is the solution of (2.1) for a(w, ) and z(w,z) € L?(X; HE(D)) is the data. We
recall that the commonly known optimization formulation for the stochastic inverse problem
of parameter identification is the OLS:

(3.2) Tola) = %E llea(w; @) — 2(w, 2)[?] .

where wu,(w, ) is the solution of (2.1) for a(w,x), z(w,z) € L?(Q; L?(D)) is the measured
data, and || - || is a suitable norm, For example, L?(D)-norm was considered in [1], whereas
H'(D)-norm was employed in [7]; H'(D)-seminorm is another possibility.

One of the significant deficiencies of the OLS formulation is its inherited nonconvexity,
which causes severe theoretical and computational challenges and poses the risk of locating
only local solutions of the OLS-based stochastic optimization problem. The ELS functional,
on the other hand, is convex, as shown by the following result.

Theorem 3.1. The ELS functional given in (3.1) is convex in the interior of the set A.

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 06/30/21 to 62.204.192.203. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

930 JADAMBA, KHAN, SAMA, STARKLOFF, AND TAMMER

Proof. We compute the first derivative of Jy in any direction da(w, z) by the chain rule as
follows:

DIa)60) = 5 | [ 8000,V e5) ~ 2w )P
+E [/D 0w, 2)VSua (0, ) - V(tta(w, ) — 2(w, x))dm} ,

where duy(w, x) is the derivative of ug(w, x) in the direction da(w, ).
Since

E [ /D (w0, 2) Vot (w, 2) - V(ua(w, ) — 2(w, x))dm]
- _E UD 5w, 2) Vita(w, ) - V (ua(w, ) — z(w,x))dx] ,
we obtain
DJo(a)(6a) = 3 [ /D 5w, 2)|V (tta (w0, ) — z(w,x))\de]
_E UD Sa(w, ) Vit (w, ) - V(tta(w, ) — 2(w, x))da:]

_ —%E [/D Sa(w, )V (ta(w, ) + 2(w, 7)) - V(tta(w, 7) — z(w,w))dw] |

The second-order derivative can be computed as follows:

D?Jy(a)(da,da) = —%E [/D da(w, x)Voug(w, z) - V(ug(w,z) — z(w,ac))dw}

- %E [/D Sa(w, )V (ug(w, ) + 2(w, x)) - Wua(w,w)dw}
=-FE [/D da(w, z)Vu(a)(w,x) - V(?ua(w,x)daz]

_E UD a(w,x)|V(5ua(w,m)]2dx] ,

where we used Theorem 2.3. Hence, there is a constant a > 0 involving the Poincaré constant
such that the inequality holds for all a(w,x) in the interior of A:

(3.3) D2J0(a)(5a, da) > aHéua(w,x)H%/;

consequently Jy is a convex functional. |

The inverse problem of identifying stochastic parameters in PDEs is ill-posed, and for a
stable identification process, some type of regularization is essential. For this, we tailor a
general setting by defining the following admissible set:

A={a€e H=L*(QH(D)): 0<ky<a(w,z)<k as. QxD},

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.
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where H is a separable Hilbert space compactly embedded into B := L(Q; L*°(Q2)), and
H(D) is continuously embedded in L ()

We consider the following regularized ELS functional:

(3.4) miﬂ Ji(a) == %E [/D a(w,z)|V(u(w,x) — z(w,x))|2d:c + gHa(w,x)H%{,

ac
where wu,(w, ) is the solution of (2.1) for a(w,x), z(w,z) € L?(; L?(D)) is the measured
data, k > 0 is a fixed regularization parameter, and || - ||%; is the regularizer. We note that

the norm || - | 7 already includes the expectation operator.
We have the following existence result.

Theorem 3.2. For each k > 0, the ELS-based problem (3.4) has a unique solution.

Proof. Since Ji(a) > 0, for every a € A, there is a minimizing sequence {a,} in A such
that

le Ji(an) = inf{Js(a)|a € A}.

Therefore, {J.(an)} is bounded, and consequently {a,} is bounded in || - ||z. Since H is
compactly embedded, {a,} has a subsequence, which converges in norm to some a € A.
Retaining the same notation for subsequences, let u,, be the solution of the variational problem
that corresponds to a,. That is,

E [/D (W, ) Vitn (w, 7) - vv(w,x)dx] =E [/D f(w, 2)v(w, z) dx] for allv € V.

