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Safety-Critical Control Synthesis for Network Systems with Control
Barrier Functions and Assume-Guarantee Contracts
Yuxiao Chen, James Anderson, Karan Kalsi, Aaron D. Ames, and Steven H. Low

Abstract—This paper aims at the safety-critical control syn-
thesis of network systems such that the satisfaction of the
safety constraints can be guaranteed. To handle the large state
dimension of such systems, an assume-guarantee contract is used
to break the large synthesis problem into smaller subproblems.
Parameterized signal temporal logic (pSTL) is used to formally
describe the behaviors of the subsystems, which we use as the
template for the contract. We show that robust control invariant
sets (RCIs) for the subsystems can be composed to form a robust
control invariant set for the whole network system under a valid
assume-guarantee contract. An epigraph algorithm is proposed
to solve for a contract that is valid, —an approach that has linear
complexity for sparse networks, which leads to a robust control
invariant set for the whole network system. Implemented with
control barrier function (CBF), the state of each subsystem is
guaranteed to stay within the safe set. Furthermore, we propose
a contingency tube Model Predictive Control approach based
on the RCI, which is capable of handling severe contingencies,
including topology changes of the network. A power grid example
is used to demonstrate the proposed method. The simulation
result includes both set point control and contingency recovery,
and the safety constraint is always satisfied.

I. INTRODUCTION

Network control systems are sometimes subject to safety
constraints that should be satisfied the entire time a system
is a running. In the event that the network experiences a
“sudden or dramatic change”, either through subsystem failure,
malicious attack, or unforeseen disturbance, it is imperative
that the perturbed system not only maintains stability, but also
still satisfies its safety constraints.

An example of such a network is the power grid. It is well
known that if not controlled properly, cascading failures may
lead to large-scale blackouts. The consequences of which can
have a huge impact on infrastructure and economy, and in the
worst case, lead to loss of life.

Traditional control techniques usually cannot guarantee the
satisfaction of such constraints. One promising solution is
“correct-by-construction synthesis”, which has seen recent
success in safety-critical applications such as vehicle control
[1], [2] and robot navigation [3]. Correct-by-construction
synthesis refers to a collection of methods (including but not
limited to; barrier functions, density functions, and model
checking). They are based on concepts such as reachable sets
and robust control invariant sets [4] that ensure controllers are
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capable of enforcing safety constraints. Informally, a robust
control invariant set S is a subset of the state space, such
that given a dynamical system initiated from within S , there
exists a control policy such that the system state can be kept
within S for all future time, in the presence of disturbances.
Typically, correct-by-construction control synthesis relies on
computational tools such as the Hamilton Jacobi PDE [5],
Linear Matrix Inequalities (LMIs) [6], and sum-of-squares
(SOS) programming [7]. Unfortunately, these methods do
not scale well with the state dimension of the system. This
curse of dimensionality has limited the applications of correct-
by-construction control synthesis to systems with low state
dimension. There has been efforts to break “the curse of
dimensionality,” which, at the system level, typically utilize
either compositional analysis [8] or symmetry [9].

To the best of the authors’ knowledge, the synthesis of
robust invariant sets for network systems with heterogeneous
subsystems and strong coupling between them remains an
open problem. Power grids are prominent examples of sys-
tems that exhibit the problematic phenomena just described.
Typically, they consist of various types of generation buses
e.g., hydroelectric, solar, and wind plants, and load buses, all
coupled via transmission lines and the need to balance supply
and demand whilst attaining frequency synchronization.

The approach we propose to break the curse of dimensional-
ity is to use assume-guarantee contracts [10] to decompose the
overall performance guarantee of the network into individual
contracts that each subsystem in the network agree to. Every
subsystem in the network can take the performance guarantee
from other subsystems as assumptions, and in turn provide
its own performance guarantee, which then becomes part of
the assumptions for other subsystems in the network. In this
way, the big synthesis problem is decomposed into small
subproblems. One related work is [11], where the authors
use decentralized Lyapunov functions to quantify the coupling
between subsystems, yet the computation of the Lyapunov
functions was not discussed for general nonlinear systems.

