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Abstract

Quantum fluid droplets made of helium-3 (*He) or helium-4 (*He) isotopes have long
been considered as ideal cryogenic nanolabs, enabling unique ultracold chemistry and
spectroscopy applications. The droplets were believed to provide a homogeneous environment in
which dopant atoms and molecules could move and react almost as in free space, but at
temperatures close to absolute zero. Here, we report ultrafast X-ray diffraction experiments on
xenon-doped *He and “He nanodroplets, demonstrating that the unavoidable rotational excitation
of isolated droplets leads to highly anisotropic and inhomogeneous interactions between the host
matrix and enclosed dopants. Superfluid “He droplets are laced with quantum vortices that trap
the embedded particles, leading to the formation of filament-shaped clusters. In comparison,
dopants in *He droplets gather in diffuse, ring-shaped structures along the equator. The distorted
shapes of droplets carrying both filaments and rings are direct evidence that rotational excitation

is the root cause for the inhomogeneous dopant distributions.
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Teaser

Clusters in *He and “He nanodroplets reveal dramatically different shapes showcasing the

effect of superfluidity on aggregation.

Introduction

Quantum fluid nanodroplets made of liquid helium are exceptional hosts for isolated
cryogenic matrix applications (1-5). The droplets readily pick up atoms and molecules (6),
providing unique opportunities to study the formation of molecular complexes close to absolute
zero temperatures. Indeed, the large degree of quantum mechanical delocalization in helium
enables unique matrix configurations around the dopants, giving rise to a perfectly tailored void
around each particular molecule (3).

Previously, small “He droplets containing less than ~10* atoms, roughly 10 nm in
diameter, were used for the spectroscopic interrogation of molecules and molecular complexes at
a temperature of about 0.4 K (1-5). It was long believed that, unlike immobilized dopant
molecules in solid matrices, dopants in helium nanodroplets could move unhindered and
stochastically (3, 7). Recent ultrafast X-ray coherent diffractive imaging (CDI) experiments with
large xenon-doped superfluid “He droplets, a few hundreds of nm in diameter, have revealed a
dramatically different scenario (8-10). Instead of forming the once proposed ramified entities (7),
dopant atoms were found to aggregate in arrays of elongated filament-shaped clusters (9, 10).
This effect was assigned to inhomogeneities within the droplets due to the presence of quantum
vortices, which attract dopant particles (11-14). The vortices were found to originate from an
unavoidable rotational excitation of free helium droplets in the beam (8, /5-17), implying that

the superfluid nature of “He enhances the inhomogeneity of matrix-dopant interactions.
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To provide unequivocal proof for the link between inhomogeneous dopant distributions,
the superfluid nature of *He droplets, and their rotational excitation, comparative measurements
are required on fermionic *He and superfluid, bosonic “He droplets. It is important to note that
3He can also enter the superfluid state, but does so at much lower temperatures (T ~ 1 mK) (I8,
19) than are present in our experiment (T ~ 0.15 K) (20). Thus, *He droplets act as a normal fluid
under our experimental conditions and serve as a reference droplet devoid of vortices. Here, we
present a comparative study of the aggregation of xenon atoms in sub micrometer sized *He and
*He droplets. Our results show that, in fact, dopants are subject to a high degree of spatial
confinement within both *He and “He nanodroplets, with each isotope giving rise to dramatically

different dopant morphologies.
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Fig. 1. Outlines (black) and xenon dopant density distributions (blue-red) of superfluid “He
droplets. Panels a-d show results for four different representative *He droplets. The values a and
b of the long and short half axis, respectively, of the droplet's projection onto the detector plane
are given in each panel. For visualization, circular contours (magenta) have been superimposed
on the droplets with a radius equal to that of the minor half axis. Closer inspection reveals

slightly elliptical distortions, most prominent in droplet b.
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Fig. 2. Outlines (black) and Xe dopant density distributions (blue-red) of normal fluid *He
droplets. Panels a-d show results for four different representative *He droplets. The values of the
long and short half axis of the droplet's projection onto the detector plane are given in each
panel. For visualization, circular contours (magenta) have been superimposed on the droplets
with a radius equal to that of the minor half axis. Note the partly significant elliptical distortions

of the droplet outlines.
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Results

Figures 1 and 2 show plane projections of “He and *He droplets, respectively, with their
reconstructed Xe dopant density distributions for a variety of representative droplets (10). The
details on the reconstruction of density from diffraction images and the description of the results
are described in the Materials and Methods (MM) section. The *He and “He droplets studied in
this work have similar diameters in the range of 400-600 nm, containing on the order of 10°
helium atoms per droplet. Corresponding diffraction images are presented in the Supplementary

Materials (SM).

