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Abstract— Coughing is a common symptom for many
respiratory disorders, and can spread droplets of various
sizes containing bacterial and viral pathogens. Mild coughs
are usually overlooked in the early stage, not only because
they are barely noticeable by the person and the people
around, but also because the present recording method is
not comfortable, private or reliable for long-term
monitoring. In this paper, a wearable radio-frequency (RF)
sensor is presented to recognize the mild cough signal
directly from the local trachea vibration characteristics, and
can isolate interferences from nearby people. The sensor
operates at the ultra-high-frequency band, and can couple
the RF energy to the upper respiratory track by the near
field of the sensing antenna. The retrieved tissue vibration
caused by the cough airflow burst can then be analyzed by
a convolutional neural network trained on the frequency-
time spectra. The sensing antenna design is analyzed for
performance improvement. During the human study of 5
participants over 100 minutes of prescribed routines, the
overall recognition ratio is above 90% and the false positive
ratio during other routines is below 2.09%.

Index Terms— Biomedical signal processing; machine
learning; microwave sensors; near-field radiation pattern;
wearable devices.

I. INTRODUCTION

ATIENTS with respiratory disorders caused by infectious

pathogens and tissue dysfunctions often manifest coughing
as a typical symptom for diagnosis and prognosis [1]. To
evaluate the degree of disease severity, physicians most often
rely on the symptomatic self-report from patients and limited
observation in the clinic. Other indicators, such as blood or
urine examination and liver function tests, can offer additional
references to caregivers, but have delays and thus less
contributive to the progress evaluation. The advanced medical
imaging systems such as magnetic resonance imaging (MRI) [2]
and X-ray computed tomography (CT) [3] can provide rich
information of tissue lesion, but are difficult to be the long-term
monitoring methods for cost [4] and radiation exposure
concerns [5]. The auscultation stethoscope [6], [7] is a standard
practice for the respiratory illness, which is a powerful clinical
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instrument operated by the well-trained doctors. However, the
requirement of acoustic impedance matching with direct skin
contact limits the system integration as a wearable device for
long-term monitoring. The ultrasound system also suffers
similar constraints on the body probe [8]. The passive acoustic
sensor can be vulnerable to the ambient noise and coughing
from nearby people, which increases the recognition algorithm
complexity and decreases the overall system reliability.
Additionally, using a microphone [9]-[11] for long-term
recording will also involve privacy concerns. The inertial
measurement unit (IMU) sensor [12], [13] can also detect the
body motion during coughing, but a stable body contact is
required to couple to its proof mass, while other body
movements can interference with the targeted cough signals.
Moreover, IMU detects the body surface motion instead of the
trachea directly.

Due to the advantage of touchless operation, the radio
frequency (RF), microwave and millimeter-wave systems were
applied to sensing respiration and phonation from various
previous works, including adapting the implementation of
Doppler radar [14]-[18], frequency modulated continuous
wave (FMCW) radar [19], [20], ultra-wide band (UWB) radar
[21], [22] and radio-frequency identification (RFID) [23]. In
order to increase the sensitivity to mild coughs, some of the
approaches employed very short wavelength in the millimeter-
wave and sub-Terahertz bands [24]-[26]. The off-body reader
design and high power consumption of the radar-like system
raise further concerns for long-term sensing. The reflection of
the far-field electromagnetic (EM) wave from the front chest
will either have difficulty in tracking the specific body location
or suffer from motion of other body parts and in the ambient.
Hence, a convenient, comfortable, reliable and non-intrusive
wearable sensor system [27]-[30] that can perform long-term
and nearly continuous cough monitoring is still missing.

By applying the near-field coherent sensing (NCS) principle
[23], [31], we propose to couple efficiently a small amount of
EM energy in the ultra-high-frequency (UHF) band to the
trachea region to accomplish cough sensing. Because NCS will
only detect the local vibration within the near field of the
sensing antenna [32], the interferences from other motion,
including coughing from nearby persons, will be minimized. As
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Fig. 1. The wearable RF near-field cough monitoring system.

shown in Fig. 1, the sensor is designed as a wearable prototype
in the position of a choker necklace to capture the tissue
vibration related to coughing. The modulated sensing signal
will be transmitted to the console device such as a smartphone
or a computer through Bluetooth for further signal processing
and recognition based on a convolutional neural network
(CNN). The transmitter (Tx) power is below —10 dBm or 0.1
mW within a narrow band, much lower than the other radar-
based systems in terms of both power and spectral cost, which
enables the ultra-low-power wearable system with long
operation time. In comparison with the Tx power in the cell
phone around 30 dBm and WiFi around 20 dBm, the NCS
device only transmits less than one-thousandth of RF power to
relieve any safety concerns.