The contributions of this paper are:
(i) We propose the formulation of an assume-guarantee con-
tract approach to compute robust control invariant sets (RCIs)
for networked systems by combining subsystem RCIs with a
network assume-guarantee contract.
(ii) We propose an epigraph algorithm that searches for
valid assume-guarantee contracts, which has a computational
complexity that scales linearly with system size (assuming the
system graph is sparse or the coupling signals from multiple
neighbors are summable). Moreover, the epigraph algorithm
is general-purpose and can be combined with any RCI com-
putation method to compute RCIs for network systems.
(iii) We propose a contingency tube MPC algorithm based on
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assume-guarantee contracts for set invariance, which is real-
time implementable and is able to handle severe contingencies
such as a change in the network topology.
Nomenclature: B, N, and R denote the sets of binary vari-
ables, natural numbers, and real numbers, respectively. The
n-dimensional Euclidean space is denoted by Rn and Rn+
denotes the non-negative orthant. Bold characters denote con-
tinuous or discrete-time signals, depending on the context,
i.e., x = {x(t)}∞t=0 ∈ XN when it is a discrete-time signal;
x = {x(t)}t∈[0,∞) ∈ XR+ when it is a continuous-time signal.
x(t) ∈ X is a vector denoting the value(s) of x at time t,
XN and XR+ denote the space of discrete/continuous-time
signals of x. Given the set X := X1×,X2 × . . .×Xn, x ↓ Xi
denotes the projection of x onto Xi, i.e., x ↓ Xi = xi where
xi ∈ Xi. To avoid confusion between temporal signals and
value iterations, we use p[i] to denote the value of a parameter
p after the ith iteration. Poly(P, q) = {x | Px ≤ q} denotes
a polytope defined with matrix P, q.

II. PROBLEM SETUP

In this section, we present the problem setup and show
how the power grid control synthesis can be handled with
the proposed method.

A. Network System Dynamics

We consider a network dynamic system consisting of
subsystems with coupling dynamics. The couplings between
neighboring subsystems are treated bounded disturbances.
Therefore, the following product of subsystems is considered:1

Σ = Σ1 × Σ2 × ...× ΣN . (1)

It is assumed that each subsystem can be written in the form

Σi :=

{
x+i = fi (xi, yNi

, ui, di) ,

yi = ci (xi) ,
(2)

where xi ∈ Xi ⊆ Rni is the ith current state and x+i denotes
the successor state. The control input is ui ∈ Ui ⊆ Rmi ,
the exogenous disturbance is di ∈ Di ⊆ Rli , and yNi

denotes the vector of signals consisting of the outputs of all of
the neighboring subsystems connected to subsystem Σi. The
vector yNi

can be further decomposed as

yNi =
[
yj1 . . . yjNi

]ᵀ
,∀ j1, . . . , jNi ∈ Ni, (3)

where Ni is the neighbor set of the ith node with cardinality
|Ni| = Ni. The full networked system dynamics is then:

x+ = f(x, u, d) =
[
f1(x1, yN1 , u1, d1) . . . fN (xN , yNN

, uN , dN )
]ᵀ
,

c(x) =
[
c1(x1) . . . cN (xN )

]ᵀ
.

(4)
The overall state space and output space are denoted as

X = X1 × ... × XN and Y = Y1 × ... × YN , respectively.
Since the method was first proposed for fixed point control, it
is assumed w.l.o.g. that the equilibrium point is at the origin,
i.e. f(0, 0, 0) = 0 and that c(0) = 0.

1In general, a networked dynamical system model would be defined over a
graph structure [12].However, because we view the coupling between systems
as bounded disturbances, we can consider a network of dynamical systems as
the more simple the product system.

Given the dynamics, the behavior of the ith subsystem is
uniquely determined by xi(0), yNi , ui and di, let Ii = Xi ×
YN
Ni
× UN

i ×DN
i denote the space of input signals and initial

conditions of the system Σi and XN
i is the space of all possible

state signals of Σi. A dynamical system Σi ⊆ 2Ii × 2X
N
i is

understood as a subset of possible input and state signal pairs.

Remark 1. The results in this paper can easily be extended to
the case of continuous-time dynamical systems. However, the
methods we use to compute robust control invariant sets are
most naturally presented in discrete-time, hence our choice.

III. REVIEW OF MAJOR TOOLS

In this section, we review the major tools necessary to our
approach, including control barrier functions and parameter-
ized assume-guarantee contracts.

A. Control Barrier Functions

The computed robust control invariant set will be enforced
with a control barrier function (CBF). CBFs allow safety
constraints which are enforced through barrier functions to
be integrated with performance objectives encoded through
control Lyapunov functions. Given a set of allowable initial
conditions X0, and an unsafe set Xd, a CBF ensures that all
trajectories of a dynamical system initiated from X0 never
enter Xd. Typically the computation of a CBF acquired through
convex programming requires an existing stabilizing control
law termed the “legacy controller”. The controller produced
by the CBF is referred to as the “supervisory controller”.