Most outlines are ellipses, consistent with spheroidal, rotating droplets (8, 75, 17, 21, 22).
In previous studies, it was found that a cryogenic fluid expansion into vacuum readily produces
rotating “He and *He droplets (15, 17). It was also found that droplets of different isotopes have
very similar average aspect ratios of about 1.05 for their projections on the detector plane (/7).
We hypothesized that during the passage of fluid helium through the nozzle, the fluid interacts
with the nozzle channel walls and acquires vorticity, which is eventually transferred to the
droplets. Figure 1 illustrates several “He droplets and their dopant density distributions. As
previously demonstrated (9, 10), the droplets contain several strongly aligned tracks of high
density, which are assigned to xenon atoms aggregating inside the cores of quantum vortices.
Vortices in Figs. la-c are viewed from the side, while vortices in Fig. 1d point toward the
viewer, revealing their arrangement in a triangular lattice configuration that closely resembles
the arrangements of vortices observed in rotating cylinders filled with “He (11, 14) and in

trapped Bose-Einstein condensates (23).
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Results are dramatically different for xenon-doped *He droplets, as illustrated in Fig. 2.
Here, xenon clusters either appear as a stripe (Fig. 2a) or as elliptical structures (Fig. 2b-d) that
are aligned along the droplets’ long axes. In Fig. 2d, xenon atoms form a loose ring of clusters on
the droplet's periphery. During the imaging event, the X-ray beam forms an arbitrary angle with
the droplet's figure axis; therefore, their real aspect ratios are larger than indicated by their
outlines in Figs. 1 and 2, which correspond to projections of the droplets on the detector plane.
The images are characterized by the two half axes of the droplet’s projection, referred to as a and
b (a > b), corresponding to a projection aspect ratio, AR = a/b. The formation of rings is
observed in *He droplets having AR = 1.04 to AR = 1.2 (Fig. 2). A smaller amount of data was
obtained for *He droplets during the same experimental run. Most of the intense, reconstructable
*He images have a small aspect ratio (4R < 1.05). However, the results obtained during our
previous studies show the formation of vortex arrays in droplets having up to AR = 2.4 (9). Thus,

we observe confinement of dopants across a wide range of aspect ratios.

The lower boundaries for the droplet’s angular velocity, estimated from their aspect ratios
(17), are =1.1-107 rad/s and =1.5-10° rad/s for the droplets in Figs. 2¢ and 2d, respectively. In
comparison, the angular velocity of the “He droplet in Fig. 1d is estimated to be =1.7-10° rad/s
based on the areal density of the vortices and using the Feynman relation (24). The pronounced
alignment of the xenon cluster contours along the long axes of the *He droplets strongly suggests
that the xenon dopants form rings in the droplets' equatorial planes, with their apparent ellipticity

determined by the viewing angle.

Statistically, there is a large difference between the shapes of the xenon density

distributions within *He and *He droplets. No aligned filaments, which are characteristic for
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superfluid “He droplets, are observed in *He droplets. Instead, these fermionic droplets contain
diffuse ring-shaped structures. It is unlikely that the ring structures could be attributed to any
impurities. The *He gas used was 99.9% pure with the remaining 0.1% being mostly “He.
Considering that “He’s solubility in *He is ~0.1% at 0.15 K, any residual “He will likely be
dissolved in the *He droplets. Even if any pockets of a “He-rich phase were formed, they would

be too small to give rise to any measurable effects in the diffraction patterns (/7).

Discussion

It is immediately apparent from the dopant density distributions presented in Figs. 1 and
2 that helium nanodroplets are not homogenous nanolabs. In both isotopes, dopants are subject to
unavoidable, high degrees of spatial confinement due to the droplets’ rotation. In “He, vortex-
bound xenon is aligned along the minor axis of the droplets, as discussed in more detail
elsewhere (9), whereas in *He, xenon is confined along the droplet equator. The direct relation
between the direction of the *He droplet’s long axis and the concentration of xenon along the
equator is visually apparent in Fig. 2. The distorted shapes of *He and “He droplets carrying
dopant rings and filaments, respectively, are direct evidence that rotational excitation is indeed
the root cause for the inhomogeneous dopant distributions.

