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Abstract. We develop a variational inequality approach for the inverse problem of identifying a stochas-
tic parameter in a stochastic partial differential equation. An iteratively regularized projected stochastic
gradient scheme for variational inequalities posed in a Hilbert space is proposed. By employing the mar-
tingale theory, we give a complete convergence analysis for the iterative scheme under weaker conditions
on the random noise than those commonly imposed in the available literature. Preliminary numerical re-
sults on the inverse problem demonstrate the efficacy of the developed framework.
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1. INTRODUCTION

Let (Ω,F,P) be a probability space, and let D ⊂ Rn be a bounded domain with sufficiently
smooth boundary ∂D. Given two random fields a : Ω×D→R and f : Ω×D→R, we consider
the SPDE of finding a random field u : Ω×D→R that almost surely satisfies

−∇ · (a(ω,x)∇u(ω,x)) = f (ω,x), in D, (1.1a)

u(ω,x) = 0, on ∂D. (1.1b)

SPDE (1.1) models critical real-world phenomena and has been studied extensively, see [1, 2].
This work focuses on the inverse problem of identifying the parameter a from a measurement

of the solution u of (1.1). We note that another inverse problem related to (1.1) is the linear
inverse problem of identifying the source term f from a measurement of the solution u. This
linear inverse problem becomes the optimal control problem when f is viewed as the control
variable. We will study the inverse problem as a stochastic optimization problem of the form:

min
a∈K

J(a) := E [J(a,ω)] . (1.2)
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Here K is a constraint set, which is a subset of a real Hilbert space H, J(a,ω) is a suitable misfit
function, and E is the expectation with respect to the probability space (Ω,F,P).

For the aforementioned inverse problem, we will employ a convex misfit function, and hence
a necessary and sufficient optimality condition for the stochastic optimization problem is a
stochastic variational inequality. Therefore, we will work in a general variational inequality
framework and develop an iteratively regularized projected stochastic gradient approach. We
note that the dynamic field of stochastic approximation that began by Robbins and Monro [3]
has been applied to a wide variety of research domains, see [4, 5, 6, 7, 8] and the cited references.
Recent developments in machine learning and stochastic variational inequalities have rekindled
interest in stochastic approximation, see [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. On the other
hand, stochastic PDE-constrained optimization problems attracted a great deal of attention in
recent years. Such problems emerge from two sources, the inverse problems and optimal control
problems, see [19, 20, 21, 22, 23, 24]. For an overview of inverse problems, see [25, 26, 27, 28,
29, 30, 31, 32].

This work is a continuation of our recent research [33], where a variant of the above ELS
functional was recently used for estimating a deterministic coefficient in SPDEs. The recent
works by Geiersbach and Pflug [34] and Martin, Krumschield, and Nobile [35] should also be
mentioned where the stochastic approximation framework was used to study optimal control
problems. We note that [34, 35] focused on a deterministic control in stochastic PDEs. So far,
no research has addressed estimating stochastic parameters or control variables by a stochastic
approximation approach. In this work, we develop a new stochastic approximation approach
for nonlinear inverse problems of identifying stochastic parameters.

We organize the contents of this paper into five sections. Section 2 presents a new itera-
tively regularized stochastic gradient method and provides its convergence. Section 3 focuses
on the inverse problem and develops an ELS-based stochastic optimization framework. Besides
providing technical details on the two functionals in a continuous setting, we also provide a dis-
cretization scheme, including discrete formulas for the objective functionals and their gradient.
Numerical experiments, given in Section 4, demonstrates the feasibility and the efficacy of the
developed framework. The paper concludes with some remarks.

2. AN ITERATIVELY REGULARIZED PROJECTED STOCHASTIC GRADIENT METHOD

Let H be a real Hilbert space, K be a closed, and convex subset of H, and F : H → H be a
given map. We consider the variational inequality of finding u ∈ K such that

〈F(u),v−u〉 ≥ 0, for every v ∈ K. (2.1)

Let S (F,K) be the set of all solutions of variational inequality (2.1).
Let {εn} be sequence of positive regularization parameters such that εn→ 0 as n→∞. Along

with (2.1) , we consider the regularized variational inequality of finding uεn ∈ K such that

〈F(uεn)+ εnuεn ,v−uεn〉 ≥ 0, for every v ∈ K. (2.2)

The following well-known result for the regularized solutions will be used shortly [36].