To accommodate for the discrete-time dynamics used in this
paper, we adopt the result in [13], [14] and utilize a discrete-
time zeroing control barrier function. Specifically, given a
discrete-time dynamic system:

x+ = f(x, u, d), x ∈ Rn, u ∈ U , d ∈ D,

a discrete-time CBF is a function h : Rn → R that satisfies

∀ x ∈ X0, h(x) ≥ 0

∀ x ∈ Xd, h(x) < 0

∀ x ∈ {x | h(x) ≥ 0} , ∀ d ∈ D,∃ u ∈ U
s.t. h(f(x, u, d)) ≥ γ(h(x)),

(5)

where γ : R→ R satisfies s2 ≥ γ(s) · s ≥ 0, i.e. γ(s) has the
same sign as s and |γ(s)| ≤ |s|. The supervisory controller is
then implemented with the CBF QP:

u? = arg min
u∈U

∥∥u− u0(x)
∥∥2

s.t. h(f(x, u, d)) ≥ γ(h(x)),
(6)

where u0 is the legacy controller’s policy. The constraint
set (5) is not always convex. We will show later that it is
convex for the special case discussed in this paper.

Remark 2. For the case when the disturbance set D is known,
(5) is realizable. When the disturbance set is unknown, it is
straightforward to extend (5) to a robust CBF which can be
solved using quadratic programming, see [15] as an example.

It can be shown that under mild conditions, a CBF (h(·)
in (5)) can be constructed with a properly chosen γ(·) (γ(x) ≡
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0 is always a valid choice) from a robust control invariant set
(RCI) that contains X0 and does not intersect Xd.

We use robust linear programming to compute a minimal
robust control invariant set for each subsystem in the net-
work [16]. The algorithm is described in Appendix A. Note
that the contract-based framework we propose and the epi-
graph algorithm introduced in Section V, are both compatible
with any algorithm that constructs and RCI.

The robust linear programming algorithm generates a poly-
topic RCI Poly(P, q), where P is a constant m × n matrix
and q ∈ Rm>0. Note that the origin is always contained in the
interior of the RCI. The CBF is defined as

h (x) = min
k

qk − Pkx
qk

, (7)

where Pk is the kth row of P and qk is the kth entry of q.

B. Parameterized Signal Temporal Logic

To break the “curse of dimensionality” for large network
systems, we use assume-guarantee contracts to decompose
the synthesis problem for the whole network into smaller
subproblems for the subsystems [10], [17]. The language of
the specifications is Signal Temporal Logic (STL), which is
an extension of Linear Temporal Logic (LTL) that allows for
real time and predicates over real-valued signals[18], [19]. We
note that LTL deals with discrete-time signals, whereas STL
uses continuous-time signals. Since the dynamics we consider
in this paper are in discrete-time, we extend an STL formula
to discrete-time signals by considering sample instances, as
discussed in [20]. This is necessary since STL’s ability to allow
for parameterized propositions is needed. A Signal Temporal
Logic formula φ : XR+ → B uses the following grammar:

φ = > | µ | ¬φ | φ1 ∧ φ2 | φ1UIφ2,

where > is the logical tautology, µ : X → B is the space of
all continuous time signal of x. is a logic proposition, ¬ is
Boolean negation, ∧ is the Boolean AND. Finally, the “until”
operator U which takes φ1 and φ2 as arguments, is true if
given the interval I , there exists a time t ∈ I that φ2 is true,
and before t, φ1 is always true. When I is not specified, it is
assumed that by default I = [0,∞). The validity of a formula
µ with respect to the signal x at time t can be determined as

(x, t) |= µ iff x(t) satisfies µ
(x, t) |= ¬φ iff x(t) 6|= φ
(x, t) |= φ1 ∧ φ2 iff x(t) |= φ1 and x(t) |= φ2

(x, t) |= φ1U[a,b]φ2 iff
∃ t′ ∈ t+ [a, b] s.t. x(t) |= φ2
and ∀ t′′ ∈ [t, t′], x(t) |= φ1

where |= and 6|= stands for “satisfies” and “does not satisfy”
respectively. A signal x |= µ if (x, 0) |= µ. From the above
basic grammar, one can derive additional temporal operators
such as ♦Iφ

.
= >UIφ, meaning “φ is eventually true during

I ,” and �Iφ
.
= ¬(♦I¬φ), meaning “φ is always true in I”.

Given an STL formula φ, L(φ) =
{
x ∈ XR+ | x |= φ

}
is

the language of the formula. A partial order is defined among
STL formulas as φ1 � φ2 if ∀ x ∈ XR+ , (x |= φ1) ⇒ (x |=
φ2), or equivalently, L(φ1) ⊆ L(φ2).