In Section II, the NCS principle will be briefly introduced
and analyzed with the EM simulation in the trachea region. In
Section III, the system design and antenna placement analysis
will be discussed. Section IV illustrates the experimental setup
and results, followed by the cough signal features with the
corresponding recognition by frequency-time deep learning.
Finally, the discussion and conclusion are presented in Section
V.

[I. THE NCS PRINCIPLE AND EM SIMULATION

The NCS operation [23], [31] can be briefly introduced as the
following steps: When the NCS sensing antenna (denoted as
Tx) is placed close to the skin within the antenna near-field
region, a significant amount of the RF energy will be coupled
into the tissue. The tissue with different permittivity from the
surrounding body will backscatter some part of the impinging
RF signal. The motion and vibration caused by the vital signs
and other internal tissue movement such as heartbeats [33], [34],
wrist and femoral pulses [31], [34], respiration [36], [37] and
vocal cord vibration [23] will modulate the phase of the
backscattered signal by permittivity boundary movement.
Another part of the Tx signal is not modulated and serves as the
reference signal. The modulated backscattered signal and non-
modulated reference signal are from the same source with
different phases and are combined at the receiver (Rx) antenna
to cause an amplitude modulation. Thus, the internal tissue
vibration can be demodulated accordingly at Rx, analogous to
the interferometer model. To adapt to various applications, the
NCS system can be implemented by different configurations,
such as the passive RFID system [23], [31], [33], the active
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Fig. 2. (a) The CST simulation when the NCS Tx antenna is placed
close to the trachea area. (b) The normalized power flow along AB.

antenna-pair transceiver system [32], [34], [36]-[38], and the
furniture-integrated system [39], [40]. For cough sensing, it is
important to couple the EM energy efficiently to the trachea
area. The choker necklace placement of the sensing antenna
can be effective as shown by the EM simulation in Fig. 2(a).
The human EM model is built in CST Microwave Studio [41],
and a dipole antenna is placed at Point O. The color contours
show the power flow of the EM field on the sagittal cross
section of the human model, when the antenna is fed by a 1-W
excitation signal at 900 MHz. We used 1 W in the simulation
mainly for the convenience of normalization. From the power
flow contour, we can see that a significant amount of the EM
energy is coupled into the desirable body parts due to the
antenna near-field effect. As the near-field coupling decays
much faster than the propagation far field, the EM energy
coupled to the brain and eye regions is at least 40 dB lower.
Furthermore, because of the high permittivity of the human
tissue, the power flow in the body is also higher than that in the
air at the same distance to the antenna, which are indicated by
Points A and B in Fig. 2(a). The two monitoring points of A and
B are both at the distance of 28 mm from the dipole antenna at
Point O, with Point A approximately at the permittivity
boundary of the trachea. The power flows at Points A and B are
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Fig. 3. (a) The schematic of the NCS cough sensor. (b) The PCB
prototype of the sensor. (c) The sensor deployed as a choker necklace.

39.3 W/m? and 2.48 W/m?, respectively, where Point A is 12
dB stronger than Point B. The power flow distribution along the
line AB at different frequencies from 0.5 GHz to 1.3 GHz with
a 0.2 GHz step is shown in Fig. 2(b). Each curve is normalized
to its own peak value to eliminate the performance difference
of the antenna within the frequency band. From Fig. 2(b), the
power flow in the air decays faster than that in the human tissue
and the lower frequency signal has better penetration into the
body. With more power coupled into the sensing area, the signal
strength of the backscattered signal from the permittivity
boundary will be stronger, and eventually increase the sensor
signal-to-noise ratio (SNR). We can also see that when a dipole
antenna was deployed, whose radiation pattern is symmetric in
the free space, the sensing power is concentrated within the area
of the trachea and a relatively small area out of the body. Hence,
other body movement and ambient noises will only cause
limited interference to the target sensing signal. When a

receiver antenna is also deployed close to the Point O, the
interference signals can be further isolated.

