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Abstract— Coughing is a common symptom for many 
respiratory disorders, and can spread droplets of various 
sizes containing bacterial and viral pathogens. Mild coughs 
are usually overlooked in the early stage, not only because 
they are barely noticeable by the person and the people 
around, but also because the present recording method is 
not comfortable, private or reliable for long-term 
monitoring. In this paper, a wearable radio-frequency (RF) 
sensor is presented to recognize the mild cough signal 
directly from the local trachea vibration characteristics, and 
can isolate interferences from nearby people. The sensor 
operates at the ultra-high-frequency band, and can couple 
the RF energy to the upper respiratory track by the near 
field of the sensing antenna.  The retrieved tissue vibration 
caused by the cough airflow burst can then be analyzed by 
a convolutional neural network trained on the frequency-
time spectra. The sensing antenna design is analyzed for 
performance improvement. During the human study of 5 
participants over 100 minutes of prescribed routines, the 
overall recognition ratio is above 90% and the false positive 
ratio during other routines is below 2.09%. 

 
Index Terms— Biomedical signal processing; machine 

learning; microwave sensors; near-field radiation pattern; 
wearable devices. 

 

I. INTRODUCTION 

ATIENTS with respiratory disorders caused by infectious 

pathogens and tissue dysfunctions often manifest coughing 

as a typical symptom for diagnosis and prognosis [1]. To 

evaluate the degree of disease severity, physicians most often 

rely on the symptomatic self-report from patients and limited 

observation in the clinic. Other indicators, such as blood or 

urine examination and liver function tests, can offer additional 

references to caregivers, but have delays and thus less 

contributive to the progress evaluation. The advanced medical 

imaging systems such as magnetic resonance imaging (MRI) [2] 

and X-ray computed tomography (CT) [3] can provide rich 

information of tissue lesion, but are difficult to be the long-term 

monitoring methods for cost [4] and radiation exposure 

concerns [5]. The auscultation stethoscope [6], [7] is a standard 

practice for the respiratory illness, which is a powerful clinical 
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instrument operated by the well-trained doctors. However, the 

requirement of acoustic impedance matching with direct skin 

contact limits the system integration as a wearable device for 

long-term monitoring. The ultrasound system also suffers 

similar constraints on the body probe [8]. The passive acoustic 

sensor can be vulnerable to the ambient noise and coughing 

from nearby people, which increases the recognition algorithm 

complexity and decreases the overall system reliability. 

Additionally, using a microphone [9]–[11] for long-term 

recording will also involve privacy concerns. The inertial 

measurement unit (IMU) sensor [12], [13] can also detect the 

body motion during coughing, but a stable body contact is 

required to couple to its proof mass, while other body 

movements can interference with the targeted cough signals. 

Moreover, IMU detects the body surface motion instead of the 

trachea directly. 

 Due to the advantage of touchless operation, the radio 

frequency (RF), microwave and millimeter-wave systems were 

applied to sensing respiration and phonation from various 

previous works, including adapting the implementation of 

Doppler radar [14]–[18], frequency modulated continuous 

wave (FMCW) radar [19], [20], ultra-wide band (UWB) radar 

[21], [22] and radio-frequency identification (RFID) [23]. In 

order to increase the sensitivity to mild coughs, some of the 

approaches employed very short wavelength in the millimeter-

wave and sub-Terahertz bands [24]–[26]. The off-body reader 

design and high power consumption of the radar-like system 

raise further concerns for long-term sensing. The reflection of 

the far-field electromagnetic (EM) wave from the front chest 

will either have difficulty in tracking the specific body location 

or suffer from motion of other body parts and in the ambient. 

Hence, a convenient, comfortable, reliable and non-intrusive 

wearable sensor system [27]–[30] that can perform long-term 

and nearly continuous cough monitoring is still missing.  

By applying the near-field coherent sensing (NCS) principle 

[23], [31], we propose to couple efficiently a small amount of 

EM energy in the ultra-high-frequency (UHF) band to the 

trachea region to accomplish cough sensing. Because NCS will 

only detect the local vibration within the near field of the 

sensing antenna [32], the interferences from other motion, 

including coughing from nearby persons, will be minimized. As 
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shown in Fig. 1, the sensor is designed as a wearable prototype 

in the position of a choker necklace to capture the tissue 

vibration related to coughing. The modulated sensing signal 

will be transmitted to the console device such as a smartphone 

or a computer through Bluetooth for further signal processing 

and recognition based on a convolutional neural network 

(CNN). The transmitter (Tx) power is below –10 dBm or 0.1 

mW within a narrow band, much lower than the other radar-

based systems in terms of both power and spectral cost, which 

enables the ultra-low-power wearable system with long 

operation time. In comparison with the Tx power in the cell 

phone around 30 dBm and WiFi around 20 dBm, the NCS 

device only transmits less than one-thousandth of RF power to 

relieve any safety concerns. 