We set v = u,, and obtain

E[/Dan(w,x)|vun(w,x)\2dx] :E[/Df(w,x)un(w,:c)d:c],

which leads to the boundedness of {u,}. Therefore, {u,} has a subsequence that converges
weakly to some @ € V. We claim that @ = ug. Since

E { /D (0, 7) Vit (w0, 7) - Vv(w,:r)dw] _E [ /D Flw, 2)0(w, 2) dx} for every v € V,
after a simple rearrangement of terms, we have
E | [ .0 Vaw.a) - Vol 2) = flwsa)ofera)] de]
__E [/D(an(w,x) — 4w, 2))Vn (w, 7) - Vo(w, 7)) dx}

(3.5) -E [/D a(w, )V (up(w, ) — a(w,x)) - Vo(w, x) da:] :
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Notice that

‘E M(an(w,x) — a(w, 2))Viun(w, 7) - Vo(w, ) dx]

x (Eﬂ UD lan(w, 7) — a(w, )| |Vo(w, z)[? de "0

by the dominated convergence theorem. Since the second term on the right-hand side of (3.5)
also converges to zero, we have

E [ /D [(w, 2)Vii(w, 2) - Vo(w, ) — f(w, 2)0(w, 2)] d:n] ~0.

Since v € V is arbitrary, and (2.1) is uniquely solvable, we get @ = ug.
We claim that Jy(a,) — Jo(a). The identities

E [/D (0, 2) |V (i (0, ) — z(w,x))|2d4
_E [/D w0, 2) (w0, 7) — z(w,x))dm]
_E UD (0, 2)V2(w, 7) - V(1 (w0, ) — 2(w, x))dac]
and
B| [ s V(aos) - 2w 0) P
—5 | [ fo)ale.0) - )i
_E [/D a(w, )V 2(w, 2) - V(a(w, ) — 2(w, :U))dx} ,
in view of the rearrangement
E [/D (w0, 2)V (w0, 2) - V (1t (w0, ) — z(w,x))dx}
_E [/D i(w, )V (w, ) - V(a(w, ) — 2(w, :c))d:c]
=5 | [ (anli0) = a2Vl 0) - T i) = 2 )]

+E [/D 6w, 2)V (w0, 7) - V(tn(w, 7) — 0w, x))dx} ,
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imply that
E [/D (w0, 2)V (i (w0, ) — 2(w, 7)) - (n(w, ) — 2(w, z))dz]

—E UD a(w, )V (@(w, ) — 2(w, 2)) - V(@(w, z) — 2(w, x))dx} :

and consequently,

Je(a) = %]E [/D a(w,z)|V(u(w,z) — z(w,x))lzdx] + gHEL(w,m)H%{

n—oo 2

1
< lim -E [/ an(w, )|V (uq, (W, ) — z(w,x))]de} + lini)inngan(w,x)H%I
D n—oo

<timint {32 [ (e, 0)/¥ 0, (015) = 2w 0) P + 5 lenlin o)

n—oo
=inf {Js(a)| a € A},
confirming that a is a solution of (3.4). The proof is complete. [ |

4. Parametrization of the stochastic inverse problem. A vital component of the study
of stochastic PDEs and stochastic optimization problems is the representation of the random
fields by a finite number of mutually independent random variables. Random fields that are
functions of only a finite number of random variables are known as finite-dimensional noise,
formally defined in the following (see [4, 29]).

Definition 4.1. Let & : Q — Ty, for k = 1,..., M, be real-valued random variables with
M < oco. A function v € L?(; L*(D)) of the form v(x,&(w)) for x € D and w € 2, where
€= (&,%,....6m) Q=T C RM gnd T :=T1 xTy--- x 'y, is called a finite-dimensional
noise.

If a random field v(x, §) is finite-dimensional noise, a change of variables can be made for
evaluating expectations. For instance, denoting by o the joint density of &, we have

o1 @uzzcon = B [Iolacoy] = [ oot Moy

Consequently, by defining yy := & (w) and setting y = (y1, y2, - . -, Yar), we associate a random
field v(x, &) with a finite-dimensional noise by a function v(z,y) in the weighted L? space

D) = {7 x D R: [ oot ) aoyds < oo}

In this work, we assume that a(w, z) and f(w, z) are finite-dimensional noises and given by

P
a(w, ) = ag(x) + Y ax(@)&(w),
=1

L
flw,z) = fol@) + Y fr(@)érw),
k=1

where the real-valued functions a; and fi are uniformly bounded.
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It follows from the Doob—Dynkin lemma that a solution of (2.1) is finite-dimensional noise
and u is a function of £ where § = (£1,&2,...,&) : @ — I and M := max{P, L}; see [29].

Then, the variational problem (2.1) reduces to the following parametric deterministic
variational problem: Find u(y,z) € V, := L2(T; H}(D)) such that for every v(y,x) € V,, we
have

(4.1) /F o(y) /D a(y,2)Vuly, z) - Voly, )dz dy = /F o(y) /D F(y 2)o(y, ) de dy.

For the inverse problem, we will assume that the data z depends, via &, on the finite-
dimensional noise variables {¢; Z-J\il. Therefore, we will assume that the unknown parameter
a is also the function of the variables {&},. That is,

a(z, &) = a(x, & (W), &(w), ..., (w)) € ﬁ(D) = L?T(F;H(D)).