lll. SYSTEM DESIGN

Fig. 3(a) shows the schematic of the NCS cough sensor, and
a picture of the sensor is in Fig. 3(b). The NCS transceiver is
designed with 3 systems-on-a-chip (SoC), including 2 Texas
Instrument CC1310s and 1 CC2640R2F. SoC 1: CC1310 in Fig.
3(a) is configured as the RF Tx, where its MCU controls the RF
core to generate the sensing signal that is fed to the Tx antenna
of the NCS antenna pair. The modulated NCS signal by the
tissue vibration is then received by the Rx antenna of the NCS
antenna pair. The received signal is further processed by SoC 2:
CC1310, which will forward the demodulated NCS signal to
SoC 3: CC2640R2F through a universal asynchronous Rx-Tx
(UART) module. SoC 3 is configured as the BLE (Bluetooth
low energy) transceiver to relay the digitized NCS signal to a
computer or cellphone for postprocessing [42]. As shown in Fig.
3(b), with the appropriate length of the RF cables, the cough
sensor can be worn as a choker necklace where the antenna pair
is close to the trachea area as shown in Fig. 3(c). The Tx and
Rx antennas in the inline configuration are held by a 3D-printed
case as shown in Fig. 4(a), which can be represented by the
small dipole model in Fig. 4(c). The current / in the Tx (blue
dipole) and Rx (orange dipole) antennas is aligned with the z
axis. The length of the monopole antenna is denoted by A/, and
the distance between the two antenna phase centers by d.
Another possible configuration is shown in Figs. 4(b) and (d),
where the two antennas are deployed in parallel with a
separation of d. The magnetic potential A of the Tx antenna can
be written as
ik
HIAle )
4rr
where zo is the unit vector in the z axis, u is the permeability of
vacuum, r denotes the radial coordinate of the observation point,
and £ is the wavenumber of the EM wave. The magnetic field
H generated by the Tx antenna can be expressed as

(a) (b)
Tx

A=z,

Fig. 4. The NCS sensing antenna pairs. (a) and (c): The picture and
analytical model of the inline configuration. (b) and (d): The picture and
analytical model of the parallel configuration.
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Fig. 5. (a) The electric-field strength ratio versus the distance of d in
C1: inline and C2: parallel. The electric-field strength is normalized to
1 at d = 0.01/ for the respective configuration. (b) The S parameters
measured from the two pairs of Tx and Rx antennas. (c) The NCS
cough signals from C1 (blue) and C2 (red).
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where ro, @o and 0o are the unit vectors in the spherical
coordinates. When observation by Rx is at the far field (kr > 1)
of the Tx antenna, the time-average Poynting power density
(<8>) can be calculated as

2
<S >:1Re{E><H*} ~ rol\/z( il ) sin’@  (4)
2 2\ e\ dnr

For the inline configuration as shown in Fig. 4(c), § = 0 in Eq.
(4), and there will be no transmission from Tx to Rx directly.
Meanwhile, the backscattered signal modulated with the
internal tissue vibration will be co-polarized to be received at
Rx. However, in the parallel configuration of Fig. 4(d), not only
the backscattered signal will be received, but also the direct
non-modulated Tx signal will be received by the Rx, which can
potentially saturate the receiver front end due to the over-biased
signal [23, 43].

When the Rx antenna is much closer to the Tx antenna with
the distance of d smaller than the wavelength, the electric field
of the Tx antenna at the inline Rx location with 8 = 0 can be
calculated as

kIAle ™ 1 1
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Similarly, the electric field at the parallel Rx location in the Fig.
4(d) can be calculated as
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Fig. 5(a) shows the results of the electric-field strength ratios
versus the distance of d normalized to the wavelength. The
electric-field strength is normalized to 1 (0 dB) at 0.014 in each
configuration. From Fig. 5(a), when d < 0.2/, the field-strength
ratios are similar in the near-field region. However, the ratio of
the inline configuration (C1) will be much smaller when d
further increases. Fig. 5(b) shows the S-parameters measured
from the network analyzer (Keysight E5063A) when the
antenna pair is placed at the choker necklace position of a
person. The green curve is the measured reflection Si; curve of
the inline configuration, where the center frequency is detuned
from around 900 MHz in air to around 800 MHz due to the
nearby human body and Rx antenna. The Tx antenna of the
antenna pair has the reflection of —16.4 dB at 780 MHz and the
bandwidth of 110 MHz where i is less than —10 dB. The blue-
dot curve shows S» in the inline configuration (S>1C1), while
the red-dash curve is S>; in the parallel configuration (S,;C2).
As $5C1 is much lower than S,;C2, the direct Tx-to-Rx
coupling is weaker by using the inline configuration, where a
reasonable sensing dynamic range and signal resolution can be
better achieved before Rx saturation [23, 43]. The improved
signal transduction can be observed in Fig. 5(c), where the blue
curve (Cl) is the cough signal obtained from the inline
configuration and the red curve (C2) from the parallel
configuration. As the C2 Rx can be more easily saturated by the
non-modulated signal, both Tx and Rx gains have to be set
lower than those in C1. The simulated coughing in Fig. 5(c) by
the same healthy participant was not precisely timed in two
separate recordings, where the participant was instructed to
make 5 similar mild coughs within 5 seconds in the routine.

