
IEEE TRANSACTIONS ON ROBOTICS 1

Neural-Swarm2: Planning and Control of
Heterogeneous Multirotor Swarms using

Learned Interactions
Guanya Shi, Wolfgang Hönig, Xichen Shi, Yisong Yue, and Soon-Jo Chung

Abstract—We present Neural-Swarm2, a learning-based
method for motion planning and control that allows heteroge-
neous multirotors in a swarm to safely fly in close proximity. Such
operation for drones is challenging due to complex aerodynamic
interaction forces, such as downwash generated by nearby drones
and ground effect. Conventional planning and control methods
neglect capturing these interaction forces, resulting in sparse
swarm configuration during flight. Our approach combines a
physics-based nominal dynamics model with learned Deep Neural
Networks (DNNs) with strong Lipschitz properties. We make
use of two techniques to accurately predict the aerodynamic
interactions between heterogeneous multirotors: i) spectral nor-
malization for stability and generalization guarantees of un-
seen data and ii) heterogeneous deep sets for supporting any
number of heterogeneous neighbors in a permutation-invariant
manner without reducing expressiveness. The learned residual
dynamics benefit both the proposed interaction-aware multi-
robot motion planning and the nonlinear tracking control design
because the learned interaction forces reduce the modelling
errors. Experimental results demonstrate that Neural-Swarm2 is
able to generalize to larger swarms beyond training cases and
significantly outperforms a baseline nonlinear tracking controller
with up to three times reduction in worst-case tracking errors.

Index Terms—Aerial systems, deep learning in robotics, multi-
robot systems, multi-robot motion planning and control

I. INTRODUCTION

THE ongoing commoditization of unmanned aerial vehi-

cles (UAVs) requires robots to fly in much closer prox-

imity to each other than before, which necessitates advanced

planning and control methods for large aerial swarms [1, 2].

For example, consider a search-and-rescue mission where an

aerial swarm must enter and search a collapsed building. In

such scenarios, close-proximity flight enables the swarm to

navigate the building much faster compared to swarms that

must maintain large distances from each other. Other important

applications of close-proximity flight include manipulation,

search, surveillance, and mapping. In many scenarios, hetero-

geneous teams with robots of different sizes and sensing or

manipulation capabilities are beneficial due to their signifi-

cantly higher adaptability. For example, in a search-and-rescue

mission, larger UAVs can be used for manipulation tasks or

to transport goods, while smaller ones are more suited for

exploration and navigation.

The authors are with California Institute of Technology, USA. {gshi,
whoenig, xshi, yyue, sjchung}@caltech.edu.

The video is available at https://youtu.be/Y02juH6BDxo.
The work is funded in part by Caltech’s Center for Autonomous Systems

and Technologies (CAST) and the Raytheon Company.

() ()

()

4

:

1 2

3

Fig. 1. We learn complex interaction between multirotors using heterogeneous
deep sets and design an interaction-aware nonlinear stable controller and a
multi-robot motion planner (a). Our approach enables close-proximity flight
(minimum vertical distance 24 cm) of heterogeneous aerial teams (16 robots)
with significant lower tracking error compared to solutions that do not consider
the interaction forces (b,c).

A major challenge of close-proximity control and planning

is that small distances between UAVs create complex aerody-

namic interactions. For instance, one multirotor flying above

another causes the so-called downwash effect on the lower

one, which is difficult to model using conventional model-

based approaches [3]. Without accurate downwash interaction

modeling, a large safety distance between vehicles is nec-

essary, thereby preventing a compact 3-D formation shape,

e.g., 60 cm for the small Crazyflie 2.0 quadrotor (9 cm rotor-

to-rotor) [4]. Moreover, the downwash is sometimes avoided

by restricting the relative position between robots in the 2-

D horizontal plane [5]. For heterogeneous teams, even larger

and asymmetric safety distances are required [6]. However,

the downwash for two small Crazyflie quadrotors hovering

30 cm on top of each other is only 9 g, which is well within

their thrust capabilities, and suggests that proper modeling

of downwash and other interaction effects can lead to more

precise motion planning and dense formation control.

In this paper, we present a learning-based approach, Neural-
Swarm2, which enhances the precision, safety, and density of

close-proximity motion planning and control of heterogeneous

multirotor swarms. In the example shown in Fig. 1, we safely

ar
X

iv
:2

01
2.

05
45

7v
2

 [c
s.R

O
]

16
 Ju

l 2
02

1

https://youtu.be/Y02juH6BDxo

IEEE TRANSACTIONS ON ROBOTICS 2

operate the same drones with vertical distances less than
half of those of prior work [4]. In particular, we train deep
neural networks (DNNs) to predict the residual interaction
forces that are not captured by the nominal models of free-
space aerodynamics. To the best of our knowledge, this is
the first model for aerodynamic interactions between two or
more multirotors in flight. Our DNN architecture supports het-
erogeneous inputs in a permutation-invariant manner without
reducing the expressiveness. The DNN only requires relative
positions and velocities of neighboring multirotors as inputs,
similar to the existing collision-avoidance techniques [7],
which enables fully-decentralized computation. We use the
predicted interaction forces to augment the nominal dynamics
and derive novel methods to directly consider them during
motion planning and as part of the multirotors’ controller.

From a learning perspective, we leverage and extend two
state-of-the-art tools to derive effective DNN models. First,
we extend deep sets [8] to the heterogeneous case and prove
its representation power. Our novel encoding is used to model
interactions between heterogeneous vehicle types in an index-
free or permutation-invariant manner, enabling better general-
ization to new formations and a varying number of vehicles.
The second is spectral normalization [9], which ensures the
DNN is Lipschitz continuous and helps the DNN generalize
well on test examples that lie outside the training set. We
demonstrate that the interaction forces can be computationally
efficiently and accurately learned such that a small 32-bit
microcontroller can predict such forces in real-time.

From a planning and control perspective, we derive novel
methods that directly consider the predicted interaction forces.
For motion planning, we use a two-stage approach. In the
first stage, we extend an existing kinodynamic sampling-based
planner for a single robot to the interaction-aware multi-robot
case. In the second stage, we adopt an optimization-based
planner to refine the solutions of the first stage. Empirically,
we demonstrate that our interaction-aware motion planner both
avoids dangerous robot configurations that would saturate the
multirotors’ motors and reduces the tracking error signifi-
cantly. For the nonlinear control we leverage the Lipschitz
continuity of our learned interaction forces to derive stability
guarantees similar to our prior work [10, 11]. The controller
can be used to reduce the tracking error of arbitrary desired
trajectories, including ones that were not planned with an
interaction-aware planner.

We validate our approach using two to sixteen quadrotors
of two different sizes, and we also integrate ground effect and
other unmodeled dynamics into our model, by viewing the
physical environment as a special robot. To our knowledge,
our approach is the first that models interactions between two
or more multirotor vehicles and demonstrates how to use such
a model effectively and efficiently for motion planning and
control of aerial teams.

II. RELATED WORK

The aerodynamic interaction force applied to a single UAV
flying near the ground (ground effect), has been modeled
analytically [12–14]. In many cases, the ground effect is not

considered in typical multirotor controllers and thus increases
the tracking error of a multirotor when operating close to the
ground. However, it is possible to use ground effect prediction
in real-time to reduce the tracking error [10, 14].

The interaction between two rotor blades of a single mul-
tirotor has been studied in a lab setting to optimize the
placement of rotors on the vehicle [15]. However, it remains
an open question how this influences the flight of two or
more multirotors in close proximity. Interactions between two
multirotors can be estimated using a propeller velocity field
model [3]. Unfortunately, this method is hard to generalize to
the multi-robot or heterogeneous case and it only considers
the stationary case, which is inaccurate for real flights.

The use of DNNs to learn higher-order residual dynamics
or control actions is gaining attention in the areas of control
and reinforcement learning settings [10, 16–22]. For swarms,
a common encoding approach is to discretize the whole space
and employ convolutional neural networks (CNNs), which
yields a permutation-invariant encoding. Another common
encoding for robot swarms is a Graphic Neural Network
(GNN) [23, 24]. GNNs have been extended to heterogeneous
graphs [25], but it remains an open research question how
such a structure would apply to heterogeneous robot teams.
We extend a different architecture, which is less frequently
used in robotics applications, called deep sets [8]. Deep
sets enable distributed computation without communication
requirements. Compared to CNNs, our approach: i) requires
less training data and computation; ii) is not restricted to a
pre-determined resolution and input domain; and iii) directly
supports the heterogeneous swarm. Compared to GNNs, we
do not require any direct communication between robots.
Deep sets have been used in robotics for homogeneous [11]
and heterogeneous [26] teams. Compared to the latter [26],
our heterogeneous deep set extension has a more compact
encoding and we prove its representation power.

For motion planning, empirical models have been used
to avoid harmful interactions [2, 4, 6, 27, 28]. Typical safe
boundaries along multi-vehicle motions form ellipsoids [4]
or cylinders [6] along the motion trajectories. Estimating
such shapes experimentally would potentially lead to many
collisions and dangerous flight tests and those collision-free
regions are in general conservative. In contrast, we use deep
learning to estimate the interaction forces accurately in hetero-
geneous multi-robot teams. This model allows us to directly
control the magnitude of the interaction forces to accurately
and explicitly control the risk, removing the necessity of
conservative collision shapes.

We generalize and extend the results of our prior work [11]
as follows. i) We derive heterogeneous deep sets to extend
to the heterogeneous case and prove its expressiveness, which
also unifies the approach with respect to single-agent resid-
ual dynamics learning (e.g., learning the ground effect for
improved multirotor landing [10]) by regarding the environ-
ment as a special neighbor. ii) We present a novel two-
stage method to use the learned interaction forces for multi-
robot motion planning. iii) We explicitly compensate for the
delay in motor speed commands in our position and attitude
controllers, resulting in stronger experimental results for both

IEEE TRANSACTIONS ON ROBOTICS 3

our baseline and Neural-Swarm2. iv) Leveraging i)-iii), this
paper presents a result of close-proximity flight with minimum
vertical distance 24 cm (the prior work [4] requires at least
60 cm as the safe distance) of a 16-robot heterogeneous team
in challenging tasks (e.g., the 3-ring task in Fig. 1(b,c)). Our
prior work [11] only demonstrated 5-robot flights in relatively
simple tasks.

III. PROBLEM STATEMENT

Neural-Swarm2 can generally apply to any robotic system
and we will focus on multirotor UAVs in this paper. We first
present single multirotor dynamics including interaction forces
modeled as disturbances. Then, we generalize these dynamics
for a swarm of multirotors. Finally, we formulate our objective
as a variant of an optimal control problem and introduce our
performance metric.

A. Single Multirotor Dynamics

A single multirotor’s state comprises of the global position
p ∈ R3, global velocity v ∈ R3, attitude rotation matrix R ∈
SO(3), and body angular velocity ω ∈ R3. Its dynamics are:

ṗ = v, mv̇ = mg + Rfu + fa, (1a)

Ṙ = RS(ω), Jω̇ = Jω × ω + τu + τa, (1b)
η = B0u, u̇ = −λu + λuc, (1c)

where m and J denote the mass and inertia matrix of
the system, respectively; S(·) is a skew-symmetric mapping;
g = [0; 0;−g] is the gravity vector; and fu = [0; 0;T] and
τu = [τx; τy; τz] denote the total thrust and body torques from
the rotors, respectively. The output wrench η = [T ; τx; τy; τz]
is linearly related to the control input η = B0u, where
u = [n21;n22; . . . ;n2M] is the squared motor speeds for a vehicle
with M rotors and B0 is the actuation matrix. A multirotor is
subject to additional disturbance force fa = [fa,x; fa,y; fa,z]
and disturbance torque τa = [τa,x; τa,y; τa,z]. We also consider
a first order delay model in (1c), where uc is the actual
command signal we can directly control, and λ is the scalar
time constant of the delay model.