 In Section II, the NCS principle will be briefly introduced 

and analyzed with the EM simulation in the trachea region. In 

Section III, the system design and antenna placement analysis 

will be discussed. Section IV illustrates the experimental setup 

and results, followed by the cough signal features with the 

corresponding recognition by frequency-time deep learning. 

Finally, the discussion and conclusion are presented in Section 

V. 

II. THE NCS PRINCIPLE AND EM SIMULATION 

The NCS operation [23], [31] can be briefly introduced as the 

following steps: When the NCS sensing antenna (denoted as 

Tx) is placed close to the skin within the antenna near-field 

region, a significant amount of the RF energy will be coupled 

into the tissue. The tissue with different permittivity from the 

surrounding body will backscatter some part of the impinging 

RF signal. The motion and vibration caused by the vital signs 

and other internal tissue movement such as heartbeats [33], [34], 

wrist and femoral pulses [31], [34], respiration [36], [37] and 

vocal cord vibration [23] will modulate the phase of the 

backscattered signal by permittivity boundary movement. 

Another part of the Tx signal is not modulated and serves as the 

reference signal. The modulated backscattered signal and non-

modulated reference signal are from the same source with 

different phases and are combined at the receiver (Rx) antenna 

to cause an amplitude modulation. Thus, the internal tissue 

vibration can be demodulated accordingly at Rx, analogous to 

the interferometer model. To adapt to various applications, the 

NCS system can be implemented by different configurations, 

such as the passive RFID system [23], [31], [33], the active 

antenna-pair transceiver system [32], [34], [36]–[38], and the 

furniture-integrated system [39], [40]. For cough sensing, it is 

important to couple the EM energy efficiently to the trachea 

area.  The choker necklace placement of the sensing antenna 

can be effective as shown by the EM simulation in Fig. 2(a). 

The human EM model is built in CST Microwave Studio [41], 

and a dipole antenna is placed at Point O. The color contours 

show the power flow of the EM field on the sagittal cross 

section of the human model, when the antenna is fed by a 1-W 

excitation signal at 900 MHz.  We used 1 W in the simulation 

mainly for the convenience of normalization. From the power 

flow contour, we can see that a significant amount of the EM 

energy is coupled into the desirable body parts due to the 

antenna near-field effect. As the near-field coupling decays 

much faster than the propagation far field, the EM energy 

coupled to the brain and eye regions is at least 40 dB lower. 

Furthermore, because of the high permittivity of the human 

tissue, the power flow in the body is also higher than that in the 

air at the same distance to the antenna, which are indicated by 

Points A and B in Fig. 2(a). The two monitoring points of A and 

B are both at the distance of 28 mm from the dipole antenna at 

Point O, with Point A approximately at the permittivity 

boundary of the trachea. The power flows at Points A and B are 

 

Fig. 2. (a) The CST simulation when the NCS Tx antenna is placed 
close to the trachea area. (b) The normalized power flow along AB.  

 

Fig. 1. The wearable RF near-field cough monitoring system. 
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39.3 W/m2 and 2.48 W/m2, respectively, where Point A is 12 

dB stronger than Point B. The power flow distribution along the 

line AB at different frequencies from 0.5 GHz to 1.3 GHz with 

a 0.2 GHz step is shown in Fig. 2(b). Each curve is normalized 

to its own peak value to eliminate the performance difference 

of the antenna within the frequency band. From Fig. 2(b), the 

power flow in the air decays faster than that in the human tissue 

and the lower frequency signal has better penetration into the 

body. With more power coupled into the sensing area, the signal 

strength of the backscattered signal from the permittivity 

boundary will be stronger, and eventually increase the sensor 

signal-to-noise ratio (SNR). We can also see that when a dipole 

antenna was deployed, whose radiation pattern is symmetric in 

the free space, the sensing power is concentrated within the area 

of the trachea and a relatively small area out of the body.  Hence, 

other body movement and ambient noises will only cause 

limited interference to the target sensing signal. When a 

receiver antenna is also deployed close to the Point O, the 

interference signals can be further isolated. 