IV. EXPERIMENTAL RESULTS

A. Experimental setup and study protocol

Based on the principle and system design presented in
Sections II and III, the NCS cough signals were recorded and
demodulated using the inline configuration [31], [32]. The
system was set at the carrier frequency of 820 MHz and —10
dBm Tx power. The received signal was then amplified by the
Rx circuitry and digitized by a 12-bit analog-to-digital
converter (ADC). The signal was sampled at 2 kSps (kilo-
samples per second) and then transferred to the host computer
for postprocessing.

The healthy participant under test wore the sensor as a choker
necklace and mimicked the mild cough every 1 — 5 seconds.
Each recording period was about 12 minutes. After a 5S-minute
rest, the participant took the next period of recording. All
participants went through 5 periods of recordings, and were in
the average body condition, both genders and an age span from
22 to 35. The recorded data were used for cough signal feature
analysis and recognition. The second session was designed for
the interference activities. The participant was asked to wear the
sensor again to take another 5 periods of recording. Each period
was about 3 minutes, when the participant was asked to perform
the interference routines of normal breathing, speaking, body
motion with hand gestures, mock swallowing, and mock
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sneezing. The recorded data were used to analyze the false
positive rate.

B. Cough signal features

The demodulated signal after the bandpass filter (20 — 1000
Hz) is shown as the blue curves in Fig. 6(a). Six mild coughs
within 14 seconds were recorded by the sensor system. The
insertions in Fig. 6(a) are the magnified waveform of the 274, 4t
and 6% coughs from top to bottom, respectively. We can see that
the waveform is very different from those of other signal
sources detected from the NCS system such as the heartbeat
[32], breath [35] and vocal cord tunes [23]. The signal packet
caused by coughing was much shorter, where the main part of
the signal burst and decayed within 50 ms. The signal was also
analyzed by the short-time Fourier transform (STFT), where the
frequency-time spectra of the 6™ cough is shown in Fig. 6(b).
The signal happened around 100 ms with a lower frequency and
intensity, and quickly evolved to the higher frequency around
250 Hz within 10 ms as indicated by the black solid arrow. The
2" and 3¢ harmonics were also present in the spectra. Then the
signal decayed in both frequency and intensity in 100 ms, as
indicated by the dashed arrow. This frequency-time contour
reflected the signal relaxation feature after the main peak in the
time domain, showing the vocal cord vibration after the strong
air burst caused by coughing. The other cough signals were
analyzed in the same manner and the statistic results from about
120 cough signals are shown in Table I. We can observe that
the NCS signals have distinctive features in both time and
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Fig. 6. The vocal-cord NCS recording of coughs. (a) The demodulated
time-domain signal; (b) The frequency-time characteristics.

TABLE |
OCCURRENCE PROBABILITY OF COUGH RECOGNITION FEATURES

Percentage of the features
being observed
Fea.ture 1: Fast burst of the 100 %
main part in time
Feature 2: Fast decay of 100 %
the main part in time
Feature 3: Fa?t rise 1 98.3 %
frequency and time
Feature 4: SlOVY decay in 97.5 %
frequency and time
. nd rd
Feature. 5: 2 and 3 95.8%
harmonics

frequency domains, which means that signal analysis relying
purely on the time domain or frequency domain may not be
sufficient for high recognition accuracy. For example, because
the single cough signal is not a steady signal, when it is
converted to the frequency domain for spectral composition, the
time domain information will be lost. On the other hand, a time-
domain signal recognition method such as dynamic time
warping (DTW) [44], [45] in speech recognition can miss the
fine spectral features. Furthermore, DTW utilizes the warping
to adapt to the template to accommodate individual differences,
which can however distort the spectral features.