The following finite-dimensional noise variants of the OLS and the ELS objectives read

(42) min Jo(e) = 5 [ o) [ | (waly.2) = 2(0.)) P dy

acA
(1.3 min Jola) = 5 [ o) [ aly.2)|9 (ualo0) = 2(0.2)) P dy

where u,(y, z) solves (4.1) for a(y,z) and z(y, z) is the finite-dimensional noise data.
Following Theorem 2.3, we obtain a derivative characterization of the finite-dimensional
noise parameter-to-solution map and the derivative formula of the ELS functional.

Theorem 4.2. Let a be in the interior of A. Then, the derivative du, = Dug(da) of
ua(y, x) at a(y, z) in the direction da(y, x) is the unique solution of the following parameterized
variational problem:

/ o(y) / oy, 2)Voua(y, z) - Vo(y, 2)dz dy
I D

=— / a(y)/ da(y, z)Vuge(y,x) - Vo(y,z)dxdy for everyv € V.
r D

Furthermore, the derivative of the finite-dimensional noise ELS (4.3) reads

D(a)(da) = 5 [ o0) [ Ga0)V(ua(y.2) + 200)) -V aa) = (3. ) dy.

To compute the derivative of the OLS objective, we will now devise an adjoint approach.
For this, we note that from

@) = 5 [o) [ (walone) = sty dy,

by a direct computation, we have

DJy(a)(6a) = / o(y) /D Sutay, 2)(taly, 7) — 2y, 2))d dy,

where the derivative du,(y, x) = Dug(da(y,x)) can be computed by Theorem 4.2.
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To devise an adjoint approach, for v € V,, we define

~

935

L(a,0) = Jo(a) + /F o(y) /D a(y,2) Vua(y, z) - Voly, 2)dz dy - /F o(y) /D F (. 2)o(y, 2)dx dy

and note that by definition, we have

(4.4) aaaL(a,v) = DJo(a)(da) for every v € V.

We consider the adjoint equation of finding w = w(y, z) € V, such that for every v € V,

(4.5) /FU(Z/)/Da(%x)v’w(y,x)-Vv(y,x)da:dy:/

T

Then, for every v € V,,, we have

0

+ /1“ o(y) /D a(y, x)Voue(y, x) - Vo(y, z)dz dy,
and for the choice v = w, we have
s b)) = [ a(o) [ uty.o))ua(y.a) ~ =(2))de dy
+ [ o) [ daly.a)Vua(y.2) - Vuly.2)dady

+ /F o(y) /D a(y, ) Vualy, z) - Veo(y, z)dz dy,

which due to the definition of adjoint variable in (4.5) yields

seltaw)60) = [ o) [ supa))walnz) ~ =G0, 0)de dy

+ o) [ say.0)Vual,z) - Tuly.a)dody
- [ow) [ (:(0:2) = ol 2)5uty. 2 dy
I D

:/a(y)/ da(y, z)Vuge(y, x) - Vw(y, z)dz dy,
r D

and consequently,

0

seltaw)6w) = [ o) [ sat.0)Vuu(y.a) - Voly.a)de .

and from (4.4), we deduce

(4.6) Djo(a)(da) :Aa(y)/D(Sa(y,x)Vua(y,x)-Vw(y,x)da:dy.
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Summarizing, we obtain the following scheme to compute D.Jo(a)(da):
1. Compute uq(y,x) by solving variational problem (4.1).

2. Compute w(y,x) by solving adjoint problem (4.5).

3. Compute DJy(a)(da) by using (4.6).

5. Computational framework. We now proceed to derive discrete formulas for the direct
problem, the OLS and the ELS objective functionals, and their gradients. Recall that the
variational problem that needs to be discretized reads, Find u € V, = L2(T; H}(D)) such
that

/Fa(y) /Da(y, z)Vu(y,z) - Vu(y, z)dz dy = /Fo(y) /D fly,z)v(y,x)dx dy for all v € V.

Let Vj be a finite-dimensional subspace of V. An element wup, € Vyi is the stochastic
Galerkin solution if

/Fa(y) /D a(y, 2)Vupk(y, ) - Vo(y, z)dz dy = /Fa(y) /D fly,x)v(y, x)dz dy for all v € V.

Let V}, be an N-dimensional subspace of H} (D) and Sy, be a Q-dimensional subspace of L2(T")
with

Vh == Span{¢17 ¢27 R 7¢N}7
Sk = Span{wlaw% R 7¢Q}

We assume that the basis {11, 12,...,9¢g} is orthonormal with respect to o, that is,

Adm%@wmw@:mm

where 6, is the Kronecker delta: 6., = 1 for n = m, dpm = 0 for n # m. We construct a
finite-dimensional subspace of V,, by tensorizing the basis functions ¢; and ;. That is, the
following N(@-dimensional subspace will be the trial and test space for solving the discrete
variational problem:

Vike ==V, @ S :==span{o;y;| it =1,...,N, j=1,...,Q}.
Therefore, any v € V}, ® S has the representation
Q

N Q
v(y,x) =Y > Vydilx)w;(y) =

i=1 j=1 j=1

N
Z Vij@(x)] Yi(y) = Z Vi(2)¥;(y),

Jj=1

where

N
Vila) = " Vigdi(a).
=1
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It is convenient to introduce the following vectorized notation:

Vi

Vni
Vig 1%
: Va

5.1 Ve=veeWi)=| ., |= ,
(5.1) vec(Vij) Vg

Vig

where

Vii=| : | eRV.