Theorem 2.1. Let H be a real Hilbert space, K ⊂ H be closed and convex, and F : H → H be
monotone and hemicontinuous. Let {εn} be a decreasing sequence of positive reals with εn→ 0
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as n→ ∞, and let {uεn} be the sequence of the regularized solutions of (2.2). Then,

‖uεn−uεn−1‖ ≤
|εn− εn−1|

εn
‖uεn‖. (2.3)

If variational inequality (2.1) is solvable, then the following estimate holds

‖uεn−uεn−1‖ ≤
|εn− εn−1|

εn
‖ū‖, (2.4)

where ū is the minimal norm solution of (2.1).

Let (Ω,F,P) be a probability space, and let {ωn} be a sequence of H-valued random vari-
ables on (Ω,F,P). We consider the following algorithm:

1: Initialization. A random u1 ∈ K with E
[
‖u1‖2]< ∞.

2: At step n, compute un+1 ∈ K by

un+1 = PK [un−αn (F(un)+ εnun +ωn)] , (2.5)

where αn is the step-size, εn is the regularization parameter, and PK is the projection.
We recall that, given the probability space (Ω,F,P), a filtration {Fn} ⊂ F is an increasing

sequence of σ -algebras. A sequence of random variable {ωn} is said to be adapted to a filtration
Fn, if and only if, ωn ∈ Fn for all n ∈ N, that is, ωn is Fn-measurable. Moreover, the natural
filtration is the one generated by the sequence {ωn} and is given by Fn = σ(ωn : m≤ n).

The following result by Robbins and Siegmund [37] will also be used.

Theorem 2.2. Let Fn be an increasing sequence of σ -algebras, and Vn, an, bn, and cn be non-
negative random variables adapted to Fn. Assume that ∑

∞
n=1 an < ∞ and ∑

∞
n=1 bn < ∞, almost

surely, and
E[Vn+1|Fn]≤ (1+an)Vn− cn +bn.

Then {Vn} is almost surely convergent and ∑
∞
n=1 cn < ∞, almost surely.

The following result gives the convergence analysis for the scheme (2.5):

Theorem 2.3. Let H be a real Hilbert space, K ⊂ H be closed and convex, and F : H → H
be monotone. Let {un} be the sequence generated by (2.5), and let Fn be a filtration on the
probability space (Ω,F,P) such that {un} is Fn-measurable. Let the solution set S (F,K) be
nonempty. Assume that the following conditions hold:

(A1): There is a constant c > 0 such that ‖F(u)‖ ≤ c(1+‖u‖), for every u ∈ K.
(A2): There are constants c1 ≥ 0 and c2 > 0 such that

‖E [ωn|Fn]‖ ≤ c1βn (1+‖F(un)‖) , βn > 0, (2.6)

E
[
‖ωn‖2|Fn

]
≤ c2

(
1+

1
δn
‖F(un)‖2

)
, δn > 0. (2.7)

(A3): The bounded sequences {εn}, {αn}, {βn}, and {δn} satisfy the following:

∑
n∈N

εnαn = ∞, ∑
n∈N

α
2
n < ∞, ∑

n∈N

α2
n

δn
< ∞, ∑

n∈N
αnβn < ∞, ∑

n∈N

(
1+αnεn

αnεn

)∣∣∣∣εn−1− εn

εn

∣∣∣∣2 < ∞.

Then, ‖un+1−uεn‖→ 0, almost surely.
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Proof. For n ∈N, let uεn ∈ K be the solution of the regularized variational inequality with the
regularization parameter εn. That is, the element uεn ∈ K satisfies the variational inequality

〈F(uεn)+ εnuεn ,z−uεn〉 ≥ 0, for every z ∈ K,

which, by the variational characterization of the projection map PK from H onto K, implies that

uεn = PK[uεn−αn(F(uεn)+ εnuεn)].

By using the iterative scheme (2.5) defining un+1 and the above identity, we obtain

‖un+1−uεn‖2

= ‖PK[un−αn(F(un)+ εkun +ωn)]−PK[uεn−αn(F(uεn)+ εnuεn)]‖2

≤ ‖ [un−αn(F(un)+ εnun +ωn)]− [uεn−αn(F(uεn)+ εnuεn)]‖2

= ‖un−uεn−αn(F(un)−F(uεn))−αnεn(un−uεn)−αnωn‖2

= ‖un−uεn‖2 +α
2
n‖F(un)−F(uεn)‖2 +α

2
n ε

2
n‖un−uεn‖2 +α

2
n‖ωn‖2

−2αnεn‖un−uεn‖2−2αn〈F(un)−F(uεn),un−uεn〉

−2αn〈un−uεn ,ωn〉+2α
2
n 〈F(un)−F(uεn),ωn〉

+2α
2
n εn〈un−uεn ,ωn〉+2α

2
n εn〈F(un)−F(uεn),un−uεn〉,

and by taking the expectation past Fn, we obtain

E [‖un+1−uεn‖2|Fn]