C. CNN based cough recognition

In order to recognize the cough signal automatically, the
recorded signal should be properly segmented, where the
algorithm will first locate the signal peaks in the time domain,
and then make the indices for the frequency-time spectra
segmentation. Because NCS is only sensitive to the local tissue
vibration and a bandpass filter of 20 — 1000 Hz was applied as
mention above, the noise signal caused by other motion
interferences is usually weak. Hence, adequate peak readings
mainly from the tissue vibration near the trachea area can be
readily recognized. The peak detection threshold is set as 0.2 of
the averaged peak height from the cough signal recording, and
the minimum peak separation is set as 300 ms. More
sophisticated peak detection algorithms such as difference
between moving average and actual signals can also be helpful
to improve the detection accuracy in practical scenarios in the
future. After the time-domain signal is processed by STFT, the
frequency-time spectrum is segmented based on the signal peak
indices. As shown in Fig. 7(a), spectra of 36 mild cough signals
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Fig. 7. (@) The randomly picked representative cough signal frequency-
time spectra. (b) The training and validation accuracies curves of the
CNN applied in this work.
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were randomly selected from about 200 signal segments. The
dimension of the spectra is 512x512. For cough signal
recognition, a convolutional neural network (CNN) by
SqueezeNet [46] was trained and verified by the frequency-
time spectra extracted from the NCS recording. SqueezeNet has
18 layers in CNN depth. For imaging recognition, under
equivalent accuracy, SqueezeNet has fewer parameters, which
provides several advantages such as high efficiency for
distributed training, reduced overhead when exporting new
models to the updating device, and feasibility for embedded
deployment. As the eventual wearable sensor will have limited
computing power, SqueezeNet can be a good candidate for
signal recognition if there is no major compromise on accuracy.

During the training phase, the images of the frequency-time
spectra were shifted randomly within several pixels before
feeding to the networks to further enlarge the training set by
simulating the frequency and timing shifts of the cough signals.
Fig. 7(b) shows the training (blue) and validation (pink)
accuracy curves of each cross-validation iteration for the cough
signals collected from participant 1 (P1). 70% of the samples
were chosen for training, and the remaining 30% were
configured for the validation. The overall validation accuracy
was 97.53%.

D. Human study

The CNN parameters trained from the dataset of one person
can be directly transferred to signal recognition of other
persons. Fig. 8 shows the recognition accuracies of 5 recording
periods from 5 participants (P1 — P5), where the accuracy of
each recording period is denoted as the square marker. In each
period of recording, around 200 cough signals are extracted
from the NCS signals for analysis. The accuracy of the first
person in period 1 was the validation accuracy of the training
data, which is 97.53%. Then we applied the data from each
person as the training data set to obtain 5 trained networks, and
validated each person’s recording through each network, as
shown in Table II. Training data sets 1 — 5 indicate the networks
trained by the data from participants 1 — 5, respectively. The
overall averaged accuracy is 93.26%, and the minimum
accuracy is 90.33%, where the network was trained by
participant 4’s data and validated by participant 1. Furthermore,
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Fig. 8. The recognition accuracies of 5 people (P1 to P5) in 5 recording
periods.

TABLE Il
AVERAGED COUGH RECOGNITION ACCURACY WITH EACH PARTICIPANT’S
DATA FOR TRAINING TO BE TESTED ON ALL PARTICIPANTS

Participant
1 2 3 4 5

1]97.32% | 91.41% | 93.25% | 93.42% | 93.82%

2| 92.21% | 96.32% | 93.32% | 95.46% | 92.15%
Training | 31 0 s6on | 93.24% | 94.12% | 93.31% | 91.28%
data set

4] 90.33% | 93.25% | 91.04% | 93.45% | 92.32%

5193.27% | 92.34% | 93.25% | 92.57% | 96.46%

we trained the network with only one of the periods from a
participant. In Table III, the training data sets 1 — 5 are the
period 1 of participant 1, period 2 of participant 2, and so on.
The validation data are the periods 1 — 5 of the same participant
that trained the network. We can see that the accuracies are high
in all cases, because the training data and validation data are
from the same participant but different recording periods.

The lower limit of the detection accuracy depends on the
cough signal strength. When the strength decreases, the
received NCS signal will be weaker with lower SNR and SIR
(signal to interference ratio), which can possibly be improved
from the NCS transceiver optimization [23] and the antenna
design similar to the analysis in Section 3. Alternatively, the
signal strength can be increased by deploying the NCS antennas
closer to the cough source area to make stronger near-field
coupling and higher isolation against the interferences by other
motions.