III. SYSTEM DESIGN 

Fig. 3(a) shows the schematic of the NCS cough sensor, and 

a picture of the sensor is in Fig. 3(b). The NCS transceiver is 

designed with 3 systems-on-a-chip (SoC), including 2 Texas 

Instrument CC1310s and 1 CC2640R2F. SoC 1: CC1310 in Fig. 

3(a) is configured as the RF Tx, where its MCU controls the RF 

core to generate the sensing signal that is fed to the Tx antenna 

of the NCS antenna pair. The modulated NCS signal by the 

tissue vibration is then received by the Rx antenna of the NCS 

antenna pair. The received signal is further processed by SoC 2: 

CC1310, which will forward the demodulated NCS signal to 

SoC 3: CC2640R2F through a universal asynchronous Rx-Tx 

(UART) module. SoC 3 is configured as the BLE (Bluetooth 

low energy) transceiver to relay the digitized NCS signal to a 

computer or cellphone for postprocessing [42]. As shown in Fig. 

3(b), with the appropriate length of the RF cables, the cough 

sensor can be worn as a choker necklace where the antenna pair 

is close to the trachea area as shown in Fig. 3(c). The Tx and 

Rx antennas in the inline configuration are held by a 3D-printed 

case as shown in Fig. 4(a), which can be represented by the 

small dipole model in Fig. 4(c).  The current I in the Tx (blue 

dipole) and Rx (orange dipole) antennas is aligned with the z 

axis. The length of the monopole antenna is denoted by Δl, and 

the distance between the two antenna phase centers by d. 

Another possible configuration is shown in Figs. 4(b) and (d), 

where the two antennas are deployed in parallel with a 

separation of d. The magnetic potential A of the Tx antenna can 

be written as 
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where z0 is the unit vector in the z axis, μ is the permeability of 

vacuum, r denotes the radial coordinate of the observation point, 

and k is the wavenumber of the EM wave. The magnetic field 

H generated by the Tx antenna can be expressed as 

 

Fig. 4. The NCS sensing antenna pairs. (a) and (c): The picture and 
analytical model of the inline configuration. (b) and (d): The picture and 
analytical model of the parallel configuration. 

 

 

Fig. 3. (a) The schematic of the NCS cough sensor. (b) The PCB 
prototype of the sensor. (c) The sensor deployed as a choker necklace. 
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where r0, φ0 and θ0 are the unit vectors in the spherical 

coordinates. When observation by Rx is at the far field (kr ≫ 1) 

of the Tx antenna, the time-average Poynting power density 

(<S>) can be calculated as 
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For the inline configuration as shown in Fig. 4(c), θ = 0 in Eq. 

(4), and there will be no transmission from Tx to Rx directly. 

Meanwhile, the backscattered signal modulated with the 

internal tissue vibration will be co-polarized to be received at 

Rx. However, in the parallel configuration of Fig. 4(d), not only 

the backscattered signal will be received, but also the direct 

non-modulated Tx signal will be received by the Rx, which can 

potentially saturate the receiver front end due to the over-biased 

signal [23, 43].  

 When the Rx antenna is much closer to the Tx antenna with 

the distance of d smaller than the wavelength, the electric field 

of the Tx antenna at the inline Rx location with θ = 0 can be 

calculated as  

 
 

1 2

1 1
[ ]

2

jkd

Rx

jkI le

d jkd jkd



 


 

0
E r                   (5) 

Similarly, the electric field at the parallel Rx location in the Fig. 

4(d) can be calculated as 
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Fig. 5(a) shows the results of the electric-field strength ratios 

versus the distance of d normalized to the wavelength. The 

electric-field strength is normalized to 1 (0 dB) at 0.01λ in each 

configuration.  From Fig. 5(a), when d < 0.2λ, the field-strength 

ratios are similar in the near-field region. However, the ratio of 

the inline configuration (C1) will be much smaller when d 

further increases. Fig. 5(b) shows the S-parameters measured 

from the network analyzer (Keysight E5063A) when the 

antenna pair is placed at the choker necklace position of a 

person. The green curve is the measured reflection S11 curve of 

the inline configuration, where the center frequency is detuned 

from around 900 MHz in air to around 800 MHz due to the 

nearby human body and Rx antenna. The Tx antenna of the 

antenna pair has the reflection of ‒16.4 dB at 780 MHz and the 

bandwidth of 110 MHz where S11 is less than ‒10 dB. The blue-

dot curve shows S21 in the inline configuration (S21C1), while 

the red-dash curve is S21 in the parallel configuration (S21C2). 