Following the use of the KL expansion, we will assume that the unknown random field is
expressed as a finite linear expansion:

M M
(52) a’(y7 33) = ag(ﬁ) + Zysas(aj) = Z ysas(x)y
s=1 s=0

where, by convention, we denote yg = 1. The spatial components as are discretized by using
another P-dimensional space,

Ah = Span{QOl, s 7¢P}'

By following the same vectorial notation, we have

P M /P M
(5'3) a(y,x) = ZAiOSOi(x) + Z (Z Ais‘Pi(£)> Ys = ZAsy37
i=1 s=0

s=1 \i=1

where the vectors A,(z) = (A) € RP for s =0..., M,

A

A= A1 c RP(M+1)x1.

Ay
Evidently, the discrete variational problem seeks upi(y,z) € Vi, ® Sg such that

[ o) ( /| a(y,:c>mk<y7x>v¢i<x>dx) dy= [ 0w < / f(y,xm(x)dx) dy

foreveryi=1,..., N, n=1,...,Q.
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By using the representation

N Q
une = 3 > Ukm@n(@)¥m (v),

k=1m=1

we obtain

N Q
R ( | atwa)v (Z 3 Ukmm(x)wm(y)) wi(x)dx) dy

k=1m=1

= [ ot ( / f(w)@(m)dx) dy.

or equivalently,

Q

i Z Ukm/ V(Y)Y (y) </D a(y>x)v¢k($)V¢i(l‘)d$> dy

k=1m=

- /F o (4)bnv) < / f(y,:cm(x)dx) dy.

foreveryi=1,...,N,n=1,...,Q.
By using the expansion (5.3) in the above identity, we obtain

ijz_lvkm L owntsvnt ([ atwo)votn Vo) dy

:éjzz( [ ot wm(y)dy) < [ Aoty vona)v >dw) Ui
+§jk§ij§_j ( JRL wn(y)wm(y)ysdy) ( [ Ao van@vaw >U,m
N Q M N Q

- Z Z (5an AO ZkUkm ZZ Z (/ )wm( )ysdy> (A )itUrm
k=1m=1 s=1 k=1m=1
N M N Q

- ZK Ao)irUkn + ZZ Z Inm K (As)itUkm
k=1 s=1 k=1m=1

= [ K4+ gme(As)> Unt Y Z 9K (A,
s=1

m#n s=1
where for every s € {0,..., M}, we define K(A5) € R"*™ and g5, € R by
K(Ag)ik = / As(z)Vor(x)Vi(x)dx
D

Gom = /F 0 (9o (1) i (9l
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Now, for s € {0,..., M}, we set
G* = (gym) € RO*?,

where the case s = 0, by orthonormality, corresponds to the identity matrix as follows:

6 = ( [ otwnwimtuiar) = 1.

On the other hand, we discretize the right-hand side as follows:

(Fn)i = /Fa(y)wn(y)/Df(y,:U)qﬁi(x)dx dy for every n=1,...,Q.

Summarizing, the discrete variational problem reads

M
(K(Ao)—FngmK( )U —l—ZZgnm As)Up, = F,, for every n =1,...,Q,
s=1

m##n s=1

which corresponds to solving the following linear system:

M M M
K(Ao) + 3 971 K(As) 20 912K (As) >0 91K (As)
s=1 s=1 s=1
M M M Uy Fy
21 951K (As) K(Ao) + ; 932K (As) Zjl 950K (As) Uz F
M M Uqg Fg
Zjlgg)lK(At) <o K(Ao) + Z:lgcngK(As)

By using Kronecker product ®, we can express this system in a compact form,

M
(5.4) Y G K(A)|U=TF.
s=0
5.1. Discrete ELS. Recall that the continuous ELS functional reads
. 1 K
6.5 ming@) = [0 [ o)V (o~ 2P dedy+ 5 [ o) latyo) o) do
acA 2 T D 2 T

where u, = uq(y,x) is the solution of the finite-dimensional noise variational problem

/Fa(y)/Da(y,a;)Vu(y,x)Vv(y,ar)da:dy:Aa(y)xjf(y,x)v(y,x)dxdy for every v € V.