The NCS sensor detects the local permittivity boundary
motion. The interference signals not from trachea vibration will
be minimally coupled to the system, while speaking and other
sounds made by the person under test will be differentiated by
the frequency-time spectra. Within the routines in our human
study, the 5 people under test were instructed to sit and breathe
normally (Routine 1), read aloud normally (Routine 2), perform
body motion and hand gestures (Routine 3), mimic swallowing

TABLE Il
AVERAGED COUGH RECOGNITION ACCURACY WITH DIFFERENT TRAINING
DATA PERIODS TO BE TESTED ON THE SAME PARTICIPANTS

Period
1 2 3 4 5

1] 97.47% | 96.81% | 97.53% | 98.22% | 96.48%

2| 95.12% | 97.54% | 96.12% | 97.44% | 96.43%
Training | 3 1 o7 350, | 96.29% | 97.93% | 95.72% | 96.78%
data set

4| 96.85% | 97.12% | 95.64% | 98.15% | 96.62%

5| 98.64% | 97.17% | 95.73% | 96.43% | 97.43%
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Fig. 9. The interference signals and their false positive rates in 5
routines: Routine 1: Normal breathing; Routine 2: Speaking; Routine
3: Body motion with hand gestures; Routine 4: Mock swallowing;
Routine 5: Mock sneezing. The middle column shows 6 randomly
picked spectra in each routine.

(Routine 4), and mimic sneezing (Routine 5). The recorded raw
data are processed by the same signal segmentation and CNN
spectrum recognition algorithms with exactly the same
parameters. 300 spectral images in each interference routine
from 5 people were collected. The false positive rate in each
routine is shown in Fig. 9, together with the randomly selected
frequency-time spectra. Routine 4 with the mock swallowing
has the least false positive at 0.22%. Not surprisingly, mock
sneezing with local trachea vibration by the sneezing sound and
the associated body motion has the highest false positive at
2.09%. The false negative rate can be readily derived from the
accuracy listed in Tables II and III.

V. DiIscusSION AND CONCLUSION

Comparing to other CNN architectures [47]-[49],
SqueezeNet provided sufficient accuracy with much fewer
parameters in this application. As shown in Table IV, the size
of the SqeezeNet (4.8 MB) is significantly smaller than the
other networks, and can be further compressed to 0.47 MB [46].
The other networks, AlexNet, GoogLeNet and ResNet were
trained and verified with the same data set as used for
SqeezeNet, and the resulting accuracies were at the similar

TABLE IV
PERFORMANCE COMPARISON WITH DIFFERENT NETWORKS
CNN SqueezeNet | AlexNet | GooglLeNet | ResNet
name
Accuracy 97.53% 98.58% 98.63% 96.67%
GPU
training 119 98 252 399
time (sec)
CPU
training 665 672 1169 2716
time (sec)
CNN size
(MB) 4.8 227 27 96

level. The training time of the SqueezeNet was also on the
shorter side.

In this work, we applied a PCB RF transceiver as the NCS
sensor for wearable cough monitoring, where Tx and Rx were
operating at the same frequency band. To further improve the
sensitivity, the harmonic RF transceiver [23], [34], [50] can be
applied to the NCS system. The sensing antenna pair can also
be designed in other configurations [32], or even manufactured
with embroidered conductive fiber [31], [51] and printed
conductive ink [52], so that the devices can be integrated with
garments. The microcontroller on the PCB board demodulated
the received RF signal to be either sent to a host computer
through Bluetooth or stored locally in an SD (secure digital)
card. Although the memory requirement of the CNN algorithm
is relatively small, it was not implemented on the present PCB
board in order to reduce the power consumption. The present
350 mAh lithium battery on PCB can provide over 20-hour
continuous operation. The current system design and
experimental tests were validated only on the average body
conditions. Further complications to the sensor performance
can be caused by special human factors such as obesity, large
body mass around the neck, and glottis disorders, which should
be further investigated in the future clinical research.

The experimental results show that this wearable RF sensor
with the NCS technology is capable of long-term, continuous
monitoring of the mild cough. A CNN algorithm was employed
to recognize the frequency-time spectra of coughing, where the
true positive rate was above 90% and the false positive rate was
below 2.09% when the person under test was in various
common interference routines.
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