Our model creates additional challenges compared to other
exisiting multirotor dynamics models (e.g., [28]). The first
challenge stems from the effect of delay in (1c). The sec-
ond challenge stems from disturbance forces fa in (1a) and
disturbance torques τa in (1b), generated by the interaction
between other multirotors and the environment.

B. Heterogeneous Swarm Dynamics

We now consider N multirotor robots. We use x(i) =
[p(i); v(i); R(i);ω(i)] to denote the state of the ith multirotor.
We use x(ij) to denote the relative state component between
robot i and j, e.g., x(ij) = [p(j)−p(i); v(j)−v(i); R(i)R(j)>].

We use I(i) to denote the type of the ith robot, where
robots with identical physical parameters such as m, J, and
B0 are considered to be of the same type. We assume there
are K ≤ N types of robots, i.e., I(·) is a surjective mapping

from {1, · · · , N} to {type1, · · · , typeK}. Let r
(i)
typek

be the
set of the relative states of the typek neighbors of robot i:

r
(i)
typek

= {x(ij) | j ∈ neighbor(i) and I(j) = typek}. (2)

The neighboring function neighbor(i) is defined by an in-
teraction volume function V . Formally, j ∈ neighbor(i) if
p(j) ∈ V(p(i), I(i), I(j)), i.e., robot j is a neighbor of i if
the position of j is within the interaction volume of i. In this
paper, we design V as a cuboid based on observed interactions
in experiments. The ordered sequence of all relative states
grouped by robot type is

r
(i)
I =

(
r
(i)
type1

, r
(i)
type2

, · · · , r(i)typeK

)
. (3)

The dynamics of the ith multirotor can be written in
compact form:

ẋ(i) = Φ(i)(x(i),u(i)) +


0

f
(i)
a (r

(i)
I)

0

τ
(i)
a (r

(i)
I)

 , (4)

where Φ(i)(x(i),u(i)) denotes the nominal dynamics of robot
i, and f

(i)
a (·) and τ (i)

a (·) are the unmodeled force and torque of
the ith robot that are caused by interactions with neighboring
robots or the environment (e.g., ground effect and air drag).

Robots with the same type have the same nominal dynamics
and unmodeled force and torque:

Φ(i)(·) = ΦI(i)(·), f (i)a (·) = fI(i)a (·), τ (i)
a (·) = τI(i)a (·) ∀i.

(5)
Note that the homogeneous case covered in our prior work [11]
is a special case where K = 1, i.e., Φ(i)(·) = Φ(·), f

(i)
a (·) =

fa(·), and τ (i)
a (·) = τa(·) ∀i.

Our system is heterogeneous in three ways: i) different
robot types have heterogeneous nominal dynamics ΦI(i); ii)
different robot types have different unmodeled f

I(i)
a and τI(i)a ;

and iii) the neighbors of each robot belong to K different sets.
We highlight that our heterogeneous model not only cap-

tures different types of robot, but also different types of
environmental interactions, e.g., ground effect [10] and air
drag. This is achieved in a straightforward manner by viewing
the physical environment as a special robot type. We illustrate
this generalization in the following example.

Example 1 (small and large robots, and the environment).
We consider a heterogeneous system as depicted in Fig. 1(a).
Robot 3 (large robot) has three neighbors: robot 1 (small),
robot 2 (small) and environment 4. For robot 3, we have

f (3)a = f largea (r
(3)
I) = f largea (r

(3)
small, r

(3)
large, r

(3)
env),

r
(3)
small = {x(31),x(32)}, r

(3)
large = ∅, r(3)env = {x(34)}

and a similar expression for τ (3)
a .

IEEE TRANSACTIONS ON ROBOTICS 4

C. Interaction-Aware Motion Planning & Control

Our goal is to move the heterogeneous team of robots from
their start states to goal states, which can be framed as the
following optimal control problem:

min
u(i),x(i),tf

N∑
i=1

∫ tf

0

‖u(i)(t)‖dt (6)

s.t.



robot dynamics (4) i ∈ [1, N]

u(i)(t) ∈ UI(i); x(i)(t) ∈ X I(i) i ∈ [1, N]

‖p(ij)‖ ≥ r(I(i)I(j)) i < j, j ∈ [2, N]

‖f (i)a ‖ ≤ fI(i)a,max; ‖τ (i)
a ‖ ≤ τI(i)a,max i ∈ [1, N]

x(i)(0) = x
(i)
s ; x(i)(tf) = x

(i)
f i ∈ [1, N]

where U (k) is the control space for typek robots, X (k)

is the free space for typek robots, r(lk) is the minimum
safety distance between typel and typek robots, f (k)a,max is
the maximum endurable interaction force for typek robots,
τ
(k)
a,max is the maximum endurable interaction torque for typek

robots, x
(i)
s is the start state of robot i, and x

(i)
f is the desired

state of robot i. In contrast with the existing literature [6],
we assume a tight spherical collision model and bound the
interaction forces directly, eliminating the need of manually
defining virtual collision shapes. For instance, larger fI(i)a,max

and τI(i)a,max will yield denser and more aggressive trajectories.
Also note that the time horizon tf is a decision variable.

Solving (6) in real-time in a distributed fashion is intractable
due to the exponential growth of the decision space with
respect to the number of robots. Thus, we focus on solving two
common subproblems instead. First, we approximately solve
(6) offline as an interaction-aware motion planning problem.
Second, we formulate an interaction-aware controller that
minimizes the tracking error online. This controller can use
both predefined trajectories and planned trajectories from the
interaction-aware motion planner.

Since interaction between robots might only occur for a
short time period with respect to the overall flight duration but
can cause significant deviation from the nominal trajectory, we
consider the worst tracking error of any robot in the team as
a success metric:

max
i,t
‖p(i)(t)− p

(i)
d (t)‖, (7)

where p
(i)
d (t) is the desired trajectory for robot i. Note that

this metric reflects the worst error out of all robots, because
different robots in a team have various levels of task difficulty.
For example, the two-drone swapping task in Fig. 8 is very
challenging for the bottom drone due to the downwash effect,
but relatively easier for the top drone. Minimizing (7) implies
improved tracking performance and safety of a multirotor
swarm during tight formation flight.

IV. LEARNING OF SWARM AERODYNAMIC INTERACTION

We employ state-of-the-art deep learning methods to capture
the unknown (or residual) dynamics caused by interactions
of heterogeneous robot teams. In order to use the learned
functions effectively for motion planning and control, we

require that the DNNs have strong Lipschitz properties (for
stability analysis), can generalize well to new test cases, and
use compact encodings to achieve high computational and
statistical efficiency. To that end, we introduce heterogeneous
deep sets, a generalization of regular deep sets [8], and employ
spectral normalization [9] for strong Lipschitz properties.

In this section, we will first review the homogeneous learn-
ing architecture covered in prior work [8, 11]. Then we will
generalize them to the heterogeneous case with representation
guarantees. Finally, we will introduce spectral normalization
and our data collection procedures.

A. Homogeneous Permutation-Invariant Neural Networks

Recall that in the homogeneous case, all robots are with the
same type (type1). Therefore, the input to functions fa or τa
is a single set. The permutation-invariant aspect of fa or τa
can be characterized as:

fa(r
(i)
type1

) = fa(π(r
(i)
type1

)), τa(r
(i)
type1

) = τa(π(r
(i)
type1

))

for any permutation π. Since the aim is to learn the function
fa and τa using DNNs, we need to guarantee that the learned
DNN is permutation-invariant. Therefore, we consider the
following “deep sets” [8] architecture to approximate homo-
geneous fa and τa:[

fa(r
(i)
type1

)

τa(r
(i)
type1

)

]
≈ ρ

 ∑
x(ij)∈r(i)type1

φ(x(ij))

 :=

[
f̂
(i)
a

τ̂
(i)
a

]
, (8)

where φ(·) and ρ(·) are two DNNs. The output of φ is a
hidden state to represent “contributions” from each neighbor,
and ρ is a nonlinear mapping from the summation of these
hidden states to the total effect.

Obviously the network architecture in (8) is permutation-
invariant due to the inner sum operation. We now show
that this architecture is able to approximate any continuous
permutation-invariant function. The following Lemma 1 and
Theorem 2 are adopted from [8] and will be used and extended
in the next section for the heterogeneous case.

Lemma 1. Define φ̄(z) = [1; z; · · · ; zM] ∈ RM+1 as a
mapping from R to RM+1, and X = {[x1; · · · ;xM] ∈
[0, 1]M |x1 ≤ · · · ≤ xM} as a subset of [0, 1]M . For
x = [x1; · · · ;xM] ∈ X , define q(x) =

∑M
m=1 φ̄(xm). Then

q(x) : X → RM+1 is a homeomorphism.

Proof. The proof builds on the Newton-Girard formulae,
which connect the moments of a sample set (sum-of-power)
to the elementary symmetric polynomials (see [8]).

Theorem 2. Suppose h(x) : [0, 1]M → R is a permutation-
invariant continuous function, i.e., h(x) = h(x1, · · · , xM) =
h(π(x1, · · · , xM)) for any permutation π. Then there exist
continuous functions ρ̄ : RM+1 → R and φ̄ : R → RM+1

such that

h(x) = ρ̄

(
M∑
m=1

φ̄(xm)

)
, ∀x ∈ [0, 1]M .

IEEE TRANSACTIONS ON ROBOTICS 5

Proof. We choose φ̄(z) = [1; z; · · · ; zM] and ρ̄(·) =
h(q−1(·)), where q(·) is defined in Lemma 1. Note that since

q(·) is a homeomorphism, q−1(·) exists and it is a continuous

function from R
M+1 to X . Therefore, ρ̄ is also a continu-

ous function from R
M+1 to R, and ρ̄

(∑M
m=1 φ̄(xm)

)
=

ρ̄(q(x)) = h(q−1(q(x))) = h(x) for x ∈ X . Finally, note

that for any x ∈ [0, 1]M , there exists some permutation π
such that π(x) ∈ X . Then because both ρ̄(q(x)) and h(x)
are permutation-invariant, we have ρ̄ (q(x)) = ρ̄ (q(π(x))) =
h(π(x)) = h(x) for all x ∈ [0, 1]M .

Theorem 2 focuses on scalar valued permutation-invariant

continuous functions with hypercubic input space [0, 1]M ,

i.e., each element in the input set is a scalar. In contrast,

our learning target function [fa; τa] in (8) is a vector valued

function with a bounded input space, and each element in

the input set is also a vector. However, Theorem 2 can be

generalized in a straightforward manner by the following

corollary.

Corollary 3. Suppose x(1),x(2), · · · ,x(M) are M bounded
vectors in R

D1 , and h(x(1), · · · ,x(M)) is a continuous
permutation-invariant function from R

M×D1 to R
D2 , i.e.,

h(x(1), · · · ,x(M)) = h(xπ(1), · · · ,xπ(M)) for any permuta-
tion π. Then h(x(1), · · · ,x(M)) can be approximated arbitrar-
ily close in the proposed architecture in (8).

Proof. First, there exists a bijection from the bounded vector

space in R
D1 to [0, 1] after discretization, with finite but

arbitrary precision. Thus, Theorem 2 is applicable. Second, we

apply Theorem 2 D2 times and stack D2 scalar-valued func-

tions to represent the vector-valued function with output space

R
D2 . Finally, because DNNs are universal approximators for

continuous functions [29], the proposed architecture in (8) can

approximate any h(x(1), · · · ,x(M)) arbitrarily close.