A Parameterized Signal Temporal Logic (pSTL) formula is
an STL formula with parameters. For example, φ = �[a,b](x ≥
c) can be represented as the following pSTL: ϕ(a, b, c) =
�[a,b](x ≥ c), where a, b and c are the parameters and ϕ :
R3 → (XR+ → B) is the pSTL template. For the rest of the
paper, it is assumed that all the pSTL formulas are defined
on partially ordered parameter domains. Given a parameter
domain P , the partial order is denoted as ≤P . For a pSTL ϕ
with domain P1, if P1 is a subspace of P2, then ∀ p ∈ P2,
ϕ(p) = ϕ(p↓P1), where ↓ denotes the projection onto P1.
C. Assume-Guarantee Contract for Network Systems

Finally, we present a framework that builds a large assume-
guarantee contract from small subcontracts, which is then
used for the RCI computation whole network. We adopt the
definition of assume-guarantee contract from [21]:

Definition 1 (Assume-Guarantee Contract). An assume-
guarantee contract C for the dynamic system Σ is a pair of
STL formulae [φa, φg] consisting of an assumption φa and a
guarantee φg that enforces the logical implication φa → φg .

An assume-guarantee contract C = [φa, φg] is true for a
dynamic system Σ if Σ∩L(φa) ⊆ L(φg), or written compactly
as φa ∧ Σ→ φg with a slight abuse of notation. Note that Σ
here is understood as a proposition, interpreted as “a trace
satisfies the system dynamics”.

Definition 2 (Parameterized Assume-Guarantee Contract). An
assume-guarantee contract C = [φa, φg] is in parameterized
form if there exists pSTLs φa = ϕa(pa), φg = ϕg(pg) and a
mapping λ : Pa → Pg such that C(pa) = [ϕa(pa), ϕg(λ(pa))].

In particular, φa consists of two parts: φa = φae ∧ φaf =
ϕae (pae) ∧ ϕaf (paf ), where φae is the specification for
exogenous environment behavior and φaf is the feedback
specification, which is understood as the specification that
changes with other contracts.

Definition 3 (Parameterized Network Assume-Guarantee Con-
tract). For a network defined in (1), a parameterized network
assume-guarantee contract consists of individual parameter-
ized assume-guarantee contracts Ci for each subsystem Σi. Let
pae ∈ Pae, paf ∈ Paf and pg ∈ Pg be the parameters for ϕae,
ϕaf and ϕg . Each subcontract Ci consists of φia = ϕiae(p

i
ae)∧

ϕiaf (piaf ) and φig = ϕig(p
i
g). where piae = pae ↓ Piae,

piaf = paf ↓ Piaf and pig = pg ↓ Pig . Then the network
assume-guarantee contract is defined as C = [φae ∧ φaf , φg]
with the parameter mapping Λ : Pae × Paf → Pg and

φae = ϕae(pae) =

N∧
i=1

φiae =

N∧
i=1

ϕiae(p
i
ae),

φaf = ϕaf (paf ) =
N∧
i=1

φiaf =
N∧
i=1

ϕiaf (piaf ),

φg = ϕg(pg) =
N∧
i=1

φig =
N∧
i=1

ϕig(p
i
g).

(8)

IV. SET INVARIANCE WITH ASSUME-GUARANTEE
CONTRACTS

We now present one of the main results of this paper,
which utilizes a network assume-guarantee contract to prove
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Fig. 1: Network assume-guarantee contract for a 3-node net-

work

set invariance for network systems.

Theorem 1 (Assume-guarantee reasoning). Consider the net-
work system in (2) associated with a parameterized network
assume-guarantee contract defined in Definition 3 with param-
eter mapping Λ. Suppose the following are satisfied:
1. Under the local mapping λi : Pi

ae × Pi
af → Pi

g for each
subsystem, the following subcontract Ci : Σi ∧ ϕi

ae(p
i
ae) ∧

ϕi
af (p

i
af ) → ϕi

g(λi(p
i
ae, p

i
af )) is satisfied for all pia ∈ Pi

a
.
=

Pi
ae × Pi

af ,
2. There exists a mapping Γ : Pg → Paf such that ϕg(pg) �
ϕi
af (γi(pg)), where γi(pg) = Γ(pg) ↓ Pi

af .
3. There exists pae ∈ Pae such that ϕae(pae) is true.
4. There exists an initial feedback parameter paf [0] ∈ Paf

such that ϕaf (paf [0]) is true.
Given piae, define λ̂i(·) = λi(p

i
ae, ·). Let Λ̂(paf ) =

[λ̂1(p
1
af )

ᵀ, λ̂2(p
2
af )

ᵀ, ... λ̂N (pNaf )
ᵀ]ᵀ, then define recursively

pg[k] = Λ̂(paf [k]), paf [k + 1] = Γ(pg[k]). Under these
conditions, the network system satisfies

φ̂g =
∞∧
k=0

ϕg(pg[k]). (9)

See the Appendix B for the proof.

Fig. 1 shows an example on a 3-node network. The guaran-

tee of each node constitutes the assumption for the next itera-

tion, and each node takes the assumption about its neighbors

as an assumption from which a guarantee is obtained.