Clusters formed in fermionic *He and bosonic “He droplets exhibit distinctly different
structures. Thus, nuclear spin, which has no impact on any property of ordinary solvents at
higher temperatures, plays a crucial role in determining the aggregation dynamics of dopants at
low temperatures. We propose that the mechanism for cluster formation in large helium droplets

differs between superfluid “He versus normal fluid *He. In *He, single xenon atoms are picked up



149 by the droplet, rapidly thermalize, and begin to move freely within the confines of the droplet’s
150  boundaries (3). Atoms form clusters upon collisions. At the same time, xenon atoms and small
151  clusters are attracted to the cores of the vortices by hydrodynamic forces (11-14) and form large,
152  filament-shaped aggregates. In comparison, in a *He droplet devoid of vortices, xenon clusters
153  will likely form throughout the entire droplet volume, followed by coalescence into larger

154  globular cluster-cluster aggregates. However, due to the high viscosity of *He droplets, dopants
155  assume the same angular velocity as the host and congregate close to the droplet's surface along
156  the equator, i.e., in a plane perpendicular to the direction of the angular momentum. The

157  positions of the dopants are defined by a balance between centrifugal forces and the dopants'
158  solvation potential (25). In principle, similar ring-shaped clusters are expected to be formed in
159  classical rotating droplets (e.g., water droplets with heavy colloidal clusters), however we are
160  unaware of such studies. The ring-shaped xenon structures appear to consist of separate, small
161  (~50 nm) clusters, some of which exhibit branched shapes. The structures are likely defined

162  during their formation and remain frozen at the low droplet temperature. The clusters appear to
163  be separated and do not collapse into larger cluster-cluster aggregates, indicating that some

164  mechanism stabilizes the porous network. Previously, it was proposed that some weakly

165 interacting atoms (e.g., Magnesium) may form a so-called foam (26-28), where the atoms stay at
166  sub-nm distance because of the shell of surrounding helium atoms. Whereas X-ray diffraction
167  could be a useful technique for identifying the foam state, the resolution of the current small-
168  angle soft X-ray scattering experiment of about 20 nm is insufficient to resolve spatial features
169  on this level of detail. It is conceivable that the clusters have some interlinks that are too thin to
170  be detected. The smallest compact cluster that can be detected in this work contains ~1000 xenon

171  atoms and will appear in an image as approximately 3x3 pixels in size. This limit is set by the
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threshold of the phase retrieval algorithm and the spatial resolution of the measurements (10).
Future high-resolution experiments may shed more light on the atomic structure of aggregates
obtained at temperatures close to 0 K.

The few 100-nm sized droplets in this study, which are produced from fragmentation of
the supercritical fluid in the cryogenic nozzle, are marked by large angular velocities of 10%-10’
rad/s. This contrasts with the results for small droplets of few nm in diameter produced via
aggregation of helium atoms. For example, extensive spectroscopy experiments on molecules in
small (a few nm) “He droplets did not indicate any presence of quantum vortices (29). On the
other hand, centrifugal displacement of molecules from the droplet’s center was discussed (30).
The locations of molecules in small droplets could not be identified in the previous spectroscopy
studies on either *He or “He, and the dopants are often assumed to reside close to the droplet's
center (3, 4). We observe that vortices in “He are typically separated by distances of 100-200 nm,
thus smaller droplets of 150 - 200 nm in diameter may contain just a single vortex. This shows
that smaller “He droplets between 50 - 100 nm in diameter may be devoid of vortices. Some
other techniques of producing helium droplets at small velocity, other than in a molecular beam,

may be considered to produce *He droplets devoid of vortices.

Materials and Methods

Production and doping of *He and *He droplets:

Large nanodroplets are produced by expanding pressurized “*He (99.9999%) or *He
(99.9%) fluid through a cryogenic nozzle into vacuum with a stagnation pressure of Po= 20 bar

and a nozzle temperature To=5 K (3, 8, 17, 31). At these expansion conditions, droplets with
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average radii of ~160 nm and ~350 nm were produced for *He and “He, respectively (/7). Once
in vacuum, the droplets evaporatively cool to respective temperatures of 0.15 K for *He (20) and
0.38 K for “He (32). The droplets exit the source chamber with an average velocity of about 160
m/s for *He and 190 m/s for “*He and subsequently enter the pickup chamber, which is filled with
xenon (99.9%) gas. The droplets collide with, and pick up, several xenon atoms, evaporating off
~750 3He or ~250 “He atoms with the pickup of each xenon atom. The amount of xenon added is
measured by monitoring the relative depletion of the mass M = 8 signal for “He (or M = 6 for
3He), representative of He>" ions, in a quadrupole mass spectrometer installed in the terminal
vacuum chamber (8). The droplets in Figs. 1 and 2 contain ~10° helium atoms and between 10° -
10° xenon atoms. The *He gas was collected, purified and recirculated by a gas-recycling system

as described elsewhere (/7).