B. Heterogeneous K-Group Permutation-Invariant DNN

Different from the homogeneous setting, the inputs to

functions f
I(i)
a and τ

I(i)
a in (5) are K different sets. First,

we define permutation-invariance in the heterogeneous case.

Intuitively, we expect that the following equality holds:

fI(i)a (r
(i)
type1

, · · · , r(i)typeK
) = fI(i)a (π1(r

(i)
type1

), · · · , πK(r
(i)
typeK

))

for any permutations π1, · · · , πK (similarly for τ
I(i)
a). For-

mally, we define K-group permutation invariance as follows.

Definition 1 (K-group permutation invariance). Let x(k) =

[x
(k)
1 ; · · · ;x(k)

Mk
] ∈ [0, 1]Mk for 1 ≤ k ≤ K, and x =

[x(1); · · · ;x(K)] ∈ [0, 1]MK , where MK =
∑K

k=1 Mk. h(x) :
R

MK → R is K-group permutation-invariant if

h([x(1); · · · ;x(K)]) = h([π1(x
(1)); · · · ;πK(x(K))])

for any permutations π1, π2, · · · , πK .

For example, h(x1, x2, y1, y2) = max{x1, x2} + 2 ·
max{y1, y2} is a 2-group permutation-invariant function, be-

cause we can swap x1 and x2 or swap y1 and y2, but if we

interchange x1 and y1 the function value may vary. In addition,

…

…

… …

Fig. 2. Illustration of Theorem 4. We first find a homeomorphism qK(·)
between the original space and the latent space, and then find a continuous
function ρ̄(·) such that ρ̄(qK(·)) = h(·).

the f largea function in Example 1 is a 3-group permutation-

invariant function.

Similar to Lemma 1, in order to handle ambiguity due

to permutation, we define XMk
= {[x1; · · · ;xMk

] ∈
[0, 1]Mk |x1 ≤ · · · ≤ xMk

} and

XK = {[x(1); · · · ;x(K)] ∈ [0, 1]MK |x(k) ∈ XMk
, ∀k}.

Finally, we show how a K-group permutation-invariant func-

tion can be approximated via the following theorem.

Theorem 4. h(x) : [0, 1]MK → R is a K-group permutation-
invariant continuous function if and only if it has the repre-
sentation

h(x) = ρ̄

(
M1∑
m=1

φ̄1(x
(1)
m) + · · ·+

MK∑
m=1

φ̄K(x(K)
m)

)

= ρ̄

(
K∑

k=1

Mk∑
m=1

φ̄k(x
(k)
m)

)
, ∀x ∈ [0, 1]MK

for some continuous outer and inner functions ρ̄ : RK+MK →
R and φ̄k : R→ R

K+MK for 1 ≤ k ≤ K.

Proof. The sufficiency follows from that h(x) is K-group

permutation-invariant by construction. For the necessary con-

dition, we need to find continuous functions ρ̄ and {φ̄k}Kk=1

given h. We define φ̄k(x) : R→ R
K+MK as

φ̄k(x) = [0M1 ; · · · ;0Mk−1
;

⎡
⎢⎢⎢⎣

1
x
...

xMk

⎤
⎥⎥⎥⎦ ;0Mk+1

; · · · ;0MK
]

where 0Mk
= [0; · · · ; 0] ∈ R

Mk+1. Then

qK(x) =

K∑
k=1

Mk∑
m=1

φ̄k(x
(k)
m)

is a homeomorphism from XK ⊆ R
MK to R

K+MK from

Lemma 1. We choose ρ̄ : RK+MK → R as ρ̄(·) = h(q−1
K (·))

which is continuous, because both q−1
K and h are continuous.

Then ρ̄(qK(x)) = h(x) for x ∈ XK . Finally, because i) for

IEEE TRANSACTIONS ON ROBOTICS 6

all x = [x(1); · · · ; x(K)] in [0, 1]MK there exist permutations
π1, · · · , πK such that [π1(x(1)); · · · ;πK(x(K))] ∈ XK ; and ii)
both ρ̄(qK(x)) and h(x) are K-group permutation-invariant,
we have ρ̄(qK(x)) = h(x) for x ∈ [0, 1]MK .

Figure 2 depicts the key idea of Theorem 4. Moreover, we
provide a 2-group permutation-invariant function example to
highlight the roles of φ and ρ in the heterogeneous case.

Example 2 (2-group permutation-invariant function). Con-
sider h(x1, x2, y1, y2) = max{x1, x2} + 2 · max{y1, y2},
which is 2-group permutation-invariant. Then we define
φx(x) = [eαx;xeαx; 0; 0], φy(y) = [0; 0; eαy; yeαy] and
ρ([a; b; c; d]) = b/a+ 2 · d/c. Note that

ρ(φx(x1) + φx(x2) + φy(y1) + φy(y2))

=
x1e

αx1 + x2e
αx2

eαx1 + eαx2
+ 2 · y1e

αy1 + y2e
αy2

eαy1 + eαy2
,

which is asymptotically equal to max{x1, x2}+2·max{y1, y2}
as α→ +∞.

Similar to the homogeneous case, Theorem 4 can generalize
to vector-output functions with a bounded input space by
applying the same argument as in Corollary 3. We propose
the following heterogeneous deep set structure to model the
heterogeneous functions f

I(i)
a and τI(i)a :[

f
I(i)
a (r

(i)
type1

, · · · , r(i)typeK
)

τ
I(i)
a (r

(i)
type1

, · · · , r(i)typeK
)

]

≈ρI(i)

 K∑
k=1

∑
x(ij)∈r(i)typek

φI(j)(x
(ij))

 :=

[
f̂
(i)
a

τ̂
(i)
a

]
.

(9)

Example 3 (Use of 3-group permutation-invariant function
for multirotors). For example, in the heterogeneous system
provided by Example 1 (as depicted in Fig. 1(a)), we have[

f
(3)
a

τ
(3)
a

]
=

[
f largea (r

(3)
small, r

(3)
large, r

(3)
env)

τ large
a (r

(3)
small, r

(3)
large, r

(3)
env)

]
≈ ρlarge

(
φsmall(x

(31)) + φsmall(x
(32)) + φenv(x(34))

)
,

for the large robot 3, where φsmall captures the interaction
with the small robot 1 and 2, and φenv captures the interaction
with the environment 4, e.g., ground effect and air drag.

The structure in (9) has many valuable properties:
• Representation ability. Since Theorem 4 is necessary

and sufficient, we do not lose approximation power
by using this constrained framework, i.e., any K-group
permutation-invariant function can be learned by (9).
We demonstrate strong empirical performance using rel-
atively compact DNNs for ρI(i) and φI(j).

• Computational and sampling efficiency and scalabil-
ity. Since the input dimension of φI(j) is always the same
as the single vehicle case, the feed-forward computational
complexity of (9) grows linearly with the number of
neighboring vehicles. Moreover, the number of neural
networks (ρI(i) and φI(j)) we need is 2K, which grows
linearly with the number of robot types. In practice, we

found that one hour flight data is sufficient to accurately
learn interactions between two to five multirotors.

• Generalization to varying swarm size. Given learned
φI(j) and ρI(i) functions, (9) can be used to predict
interactions for any swarm size. In other words, we can
accurately model swarm sizes (slightly) larger than those
used for training. In practice, we found that our model
can give good predictions for five multirotor swarms,
despite only being trained on one to three multirotor
swarms. Theoretical analysis on this generalizability is
an interesting future research direction.

C. Spectral Normalization for Robustness and Generalization

To improve a property of robustness and generalizability
of DNNs, we use spectral normalization [9] for training
optimization. Spectral normalization stabilizes a DNN training
by constraining its Lipschitz constant. Spectrally-normalized
DNNs have been shown to generalize well, which is an indi-
cation of stability in machine learning. Spectrally-normalized
DNNs have also been shown to be robust, which can be used
to provide control-theoretic stability guarantees [10, 30]. The
bounded approximation error assumption (Assumption 1) in
our control stability and robustness analysis (Sec. VI-B) also
relies on spectral normalization of DNNs.

Mathematically, the Lipschitz constant ‖g‖Lip of a function
g(·) is defined as the smallest value such that:

∀x,x′ : ‖g(x)− g(x′)‖2/‖x− x′‖2 ≤ ‖g‖Lip.

Let g(x,θ) denote a ReLU DNN parameterized by the DNN
weights θ = W1, · · · ,WL+1:

g(x,θ) = WL+1σ(WLσ(· · ·σ(W1x) · · ·)), (10)

where the activation function σ(·) = max(·, 0) is called the
element-wise ReLU function. In practice, we apply the spectral
normalization to the weight matrices in each layer after each
batch gradient descent as follows:

Wi ←Wi/‖Wi‖2 · γ
1

L+1 , i ∈ [1, L+ 1], (11)

where ‖Wi‖2 is the maximum singular value of Wi and γ is
a hyperparameter. With (11), ‖g‖Lip will be upper bounded by
γ. Since spectrally-normalized g is γ−Lipschitz continuous,
it is robust to noise ∆x, i.e., ‖g(x + ∆x)− g(x)‖2 is always
bounded by γ‖∆x‖2. In this paper, we apply the spectral
normalization on both the φI(j)(·) and ρI(i)(·) DNNs in (9).

D. Curriculum Learning

Training DNNs in (9) to approximate f
I(i)
a and τ

I(i)
a

requires collecting close formation flight data. However, the
downwash effect causes the nominally controlled multirotors
(without compensation for the interaction forces) to move
apart from each other. Thus, we use a curriculum/cumulative
learning approach: first, we collect data for two multirotors
without a DNN and learn a model. Second, we repeat the data
collection using our learned model as a feed-forward term
in our controller, which allows closer-proximity flight of the
two vehicles. Third, we repeat the procedure with increasing
number of vehicles, using the current best model.

IEEE TRANSACTIONS ON ROBOTICS 7

Note that our data collection and learning are independent

of the controller used and independent of the f
I(i)
a or τ

I(i)
a

compensation. In particular, if we actively compensate for the

learned f
I(i)
a or τ

I(i)
a , this will only affect η in (1a) and not

the observed f
I(i)
a or τ

I(i)
a .

V. INTERACTION-AWARE MULTI-ROBOT PLANNING

We approximately solve (6) offline by using two simplifi-

cations: i) we plan sequentially for each robot, treating other

robots as dynamic obstacles with known trajectories, and ii) we

use double-integrator dynamics plus learned interactions. Both

simplifications are common for multi-robot motion planning

with applications to multirotors [2, 31]. Such a motion plan-

ning approach can be easily distributed and is complete for

planning instances that fulfill the well-formed infrastructure
property [32]. However, the interaction forces (9) complicate

motion planning significantly, because the interactions are

highly nonlinear and robot dynamics are not independent from

each other anymore.

For example, consider a three robot team with two small

and one large robot as in Fig. 1(a). Assume that we already

have valid trajectories for the two small robots and now plan a

motion for the large robot. The resulting trajectory might result

in a significant downwash force for the small robots if the

large robot flies directly above the small ones. This strong in-

teraction might invalidate the previous trajectories of the small

robots or even violate their interaction force limits f small
a,max and

τ small
a,max. Furthermore, the interaction force is asymmetric and

thus it is not sufficient to only consider the interaction force

placed on the large robot. We solve this challenge by directly

limiting the change of the interaction forces placed on all

neighbors when we plan for a robot. This concept is similar

to trust regions in sequential optimization [33].

The simplified state is x(i) = [p(i);v(i); f̂
(i)
a] and the

simplified dynamics (4) become:

ẋ(i) = f (i)(x(i),u(i)) =

⎡
⎢⎣

v(i)

u(i) + f̂
(i)
a

˙̂
f
(i)
a

⎤
⎥⎦ . (12)

These dynamics are still complex and nonlinear because of

f̂
(i)
a , which is the learned interaction force represented by

DNNs in (9). We include f̂
(i)
a in our state space to simplify

the enforcement of the bound on the interaction force in (6).