Assuming finite linear expansion for the unknown coefficient, we have

(5.2)
Jo(a) = / o(y) / a(y,2) [V (uly,2) — 2(y,2))[* dxdy
Z/ / z) |Vu(z,y)|? dz dy,

where we set v(y, x) = u(y,z) — 2(y, z).
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Setting, v(y,z) = SN, Z,‘:i:1 Vi @1 (2) 0 (1), we have

Z/ / ( Z Vim i (@ ) 'V (i i Vkm%(w)wm(y)) dz dy

k=1m=1 k=1m=1
Q

—Z / w [ A 7 Vioms Viams Vo, (2)V b (2, () by () dy

kl k)g 1mi,mo=1

M N

YOS eV ([ommwdy) ( [ Av0 @00 @)
5=0 k1,ka=1m1,mo=1 r D

M N Q

Z Z Z Vk1m19;1m2K(AS)k1k2Vk2m2

5=0 k1,ka=1m1,mo=1

_VT<ZGS ® K( 5>V

by using the known properties of the Kronecker product ®, and the vectorial notation (5.1).
Hence,

Jo(A) = (U Z) (Z G ® K(As)> (U - 2).
s=0
Analogously, we obtain the following discrete form for the regularization term:

K

R(A4) = 5 [ o) latw.2) o)

’;i/ra (/ (éyt/lt(x)> (é%&(ﬂ)

s

M M
+V (Z yrAi(z ) -V <Z ySAs(x)> dx) dy
t=0 s=0
_ g i (/Fa ysytdy> </ As(x)Ay(z dx+/ VAg( VAt(l')d:E>,

s,t=0

and hence .
R(A) =5 AT (¥ & (Qa+ Ka))A,

where U € RMADX(M+D) “and K4, Qa € RPXF are given by
Uy = / o(y)ysyrdy for every s, t =0,..., M,
r
(QA)Z-,]- = / j(x)pi(x)dx for every i,j =1,..., P,

(Ka);; / V;(x)Ve;(z)dx for every i,5 =1,...,P.
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Summarizing,

M
> G K(AY)

s=0

J(A) = U - 2)T

We also recall that the continuous derivative formula is given by

Da@®) == [ 7w [ bna)V(u+2) - V= 2)dedy,

and consequently,

DJy(A)(B) = U+Z (U - 2).

ZGS®K

(U=2)+5 AT (V@ (Qa+ Ea) A

941

To obtain an explicit formula for the gradient V.Jy(A), we recall the notion of the adjoint

stiffness matrix L(-) € RV*F satisfying
L(V)B = K(B)V for every Be R, V e RV,

Let us define

= ZGS @ K(B,)| (U—-2).
By definition
Ay
A= 42 e RPC@xL
Aq
where
M Q M Q
s=0 j=1 s=0 \j=1
Consequently

1 1 Q M Q
DI(ANB) = —5(U+2) A= =33 Ui+ 2)" |3 | Yo ailU; - 2)

s=0 i,j=1
implying
M 1 Q
(5.6) DJy(A)(B) =) _ —5 D9 (U + Z)"L(U; — Z;) | Bs,
s=0 3,j=1
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and from this we obtain an explicit block matrix expression for the gradient

1| & Q
VJo(A) = -5 [ .Zlg%(Ui +Z)LU; - Z;) ... lzlgf\f(Ui + Z)"L(U; — Z;)
1,)= 4J=

Alternatively, using the Kronecker product, we have

VJO(A):—% (U2 (@0l LU-2) ... U+2) (@ oly)U-2) ],

where, following vectorial notation, we have

LU, - Zy)
LU 7) = L(Uz :— Z)
L(Uq — Zq)
Finally,
VI (A) = —% (2T (@oINLU-2) ... U+2) (@M &ly)(U-2)]

+ kAT (U@ (Qa+ Ka)).

5.2. Discrete OLS. Recall that the finite-dimensional OLS reads

6.0)  windia) =5 [ o) [ (la) = 2a)Pdedy+ 5 [ o) o) g

acA 2
As before, setting v = u(y, x) — z(y, z), the discrete version takes the form

N N

~ . Q Q
Jo(A) = Q/FU(Z/) /D (Z > Vkmqﬁk(x)wm(y)) (Z > Vkm¢k<ﬂf)¢m(y)> dx dy

k=1m=1 k=1m=1
N Q

=5 22 Vi ([ 0@y ( [ on@on)ic)

k1,ko=1m1,m2=1

N Q
1
:5 Z Z Vk1m1Vk2m25m1m2/;¢k1($)¢k2(x)dx

k1,ko=1m1,ma=1

=V (Ig®Qu)V,

where

(QU)Z‘,]‘ :/D¢j(x)¢i($)d377

and consequently

Te(A) = (U~ 2)T (Ig©Qu) (U~ 2) + SAT(W & (Ka + Qu))A.
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We also recall that by the adjoint approach, the continuous derivative is given by

(5.8) DI = |

J(y)/ b(y, x)Vue(y, ) - Vw(y, z)dx dy,
T D

where w € V satisfies, for every v € V, the adjoint equation:

/F o(y) /D a(y, 2)Vu(y, z) - Voly, z)da dy = /F o(y) /D (2(y, ) — u(y, 2))oly, z)de dy.