X-ray diffraction from Xe-doped *He and *He droplets:

Xenon-doped droplets are irradiated by a focused X-ray Free-Electron Laser (XFEL)
beam operated at 1.5 keV (4 = 0.826 nm) (8). The FEL beam consists of ultrashort X-ray pulses,
containing up to ~10'% photons/pulse, with a repetition rate of 120 Hz, a pulse energy of 1.5 mJ,
and a pulse duration of ~100 fs (FWHM). The small pulse length and large number of photons
per pulse enables the instantaneous capture of the shapes of individual droplets. Diffraction
images are recorded with a pn-charge-coupled device (pnCCD) detector containing 1024 x 1024
pixels, each 75x75 pm? in size, which is centered along the FEL beam axis ~735 mm
downstream from the interaction point. The detector consists of two separate panels (1024 x 512
pixels each) located closely above and below the X-ray beam. Both panels have a central,

rectangular cutout to accommodate the primary X-ray beam.
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Density retrieval, size, and shape determination:

The diffraction patterns are recorded at small scattering angles and, thus, predominantly
contain information on the column density of the droplets in the direction perpendicular to the
detector plane. During the measurements, roughly 550 diffraction patterns from Xe doped *He
nanodroplets were obtained, whereas 200 patterns were obtained as a reference for Xe doped “He
droplets. Among them, only the brightest images containing more than ~10° detected photons
were selected for reconstruction (10). Ten brightest hits were selected from the “He data, whereas
15 hits were selected from the *He data. Using an iterative phase retrieval algorithm, termed
Droplet Coherent Diffractive Imaging (DCDI), the density profiles of the Xe clusters inside the
droplets are reconstructed and the sizes and shapes are determined (10). Similar *He and “He
droplet reconstructions are compared based on size, aspect ratio, and overall number of photons

detected.

Helium droplet shapes are described by the distances between the center and the surface
in three mutually perpendicular directions: 4 > B > C. The observed diffraction patterns do not
provide direct access to the actual values of 4, B, and C, due to the droplets’ unknown
orientations with respect to the X-ray beam. Instead, the images are characterized by the two half
axes of the projection of a droplet onto the detector plane, which are referred to as a and b (a >
b), corresponding to a projection aspect ratio, AR = a/b. The majority (99%) of helium droplets
are close to spherical with AR < 1.4 corresponding to oblate, axially symmetric shapes. For those
shapes with AR < 1.4, the average aspect ratios for each isotope are similar, with AR = 1.049 +

0.003 for *He and 1.059 £ 0.005 for “He (17).
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Supplementary Information (SI)

Diffraction Images

Figures Sla-d and S2a-d show the diffraction images for Xe-doped “He and *He droplets,
respectively, from which the densities in Fig.1a-d and 2a-d of the main text were obtained. The
images are plotted in the indicated logarithmic color scale and the patterns are cropped to the
central 600x600 pixels of the 1024x1024 pixels detector. The diffraction images from *He
droplets in Fig. S1 exhibit circular ring structures close to the center and speckled patterns in the
outer region due to scattering off the embedded Xe clusters. Figure S1d shows Bragg spots in a
hexagonal arrangement, indicating that a highly ordered structure is contained inside the droplet.
As with diffraction from “He, the patterns from *He droplets in Fig. S2 exhibit circular ring
structures close to the center and speckled patterns in the outer region. However, in comparison
to patterns from *He droplets, the speckles are extended and seem to be arranged more closely
along the rings. The different appearances of the diffraction patterns indicate different density
distributions of Xe atoms inside *He compared to *He droplets, which are presented in Figs. 1

and 2, respectively, in the main text.
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Figure S1. Diffraction images from “He nanodroplets in a logarithmic color scale.
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Figure S2. Diffraction images from *He nanodroplets in a logarithmic color scale.