We propose a novel hybrid two-stage planning algorithm,

see Algorithm 1, leveraging the existing approaches while

still highlighting the importance of considering interactive

forces/torques in the planning. The portions of the pseudo-

code in Algorithm 1 that significantly differ from the existing

methods to our approach are highlighted. In Stage 1, we

find initial feasible trajectories using a kinodynamic sampling-

based motion planner. Note that any kinodynamic planner can

be used for Stage 1. In Stage 2, we use sequential convex

programming (SCP) [2, 33, 34] to refine the initial solution to

reach the desired states exactly and to minimize our energy

objective defined in (6). Intuitively, Stage 1 identifies the

homeomorphism class of the solution trajectories and fixes tf ,

while Stage 2 finds the optimal trajectories to the goal within

that homeomorphism class. Both stages differ from similar

methods in the literature [2], because they need to reason over

the coupling of the robots caused by interaction forces f̂
(i)
a .

Algorithm 1: Interaction-aware motion planning

Input: x(i)
0 , x(i)

f , Δt

Result: X (i)
sol =

(
x
(i)
0 ,x

(i)
1 ,x

(i)
2 , . . . ,x

(i)

T (i)

)
,

U (i)
sol =

(
u
(i)
0 ,u

(i)
1 ,u

(i)
2 , . . . ,x

(i)

T (i)−1

)

� Stage 1: Find duration tf and initial trajectories that are
close to the goal state

1 c(i) ← ∞,X (i)
sol ← (),U (i)

sol ← () ∀i ∈ {1, . . . , N}
2 repeat
3 foreach i ∈ RandomShuffle({1, . . . , N})

p
3 foreach i ∈ RandomShuffle({1, . . . , N}) do
4 T = ({x(i)

0 }, ∅)
5 repeat
6 xrand ← UniformSample(X I(i))
7 xnear ← FindClosest(T , xrand)
8 urand ← UniformSample(UI(i))
9 xnew, c ← Propagate(xnear, urand, Δt,

{X (j)
sol |j �= i})

10 if StateValid(xnew, {X (j)
sol |j �= i}) and c ≤ c(i)10 if StateValid(xnew, {X (j)
solXX |j �=�� i}) and c ≤ c(i)

then
11 Add(T ,xnear → xnew)

12 if ‖xnew − x
(i)
f ‖ ≤ ε then

13 c(i) ← c

14 X (i)
sol ,U

(i)
sol ← ExtractSolution(T ,xnew)

15 break

16 until TerminationCondition1()
17 X (i)

sol ,U
(i)
sol ← PostProcess(X (i)

sol ,U
(i)
sol)

� Stage 2: Refine trajectories sequentially; Based on SCP
18 repeat
19 foreach i ∈ RandomShuffle({1, . . . , N}) do
20 X (i)

sol ,U
(i)
sol ← SolveCP(Eq. (16), {X (i)

sol |∀i}, {U
(i)
sol |∀i})20 X (i)

solXX ,U (i)
solUU ← SolveCP(Eq. (16), {X (i)

solXX |∀i}, {U (i)
solUU |∀i})

21 until Converged()

A. Stage 1: Sampling-Based Planning using Interaction
Forces

For Stage 1, any kinodynamic single-robot motion planner

can be extended. For the coupled multi-robot setting in the

present paper, we modify AO-RRT [35], which is is a meta-

algorithm that uses the rapidly-exploring random tree (RRT)

algorithm as a subroutine.

Sampling-Based Planner: Our adaption of RRT (Lines 3

to 15 in Algorithm 1) works as follows. First, a random state

xrand is uniformly sampled from the state space (Line 6)

and the closest state xnear that is already in the search tree

T is found (Line 7). This search can be done efficiently in

logarithmic time by employing a specialized data structured

such as a kd-tree [36] and requires the user to define a distance

function on the state space. Second, an action is uniformly

sampled from the action space (Line 8) and the dynamics (4)

are forward propagated for a fixed time period Δt using xnear

as the initial condition, e.g., by using the Runge-Kutta method

(Line 9). Note that this forward propagation directly considers

the learned dynamics f̂
(i)
a . Third, the new state xnew is checked

for validity with respect to i) the state space (which includes

IEEE TRANSACTIONS ON ROBOTICS 8

Y

Z

Initial trajectory of neighbor

Search tree

Rejected motions

Solution

0

2

4

6

8

10

|f a
|[

g
]

Fig. 3. Example for Stage 1 of our motion planning with learned dynamics.
Here, we have an initial solution for a small (blue) robot and plan for a large
(orange) robot. The created search tree of the large robot is color-coded by
the magnitude of the interaction force on the orange robot. During the search,
we reject states that would cause a significant change in the interaction force
for the blue robot (edges in blue).

f̂
(i)
a), ii) collisions with other robots, and iii) change and bound

of the neighbor’s interaction forces (Line 10). The first validity

check ensures that the interaction force of the robot itself is

bounded, while the third check is a trust region and upper

bound for the neighbor’s interaction forces.

If xnew is valid, it is added as a child node of xnear in the

search tree T (Line 11). Finally, if xnew is within an ε-distance

to the goal x
(i)
f , the solution can be extracted by following the

parent pointers of each tree node starting from xnew until the

root node x
(i)
0 is reached (Line 15).

We note that our RRT steering method departs from ones in

the literature which either sample Δt, use a best-control ap-

proximation of the steer method in RRT, or use a combination

of both Δt-sampling and best-control approximation [35]. We

are interested in a constant Δt for our optimization formu-

lation in Stage 2. In this case, a best-control approximation

would lead to a probabilistic incomplete planner [37]. We

adopt a technique of goal biasing where we pick the goal

state rather than xrand in fixed intervals, in order to improve

the convergence speed.

While RRT is probabilistically complete, it also almost

surely converges to a suboptimal solution [38]. AO-RRT reme-

dies this shortcoming by planning in a state-cost space and

using RRTs sequentially with a monotonically decreasing cost

bound. The cost bound c(i) is initially set to infinity (Line 1)

and the tree can only grow with states that have a lower cost

associated with them (Line 10). Once a solution is found, the

cost bound is decreased accordingly (Line 13) and the search

is repeated using the new cost bound (Line 2). This approach

is asymptotically optimal, but in practice the algorithm is

terminated based on some condition, e.g., a timeout or a fixed

number of iterations without improvements (Line 16).

Modification of Sampling-Based Planner: We extend AO-

RRT to a sequential interaction-aware multi-robot planner

by adding f̂
(i)
a and time to our state space and treating the

other robots as dynamic obstacles. As cost, we use a discrete

approximation of the objective in (6). For each AO-RRT

outer-loop iteration with a fixed cost bound, we compute

trajectories sequentially using a random permutation of the

robots (Line 3). When we check the state for validity (Line 10),

we also enforce that the new state is not in collision with

the trajectories of the other robots and that their interaction

forces are bounded and within a trust region compared to

their previous value, see Fig. 3 for visualization. Here, the red

edges show motions that cause large (≈ 10 g) but admissible

interaction forces on the orange robot, because the blue robot

flies directly above it. The blue edges are candidate edges

as computed in Line 9 and are not added to the search tree,

because their motion would cause a violation of the interaction

force trust region of the blue robot (condition in Line 10).

Once the search tree contains a path to the goal region, a

solution is returned (orange path).

The output of the sequential planner (Line 15) is a sequence

of states X (i)
sol and actions U (i)

sol , each to be applied for a

duration of Δt. Note that the sequences might have different

lengths for each robot. Implicitly, the sequences also defines

tf . Furthermore, the first element of each sequence is the

robots’ start state and the last element is within a ε-distance of

the robots’ goal state. We postprocess this sequence of states

to make it an appropriate input for the optimization, e.g., for

uniform length (Line 17). In practice, we found that repeating

the last state and adding null actions, or (virtual) tracking of

the computed trajectories using a controller are efficient and

effective postprocessing techniques.

Other sampling-based methods can be used as foundation

of the first stage as well, with similar changes in sequential

planning, state-augmentation to include the interaction forces,

state-validity checking, and postprocessing.

B. Stage 2: Optimization-Based Motion Planning

We employ sequential convex programming (SCP) for op-

timization. SCP is a local optimization method for nonconvex

problems that leverages convex optimization. The key concept

is to convexify the nonconvex portions of the optimization

problem by linearizing around a prior solution. The result-

ing convex problem instance is solved and a new solution

obtained. The procedure can be repeated until convergence

criteria are met. Because of the local nature of this procedure,

a good initial guess is crucial for high-dimensional and highly

nonlinear system dynamics. In our case, we use the searched

trajectories from Stage 1 in Sec. V-A as the initial guess.

We first adopt a simple zero-order hold temporal discretiza-

tion of the dynamics (12) using Euler integration:

x
(i)
k+1 = x

(i)
k + ẋ

(i)
k Δt. (13)

Second, we linearize ẋ
(i)
k around prior states x̄

(i)
k and

actions ū
(i)
k :

ẋ
(i)
k ≈ Ak(x

(i)
k − x̄

(i)
k) +Bk(u

(i)
k − ū

(i)
k) + f (i)(x̄

(i)
k , ū

(i)
k),
(14)

IEEE TRANSACTIONS ON ROBOTICS 9

where Ak and Bk are the partial derivative matrices of f (i)

with respect to x
(i)
k and u

(i)
k evaluated at x̄

(i)
k , ū

(i)
k . Because

we encode f̂
(i)
a using fully-differentiable DNNs, the partial

derivatives can be efficiently computed analytically, e.g., by
using autograd in PyTorch [39].

Third, we linearize f̂
(j)
a around our prior states x̄

(i)
k for all

neighboring robots j ∈ neighbor(i):

f̂ (j)a ≈ C
(j)
k (x

(i)
k − x̄

(i)
k) + f̂ (j)a (r

(i)
I (x̄

(i)
k)), (15)

where C
(j)
k is the derivative matrix of f̂

(j)
a (the learned

interaction function of robot j, represented by DNNs) with
respect to x

(i)
k evaluated at x̄

(i)
k ; and r

(i)
I (x̄

(i)
k) is the ordered

sequence of relative states as defined in (3) but using the fixed
prior state x̄

(i)
k rather than decision variable x

(i)
k in (2).

We now formulate a convex program, one per robot:

min
X (i)

sol ,U
(i)
sol

T∑
t=0

‖u(i)
k ‖

2 + λ1‖x(i)
T − x

(i)
f ‖∞ + λ2δ (16)

subject to:

robot dynamics (13) and (14) i ∈ [1, N]

u
(i)
k ∈ UI(i) i ∈ [1, N]

x
(i)
k ∈ X

I(i)
δ i ∈ [1, N], δ ≥ 0

〈p̄(ij)
k ,p

(i)
k − p̄

(i)
k 〉 ≥ r(I(i)I(j))‖p̄

(ij)
k ‖2 i < j, j ∈ [2, N]

x
(i)
0 = x

(i)
s i ∈ [1, N]

|C(j)
k (x

(i)
k − x̄

(i)
k)| ≤ bfa i < j, j ∈ [2, N]

|x(i)
k − x̄

(i)
k | ≤ bx; |u(i)

k − ū
(i)
k | ≤ bu i ∈ [1, N]

where X I(i)δ is the state space increased by δ in each direction,
the linearized robot dynamics are similar to [33, 40], and the
convexified inter-robot collision constraint is from [2]. We
use soft constraints for reaching the goal (with weight λ1)
and the state space (with weight λ2), and trust regions around
x̄
(i)
k , ū

(i)
k , and the neighbors’ interaction forces for numerical

stability. Interaction forces are constrained in (16) because f̂
(i)
a

is part of the state space X I(i).
We solve these convex programs sequentially and they con-

verge to a locally optimal solution [2]. For the first iteration,
we linearize around the trajectory computed during Stage 1
of our motion planner while subsequent iterations linearize
around the solution of the previous iteration (Lines 18 to 21
in Algorithm 1). It is possible to implement Algorithm 1 in a
distributed fashion similar to prior work [2].