As S21C1 is much lower than S21C2, the direct Tx-to-Rx 

coupling is weaker by using the inline configuration, where a 

reasonable sensing dynamic range and signal resolution can be 

better achieved before Rx saturation [23, 43]. The improved 

signal transduction can be observed in Fig. 5(c), where the blue 

curve (C1) is the cough signal obtained from the inline 

configuration and the red curve (C2) from the parallel 

configuration. As the C2 Rx can be more easily saturated by the 

non-modulated signal, both Tx and Rx gains have to be set 

lower than those in C1.  The simulated coughing in Fig. 5(c) by 

the same healthy participant was not precisely timed in two 

separate recordings, where the participant was instructed to 

make 5 similar mild coughs within 5 seconds in the routine. 

IV. EXPERIMENTAL RESULTS 

A. Experimental setup and study protocol 

Based on the principle and system design presented in 

Sections II and III, the NCS cough signals were recorded and 

demodulated using the inline configuration [31], [32]. The 

system was set at the carrier frequency of 820 MHz and –10 

dBm Tx power. The received signal was then amplified by the 

Rx circuitry and digitized by a 12-bit analog-to-digital 

converter (ADC). The signal was sampled at 2 kSps (kilo-

samples per second) and then transferred to the host computer 

for postprocessing.  

The healthy participant under test wore the sensor as a choker 

necklace and mimicked the mild cough every 1 – 5 seconds. 

Each recording period was about 12 minutes. After a 5-minute 

rest, the participant took the next period of recording. All 

participants went through 5 periods of recordings, and were in 

the average body condition, both genders and an age span from 

22 to 35. The recorded data were used for cough signal feature 

analysis and recognition. The second session was designed for 

the interference activities. The participant was asked to wear the 

sensor again to take another 5 periods of recording. Each period 

was about 3 minutes, when the participant was asked to perform 

the interference routines of normal breathing, speaking, body 

motion with hand gestures, mock swallowing, and mock 

 

Fig. 5. (a) The electric-field strength ratio versus the distance of d in 
C1: inline and C2: parallel. The electric-field strength is normalized to 

1 at d = 0.01λ for the respective configuration. (b) The S parameters 

measured from the two pairs of Tx and Rx antennas. (c) The NCS 
cough signals from C1 (blue) and C2 (red). 
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sneezing. The recorded data were used to analyze the false 

positive rate. 

B. Cough signal features 

The demodulated signal after the bandpass filter (20  1000 

Hz) is shown as the blue curves in Fig. 6(a). Six mild coughs 

within 14 seconds were recorded by the sensor system. The 

insertions in Fig. 6(a) are the magnified waveform of the 2nd, 4th 

and 6th coughs from top to bottom, respectively. We can see that 

the waveform is very different from those of other signal 

sources detected from the NCS system such as the heartbeat 

[32], breath [35] and vocal cord tunes [23]. The signal packet 

caused by coughing was much shorter, where the main part of 

the signal burst and decayed within 50 ms. The signal was also 

analyzed by the short-time Fourier transform (STFT), where the 

frequency-time spectra of the 6th cough is shown in Fig. 6(b). 

The signal happened around 100 ms with a lower frequency and 

intensity, and quickly evolved to the higher frequency around 

250 Hz within 10 ms as indicated by the black solid arrow. The 

2nd and 3rd harmonics were also present in the spectra. Then the 

signal decayed in both frequency and intensity in 100 ms, as 

indicated by the dashed arrow. This frequency-time contour 

reflected the signal relaxation feature after the main peak in the 

time domain, showing the vocal cord vibration after the strong 

air burst caused by coughing. The other cough signals were 

analyzed in the same manner and the statistic results from about 

120 cough signals are shown in Table I. We can observe that 

the NCS signals have distinctive features in both time and 

frequency domains, which means that signal analysis relying 

purely on the time domain or frequency domain may not be 

sufficient for high recognition accuracy. For example, because 

the single cough signal is not a steady signal, when it is 

converted to the frequency domain for spectral composition, the 

time domain information will be lost. On the other hand, a time-

domain signal recognition method such as dynamic time 

warping (DTW) [44], [45] in speech recognition can miss the 

fine spectral features. Furthermore, DTW utilizes the warping 

to adapt to the template to accommodate individual differences, 

which can however distort the spectral features.  