By following the same line of arguments for discretization, we have

M
Y G RK(A)|W=P
s=0
where
Py
P=| : | eRrRM
Fq
is given by

(P); = /F o (5)da(y) /D (2(y,2) — uly, 2))¢u(x)dzdy for every n e {1,...,Q).

Therefore, for every i € {1,...,Q}, we have

(Pn)z' =

—

N Q
o(y)n(y) /D [Z Z (Zkm — Ukm) ¢k(x)¢m(y)] ¢i(x)dz dy

k=1m=1

< /F a(y)wn(y)wm(y)dy> < /D ¢k(x)¢,~(a:)d;c> (Ziom — Usm)

(e 10°

O (/D ¢k(ﬂf)¢i($)d$> (Zkm — Ugm)

1

il
/—~ 3
S

I
M= TM= T

¢k($)¢z‘($)d$> (Zkn — Ugkn)

which implies
P, = QU(Zn - Un)v
with
(QU)i,j = /D ¢j(x)pi(x)dx for every i,j =1...,P.

Since, P = (Iy ® Qu)(Z — U), we obtain the discrete adjoint equation:

W=(In®Qu)(Z-U).

M
DGR K(A)
s=0
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From this, the discrete version of the derivative of the OLS reads

M Q
DIo(A)(B)=> | > g5 L(W3) | By,
s=0 \i,j=1

where the corresponding gradient is given by
VIo(A) = [UT (G IN)L(W) ... U (GM@Iy)L(W)].
Summarizing, we have the following discrete formula for the regularized OLS:
VI(A) = [ UT (G IN)L(W) ... UT(GM@IN)L(W) ] +kAT (T & (Qa+Ka)).
In numerical experimentation, we will also use the OLS

.2 1 2 K 2
(5.9)  minJi(a) = 2[;7(2/) lu(y.2) =2y, )71 (py dy+2/ra(y) la(z, W py dy,

where instead of the L?(D), we use the H'(D) norm as the fitting term in the physical space.

6. Computational experiments. In the two considered examples, which are inspired by
[45, Examples 1 and 2], following (5.2), we consider that the unknown parameter admits the
following form of a finite linear combination:

(6.1) a(w,z) = ap(z) + Z ai(2)Y;(w).

We incorporate one degree of stochasticity (that is, M = 1 in (6.1)) in the first example
and two degrees of stochasticity (that is, M = 2 in (6.1)) in the second example. In both
examples, we assume that the distribution of random variables {¥;(w)}}’, is known a priori.
We test three different optimization formulations, the ELS objective, and the OLS objective
with the L? and the H' data-fitting in the physical space as defined in (5.5), (5.7), and (5.9),
respectively. Since the experiments are synthetic, the data are computed by solving the direct
problem, not measured. All the computational experiments were carried out on a computer
with an Intel Core 15-8250U CPU at 1.60 GHz and 8 GB of memory by using MATLAB. The
optimization problems were solved using the trust-region-reflective algorithm implementation
supplied by MATLAB through fmincon.

Ezample 6.1. We set D = (0,1), and for Y;(w) ~ U|0, 1] uniformly distributed over [0, 1],
define

a(w,z) =14+ Y1 (w),
(w,z) =2(1 —x) + Y1 (w) sin(7x),
flw,z) = (14 Y1(w))(2 + 72Y; (w) sin7z).

|
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Table 1
Stochastic Galerkin discretization error for Example 6.1.

. E(fp (a(w,2)—an(y,0)2de) | Var(Jfp (a(w,e)—ap (w,z) do)
aim Vi, | = E(fp (a(w,x)?da) ) (Var(fD(a(w,z»zdz)) :
50 2.3292¢0-04 3.22480-05

100 5.95210-05 8.22730-06

150 2.66486-05 3.6812e-06

200 9.64980-06 1.33240-06

We use piecewise linear finite elements and the same nodal basis for both V;, and A (we
need two more degrees of freedom for the representation of the coefficient A, as we do not
enforce a homogeneous boundary condition). Since we have M = 1, we consider o(y) = 1
and orthonormal Legendre polynomials defined on [0,1]. We solve the direct problem by
the stochastic Galerkin method. In Table 1, we check its accuracy by solving direct discrete
problem (5.4) for a and f.