VI. INTERACTION-AWARE TRACKING CONTROLLER

Given arbitrary desired trajectories, including ones that have
not been computed using the method presented in Sec. V, we
augment existing nonlinear position and attitude controllers
for multirotors [41, 42] that account for interaction forces and
torques and compensate motor delays.

A. Tracking Control Law with Delay Compensation
We use a typical hierarchical structure as shown in Fig. 4

for controlling multirotor robots. Given the desired 3D position
trajectory p

(i)
d (t) for robot i, we define a reference velocity

v(i)
r = ṗ

(i)
d −Λ(i)

p p̃(i), (17)

with position error p̃(i) = p(i)−p
(i)
d and gain matrix Λ

(i)
p � 0.

The position controller is defined by the desired thrust vector

f
(i)
d = −m(i)g +m(i)v̇(i)

r − f̂ (i)a

−
(
K(i)
v +mΓ(i)

v

)
ṽ(i) −K(i)

v Γ(i)
v

∫
ṽ(i),

(18)

where ṽ(i) = v(i) − v
(i)
r is the velocity error, and K

(i)
v ,

Γ
(i)
v are positive definite gain matrices. From (1a), by set-

ting R(i)f
(i)
u = f

(i)
d , we compute the total desired thrust

T
(i)
d = f

(i)
d · k̂ and the desired attitude R

(i)
d [10]. We convert

the error rotation matrix R̃(i) = R
(i)>
d R(i) to a constrained

quaternion error q̃(i) = [q̃
(i)
0 , q̃

(i)
v], and define the reference

angular rate as

ω(i)
r = R̃(i)>ω

(i)
d −Λ(i)

q q̃(i)
v . (19)

We use the following nonlinear attitude controller from [41]
with interaction torque compensation:

τ
(i)
d = J(i)ω̇(i)

r − J(i)ω(i) × ω(i)
r − τ̂ (i)

a

−K(i)
ω ω̃

(i) − Γ(i)
ω

∫
ω̃(i). (20)

K
(i)
ω and Γ

(i)
ω are positive definite gain matrices on angular

rate error ω̃(i) = ω(i) − ω(i)
r and its integral, respectively.

From (18) and (20), the desired output wrench for the i-th
robot η(i)

d =
[
T

(i)
d ; τ

(i)
d

]
must be realized through a delayed

motor signal u
(i)
c from (1c). Here, we implement a simple yet

effective method to compensate for motor delay [43]:

u(i)
c = B

(i)+
0

(
η
(i)
d +

η̇
(i)
d

λ(i)

)
, (21)

where the actuation matrix B
(i)
0 and delay constant λ(i)

are determined a priori. We consider the multirotor to be
fully or over-actuated, thus (·)+ denotes either the inverse or
right pseudo-inverse. η̇(i)

d can be obtained through numerical
differentiation [43].

B. Analysis of Stability and Robustness

The robust position and attitude controllers (18) and (20)
can handle bounded model disturbance [10, 41]. Here, we
make the same assumption as in [10, 11], that the learning
errors and their rates of change are upper bounded.

Assumption 1 (Bounded approximation error of DNNs). We
denote the approximation errors between the learned model
in (9) and the true unmodeled dynamics for interaction force
and torque as εf = f

(i)
a − f̂

(i)
a and ετ = τ

(i)
a − τ̂ (i)

a ,
respectively. For each robot, we assume εf and ετ are
uniformly upper bounded. Formally, supx(i)∈XI(i)‖εf‖ = ε̄

(i)
f

and supx(i)∈XI(i)‖ετ‖ = ε̄
(i)
τ . Furthermore, we assume the

time derivative of errors are upper bounded as well, i.e
supx(i)∈XI(i)‖ε̇f‖ = d̄

(i)
f and supx(i)∈XI(i)‖ε̇τ‖ = d̄

(i)
τ .

Note that when the number of agents are fixed, the ε̄(i)f , ε̄(i)τ ,
d̄
(i)
f , and d̄

(i)
τ can all be derived from the Lipschitz constant

IEEE TRANSACTIONS ON ROBOTICS 10

Fig. 4. Hierarchy of control and planning blocks with information flow
for commands and sensor feedback. We use different colors to represent
heterogeneous neighbors. Note that the neighbors will influence the vehicle
dynamics (dashed arrow).

in (9) for spectrally-normalized DNNs [9, 30], under standard

training data distribution assumptions. It is common to assume

such bounded approximation errors in learning-based control,

e.g., [10, 18–20]. Under Assumption 1, we can show the

stability of the position and attitude controllers using results

from [11, 41]:

Theorem 5. For the position controller defined in (17)
and (18) under Assumption 1, the position tracking error
‖p̃(i)‖ converges exponentially to an error ball:

lim
t→∞ ‖p̃

(i)‖ =
d̄
(i)
f

λmin(Λ
(i)
p)λmin(Γ

(i)
v)λmin(K

(i)
v)

(22)

Proof. We select sliding variables: s1 = ˙̃p(i) + Λ
(i)
p p̃(i) and

s2 = mṡ1 +Kvs1. Then, (18) can be written as

f
(i)
d = −m(i)g +m(i)v̇(i)

r − f̂ (i)a −K(i)
v s1 − Γ(i)

v

∫
s2.

Applying to (1a), we can get closed-loop dynamics ṡ2 +

Γ
(i)
v s2 = ε̇f . Thus combining hierarchical linear systems of

ṡ1 and ṡ2, we can easily arrive at (22).

Theorem 6. For the attitude controller defined in (19)
and (20) under Assumption 1, the attitude tracking error ‖q̃(i)

v ‖
converges exponentially to an error ball determined by d̄

(i)
τ .

Proof. Applying (20) to (1b), we get closed-loop dynamics

J(i) ˙̃ω(i) − J(i)ω(i) × ω̃(i) −K(i)
ω ω̃(i) − Γ(i)

ω

∫
ω̃(i) = ετ .

Following the proof structure for Theorem 2 in [41], we can

derive an ultimate bound for ‖q̃(i)
v ‖ determined by d̄

(i)
τ .

With motor delay, we can state the following result for

stabilizing the output wrench error η̃(i) = η(i)−η(i)
d with (21),

assuming the motor delay constant is obtained from testing.

Theorem 7. For robot i, the controllers (18), (20) and (21)
will exponentially stabilize the augmented states of position,
attitude and output wrench error: [p̃(i); ṽ(i); q̃

(i)
v ; ω̃(i); η̃(i)].

Proof. (18) and (20) stabilizes [p̃(i); ṽ(i); q̃
(i)
v ; ω̃(i)] exponen-

tially from Theorems 5 and 6. Thus by Theorem 3.1 from [43],

it follows that the augmented states is also exponentially

stabilized by (21).

With small modelling errors on λ(i), the controller (21) can

robustly cancel out some effects from delays and improve

tracking performance in practice. Furthermore, it can handle

not only first-order motor delay (1c), but also signal transport

delays [43]. In case of the small quadrotors used in our

experiments, such delays are on the same order of magnitude

as the motor delay, thus making (21) essential for improving

the control performance.

VII. EXPERIMENTS

We use quadrotors based on Bitcraze Crazyflie 2.0/2.1 (CF).

Our small quadrotors are Crazyflie 2.X, which are small

(9 cm rotor-to-rotor) and lightweight (34 g) products that are

commercially available. Our large quadrotors use the Crazyflie

2.1 as control board on a larger frame with brushed motors

(model: Parrot Mini Drone), see Table I for a summary of

physical parameters. We use the Crazyswarm [44] package to

control multiple Crazyflies simultaneously. Each quadrotor is

equipped with a single reflective marker for position tracking

at 100 Hz using a motion capture system. The nonlinear con-

troller, extended Kalman filter, and neural network evaluation

are running on-board the STM32 microcontroller.

For the controller, we implement the delay compensation

(21) in the following way: i) we numerically estimate Ṫ
(i)
d as

part of the position controller (18), and ii) we approximate

τ̇
(i)
d by adding the additional term −K(i)

ω̇
˙̃ω(i) to the attitude

controller (20), where ˙̃ω(i) is numerically estimated and K
(i)
ω̇

is a positive definite gain matrix. We found that the other

terms of τ̇
(i)
d , i.e. the time-derivative of (20), are negligible

for our use-case. The baseline controller is identical (including

the chosen gains) to our proposed controller except that the

interaction force for the baseline is set to zero. The baseline

controller is much more robust and efficient than the well-

tuned nonlinear controller in the Crazyswarm package, which

cannot safely execute the close-proximity flight shown in

Fig. 1(c) and requires at least 60 cm safety distance [4].

For data collection, we use the μSD card extension board

and store binary encoded data roughly every 10 ms. Each

dataset is timestamped using the on-board microsecond timer

and the clocks are synchronized before takeoff using broadcast

radio packets. The drift of the clocks of different Crazyflies

can be ignored for our short flight times (less than 2 min).

A. Calibration and System Identification of Different Robots

Prior to learning the residual terms f
(i)
a and τ

(i)
a , we

first calibrate the nominal dynamics model Φ(i)(x,u). We

found that existing motor thrust models [45, 46] are not

very accurate, because they only consider a single motor and

ignore the effect of the battery state of charge. We calibrate

each Crazyflie by mounting the whole quadrotor upside-down

on a load cell (model TAL221) which is directly connected

IEEE TRANSACTIONS ON ROBOTICS 11

TABLE I
SYSTEM IDENTIFICATION OF THE USED QUADROTORS.

Small Large

Weight 34 g 67 g
Max

Thrust 65 g 145 g

Diameter 12 cm 19 cm
λ 16 16

ψ1(p̂, v̂)
11.09−39.08p̂−9.53v̂+

20.57p̂2 + 38.43p̂v̂

44.1.0− 122.51p̂−
36.18v̂ + 53.11p̂2 +

107.68p̂v̂

ψ2(f̂ , v̂)
0.5 + 0.12f̂ − 0.41v̂ −

0.002f̂2 − 0.043f̂ v̂
0.56 + 0.06f̂ − 0.6v̂ −
0.0007f̂2 − 0.015f̂ v̂

ψ3(p̂, v̂) −9.86 + 3.02p̂− 26.72v̂ −29.91 + 8.1p̂+ 65.2v̂

to the Crazyflie via a custom extension board using a 24-
bit ADC (model HX711). The upside-down mounting avoids
contamination of our measurements with downwash-related
forces. We use a 100 g capacity load cell for the small
quadrotor and a 500 g capacity load cell for the large quadrotor.
We randomly generate desired PWM motor signals (identical
for all 4 motors) and collect the current battery voltage, PWM
signals, and measured force. We use this data to find three
polynomial functions: ψ1, ψ2, and ψ3. The first f̂ = ψ1(p̂, v̂)
computes the force of a single rotor given the normalized
PWM signal p̂ and the normalized battery voltage v̂. This
function is only required for the data collection preparation
in order to compute f

(i)
a . The second p̂ = ψ2(f̂ , v̂) computes

the required PWM signal p̂ given the desired force f̂ and
current battery voltage v̂. Finally, f̂max = ψ3(p̂, v̂) computes
the maximum achievable force f̂max, given the current PWM
signal p̂ and battery voltage v̂. The last two functions are
important at runtime for outputting the correct force as well
as for thrust mixing when motors are saturated [47].