Theorem 1 can be viewed as the logical analogy of set

invariance. If we have the recursive reasoning that propagates

forward (φaf ), and the initial logic proposition is satisfied

(φae), then all the subsequent propositions are satisfied. Note

that the guarantees on subsystems’ behavior are shared across

the network as assumptions for the next iteration.

Next, we apply Theorem 1 to show set invariance of a

network system. Consider a network system described by (2).

Suppose that all subsystem outputs, yi, are scalars2, and for

each subsystem Σi, yNi
is treated as a disturbance. Then given

a bound on yNi
: |yNi

| ≤ ymax
Ni

, a bound Di on di and a bound

Ui on ui, any RCI algorithm can be applied to compute Si for

Σi that satisfies

∀ xi ∈ Si, ∀ di ∈ Di, ∀ |yNi | ≤ ymax
Ni

,
∃ ui ∈ Ui s.t. x+

i = fi (xi, yNi
, ui, di) ∈ Si.

Assume that Di and Ui are given as part of the problem

specification for all subsystems, the only information needed

for the RCI computation is ymax
Ni

. Let F be such a procedure

that takes ymax as input, and computes an RCI. For clarity,

2Scalar outputs are required for the epigraph algorithm (described on the
next page) to work. Future work will relax this assumption.

we let Fi(y
max
Ni

) ⊆ Xi be an RCI computed by F for the ith

subsystem Σi, and let F (ymax)
.
= F1(y

max
N1

)×...×FN (ymax
NN

)
be the products of all the individual RCIs.

Remark 3. Given a fixed procedure F , it can be thought of

as a mapping from the parameter ymax to the RCIs for the

subsystems, which is then used to enforce constraints on the

state. Note that F (ymax) is simply the product of RCIs for all

the subsystems, and is not necessarily an RCI for the network

system. It has to satisfy the validity condition defined later to

be an RCI for the network system.

Definition 4. F is monotonic w.r.t. ymax if given ymax,1 ≥
ymax,2 ≥ 0, F (ymax,2) ⊆ F (ymax,1). The inequality is

defined element-wise.

Lemma 1. There always exists an F which is monotonic w.r.t.
ymax.

Proof. ymax,1 ≥ ymax,2 implies that the uncertainty set for

F (ymax,1) is a superset of the uncertainty set for F (ymax,2),
so F (ymax,1) is also an RCI under |y| ≤ ymax,2.

The lemma above is intuitive since the size of the RCI should

monotonically grow with the size of the disturbance bound.

Under lemma 1, we make the following assumption.

Assumption 1. The RCI computation procedure F consid-

ered in this paper is monotonic. Lemma 1 shows that this

assumption can be made without loss of generality.

Given a procedure F that computes RCIs for subsystems

given ymax as described above, define the local mapping λi:

λi(y
max
Ni

)
.
= max

xi∈Fi(ymax
Ni

)
|hi(xi)| ,

Λ(ymax)
.
= [λ1(y

max
N1

);λ2(y
max
N2

); ...;λN (ymax
NN

)].
(10)

Note that Λ(ymax) has the same dimension as ymax. Then we

have our main theorem:

Theorem 2 (Set invariance of a network system with as-

sume-guarantee contract). Given an RCI computation pro-
cedure F and let Λ be defined in (10). If there exists a
ymax ∈ R

N
+ such that

Λ(ymax) ≤ ymax, (11)

then F (ymax) is an RCI for the network system.

See the Appendix C for the proof.

The condition in (11) is the critical condition to show in-

variance, from hereon we refer to it as the “validity condition”.

It can be interpreted as the condition that each subsystem can
satisfy what other nodes assume of it. In the next section

we will describe an algorithm that searches for a ymax that

satisfies the validity condition when feasible.

V. EPIGRAPH METHOD FOR VALID CONTRACTS

In this section, we present an epigraph algorithm that

searches for an assume-guarantee contract that meets the

validity condition (11) if one exists. In particular, we show

that the epigraph algorithm can be viewed as an extension

of the classic small gain theorem to network systems with

nonlinear “gains” and multiple interconnected systems.
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Fig. 2: Two systems interconnection network

Fig. 3: Epigraph view of the small gain theorem

A. Epigraph Representation of the Validity Condition

Recall that given a function g : Rm → R, the epigraph of

g is defined as

epi(g) := {(x, t) | x ∈ dom g, g(x) ≤ t},
where dom g denotes the domain of g.

The idea behind our algorithm is to view each local λi :
R

Ni
+ → R+ as a function and consider its epigraph. Recall

that λi defined in (10) denotes the mapping from the bounds

on the outputs of the neighbors to the bound on the output

of subsystem i. The condition in (11) is equivalent to the

following condition:

[ymax
Ni

; ymax
i ] ∈ epi(λi).