≤ (1−2αnεn +α
2
n ε

2
n )‖un−uεn‖2 +α

2
n‖F(un)−F(uεn)‖2 +α

2
nE
[
‖ωn‖2|Fn

]
+2α

2
n εn〈un−uεn ,F(un)−F(uεn)〉+2αn‖un−uεn‖‖E [ωn|Fn]‖

+2α
2
n‖F(un)−F(uεn)‖‖E [ωn|Fn]‖+2α

2
n εn‖un−uεn‖‖E [ωn|Fn]‖

≤ (1−2αnεn +2α
2
n )‖un−uεn‖2 +2α

2
n‖F(un)−F(uεn)‖2 +α

2
nE
[
‖ωn‖2|Fn

]
+2αn‖un−uεn‖‖E [ωn|Fn]‖+2α

2
n‖F(un)−F(uεn)‖‖E [ωn|Fn]‖

+2α
2
n‖un−uεn‖‖E [ωn|Fn]‖. (2.8)

To find bounds on the terms in (2.8), we begin by noticing that the sequence {uεn} is bounded,
and hence there exists a constant c0 > 0 such that ‖uεn‖ ≤ c0, for every n ∈N. Therefore,

‖F(un)−F(uεn)‖ ≤ k1(1+‖un−uεn‖), (2.9)

where k1 := 2c(1+ c0), and hence with k2 := 8c2(1+ c0)
2, we obtain

‖F(un)−F(uεn)‖2 ≤ k2(1+‖un−uεn‖2). (2.10)

Moreover, using the inequality a≤ 1+a2, which holds for every a ∈R, we can show that

2αn‖un−uεn‖‖E [ωn|Fn]‖ ≤ c1αnβn(2+ k1)+(2+2c+ k1)c1αnβn‖un−uεn‖2,

and hence by setting k3 := c1(2+2c+ k1), we obtain

2αn‖un−uεn‖‖E [ωn|Fn]‖ ≤ k3αnβn(1+‖un−uεn‖2). (2.11)

Analogously, we can show that

2α
2
n‖un−uεn‖‖E [ωn|Fn]‖ ≤ k3α

2
n βn(1+‖un−uεn‖2). (2.12)
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Furthermore, using (2.6) and (2.9), we obtain

2α
2
n‖F(un)−F(uεn)‖‖E [ωn|Fn]‖ ≤ 2k1(2+ k1)α

2
n βn(1+‖un−uεn‖2),

and by taking k4 := 2k1(2+ k1), we obtain

2α
2
n‖F(un)−F(uεn)‖‖E [‖ωn‖|Fn]‖ ≤ k4α

2
n βn(1+‖un−uεn‖2). (2.13)

Finally, as in the proof of (2.9), we have

α
2
nE
[
‖ωn‖2|Fn

]
≤ α

2
n c2

(
1+
‖F(un)

2‖
δn

)
≤ c2α

2
n +

c2k2
1α2

n

δn
(1+‖un−uεn‖2),

and hence for a constant k5 := c2 max{1,k2
1), we obtain

α
2
nE
[
‖ωn‖2|Fn

]
≤ k5α

2
n +

k5α2
n

δn
+

k5α2
n

δn
‖un−uεn‖2. (2.14)

Consequently, due to (2.8), and the above inequalities, there is a constant k > 0 such that

E [‖un+1−uεn‖2|Fn]

≤
(

1−2αnεn + kα
2
n + kαnβn + k

α2
n

δn

)
‖un−uεn‖2 + kα

2
n + kαnβn + k

α2
n

δn
.

The above estimate, with the aid of the following inequality, which holds for all a,b ∈R,

(a+b)2 ≤ (1+αnεn)a2 +

(
1+

1
αnεn

)
b2,

for the choices a := ‖un−uεn−1‖ and b := ‖uεn−uεn−1‖, yields

E [‖un+1−uεn‖2|Fn]

≤
(

1−2αnεn + kα
2
n + kαnβn + k

α2
n

δn

)
(1+αnεn)‖un−uεn−1‖

2

+ kα
2
n + kαnβn + k

α2
n

δn

+

(
1−2αnεn + kα

2
n + kαnβn + k

α2
n

δn

)(
1+

1
αnεn

)
‖uεn−uεn−1‖

2‖ū‖2

≤
(

1−αnεn + sα
2
n + sαnβn + s

α2
n

δn

)
‖un−uεn−1‖

2

+ kα
2
n + kαnβn + k

α2
n

δn
+ s
(

1+αnεn

αnεn

)∣∣∣∣εn−1− εn

εn

∣∣∣∣2 ,
where we used Theorem 2.1, and s is a positive constant such that

s1 := sup
n∈N

(
1+ kα

2
n + kαnβn + k

α2
n

δn

)
‖ū‖2,

s2 := k sup
n
(1+αnεn),

s := max{s1,s2}.
Due to the summability condition on all the sequences involved, all the terms in sequences in
the above term must converge to zero, and hence they remain bounded.