We use the same measurement setup with the load cell
to establish the delay model of T

(i)
d with a square wave

PWM signal. While the delay model is slightly asymmetric
in practice, we found that our symmetric model (1c) is a good
approximation. All results are summarized in Table I. We use
the remaining parameters (J, thrust-to-torque ratio) from the
existing literature [46].

B. Data Collection

Recall that in (9), we need to learn 2K neural networks
for K types of robots. In our experiments, we consider two
types of quadrotors (small and large) and also the environment
(mainly ground effect and air drag), as shown in Example 1.
Therefore, we have 5 neural networks to be learned:

ρsmall, ρlarge, φsmall, φlarge, φenv, (23)

where we do not have ρenv because the aerodynamical force
acting on the environment is not interesting for our purpose.
To learn these 5 neural networks, we fly the heterogeneous
swarm in 12 different scenarios (see Table II) to collect labeled

f
(i)
a and τ (i)

a data for each robot. For instance, Example 1 (as
depicted in Fig. 1(a)) corresponds to the “{S, S}→L” scenario
in Table II, where the large robot has two small robots and
the environment as its neighbors.

We utilize two types of data collection tasks: random walk
and swapping. For random walk, we implement a simple reac-
tive collision avoidance approach based on artificial potentials
on-board each Crazyflie [48]. The host computer randomly
selects new goal points within a cube for each vehicle at a
fixed frequency. These goal points are used as an attractive
force, while neighboring drones contribute a repulsive force.
For swapping, the drones are placed in different horizontal
planes on a cylinder and tasked to move to the opposite side.
All the drones are vertically aligned for one time instance,
causing a large interaction force. The random walk data helps
us to explore the whole space quickly, while the swapping data
ensures that we have data for a specific task of interest. Note
that for both random walk and swapping, the drones also move
close to the ground, to collect sufficient data for learning the
ground effect. The collected data covers drone flying speeds
from 0 to 2 m/s, where 7% are with relatively high speeds
(≥0.5 m/s) to learn the aerodynamic drag. For both task types,
we varied the scenarios listed in Table II.

To learn the 5 DNNs in (23), for each robot i in
each scenario, we collect the timestamped states x(i) =
[p(i); v(i); R(i);ω(i)]. We then compute y(i) as the observed
value of f

(i)
a and τ

(i)
a . We compute f

(i)
a and τ

(i)
a using

(4), where the nominal dynamics Φ(i) is calculated based
on our system identification in Sec. VII-A. With Φ(i), y(i)

is computed by ẋ(i) − Φ(i), where ẋ(i) is estimated by
the five-point numerical differentiation method. Note that
the control delay λ(i) is also considered when we compute
f
(i)
a and τ

(i)
a . Our training data consists of sequences of(

{r(i)type1
, · · · , r(i)typeK

},y(i)
)

pairs, where r
(i)
typek

= {x(ij)|j ∈
neighbor(i) and I(j) = typek} is the set of the relative states
of the type-k neighbors of i. We have the following loss
function for robot i in each scenario (see Table II for the
detailed model structure in each scenario):∥∥∥∥∥ρI(i)(

K∑
k=1

∑
x(ij)∈r(i)typek

φI(j)(x
(ij))

)
− y(i)

∥∥∥∥∥
2

2

, (24)

and we stack all the robots’ data in all scenarios and train on
them together. There are 1.4 million pairs in the full dataset.

In practice, we found the unmodeled torque ‖τ (i)
a ‖ is very

small (smaller by two orders of magnitude than the feedback
term K

(i)
ω ω̃(i) in the attitude controller (20)), so we only

learn f
(i)
a . We compute the relative states from our collected

data as x(ij) = [p(j) − p(i); v(j) − v(i)] ∈ R6 (i.e., relative
position and relative velocity both in the world frame), since
the attitude information R and ω are not dominant for f

(i)
a .

If the type of neighbor j is “environment”, we set p(j) = 0
and v(j) = 0. In this work, we only learn the z-component of
f
(i)
a since we found the other two components, x and y, are

much smaller and less varied, and do not significantly alter the
nominal dynamics. In data collection, the rooted means and
standard deviations of the squared values of fa,x, fa,y , and

IEEE TRANSACTIONS ON ROBOTICS 12

TABLE II
12 SCENARIOS FOR DATA COLLECTION.

Scenario S S→ S L→S {S, S}→ S
Model ρsmall(φenv) ρsmall(φenv + φsmall) ρsmall(φenv + φlarge) ρsmall(φenv+φsmall+φsmall)

Scenario {S, L}→ S {L, L}→ S L S→L
Model ρsmall(φenv+φsmall+φlarge) ρsmall(φenv+φlarge+φlarge) ρlarge(φenv) ρlarge(φenv + φsmall)

Scenario L→L {S, S}→L {S, L}→L {L, L}→ S
Model ρlarge(φenv + φlarge) ρlarge(φenv+φsmall+φsmall) ρlarge(φenv+φsmall+φlarge) ρlarge(φenv +φlarge +φlarge)

fa,z are 1.6± 2.5, 1.2± 2.2, 5.0± 8.9 grams, respectively (for
reference, the weights of the small and large drones are 34 g
and 67 g). Therefore, the output of our learning model in (9)
is a scalar to approximate the z-component of the unmodeled
force function f

(i)
a .

C. Learning Results and Ablation Analysis

Each scenario uses a trajectory with a duration around 1000
seconds. For each scenario, we equally split the total trajectory
into 50 shorter pieces, where each one is about 20 seconds.
Then we randomly choose 80% of these 50 trajectories for
training and 20% for validation.

Our DNN functions of φ (φsmall,φlarge,φenv) have four
layers with architecture 6 → 25 → 40 → 40 → H , and
our ρ DNNs (ρsmall,ρlarge) also have L = 4 layers, with
architecture H → 40 → 40 → 40 → 1. We use the ReLU
function as the activation operator, and we use PyTorch [39]
for training and implementation of spectral normalization (see
Sec. IV-C) of all these five DNNs. During training we iterate
all the data 20 times for error convergence.

Note that H is the dimension of the hidden state. To study
the effect of H on learning performance, we use three different
values of H and the mean validation errors for each H are
shown in Table III. Meanwhile, we also study the influence of
the number of layers by fixing H = 20 and changing L, which
is the number of layers of all ρ nets and φ nets. For L = 3
or L = 5, we delete or add a 40 → 40 layer for all ρ nets
and φ nets, before their last layers. We repeat all experiments
three times to get mean and standard deviation. As depicted
in Table III, we found that the average learning performance
(mean validation error) is not sensitive to H , but larger H
results in higher variance, possibly because using a bigger
hidden space (larger H) leads to a more flexible encoding that
is harder to train reliably. In terms of the number of layers, four
layers are significantly better than five (which tends to overfit
data), and slighter better than three. To optimize performance,
we finally choose H = 20 and use four-layer neural networks,
which can be efficiently evaluated on-board. We notice that
H and L are the most important parameters, and the learning
performance is not sensitive to other parameters such as the
number of weights in intermediate layers.

Figure 5 depicts the prediction of fa,z , trained with flight
data from the 12 scenarios listed in Table II. The color encodes
the magnitude of f̂a,z for a single small multirotor positioned
at different global (y, z) coordinates. The big/small black
drone icons indicate the (global) coordinates of neighboring
big/small multirotors, and the dashed line located at z = 0
represents the ground. All quadrotors are in the same x-plane.

TABLE III
ABLATION ANALYSIS. TOP: L = 4 AND H VARIES. BOTTOM: H = 20

AND L VARIES. THE ERROR IS THE MEAN SQUARED ERROR (MSE)
BETWEEN fa,z PREDICTION AND THE GROUND TRUTH.

H 10 20 40
Validation Error 6.70±0.05 6.42±0.18 6.63±0.35

L 3 4 5
Validation Error 6.52±0.17 6.42±0.18 7.21±0.28

For example, in Fig. 5(e), one large quadrotor is hovering at
(y = −0.1, z = 0.5) and one small quadrotor is hovering
at (y = 0.1, z = 0.5). If we place a third small quadrotor
at (y = 0, z = 0.3), it would estimate f̂a,z = −10 g as
indicated by the red color in that part of the heatmap. Similarly,
in Fig. 5(a) the small multirotor only has the environment
as a special neighbor. If the small multirotor is hovering at
(y = 0, z = 0.05), it would estimate f̂a,z = 5 g, which is
mainly from the ground effect. All quadrotors are assumed to
be stationary except for Fig. 5(d), where the one neighbor is
moving at 0.8 m/s.

We observe that the interaction between quadrotors is non-
stationary and sensitive to relative velocity. In Fig. 5(d), the
vehicle’s neighbor is moving, and the prediction becomes
significantly different from Fig. 5(c), where the neighbor is just
hovering. To further understand the importance of relative ve-
locity, we retrain neural networks neglecting relative velocity
and the mean squared validation error degrades by 18%, from
6.42 to 7.60. We can also observe that the interactions are not a
simple superposition of different pairs. For instance, Fig. 5(g)
is significantly more complex than a simple superposition of
Fig. 5(a) plus three (b), i.e., ρsmall(φenv) + ρsmall(φsmall) +
ρsmall(φsmall) + ρsmall(φsmall). The maximum gap between
Fig. 5(g) and the superposition version is 11.4 g. Moreover,
we find that the ground effect and the downwash effect from
a neighboring multirotor interact in an intriguing way. For
instance, in Fig. 5(b), the downwash effect is “mitigated” as
the vehicle gets closer to the ground. Finally, we observe
that the large quadrotors cause significantly higher interaction
forces than the small ones (see Fig. 5(e)), which further
emphasizes the importance of our heterogeneous modeling.

Note that in training we only have data from 1-3 vehicles
(see Table II). Our approach can generalize well to a larger
swarm system. In Fig. 5, predictions for a 4-vehicle team (as
shown in Fig. 5(g,h)) are still reliable. Moreover, our models
work well in real flight tests with 5 vehicles (see Fig. 9) and
even 16 vehicles (see Fig. 1).

IEEE TRANSACTIONS ON ROBOTICS 13

Fig. 5. fa,z prediction from the trained {ρsmall,ρlarge,φsmall,φlarge,φenv} networks. Each heatmap gives the prediction of fa,z of a vehicle in different
horizontal and vertical (global) positions. The (global) position of neighboring drones are represented by drone icons. See Sec. VII-C for details.

D. Motion Planning with Aerodynamics Coupling

We implement Algorithm 1 in Python using PyTorch

1.5 [39] for automatic gradient computation, CVXPY 1.0 [49]

for convex optimization, and GUROBI 9.0 [50] as underlying

solver. To simulate the tracking performance of the planned

trajectories, we also implement a nonlinear controller, which

uses the planned controls as feed-forward term. We compare

trajectories that were planned with a learned model of fa,z
with trajectories without such a model (i.e., fa,z = 0) using

Algorithm 1 with identical parameters. At test time, we

track the planned trajectories with our controller, and forward

propagate the dynamics with our learned model of fa,z .

We visualize an example in Fig. 6, where two small and one

large robots are tasked with exchanging positions. We focus

on the 2D case in the yz-plane to create significant interaction

forces between the robots. The first stage of Algorithm 1

uses sampling-based motion planning to identify the best

homeomorphism class where the small multirotors fly on top

of the large multirotor (the interaction forces would require

more total energy the other way around). However, the robots

do not reach their goal state exactly and motions are jerky

(Fig. 6, left). The second stage uses SCP to refine the motion

plan such that robots reach their goal and minimize the total

control effort (Fig. 6, middle). The planned trajectory can be

tracked without significant error and the interaction forces

are very small for the two small quadrotors and within the

chosen bound of 10 g for the large quadrotor. We compare

this solution to one where we do not consider the interaction

forces between robots by setting fa,z = 0 in Algorithm 1. The

planned trajectories tend to be shorter (Fig. 6, right, dashed

lines) in that case. However, when tracking those trajectories,

significant tracking errors occur and the interaction forces are

outside their chosen bounds of 5 g for the small multirotors.