C. CNN based cough recognition 

In order to recognize the cough signal automatically, the 

recorded signal should be properly segmented, where the 

algorithm will first locate the signal peaks in the time domain, 

and then make the indices for the frequency-time spectra 

segmentation. Because NCS is only sensitive to the local tissue 

vibration and a bandpass filter of 20  1000 Hz was applied as 

mention above, the noise signal caused by other motion 

interferences is usually weak. Hence, adequate peak readings 

mainly from the tissue vibration near the trachea area can be 

readily recognized. The peak detection threshold is set as 0.2 of 

the averaged peak height from the cough signal recording, and 

the minimum peak separation is set as 300 ms. More 

sophisticated peak detection algorithms such as difference 

between moving average and actual signals can also be helpful 

to improve the detection accuracy in practical scenarios in the 

future.  After the time-domain signal is processed by STFT, the 

frequency-time spectrum is segmented based on the signal peak 

indices. As shown in Fig. 7(a), spectra of 36 mild cough signals 

 

Fig. 6. The vocal-cord NCS recording of coughs. (a) The demodulated 
time-domain signal; (b) The frequency-time characteristics. 

TABLE I  
OCCURRENCE PROBABILITY OF COUGH RECOGNITION FEATURES 

 Percentage of the features 

being observed 

Feature 1: Fast burst of the 

main part in time 
100 % 

Feature 2: Fast decay of 

the main part in time 
100 % 

Feature 3: Fast rise in 

frequency and time 
98.3 % 

Feature 4: Slow decay in 

frequency and time 
97.5 % 

Feature 5: 2nd and 3rd 

harmonics 
95.8 % 

 
 

 

Fig. 7. (a) The randomly picked representative cough signal frequency-
time spectra. (b) The training and validation accuracies curves of the 
CNN applied in this work. 
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were randomly selected from about 200 signal segments. The 

dimension of the spectra is 512×512. For cough signal 

recognition, a convolutional neural network (CNN) by 

SqueezeNet [46] was trained and verified by the frequency-

time spectra extracted from the NCS recording. SqueezeNet has 

18 layers in CNN depth. For imaging recognition, under 

equivalent accuracy, SqueezeNet has fewer parameters, which 

provides several advantages such as high efficiency for 

distributed training, reduced overhead when exporting new 

models to the updating device, and feasibility for embedded 

deployment. As the eventual wearable sensor will have limited 

computing power, SqueezeNet can be a good candidate for 

signal recognition if there is no major compromise on accuracy.  

During the training phase, the images of the frequency-time 

spectra were shifted randomly within several pixels before 

feeding to the networks to further enlarge the training set by 

simulating the frequency and timing shifts of the cough signals. 

Fig. 7(b) shows the training (blue) and validation (pink) 

accuracy curves of each cross-validation iteration for the cough 

signals collected from participant 1 (P1). 70% of the samples 

were chosen for training, and the remaining 30% were 

configured for the validation.  The overall validation accuracy 

was 97.53%.  

D. Human study 

The CNN parameters trained from the dataset of one person 

can be directly transferred to signal recognition of other 

persons. Fig. 8 shows the recognition accuracies of 5 recording 

periods from 5 participants (P1 – P5), where the accuracy of 

each recording period is denoted as the square marker. In each 

period of recording, around 200 cough signals are extracted 

from the NCS signals for analysis. The accuracy of the first 

person in period 1 was the validation accuracy of the training 

data, which is 97.53%. Then we applied the data from each 

person as the training data set to obtain 5 trained networks, and 

validated each person’s recording through each network, as 

shown in Table II. Training data sets 1 – 5 indicate the networks 

trained by the data from participants 1 – 5, respectively. The 

overall averaged accuracy is 93.26%, and the minimum 

accuracy is 90.33%, where the network was trained by 

participant 4’s data and validated by participant 1. Furthermore, 

we trained the network with only one of the periods from a 

participant. In Table III, the training data sets 1 – 5 are the 

period 1 of participant 1, period 2 of participant 2, and so on. 

The validation data are the periods 1 – 5 of the same participant 

that trained the network. We can see that the accuracies are high 

in all cases, because the training data and validation data are 

from the same participant but different recording periods.  

The lower limit of the detection accuracy depends on the 

cough signal strength. When the strength decreases, the 

received NCS signal will be weaker with lower SNR and SIR 

(signal to interference ratio), which can possibly be improved 

from the NCS transceiver optimization [23] and the antenna 

design similar to the analysis in Section 3. Alternatively, the 

signal strength can be increased by deploying the NCS antennas 

closer to the cough source area to make stronger near-field 

coupling and higher isolation against the interferences by other 

motions.  