We measure the expectation and the variance of the identification error via the (relative)
error functional. For example, for the ELS objective functional, we estimate the identification
error by the quantities

3

M o Vo Elow, )] — Ela! (w, 2)])2ds
VIpElaw,2) de

_ /Jp(Varlatw. )] = Varla}! (. 2)))da

- Vo Var [a(w, ) da

)

M (q

€ var )

Y

where ahM is the estimated coefficient by the ELS approach. Similarly, we measure the simu-
lated data error by the quantities

M

Emean

o I Elu(w, )] — Efun(a}")(w, 2)])2dx
Vb Elulw, )] de

o (Varlu(w, 2)] — Varlup (@} (w, o)) dz

- VI Var [u(w, o) do

Y

M
Evar ()

)

where up,(a)?)(w,x) corresponds to solving stochastic Galerkin system (5.4) for estimated
coefficient ahM . Based on several test-runs, we fix kK = 1e-05, which seems to render a sta-
ble reconstruction for the considered discretization levels. The numerical results, given in
Tables 2, 3, and 4, are quite satisfactory for the three optimization formulations. Both the
ELS formulation and the H'-OLS formulation give a better reconstruction than the L?-OLS.

Moreover, in terms of computational time, the ELS formulation completely outperforms its
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Table 2
Numerical errors for the ELS approach recorded using k£ = 1-e05 in Example 6.1.
dim V}, Egean(a) eM (a) eM . (u) s%r(u) CPU time

50 8.4782e-04 | 1.0577e-02 | 4.8165e-06 | 4.6978e-06 0.97 s.

100 2.0969¢-04 | 2.7276e-03 | 1.1645e-06 | 1.7138e-06 4.09 s.

150 1.0585e-04 | 3.0194e-04 | 2.5107e-07 | 1.2807e-07 11.5 s.

200 1.0681e-04 | 1.9378e-03 | 1.7999e-06 | 4.7615e-07 31.3 s.
Table 3

Numerical errors for the L?-OLS approach recorded using k = 1-e05 in Ezample 6.1.

Numerical errors for the H'-OLS approach recorded using k = 1-e05 in Ezample 6.1.

dimV, | €59 (a) ek9(a) ek0 L (u) L0 (u) CPU time
50 3.5288e-03 | 4.6838e-02 | 1.7136e-04 | 6.3924e-05 3.09 s.
100 4.5333e-03 | 2.3041e-02 | 1.8143e-04 | 3.1305e-05 13.5 s.
150 3.4689e-03 | 2.1957e-02 | 1.3924e-04 | 4.8058e-05 46.5 s.
200 3.0372e-03 | 1.9054e-02 | 1.3423e-04 | 4.3304e-05 185 s.

Table 4

HO

HO

HO

HO

dim Vh €mean(a) Evar (a) €mean (u) Evar (u) CPU time
50 7.1777e-03 | 1.9618e-03 | 4.4760e-06 | 9.4688e-07 2.73 s.
100 3.2125e-04 | 7.2055e-04 | 4.9516e-06 | 3.6578e-07 18.8 s.
150 2.2223e-04 | 2.2117e-03 | 4.7213e-06 | 7.1059e-07 58.3 s.
200 1.9965e-04 | 2.3618e-03 | 4.4808e-06 | 5.5407e-07 157 s.

two OLS analogues. Reconstructions of the parameter a (Figure 1) and the corresponding
simulated data (u; computed by using the identified coefficient aj) are excellent for all three
optimization formulations (Figure 2). The samples of the estimated coefficient a in the figure
are randomly generated by taking the representation (6.1) into account.

Ezample 6.2. For D = (0,1) and for Y;(w),Y2(w) ~ UJ0, 1] uniformly distributed over
[0, 1], we define the random fields

Ql

(w, ) = 3+ 22 4+ Y1 (w) cos(mz) + Yo(w) sin(2mz),
(w,2) = (1 — 2)Yi(w),

el

and compute the right-hand side accordingly.

We adhere to the discretization scheme of the first example with the stochastic domain
given by I' = [0,1] x [0,1]. Here o(y1,y2) = 1 and orthornormal Legendre polynomials on
[0,1] x [0, 1] are defined as a tensorial product of the one-dimensional ones. In Table 5, we
show the accuracy of stochastic Galerkin for this data set.

For the numerical results given in Tables 6, 7, and 8, the regularization parameter is

k =1e-05. The ELS approach in this case gives a very good reconstruction, while the
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—E(an)
{= = E(an) + /Var (an)

0.6 0.8 1

(a) Exact parameter a.

E (an)

- = E(ay) £ /Var (ay)

(c) Estimated parameter aﬁz_OLS by L2-OLS.

b) Estimated parameter a® by ELS.
h

— b
E(an

Y -
)+ v/ Var (an) 7

0 0.2 0.4 0.6 0.8 1
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|- - E(ay) + /Var (a)

(d) Estimated parameter ahHl_OLS by H!-OLS.

Figure 1. Ezact and estimated parameters (75 realizations) for Example 6.1.

—E(u)

|- Bw) & Var(w)

(a) Real data up, (75 realizations).
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(c) Simulated data wuy, (a,ff_OLS ) obtained by

L2-OLS.
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Figure 2. Real and simulated data for Example 6.1.
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Table 5
Stochastic Galerkin discretization error for Example 6.2.