We empirically evaluated the effect of planning with and

without considering interaction forces in several scenarios, see

Fig. 7. We found that ignoring the interaction forces results

in significant tracking errors in all cases (top row). While this

tracking error could be reduced when using our interaction-

aware control law, the interaction forces are in some cases

significantly over their desired limit. For example, in the

small/large, small/small/large, and large/large cases, the worst-

case interaction forces were consistently nearly double the

limit (red line, bottom row). In practice, such large distur-

bances can cause instabilities or even a total loss of control,

justifying the use of an interaction-aware motion planner.

E. Control Performance in Flight Tests

We study the flight performance improvements on swapping

tasks with varying number of quadrotors. For each case, robots

are initially arranged in a circle when viewed from above but

at different z-planes and are tasked with moving linearly to

the opposite side of the circle in their plane. During the swap,

all vehicles align vertically at one point in time with vertical

distances of 0.2 m to 0.3 m between neighbors. The tasks are

similar, but not identical to the randomized swapping tasks

used in Sec. VII-B because different parameters (locations,

transition times) are used.

Our results are summarized in Fig. 8 for various combina-

tions of two and three multirotors, where we use “XY2Z” to

denote the swap task with robots of type X and Y at the top

and a robot of type Z at the bottom. We compute a box plot

with median (green line) and first/third quartile (box) of the

maximum z-error (repeated over 6 swaps). In some cases, the

downwash force was so large that we upgraded the motors of

the small quadrotor to improve the best-case thrust-to-weight

ratio to 2.6. Such modified quadrotors are indicated as “S*”.

We also verified that the x- and y-error distributions are similar

across the different controllers and omit those numbers for

brevity.

IEEE TRANSACTIONS ON ROBOTICS 14

Y

Z
Planning with NN (Stage 1)

Y

Z

Planning with NN (Tracking)

Y

Z

Planning without NN (Tracking)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [s]

−10

0

f a
[g

]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [s]

f a
[g

]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [s]

f a
[g

]

Fig. 6. Example motion planning result for a three-robot swapping task in 2D (blue and orange: small robots; green: large robot). Top row: yz-state space plot,
where the arrows indicate the velocities every second, and the circles show the robot collision boundary shape at the middle of the task. Bottom row: interaction
force for each robot over time (dashed: desired limit per robot). Left: Sampling-based motion planning with neural network to compute trajectories where the
large robots moves below the small robots. Middle: Refined trajectories using SCP (dashed) and tracked trajectories (solid). Right: Planned trajectories when
ignoring interaction forces (dashed) and tracked trajectories (solid). In this case, a dangerous configuration is chosen where the large robot flies on top of the
small robots, exceeding their disturbance limits of 5 g.

NN BL

0.00

0.05

0.10

0.15

M
ax

z
er

ro
r

[m
]

SL

NN BL

SS

NN BL

LL

NN BL

SSL

SNN SBL LNN LBL

0

5

10

15

m
ax
|f a
|[

g
]

SNN SBL LNN LBL SNN SBL LNN LBL SNN SBL LNN LBL

Fig. 7. Motion planning results for different scenarios (e.g., SSL refers to two
small robots and one large robot) comparing planning without neural network
(BL) and planning with neural network (NN) over 5 trials. Top: Worst-case
tracking error. Ignoring the interaction force can result in errors of over 10 cm.
Bottom: Worst-case interaction force for small and large quadrotors. The
baseline has significant violations of the interaction force bounds, e.g., the SL
case might create interaction forces greater than 10 g for the small quadrotor.

NN BL
0.0

0.2

0.4

M
ax

z
er

ro
r

[m
]

S2S

NN BL

S2L

NN BL

L2S

NN BL

L2L

NN BL

SS2S*

NN BL

SL2S*

NN BL

LL2S*

NN BL

SS2L

NN BL

SL2L

Fig. 8. Flight test results comparing our solution with learned interaction
compensation (NN) with the baseline (BL) in different scenarios. For each
case, robots are initially arranged in a circle when viewed from above but at
different z-planes and are tasked with moving linearly to the opposite side of
the circle in their plane. For each swap, we compute the worst-case z-error
of the lowest quadrotor and plot the data over six swaps.

Our controller improves the median z-error in all cases and

in most cases this improvement is statistically significant. For

example, in the “L2S” case, where a large multirotor is on top

of a small multirotor for a short period of time, the median

z-error is reduced from 17 cm to 7 cm.

To estimate the limits of our learning generalization, we

0.4

0.6

0.8

1.0
H

ei
g
h
t

[m
]

NN

Desired

BL

2 4 6 8 10

Time [s]

−10

0

f a
[g

]

Computed

NN prediction

Fig. 9. Generalization to a team of five multirotors. Three small multirotor
move in a vertical ring and two large multirotor move in a horizontal ring.
The maximum z-error of a small multirotor in the vertical ring with powerful
motors is reduced from 10 cm to 5 cm and fa is predicted accurately.

test our approach on larger teams. First, we consider a team

of five robots, where two large robots move on a circle in the

horizontal plane and three small robots move on circle in the

vertical plane such that the two circles form intertwined rings.

In this case, the fa,z prediction is accurate and the maximum

z-error can be reduced significantly using our neural network

prediction, see Fig. 9 for an example. Second, we consider

a team of 16 robots moving on three intertwined rings as

shown in Fig. 1(b,c). Here, two large and four small robots

move on an ellipsoid in the horizontal plane, and five robots

move on circles in different vertical planes. In this case, robots

can have significantly more neighbors (up to 15) compared

to the training data (up to 2), making the prediction of fa,z
relatively less accurate. However, the maximum z-error of a

small multirotor in one of the vertical rings with powerful

motors is still reduced from 15 cm to 10 cm.

We note that a conceptually-simpler method is to estimate

IEEE TRANSACTIONS ON ROBOTICS 15

and compensate for fa,z online without learning. However,
online estimation will not only introduce significant delays,
but also be very noisy especially in close-proximity flight.
Our learning-based method has no delay (because it directly
predicts fa,z at the current time step), and considerably
mitigates the noise due to the use of spectral normalization
and delay-free filtering in the training process. In experiments,
we observe that the online estimation and compensate method
would quickly crash the drone.

VIII. CONCLUSION

In this paper, we present Neural-Swarm2, a learning-based
approach that enables close-proximity flight of heterogeneous
multirotor teams. Compared to previous work, robots can
fly much closer to each other safely, because we accurately
predict the interaction forces caused by previously unmodeled
aerodynamic vehicle interactions. To this end, we introduce
heterogeneous deep sets as an efficient and effective deep
neural network architecture that only relies on relative po-
sitions and velocities of neighboring vehicles to learn the in-
teraction forces between multiple quadrotors. Our architecture
also allows to model the ground effect and other unmodeled
dynamics by viewing the physical environment as a special
neighboring robot. To our knowledge, our approach provides
the first model of interaction forces between two or more
multirotors.

We demonstrate that the learned interactions are crucial in
two applications of close-proximity flight. First, they can be
used in multi-robot motion planning to compute trajectories
that have bounded disturbances caused by neighboring robots
and that consider platform limitations such as maximum
thrust capabilities directly. The resulting trajectories enable
a higher robot density compared to existing work that relies
on conservative collision shapes. Second, we can compute the
interaction forces in real-time on a small 32-bit microcontroller
and apply them as additional feed-forward term in a novel
delay-compensated nonlinear stable tracking controller. Such
an approach enables to reduce the tracking error significantly,
if the maximum thrust capabilities of the robots are sufficient.

We validate our approach on different tasks using two to
sixteen quadrotors of two different sizes and demonstrate that
our training method generalizes well to a varying number of
neighbors, is computationally efficient, and reduces the worst-
case height error by a factor of two or better.

REFERENCES

[1] S.-J. Chung, A. A. Paranjape, P. M. Dames, S. Shen, and V. Kumar, “A
survey on aerial swarm robotics,” IEEE Trans. Robot., vol. 34, no. 4,
pp. 837–855, 2018.

[2] D. Morgan, G. P. Subramanian, S.-J. Chung, and F. Y. Hadaegh,
“Swarm assignment and trajectory optimization using variable-swarm,
distributed auction assignment and sequential convex programming,” I.
J. Robotics Res., vol. 35, no. 10, pp. 1261–1285, 2016.

[3] K. P. Jain, T. Fortmuller, J. Byun, S. A. Mäkiharju, and M. W. Mueller,
“Modeling of aerodynamic disturbances for proximity flight of multi-
rotors,” in Int. Conf. Unmanned Aircraft Syst., 2019, pp. 1261–1269.

[4] W. Hönig, J. A. Preiss, T. K. S. Kumar, G. S. Sukhatme, and N.
Ayanian, “Trajectory planning for quadrotor swarms,” IEEE Trans.
Robot., vol. 34, no. 4, pp. 856–869, 2018.

[5] X. Du, C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Fast and in
sync: Periodic swarm patterns for quadrotors,” in Proc. IEEE Int. Conf.
Robot. Autom., 2019, pp. 9143–9149.

[6] M. Debord, W. Hönig, and N. Ayanian, “Trajectory planning for
heterogeneous robot teams,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2018, pp. 7924–7931.

[7] J. van den Berg, S. J. Guy, M. C. Lin, and D. Manocha, “Reciprocal n-
body collision avoidance,” in Int. Symp. on Robot. Res., vol. 70, 2009,
pp. 3–19.

[8] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R. Salakhutdinov,
and A. J. Smola, “Deep sets,” in Proc. Neural Inf. Process. Syst., 2017,
pp. 3391–3401.

[9] P. L. Bartlett, D. J. Foster, and M. Telgarsky, “Spectrally-normalized
margin bounds for neural networks,” in Proc. Neural Inf. Process. Syst.,
2017, pp. 6240–6249.

[10] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anand-
kumar, Y. Yue, and S.-J. Chung, “Neural Lander: Stable drone landing
control using learned dynamics,” in Proc. IEEE Int. Conf. Robot.
Autom., 2019, pp. 9784–9790.

[11] G. Shi, W. Hönig, Y. Yue, and S.-J. Chung, “Neural-swarm: Decen-
tralized close-proximity multirotor control using learned interactions,”
Proc. IEEE Int. Conf. Robot. Autom., pp. 3241–3247, 2020.

[12] I. Cheeseman and W. Bennett, “The effect of ground on a helicopter
rotor in forward flight,” Aeronautical Research Council Reports And
Memoranda, 1955.

[13] D. Yeo, E. Shrestha, D. A. Paley, and E. M. Atkins, “An empirical
model of rotorcrafy uav downwash for disturbance localization and
avoidance,” in AIAA Atmospheric Flight Mechanics Conf., 2015.

[14] X. Kan, J. Thomas, H. Teng, H. G. Tanner, V. Kumar, and K. Karydis,
“Analysis of ground effect for small-scale uavs in forward flight,” IEEE
Trans. Robot. Autom. Lett., vol. 4, no. 4, pp. 3860–3867, Oct. 2019.

[15] D. Shukla and N. Komerath, “Multirotor drone aerodynamic interaction
investigation,” Drones, vol. 2, no. 4, 2018.

[16] M. O’Connell, G. Shi, X. Shi, and S.-J. Chung, “Meta-learning-based
robust adaptive flight control under uncertain wind conditions,” arXiv
preprint arXiv:2103.01932, 2021.