Note that this is a condition of only ymax. Suppose the

epigraph of each λi is known, the search for a valid contract

can be formulated as the following optimization:

min
ymax≥0

∑N

i=1
ymax
i

s.t. ∀ i = 1, ..., N,
[
ymax
Ni

; ymax
i

] ∈ epi(λi).
(12)

Example 1. Consider the two systems Σ1 and Σ2 intercon-

nected as shown in Fig. 2. Suppose that there exist constants

μ1, μ2, ν1, ν2 ≥ 0 such that

‖y1‖∞ ≤ μ1‖d1‖∞ + ν1‖y2‖∞,
‖y2‖∞ ≤ μ2‖d2‖∞ + ν2‖y1‖∞.

(13)

If, in addition, the small gain condition is satisfied, i.e., ν1ν2 <
1, then the small gain theorem tells us that the interconnection

is stable and

‖y1‖∞ ≤ μ1

1− ν1ν2
‖d1‖∞ +

μ2ν1
1− ν1ν2

‖d2‖∞,

‖y2‖∞ ≤ μ1ν2
1− ν1ν2

‖d1‖∞ +
μ2

1− ν1ν2
‖d2‖∞.

(14)

The proof can be found in [22]. The same result can be

obtained by considering the epigraph.

Proposition 1. Given (13) and bounded ‖di‖∞ > 0, i = 1, 2,
there exists an assume-guarantee contract that guarantees (14)

if ν1 · ν2 < 1.

Due to space limitations, the proof is omitted. It can be

found in [23].

Remark 4. This example shows that the small gain theorem

can be viewed as a special case of the epigraph method, which

is still applicable when λi are nonlinear functions and when

there are more than 2 interconnected subsystems.

In practice, epi(λi) usually does not have a simple explicit

form. Fortunately, we can replace epi(λi) in (12) with a

tractable inner approximation and the optimization would still

generate a valid contract if feasible. The inner approximation

of epi(λi) can be obtained by a grid sampling approach. To

be specific; evaluate λi at all the grid points (fixing ymax
Ni

) by

computing an RCI and evaluating (10). The approximation of

epi(λi) is the area above the grid points in [ymax
Ni

;λi(y
max
Ni

)]
space. The sampling complexity grows exponentially with the

number of neighbors Ni. To reduce the sampling complexity,

we introduce the notion of summable signals.

Definition 5. Two or more disturbance signals are summable
if they have the same input dynamics. To be specific, consider

x+ = f(x, u, d), where d = [d1, ..., dl]
ᵀ ∈ R

l is the

disturbance. The individual disturbances {di} are summable

if ∃ f̄ such that f(x, u, d) ≡ f̄(x, u,
∑

i di).

Summable disturbance inputs can be combined and viewed

as one disturbance since they invoke the same disturbance

dynamics and their bounds are summable, i.e.,

(|d1| ≤ α) ∧ (|d2| ≤ β) ⇒ |d1 + d2| = |d| ≤ α+ β,

where the equality follows by definition. Since the number of

samples grows exponentially with the number of disturbance

inputs, combining summable disturbance inputs reduces the

complexity of the epigraph algorithm.

VI. POWER GRID CASE STUDY

We now apply our assume guarantee framework (and epi-

graph algorithm) to a power network case study. We consider

the problem of load-side primary frequency control [24]. The

safety constraint considered is that the frequency deviation

should never exceed a predefined bound. Frequency regulation

is critical in power network. Modest deviations can damage

electrical equipment and infrastructure (at the point of load,

generation and/or distribution), overload transmission lines

leading to market inefficiency, degrade the power quality deliv-

ered to consumers, and cause a network collapse if protective

systems kick in to protect equipment. In the US, the nominal

frequency is 60Hz and we further impose that the frequency

deviation is below 0.05rad/s. Broadly speaking, if power

demand exactly matched supply, then frequency would not

deviate from its set-point. However, demand and supply can

never be exactly matched; excess supply results in an increased

frequency while a deficit causes frequency to decrease. Large

deviations for extended periods of time will result in load

shedding and potentially islanding.
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There has been a lot of effort focusing on the stability,
optimality, and safety of power networks, see for example
the survey paper [25]. Specifically, the Optimal Load Control
(OLC) algorithms in [26], [24] provide control laws that
can asymptotically track an optimal load-control problem i.e.,
control policy that achieves good asymptotic performance and
maximizes economic benefit. To be more specific, the virtual
flow method proposed in [24] formulates an OLC problem and
derives a control policy based on a primal-dual update of the
Lagrangian. However, despite good asymptotic performance,
it lacks a performance guarantee in the transient phase. In
particular, under contingencies such as large perturbation or
topology change, the frequency deviation may exceed the
±0.05rad/s bound.