. E(fp (a(w,2)—an(y,0)2de) | Var(Jfp (a(w,e)—ap (w,z) do)
aim Vi, | = E(fp (a(w,x)?da) ) (Var(fD(a(w,z»zdz)) :
50 6.62660-05 3.84550-06

100 1.69720-05 9.75376-07

150 7.6045¢-06 4.3558¢-07

200 4.29500-06 2.45600-07

Table 6
Numerical errors obtained by ELS with k = 1e-06 for Example 6.2.
dim V}, eM (@) eM (a) eM o (w) eM (u) CPU time
50 4.5268e-03 | 4.0556e-02 | 2.6610e-05 | 4.4452e-06 4.43 s.
100 6.2400e-03 | 1.9205e-02 | 1.7895e-05 | 1.5850e-06 27.4 s.
150 6.3291e-03 | 2.8512e-02 | 1.8012e-05 | 1.5886e-06 95.3 s.
200 6.9930e-03 | 3.2212e-02 | 1.7258e-05 | 1.3371e-06 | 212.3 s.
Table 7

Numerical errors obtained by H'-OLS with k = 1e-06 for Ezample 6.2.

HO

HO

HO

HO

dim V}, gmean(a) Evar (a) Emean(u) Evar (U) CPU time
50 1.1893e-02 | 3.7707e-02 | 5.5440e-05 | 3.6486e-06 6.11 s.
100 1.2621e-02 | 4.3191e-02 | 5.6433e-05 | 3.3801e-06 45.9 s.
150 1.4543e-02 | 6.5231e-02 | 7.2858e-05 | 4.7766e-06 126 s.
200 1.2355e-02 | 5.0199e-02 | 5.6855e-05 | 4.1495e-06 326 s.

Table 8

Numerical errors obtained by L?-OLS with k = 1e-06 for Ezample 6.2.

dim V}, sﬁ,gan(a) sfa?(a) eko (u) eLo (u) CPU time
50 7.7033e-02 | 3.9343e-01 | 8.9804e-04 | 5.3416e-05 4.98 s.
100 7.5412e-02 | 5.0431e-01 | 9.2701e-04 | 6.4441e-05 37.5 s.
150 7.6292e-02 | 4.3639e-01 | 9.1230e-04 | 5.8506e-05 151 s.
200 7.6757e-02 | 4.6106e-01 | 9.2280e-04 | 6.0029e-05 825 s.

H'-OLS objective functional also gives a reasonable quality reconstruction of the coefficient
(see Figure 3). As shown in part (c) of Figure 3, the L2-OLS approach, however, doesn’t
give a good quality reconstruction (poor reconstructions are observed for various values of the
regularization parameter k). Simulated data uy(ap) shown in Figure 4 are all good matches
in all three cases. Comparisons of the errors and computational times are shown in Tables 6,
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7, and 8, and the ELS approach is the most efficient.

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 06/30/21 to 62.204.192.203. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

IDENTIFYING A RANDOM PARAMETER IN A STOCHASTIC PDE 949
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(c) Estimated parameter aﬁz_OLS by L2-OLS.  (d) Estimated parameter ahHl_OLS by H!-OLS.

Figure 3. Ezact and estimated parameters (75 realizations) for Example 6.2.
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Figure 4. Real and simulated data for Example 6.2.
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7. Concluding remarks. We studied the inverse problem of estimating the stochasticity
of a random parameter in stochastic partial differential equations. One of the main contri-
butions is a new convex stochastic optimization formulation for the inverse problem, which
employs a new energy-type norm. We provide a derivative characterization of the parameter-
to-solution map and existence results for the optimization problem in the setting of stochastic
Sobolev spaces. By employing the Karhunen—Loeéve expansion, we separate the stochastic
and the deterministic components. However, as another novelty of our study, we develop the
discretization framework by focusing on coefficients in the finite-dimensional expansion, which
permits us to obtain all the discrete formulas, including the two considered objective function-
als and their gradients as Kronecker product of the known matrices. Besides the convexity of
the proposed functional, it has an additional advantage that its derivative does not involve the
result of the parameter-to-solution map, which allows for fast numerical computations. This
is evident in the two given numerical examples where the ELS-based framework outperforms
the two OLS-based approaches in terms of the reconstruction quality and computational effi-
ciency. We emphasize that the presented numerical results are quite simple, and more detailed
and thorough numerical testing needs to be done. It would also be advantageous to test var-
ious optimization solvers, a wide range of regularization parameters, and take into account
the data regularity. Deriving error estimates for the inverse problem is also of evident impor-
tance. Inverse problems of parameter identification have recently been extended to variational
and quasi-variational inequalities; see [20]. To develop stochastic counterparts of such studies
will significantly enhance the applicability of the inversion framework for many more applied
models, such as random obstacle problems, among others.

Acknowledgments. We are immensely grateful to the reviewers for their meticulous read-
ing and helpful suggestions that brought substantial improvements to the manuscript.
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