[17] H. M. Le, A. Kang, Y. Yue, and P. Carr, “Smooth imitation learning
for online sequence prediction,” in Proc. Int. Conf. Machine Learning,
vol. 48, 2016, pp. 680–688.

[18] A. J. Taylor, V. D. Dorobantu, H. M. Le, Y. Yue, and A. D. Ames,
“Episodic learning with control lyapunov functions for uncertain
robotic systems,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2019, pp. 6878–6884.

[19] R. Cheng, A. Verma, G. Orosz, S. Chaudhuri, Y. Yue, and J. Burdick,
“Control regularization for reduced variance reinforcement learning,”
in Proc. Int. Conf. Machine Learning, 2019, pp. 1141–1150.

[20] C. D. McKinnon and A. P. Schoellig, “Learn fast, forget slow: Safe
predictive learning control for systems with unknown and changing
dynamics performing repetitive tasks,” IEEE Trans. Robot. Autom. Lett.,
vol. 4, no. 2, pp. 2180–2187, 2019.

[21] M. Saveriano, Y. Yin, P. Falco, and D. Lee, “Data-efficient control
policy search using residual dynamics learning,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2017, pp. 4709–4715.

[22] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A.
Ojea, E. Solowjow, and S. Levine, “Residual reinforcement learning for
robot control,” in Proc. IEEE Int. Conf. Robot. Autom., 2019, pp. 6023–
6029.

[23] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, 2008.

[24] E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro,
“Learning decentralized controllers for robot swarms with graph neural
networks,” in Proc. Conf. Robot Learning, 2020, pp. 671–682.

[25] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Het-
erogeneous graph neural network,” in Proc. ACM SIGKDD Int. Conf.
Knowledge Discovery & Data Mining, 2019, pp. 793–803.

[26] B. Rivière, W. Hönig, Y. Yue, and S.-J. Chung, “GLAS: global-to-
local safe autonomy synthesis for multi-robot motion planning with
end-to-end learning,” IEEE Trans. Robot. Autom. Lett., vol. 5, no. 3,
pp. 4249–4256, 2020.

[27] D. Morgan, S.-J. Chung, and F. Y. Hadaegh, “Model predictive control
of swarms of spacecraft using sequential convex programming,” J.
Guid., Control, Dyn., vol. 37, no. 6, pp. 1725–1740, 2014.

[28] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams,” in
Proc. IEEE Int. Conf. Robot. Autom., 2012, pp. 477–483.

[29] B. C. Csáji et al., “Approximation with artificial neural networks,”
Faculty of Sciences, Etvs Lornd University, Hungary, vol. 24, no. 48,
p. 7, 2001.

IEEE TRANSACTIONS ON ROBOTICS 16

[30] A. Liu, G. Shi, S.-J. Chung, A. Anandkumar, and Y. Yue, “Robust
regression for safe exploration in control,” in Learning for Dynamics
and Control, 2020, pp. 608–619.

[31] C. E. Luis and A. P. Schoellig, “Trajectory generation for multiagent
point-to-point transitions via distributed model predictive control,”
IEEE Trans. Robot. Autom. Lett., vol. 4, no. 2, pp. 375–382, 2019.

[32] M. Čáp, P. Novák, A. Kleiner, and M. Selecký, “Prioritized planning
algorithms for trajectory coordination of multiple mobile robots,” IEEE
Trans. Autom. Sci. Eng., vol. 12, no. 3, pp. 835–849, 2015.

[33] R. Foust, S.-J. Chung, and F. Y. Hadaegh, “Optimal guidance and con-
trol with nonlinear dynamics using sequential convex programming,”
J. Guid., Control, Dyn., vol. 43, no. 4, pp. 633–644, 2020.

[34] Q. T. Dinh and M. Diehl, “Local convergence of sequential convex
programming for nonconvex optimization,” in Recent Advances in
Optimization and Its Applications in Engineering, Springer, 2010,
pp. 93–102.

[35] K. Hauser and Y. Zhou, “Asymptotically optimal planning by feasible
kinodynamic planning in a state-cost space,” IEEE Trans. Robotics,
vol. 32, no. 6, pp. 1431–1443, 2016.

[36] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975.

[37] T. Kunz and M. Stilman, “Kinodynamic RRTs with fixed time step
and best-input extension are not probabilistically complete,” in Int.
Workshop Algorithmic Foundations of Robotics, 2015, pp. 233–244.

[38] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” I. J. Robotics Res., vol. 30, no. 7, pp. 846–894, 2011.

[39] A. Paszke, S. Gross, F. Massa, et al., “PyTorch: An imperative style,
high-performance deep learning library,” in Proc. Neural Inf. Process.
Syst., 2019, pp. 8024–8035.

[40] Y. K. Nakka, A. Liu, G. Shi, A. Anandkumar, Y. Yue, and S.-J. Chung,
“Chance-constrained trajectory optimization for safe exploration and
learning of nonlinear systems,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 389–396, 2020.

[41] S. Bandyopadhyay, S.-J. Chung, and F. Y. Hadaegh, “Nonlinear attitude
control of spacecraft with a large captured object,” J. Guid., Control,
Dyn., vol. 39, no. 4, pp. 754–769, 2016.

[42] X. Shi, K. Kim, S. Rahili, and S.-J. Chung, “Nonlinear control of
autonomous flying cars with wings and distributed electric propulsion,”
in Proc. IEEE Conf. Decis. Control, 2018, pp. 5326–5333.

[43] X. Shi, M. O’Connell, and S.-J. Chung, “Numerical predictive control
for delay compensation,” arXiv preprint arXiv:2009.14450, 2020.

[44] J. A. Preiss, W. Hönig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm:
A large nano-quadcopter swarm,” in Proc. IEEE Int. Conf. Robot.
Autom., 2017, pp. 3299–3304.

[45] Bitcraze. (2015). “Crazyflie 2.0 thrust investigation,” [Online]. Avail-
able: https : / / wiki . bitcraze . io / misc : investigations : thrust (visited on
08/07/2020).

[46] J. Förster, “System identification of the crazyflie 2.0 nano quadro-
copter,” en, M.S. thesis, ETH Zurich, Zurich, 2015.

[47] M. Faessler, D. Falanga, and D. Scaramuzza, “Thrust mixing, satura-
tion, and body-rate control for accurate aggressive quadrotor flight,”
IEEE Trans. Robot. Autom. Lett., vol. 2, no. 2, pp. 476–482, 2017.

[48] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Proc. IEEE Int. Conf. Robot. Autom., 1985, pp. 500–505.

[49] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” J. Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[50] L. Gurobi Optimization, Gurobi optimizer reference manual, 2020.

Guanya Shi (S’18) is a Ph.D. student at the de-
partment of computing and mathematical sciences
at the California Institute of Technology, USA. He
holds a diploma in mechanical engineering (summa
cum laude) from Tsinghua University, China (2017).
His research focuses on the intersection of machine
learning and control theory with the applications
in real-world complex systems such as robotics.
He was the recipient of several awards, including
the Simoudis Discovery Prize and the Qualcomm
scholarship.

Wolfgang Hönig (S’15–M’20) is an junior research
group leader at TU Berlin, Germany. Previously, he
was a postdoctoral scholar at the California Institute
of Technology, USA. He received the diploma in
Computer Science from TU Dresden, Germany in
2012, and the M.S. and Ph.D. degrees from the
University of Southern California (USC), USA in
2016 and 2019, respectively. His research focuses
on enabling large teams of physical robots to col-
laboratively solve real-world tasks, using tools from
informed search, optimization, and machine learn-

ing. Dr. Hönig has been the recipient of several awards, including Best Paper
in Robotics Track for a paper at ICAPS 2016 and the 2019 Best Dissertation
Award in Computer Science at USC.

Xichen Shi (S’13–M’20) is a software engineer at
Waymo, an autonomous driving vehicle company.
He received a Ph.D. in Space Engineering from
California Institute of Technology, USA in 2021, and
a B.S in Aerospace Engineering (Highest Honors)
from University of Illinois at Urbana-Champaign,
USA in 2013. His research focuses on intelligent
control systems for fixed-wing and multirotor aerial
robots.

Yisong Yue is a professor of Computing and Math-
ematical Sciences at the California Institute of Tech-
nology. He was previously a research scientist at
Disney Research and a postdoctoral researcher at
Carnegie Mellon University. He received a Ph.D.
from Cornell University and a B.S. from the Uni-
versity of Illinois at Urbana-Champaign. Dr. Yue’s
research interests are centered around machine learn-
ing and has been applied to information retrieval,
data-driven animation, behavior analysis, protein en-
gineering, and learning-accelerated optimization. Dr.

Yue was the recipient of several awards and honors, including the Best Paper
Award at ICRA 2020, the Best Student Paper Award at CVPR 2021, the Best
Paper Nomination at WSDM 2011, ICDM 2014, SSAC 2017 and RA-L, Best
Reviewer at ICLR 2018, and the Okawa Foundation Grant Recipient, 2018.

Soon-Jo Chung (M’06–SM’12) is the Bren Pro-
fessor of Aerospace and Control and Dynamical
Systems and a Jet Propulsion Laboratory Research
Scientist in the California Institute of Technology,
USA. He was with the faculty of the University
of Illinois at Urbana-Champaign during 2009–2016.
He received the B.S. degree (summa cum laude)
in aerospace engineering from the Korea Advanced
Institute of Science and Technology, South Korea,
in 1998, and the S.M. degree in aeronautics and
astronautics and the Sc.D. degree in estimation and

control from Massachusetts Institute of Technology, USA, in 2002 and 2007,
respectively. His research interests include spacecraft and aerial swarms
and autonomous aerospace systems, and in particular, on the theory and
application of complex nonlinear dynamics, control, estimation, guidance,
and navigation of autonomous space and air vehicles. Dr. Chung was the
recipient of the UIUC Engineering Deans Award for Excellence in Research,
the Beckman Faculty Fellowship of the UIUC Center for Advanced Study,
the U.S. Air Force Office of Scientific Research Young Investigator Award,
the National Science Foundation Faculty Early Career Development Award,
a 2020 Honorable Mention for the IEEE RA-L Best Paper Award, and three
Best Conference Paper Awards from the IEEE and AIAA. He is an Associate
Editor of IEEE T-AC and AIAA JGCD. He was an Associate Editor of IEEE
T-RO, and the Guest Editor of a Special Section on Aerial Swarm Robotics
published in the IEEE T-RO. He is an Associate Fellow of AIAA.

https://wiki.bitcraze.io/misc:investigations:thrust

	I Introduction
	II Related Work
	III Problem Statement
	III-A Single Multirotor Dynamics
	III-B Heterogeneous Swarm Dynamics
	III-C Interaction-Aware Motion Planning & Control

	IV Learning of Swarm Aerodynamic Interaction
	IV-A Homogeneous Permutation-Invariant Neural Networks
	IV-B Heterogeneous K-Group Permutation-Invariant DNN
	IV-C Spectral Normalization for Robustness and Generalization
	IV-D Curriculum Learning

	V Interaction-Aware Multi-Robot Planning
	V-A Stage 1: Sampling-Based Planning using Interaction Forces
	V-B Stage 2: Optimization-Based Motion Planning

	VI Interaction-Aware Tracking Controller
	VI-A Tracking Control Law with Delay Compensation
	VI-B Analysis of Stability and Robustness

	VII Experiments
	VII-A Calibration and System Identification of Different Robots
	VII-B Data Collection
	VII-C Learning Results and Ablation Analysis
	VII-D Motion Planning with Aerodynamics Coupling
	VII-E Control Performance in Flight Tests

	VIII Conclusion
	Biographies
	Guanya Shi
	Wolfgang Hönig
	Xichen Shi
	Yisong Yue
	Soon-Jo Chung