  The NCS sensor detects the local permittivity boundary 

motion. The interference signals not from trachea vibration will 

be minimally coupled to the system, while speaking and other 

sounds made by the person under test will be differentiated by 

the frequency-time spectra. Within the routines in our human 

study, the 5 people under test were instructed to sit and breathe 

normally (Routine 1), read aloud normally (Routine 2), perform 

body motion and hand gestures (Routine 3), mimic swallowing 

TABLE II 
AVERAGED COUGH RECOGNITION ACCURACY WITH EACH PARTICIPANT’S 

DATA FOR TRAINING TO BE TESTED ON ALL PARTICIPANTS 

 
Participant  

1 2 3 4 5 

Training 

data set 

1 97.32% 91.41% 93.25% 93.42% 93.82% 

2 92.21% 96.32% 93.32% 95.46% 92.15% 

3 92.56% 93.24% 94.12% 93.31% 91.28% 

4 90.33% 93.25% 91.04% 93.45% 92.32% 

5 93.27% 92.34% 93.25% 92.57% 96.46% 

 

 

Fig. 8. The recognition accuracies of 5 people (P1 to P5) in 5 recording 
periods. 

TABLE III 
AVERAGED COUGH RECOGNITION ACCURACY WITH DIFFERENT TRAINING 

DATA PERIODS TO BE TESTED ON THE SAME PARTICIPANTS 

 
Period 

1 2 3 4 5 

Training 

data set 

1 97.47% 96.81% 97.53% 98.22% 96.48% 

2 95.12% 97.54% 96.12% 97.44% 96.43% 

3 97.35% 96.29% 97.93% 95.72% 96.78% 

4 96.85% 97.12% 95.64% 98.15% 96.62% 

5 98.64% 97.17% 95.73% 96.43% 97.43% 
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(Routine 4), and mimic sneezing (Routine 5). The recorded raw 

data are processed by the same signal segmentation and CNN 

spectrum recognition algorithms with exactly the same 

parameters. 300 spectral images in each interference routine 

from 5 people were collected. The false positive rate in each 

routine is shown in Fig. 9, together with the randomly selected 

frequency-time spectra.  Routine 4 with the mock swallowing 

has the least false positive at 0.22%. Not surprisingly, mock 

sneezing with local trachea vibration by the sneezing sound and 

the associated body motion has the highest false positive at 

2.09%. The false negative rate can be readily derived from the 

accuracy listed in Tables II and III. 

V. DISCUSSION AND CONCLUSION 

Comparing to other CNN architectures [47]–[49], 

SqueezeNet provided sufficient accuracy with much fewer 

parameters in this application. As shown in Table IV, the size 

of the SqeezeNet (4.8 MB) is significantly smaller than the 

other networks, and can be further compressed to 0.47 MB [46]. 

The other networks, AlexNet, GoogLeNet and ResNet were 

trained and verified with the same data set as used for 

SqeezeNet, and the resulting accuracies were at the similar 

level. The training time of the SqueezeNet was also on the 

shorter side. 

In this work, we applied a PCB RF transceiver as the NCS 

sensor for wearable cough monitoring, where Tx and Rx were 

operating at the same frequency band. To further improve the 

sensitivity, the harmonic RF transceiver [23], [34], [50] can be 

applied to the NCS system. The sensing antenna pair can also 

be designed in other configurations [32], or even manufactured 

with embroidered conductive fiber [31], [51] and printed 

conductive ink [52], so that the devices can be integrated with 

garments. The microcontroller on the PCB board demodulated 

the received RF signal to be either sent to a host computer 

through Bluetooth or stored locally in an SD (secure digital) 

card. Although the memory requirement of the CNN algorithm 

is relatively small, it was not implemented on the present PCB 

board in order to reduce the power consumption. The present 

350 mAh lithium battery on PCB can provide over 20-hour 

continuous operation. The current system design and 

experimental tests were validated only on the average body 

conditions. Further complications to the sensor performance 

can be caused by special human factors such as obesity, large 

body mass around the neck, and glottis disorders, which should 

be further investigated in the future clinical research. 

The experimental results show that this wearable RF sensor 

with the NCS technology is capable of long-term, continuous 

monitoring of the mild cough. A CNN algorithm was employed 

to recognize the frequency-time spectra of coughing, where the 

true positive rate was above 90% and the false positive rate was 

below 2.09% when the person under test was in various 

common interference routines. 
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