870 B. JADAMBA, A.A. KHAN, M. SAMA, Y. YANG

Therefore, we have

E
[
‖un+1−uεn‖2|F

]
≤ (1+ tn)‖un−uεn−1‖

2− γn +κn,

where

tn := sα
2
n + sαnβn + s

α2
n

δn
,

κn := kα
2
n + kαnβn + k

α2
n

δn
+ s
(

1+αnεn

αnεn

)∣∣∣∣εn−1− εn

εn

∣∣∣∣2 ,
γn := αnεn‖un−uεn−1‖

2.

Since {tn} and {κn} generate summable series, Robbins and Siegmund Theorem 2.2, ensures
that ‖un− uεn−1‖ converges almost surely, and ∑n∈Nαnεn‖un− uεn−1‖2 < ∞, which due to the
divergence of the series ∑n∈Nαnεn, implies that liminfn→∞ ‖un−uεn−1‖= 0, almost surely. �

We now give a variant of Theorem 2.3 under a different set of conditions on the random noise.

Theorem 2.4. Let H be a real Hilbert space, K ⊂ H be closed and convex, and F : H → H be
monotone and hemicontinuous. Let {un} be the sequence generated by (2.5), and let Fn be a
filtration on the probability space (Ω,F,P) such that {un} is Fn-measurable. Let the solution
set S (F,K) be nonempty. Assume that the following conditions hold:

(A1): There is a constant c > 0 such that ‖F(u)‖ ≤ c(1+‖u‖), for every u ∈ K.
(A2): The random noise {ωn} and the sequences {εn} and {αn} satisfy:

E [ωn|Fn] = 0.

E
[
‖ωn‖2|Fn

]
≤ β (1+‖un‖2), β > 0.

∑
n∈N

εnαn = ∞, ∑
n∈N

α
2
n < ∞, ∑

n∈N

(
1+αnεn

αnεn

)∣∣∣∣εn−1− εn

εn

∣∣∣∣2 < ∞.

Then, ‖un+1−uεn‖→ 0, almost sure.

Proof. As in the proof of Theorem 2.3, we have

‖un+1−uεn‖2 ≤ ‖un−uεn‖2 +α
2
n‖F(un)−F(uεn)‖2 +α

2
n ε

2
n‖un−uεn‖2

+α
2
n‖ωn‖2−2αnεn‖un−uεn‖2−2αn〈F(un)−F(uεn),un−uεn〉

−2αn〈un−uεn ,ωn〉+2α
2
n 〈F(un)−F(uεn),ωn〉

+2α
2
n εn〈un−uεn ,ωn〉+2α

2
n εn〈F(un)−F(uεn),un−uεn〉.

We take the expectation past Fn in the above estimate, use E [ωn|Fn] = 0 and the monotonicity
of F , and rearrange the terms to obtain

E [‖un+1−uεn‖2|Fn]

≤ (1−2αnεn +2α
2
n )‖un−uεn‖2 +2α

2
n‖F(un)−F(uεn)‖2 +α

2
nE
[
‖ωn‖2|Fn

]
,

and by (A2), (2.10), and a rearrangement of terms, we deduce that there is a constant k > 0 with

E [‖un+1−uεn‖2|Fn]≤
(
1−2αnεn + kα

2
n
)
‖un−uεn‖2 + kα

2
n .
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As in the proof of Theorem 2.3, for a constant s > 0, we have

E [‖un+1−uεn‖2|Fn]

≤
(
1−αnεn + sα

2
n
)
‖un−uεn−1‖

2 + kα
2
n + s

(
1+αnεn

αnεn

)∣∣∣∣εn−1− εn

εn

∣∣∣∣2 ,
which can be written as

E
[
‖un+1−uεn‖2|F

]
≤ (1+ tn)‖un−uεn−1‖

2− γn +κn,

where

tn := sα
2
n ,

κn := kα
2
n + s

(
1+αnεn

αnεn

)∣∣∣∣εn−1− εn

εn

∣∣∣∣2 ,
γn := αnεn‖un−uεn−1‖

2,

and then the conclusion that liminfn→∞ ‖un−uεn−1‖= 0, almost surely, ensues, completing the
proof. �

Remark 2.1. Iterative regularization has been extensively used for deterministic variational in-
equalities. Koshal, Nedić, and Shanbhag [38] used iterative regularization for finite-dimensional
stochastic variational inequalities with a Lipschitz continuous map. However, our results can-
not be derived from their results even in the finite-dimensional setting due to more general
assumptions on the noise used here.