We shall use the OLC controller as the legacy controller to
demonstrate the capability of the CBF controller proposed in
Section III-A. We will later show that robust control invariant
sets with control barrier functions are a good complement
to the OLC controller since it guarantees set invariance with
minimum intervention and preserves the performance of the
OLC controller when the violation of safety constraints is not
imminent.

A. Power Grid Dynamics
We consider a transmission model of the power grid con-

sisting of two types of buses; generators and loads. Take the
IEEE 9-bus network depicted in Fig. 8 as an example. The set
of generator buses are G = {1, 2, 3}, the remainder are pure
load buses, the set of which is denoted by L. The dynamics
of the grid can be described by the following model [24]:

θ̇i = ωi, (15)

Miω̇i = P in
i −Diωi − ri − ui −

∑
j∈Ni

ViVj

Xij
sin(θi − θj), i ∈ G

0 = P in
i −Diωi − ri − ui −

∑
j∈Ni

ViVj

Xij
sin(θi − θj), i ∈ L,

where θi and ωi are the phase angle and frequency respec-
tively of the voltage at bus i, P ini and ri are the input power
and uncontrollable load at bus i. A sudden change to either
P ini or ri is the main source of disturbance to the system,
and the controllable load ui is used to regulate the power
network. Each generator bus is modelled as a second order
system with state xi = [θi, ωi]

ᵀ, and Mi and Di are the
generator inertia and damping coefficient respectively; each
load bus is modelled as a first order system with xi = θi and
zero inertia. Xij is the reactance of the circuit between bus
i and bus j. We choose the output to be yi = θi since the
coupling between buses occurs through the phase angles θi.
The model in (15) can be linearized and for each node, the
subsystem dynamics Σi are given by[
δθ̇i
ω̇i

]
=

 0 1
−

∑
j∈Ni

Bij

Mi

−Di

Mi

[δθi
ωi

]
+

[
0

−M−1i

]
ui (16)

+

[
0 · · · 0

Bij1

Mi
· · ·

BijNi

Mi

] δθj1...
δθjNi

+ ei, i ∈ G,

δθ̇i =

−
∑
j∈Ni

Bij

Di
δθi +

−1

Di
ui +

∑
j∈Ni

Bijδθj

Di
+ ei, i ∈ L

with output yi = δθi. Bij =
ViVj

Xij
cos(θ0i−θ0j ) is the sensitivity

of power flow to phase variations and θ0i is the steady-state
phase angle at bus i. Bij 6= 0 when bus i and j are neighbors.

As mentioned before, the control objective is to prevent
large frequency deviation from a set value. However, since
the coupling is via the phase angle differences, in order to
bound the frequency deviation, one needs to bound phase angle
deviations as well. We will thus construct a robust control
invariant set for both the phase angle and the frequency. The
RCI should provide robustness to sudden changes of the input
power P ini , uncontrollable load ri and the coupling between
neighboring buses. We will treat the frequency deviation bound
as the safety constraint, i.e., the danger set X di for a generator
bus Σi is defined as

X di = {[δθi, ωi]ᵀ | |ωi| ≥ ωmax} , (17)

where ωmax is the bound for frequency deviation. Note that
the coupling between neighboring nodes happens via the phase
angle, which is a scalar output. If we can use assume-guarantee
contract to put bound on the phase angle deviations, we can
compute an RCI for each node, which in turn constitute an
RCI for the whole power grid network.

Let X0 be the set of allowed initial states, Xd be defined
in (17) for the generator buses (there is no Xd for pure load
buses), we enforce additional constraint in the RCI compu-
tation such that the RCI does not contain Xd, see Appendix
A for further details. With the polytopic RCI computed, the
CBF is defined in (7) and it can be verified that it satisfies (5).
Then, the RCI can be enforced with the quadratic program (6).

B. Epigraph Method for the search of valid Contracts

To make sure that the CBF QP is always feasible, a robust
control invariant set for the power network is needed. Since
the goal is fixed point tracking, we use the linearized dynamics
presented in (16) for each node, and include the linearization
error in the disturbance term. The assume-guarantee contract
in this example follows the form introduced in Section III-C.
Each bus takes the bound on the phase angle deviation of
its neighbors as the assumption, and guarantees that its own
phase angle deviation stays bounded. The contract parameters
are the bounds on phase angle deviation for each bus θmax.