3. REGULARIZED STOCHASTIC GRADIENT FOR ESTIMATING RANDOM PARAMETERS

3.1. Function spaces. Given the domain D, for 1 ≤ p < ∞, by Lp(D), we represent the space
of pth Lebesgue integrable functions, that is,

Lp(D) =

{
y : D 7→R is measurable, and

∫
D
|y|p dx <+∞

}
.

The space L∞(D) consists of measurable functions that are bounded almost everywhere (a.e.)
on D. We also recall that the Sobolev spaces are given by

H1(D) =
{

y ∈ L2(D), ∂xiy ∈ L2(D), i = 1, . . . ,n
}
,

H1
0 (D) =

{
y ∈ H1(D), y|∂D = 0

}
,

and H−1(D) = (H1
0 (D))∗ is the topological dual of H1

0 (D). For m ∈ N, higher-order Sobolev
spaces Hm(D) consist of L2(D) functions with all partial derivatives up to order m in L2(D).

Bochner spaces of random variables provide a convenient functional framework to study
variational problems emerging from stochastic PDEs, see [39]. Given a real Banach space X , a
probability space (Ω,F,P), and an integer p ∈ [1,∞), the Bochner space Lp(Ω,X) consists of
Bochner integrable functions u : Ω→ X with finite p-th moment, that is,

‖u‖Lp(Ω,X) :=
(∫

Ω

‖u(ω)‖p
X dP(ω)

)1/p

= E
[
‖u(ω)‖p

X
]1/p

< ∞.

If p = ∞, then L∞(Ω,X) is the space of Bochner measurable functions u : Ω→ X such that

ess supω∈Ω‖u(ω)‖X < ∞.
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3.2. Inverse problem as a stochastic optimization problem. There are two natural varia-
tional formulations for (1.1). The so-called path-wise formulation seeks, for a given realization
ω ∈Ω, ua(·,ω) ∈ H1

0 (D) such that∫
D

a(ω,x)∇ua(x,ω) ·∇v(x)dx =
∫

D
f (ω,x)v(x)dx, for allv ∈ H1

0 (D). (3.1)

The second variational formulation of (1.1), which is commonly referred to as the so-called
integral formulation, seeks ua ∈ L2(Ω,H1

0 (D)) such that for every v ∈ L2(Ω,H1
0 (D)), we have∫

Ω

∫
D

a(ω,x)∇ua(ω,x) ·∇v(ω,x)dxdP=
∫

Ω

∫
D

f (ω,x)v(ω,x)dxdP. (3.2)

The two formulations are equivalent in a certain sense. From a numerical viewpoint, variational
form (3.2) permits discretization over Ω×D, and the two most commonly used methods are
the Stochastic Galerkin method and the Stochastic collocation method, see [1, 2, 40]. On the
other hand, variational form (3.1) has been the basis of extensively studied Monte-Carlo type
methods, which act on the principle of generating realizations of the solution u(ω, ·) from the
realizations of the data, see [41]. The use of the stochastic approximation is also based on the
realizations and revolves round (3.1). In the following, we state some results in the integral
formulation, but they can be equivalently written in the path-wise formulation.

In the following, we will assume that there are constants k0 and k1 such that

0 < k0 ≤ a(ω,x)≤ k1 < ∞, almost everywhere in Ω×D. (3.3)

In particular, a ∈ L∞(Ω×D).
The analytical properties of the parameter-to-solution map a 7→ ua(ω,x), that assigns to a, the

unique solution ua(ω,x) of (3.2) are of significant importance in the study of inverse problem.
For this, let K ⊂ L∞(Ω;L∞(D)) be the set of feasible parameters with a nonempty interior.

We will focus on the energy least-squares (ELS) functional recently proposed in [42]:

J(a) =
1
2
E

[∫
D

a(ω,x)∇(ua(ω,x)− z(ω,x)) ·∇(ua(ω,x)− z(ω,x))dx
]
, (3.4)

where ua(ω,x) is the solution of (3.2) for a(ω,x) and z(ω,x) ∈ L2(Ω,H1
0 (D)) is the data.

The following result summarizes a derivative characterization of the parameter-to-solution
map and useful properties of the above ELS objective:

Theorem 3.1. [42] For each a(ω ,x) in the interior of K, the map a(ω,x)→ ua(ω,x) is dif-
ferentiable at a(ω ,x). The derivative δua := Dua(δa) of ua(ω,x) at a(ω ,x) in the direction
δa(ω,x) is the unique solution of the variational problem: Find δua(ω,x) ∈ V such that for
every v(ω,x) ∈V, we have

E

[∫
D

a(ω,x)∇δua(ω,x) ·∇v(ω,x)dx
]
=−E

[∫
D

δa(ω,x)∇ua(ω,x) ·∇v(ω,x)dx
]
. (3.5)

Moreover, the ELS functional given in (3.4) is convex in the interior of the set K. Finally, the
first derivative of J at a is given by

DJ(a)(δa) =−1
2
E

[∫
D

δa(ω,x)∇(ua(ω,x)+ z(ω,x))∇(ua(ω,x)− z(ω,x))dx
]
.
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Defining

J (a,ω) =
∫

D
a(ω,x)∇(ua(ω,x)− z(ω,x)) ·∇(ua(ω,x)− z(ω,x))dx,

we obtain

∇J (a)(δa) =−1
2

∫
D

δa(ω,x)∇(ua(ω,x)+ z(ω,x))∇(ua(ω,x)− z(ω,x))dx,

and consequently
∇J(a) = ∇E [J (a,ω)] = E [∇J (a,ω)] .

The inverse problem of identifying stochastic parameters in partial differential equations is
ill-posed, and some form of regularization is essential for achieving a stable identification pro-
cess. For this, we tailor a general setting by defining the following admissible set:

K :=
{

a ∈H := L2(Ω,H) : 0 < k0 ≤ a(ω,x)≤ k1 a.s. Ω×D
}
,

where H is a separable Hilbert space compactly embedded into B := L∞(Ω,L∞(Ω)), and H is
continuously embedded in L∞(Ω).

We consider the following regularized energy least-squares

min
a∈K

Jεn(a) :=
1
2
E

[∫
D

a(ω,x)∇(u(ω,x)− z) ·∇(u(ω,x)− z)dx+
εn

2
‖a(ω,x)‖2

H

]
, (3.6)

where ua(ω,x) is the solution of (3.2) for a(ω,x), z(ω,x) ∈ L2(Ω,L2(D)) is the data, εn > 0
is a fixed regularization parameter, and ‖ · ‖2

H is the regularizer. Optimization problem (3.6) is
uniquely solvable, see [42]. The norm ‖ · ‖2

H includes the expectation of the norm ‖ · ‖2
H .

A fruitful technique in the study of stochastic PDEs and stochastic optimization problems
is the finite-dimensional noise representation of random fields appearing as the parameter,
source term, or control variable, see [39]. A random field v ∈ L2(Ω,L2(D)) is called a finite-
dimensional noise if it has the form v(x,ξ (ω)), x ∈ D and ω ∈ Ω, where ξ = (ξ1,ξ2, . . . ,ξM) :
Ω→ Γ := Γ1×Γ2 · · · ×ΓM ⊂ RM and for k = 1, . . . ,m, ξk : Ω→ Γk, are real-valued random
variables. At the core of the finite-dimensional noise property is the fact that it represents a ran-
dom field expressed into a finite number of real-valued random variables. This process permits
a change of variables, recasting a stochastic PDE, posed in the space D×Ω, into a deterministic
albeit high-dimensional parametric PDE, posed in the space D×Γ.

In the stochastic approximation approach developed here, we assume that the random fields
are finite-dimensional noise; however, performing a change of variable is not required. We
assume that the unknown random field is expressed as a finite linear expansion of the form:

a(ω,x) = a0(x)+
M

∑
i=1

at(x)Yt(ω) =
M

∑
t=0

at(x)Yt(ω), (3.7)

where Yt(ω) are random variables for t = 0, . . . ,M, and by convention, Y0(ω) = 1, see [39].
We note that under (3.7), the variational problem reads: Find ua ∈ L2(Ω,H1

0 (D)) such that
for every v ∈ L2(Ω,H1

0 (D)), we have

E

[∫
D

(
M

∑
t=0

at(x)Yt(ω)

)
∇u(ω,x) ·∇v(ω,x)dx

]
= E

[∫
D

f (ω,x)v(ω,x)dx
]
. (3.8)
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Moreover,

J(a) = E[J(ω,a)],

where

J(ω,a) =
1
2

M

∑
t=0

Yt(ω)
∫

D
at(x)∇(ua(ω,x)− z(ω,x)) ·∇(ua(ω,x)− z(ω,x))dx.

Furthermore, it can be shown that

DJ(a)(δa) = E [T (ω,a)(δa)] ,

where

T (ω,a)(δa) :=
M

∑
t=0

[
−1

2

∫
D

δat(x)∇(ua(ω,x)+ z(ω,x))∇(ua(ω,x)− z(ω,x))dx
]

Yt(ω).

Consequently,

∇aJ(a) = ∇aE [J(ω,a)] = E [∇aJ(ω,a)] ,

∇aJ(ω,a) = ∇aT (ω,a) =
(

∂T
∂at

(ω,a)
)

t=0,...,M
,

where, for t = 0, ...,M, we have

∂T
∂at

(ω,a)(·) =
[
−1

2

∫
D
(·)∇(ua(ω,x)+ z(ω,x))∇(ua(ω,x)− z(ω,x))dx

]
Yt(ω) (3.9)

3.3. Finite element discretization. We will use a finite element discretization of the spaces
V = H1

0 (D) and H. For this, we define a triangulation (or finite element mesh) Th on D. Let
Vh and Hh be the spaces of piecewise linear continuous polynomials relative to Th, and let
{φ1,φ2, . . . ,φm} and {ϕ1,ϕ2, . . . ,ϕl} be the corresponding bases, respectively.

Given a realization of ω ∈ Ω, the discrete pathwise formulation (3.1) seeks U = U(ω,A) ∈
Rm by solving

K(A)U(ω,A) = F(ω),

where A shows the dependence of the random parameter a(ω,x), and K(A)∈Rm×m and F(ωn)∈
Rm are the stiffness matrix and the load vector defined by

K(A)i, j =
∫

D
a(ω,x)∇φ j ·∇φidx, for i, j = 1, . . . ,m,

F(ω)i =
∫

D
f (ω,x)φidx, for i = 1, . . . ,m.

Due to the expansion

a(ω,x) = a0(x)+
M

∑
i=1

at(x)Yt(ω) =
M

∑
t=0

at(x)Yt(ω),



AN ITERATIVELY REGULARIZED STOCHASTIC GRADIENT METHOD 875

the stiffness matrix can be decomposed as follows:

K(A(ω))i, j =
∫

D
a(ω,x)∇φ j ·∇φidx, for i, j = 1, . . . ,m,

=
∫

D

(
M

∑
t=0

at(x)Yt(ω)

)
∇φ j ·∇φidx, for i, j = 1, . . . ,m,

=
M

∑
t=0

Yt(ω)
∫

D
at(x)∇φ j ·∇φidx, for i, j = 1, . . . ,m,

=
M

∑
t=0

Yt(ω)K(At), (3.10)

where Y0(ω) = 1 by convention, and

K(At)i, j :=
∫

D
at(x)∇φ j ·∇φidx, for i, j = 1, . . . ,m.

In the following, denoting by At the discrete version of at(x), we run the stochastic approxima-
tion scheme in terms of the spatial components:

A(n) = (A(n)
0 , ...,A(n)

M ).

By using standard finite element discretization arguments, from (3.9), we get

∂T
∂At

(ω,A) =−1
2
L(U(ω,A)+Z(ω))T (U(ω,A)−Z(ω))Yt(ω), for t = 0, . . . ,M,

where L ∈Rm×l is the so-called adjoint stiffness matrix defined by the condition that

L(V )A = K(A)V, for every V ∈Rm, A ∈Rl.

Given the random vector (Y0(ω̄), ...,YM(ω̄)) by A(n)(ω̄), we denote the corresponding real-
ization

A(n)(ω̄) =
M

∑
t=0

A(n)
t Yt(ω̄).

In view of the above preparation, we propose the following for the inverse problem:
1: Choose an initial guess A(0), step-lengths {αn}, regularization parameters {εn}, the sample

rate {sn} ⊂N, and initial samples {ω0
j }

s0
j=1 of the random variable ω.

2: Generate random (1,y1(ωn), ...,ym(ωn)) ∈ ϒ.
3: Compute U (n) =U(ωn,A(n)) by solving the following system:

K(A(n)(ωn))U (n) = F(ωn).

4: Given An ∈ K, generate samples {ωn
j }

sn
j=1 of ω and compute A(n+1) ∈ K by the following

An+1 = PK

[
An−

αn

sn

sn

∑
j=1

Gεn

(
ω

n
j ,An

)]
, (3.11)
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where Gεn is the discrete variant of gradient of the regularized ELS objective given by

Gεn(ωn,A(n)) =


−1

2L(U
(n)+Z(ωn))

T
(

U (n)−Z(ωn)
)

−1
2L(U

(n)+Z(ωn))
T
(

U (n)−Z(ωn)
)

y1(ωn)

...

−1
2L(U

(n)+Z(ωn))
T
(

U (n)−Z(ωn)
)

ym(ωn)



+ εn


KA 0 · · · 0

0 KA
. . . ...

... . . . . . . 0
0 · · · 0 KA

 .

Remark 3.1. In the above algorithm, we modify the classical stochastic gradient scheme by
sampling the regularized gradient at a given sampling rate. Moreover, the regularizer corre-
sponds to the H1

0 (Ω) semi-norm, but can easily be replaced by any other regularizer.

4. A COMPUTATIONAL EXAMPLE

In this section, we present results of a numerical experiment where M = 2 and the coefficient
a to be identified and u (solution of the direct problem) are given by:

a(ω,x) = 1+3x3 +Y1(ω)cos
(

π

4
x
)
+Y2(ω)cos

(
π

2
x
)
,

u(ω,x) = x(1− x2)+Y1(ω)sin(2πx)+Y2(ω)sin(4πx).

Spatial domain Ω is [0,1] and both Y1(ω) and Y2(ω) are uniformly distributed on the interval
[0,1]. Coefficients at(x) are components of a vector function ã that has 3 components, that is,
we have ã = [a0(x),a1(x),a2(x)]> and a(ω,x) = a0(x)+ a1(x)Y1(ω)+ a2(x)Y2(ω). Once the
problem is discretized, we look for a solution vector A = [A0,A1,A2]

> ∈ R3l which is a finite-
dimensional approximation ã. We use subscript h to indicate the approximation ah(ω,x) =
a0,h(x)+ a1,h(x)Y1(ω)+ a1,h(x)Y1(ω) on uniform mesh with size h. Each component at(x) of
the vector function ã is represented by an l-vector At where l is the number of nodes in the
mesh. We also choose a constraint set

{A ∈R3l|Alower ≤ A≤ Aupper},

where Alower and Aupper are (constant) vectors containing lower and upper bounds for the com-
ponents at(x), t = 0,1,2. Piecewise linear basis functions were used to represent both u(ω,x)
and the components at(x), and the nodal interpolant of the the direct problem solution u is
taken as the data. Results of a typical simulation are shown in Figures 1 and 2. The top row
of the Figure 1 shows some realizations of the exact coefficients a(ω,x) and the exact solution
u(ω,x). Plots in the bottom row show realizations of the identified coefficient ah(ω,x) and the
corresponding simulated solution uh(ω,x). In Figure 2, we show the comparison of the mean
of the exact coefficient a(ω,x) which is

E[a(ω,x)] = 1+3x3 +
1
2

cos
(

π

4
x
)
+

1
2

cos
(

π

2
x
)
,
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FIGURE 1. A comparison of 20 realizations of the exact coefficient a, the iden-
tified coefficient ah, exact solution u, and the simulated solution uh = uh(ah).
Mesh size used in the computations is h = 1/160. The thick blue lines in each
plot represent the means.

and the estimated coefficient ah which is given by

E[ah(ω,x)] = A0 +
1
2

A1 +
1
2

A2.

As we see from the figure, the identification is very stable in one dimensional computations and
the estimated mean matches the exact mean very closely. This is observed for all computations
with reasonably small mesh sizes such as h = 1/100 and h = 1/160 (this one is used in pro-
ducing the plots shown in Figures 1 and 2). We plan to conduct more numerical studies with
problems in higher space dimensions as well as a study of effects of a noise in the data in a
future work.

5. CONCLUDING REMARKS

We studied the nonlinear inverse problem of estimating the stochasticity of a random parame-
ter in stochastic partial differential equations. One of the main contributions is a new iteratively
regularized projected stochastic gradient scheme for a general variational inequality. We refor-
mulated the nonlinear inverse problem of parameter identification as a stochastic convex opti-
mization problem. Therefore, the necessary and sufficient optimality condition is a variational
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FIGURE 2. Comparison of the means E[a(ω,x)] and E[ah(ω,x)].

inequality, and the developed framework is readily applicable. In the unknown parameter, we
separate the stochastic and the deterministic components by employing a Karhunen-Loeve type
expansion. Since the stochastic approximation framework samples the uncertainty, we identify
the deterministic components in the expansion of the parameter. The preliminary numerical
results are quite encouraging, and they show the feasibility of a stochastic approximation ap-
proach for the estimation of random parameters. It would be of genuine interest to conduct a
more detailed numerical comparison of the available techniques for solving stochastic inverse
problems, such as the stochastic Galerkin method and the stochastic collocation method.
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[38] J. Koshal, A. Nedić, U.V. Shanbhag, Regularized iterative stochastic approximation methods for stochastic

variational inequality problems, IEEE Trans. Automat. Control 58 (2013), 594–609.
[39] G.J. Lord, C. E. Powell, T. Shardlow, An introduction to computational stochastic PDEs, Cambridge Texts in

Applied Mathematics, Cambridge University Press, New York, 2014.
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