The computation of the RCI follows the robust linear pro-
gramming algorithm [16]. For each bus, the RCI is computed
with the linearized model in (16) after time discretization.
The inputs to the RCI computation of the ith bus are the
input sets Ui and exogenous disturbance bounds Di, given as
the environment assumptions φiae (fixed), and bounds on the
phase angle deviations of neighboring buses θmax

Ni
, given as

the feedback assumption φiaf . Let F be the RCI computation
procedure, and define

λi(θ
max
Ni

) = max
xi∈F(θmax

Ni
)
|θi|. (18)

In the IEEE 9 bus example (as shown in Fig. 8), we add
an additional constraint to F such that for each RCI, Si,
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Fig. 4: Inner approximations of epi(λ1) and epi(λ5)

Fig. 5: Robust control invariant sets for the generator buses

computed for the generator buses, max
xi∈Si

|ωi| ≤ ωmax, so that

xi ∈ Si implies that the safety constraint is satisfied.
By Assumption 1, λi is clearly monotonic. The evaluation

of λi is done in two steps. First, with θmax
Ni

fixed, F is called to
compute an RCI Si, then θmax

i is obtained through (18). Next,
the inner approximation of epi(λi) is computed for each bus
with the grid sampling algorithm, shown in Fig. 4.
Remark 5. Clearly, the power flow from neighboring buses are
summable, we treat them as separate disturbances in Fig. 4 to
visualize the epigraph method with multiple non-summable
disturbance inputs.

As shown in Fig. 8, bus 1 has one neighbor (bus 4) and bus
5 has two neighbors (bus 4 and 6), therefore epi(λ1) is 2-
dimensional whereas epi(λ5) is 3-dimensional. Once a value
for θmax that satisfies the validity condition is found, it leads
to a valid network assume-guarantee contract, and an RCI can
be obtained via F .

Fig. 5 shows the robust invariant sets for the generator buses
under the assume-guarantee contract, which satisfies the safety
constraint that |ωi| ≤ ωmax = 0.05rad/s.
C. Simulation Result

For each bus, the computed robust control invariant set is
then enforced with a control barrier function as described
in Section III-A with the OLC controller introduced in [24]
used as the legacy controller providing the policy u0. In Fig
6 we show a simulation trace of the 9-bus system with the
CBF controller as the supervisory controller, and the safety
constraint with ωmax = 0.05rad/s is never breached.

Fig. 7 shows the phase angles with and without the CBF
supervisor. Under the CBF supervisory controller (magenta
plots), all phase anngles are within their respective bound
determined by the contract; on the other hand, without CBF
control (blue plots), there is no guarantee that the phase angles
stay within bounds under the OLC policy u0.

VII. MODEL PREDICTIVE CONTROL FOR CONTINGENCY
RECOVERY

We have shown how to compute an RCI for the network
system with an assume-guarantee contract. We have shown this

Fig. 6: CBF control: Phase angle deviations of all 9 buses
(a); generator frequency deviation (b); OLC legacy control (c);
CBF supervisory control (d)
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Fig. 7: Phase angle plot with and without the CBF supervisor

strategy is sufficient to guarantee the satisfaction of the safety
constraint if the network operates around a fixed operating
point θ0 (around which the dynamics are linearized). However,
when a severe contingency occurs such as a change in the
network topology, a bus disconnects, or a line shorted, the
RCI around the original operating point can no longer be
maintained with the available control input, and the operating
point has to change. This calls for an alternative controller that
deals with the transient.

We propose a contingency tube model predictive controller
that can handle the transient caused by contingency cases
based on the mechanism developed for fixed point control.

A. Model Predictive Control for Reference Trajectory

Our MPC scheme is slightly different from the classic MPC
(see for example [27]), here we briefly review some concepts
from the MPC literature and introduce our contingency tube
MPC scheme.

There are two important horizons for MPC, the prediction
horizon Tp and the control horizon Tc. An MPC controller
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Fig. 8: Contingency positions. Colors determined by delays:

yellow (1-step delay), green (2-step delay), blue (3-step).

looks ahead Tp steps and represents the future state trajectory

as a function of the input sequence, then solves for the optimal

control sequence w.r.t. a cost function and some state and

input constraints. The control sequence will be executed for Tc

steps, at which point another MPC iteration is executed, and a

new control law computed. Traditional MPC schemes typically

have Tc � Tp, often choosing Tc = 1, which requires the

controller to have access to the state information without delay.

In the network setting, distributed MPC schemes have been

proposed [28] that depend on fast communication and dis-

tributed optimization techniques. However, when the commu-

nication delay is not negligible, the receding horizon scheme

is likely to be infeasible. Instead, we consider a contingency

tube MPC scheme that is triggered only when a contingency

occurs, and the MPC nominal trajectory do not update until

the end of the prediction horizon or another contingency

occurs. Obviously, such an MPC scheme is equivalent to

feedforward control once the MPC input is solved, and would

not work without feedback. We use CBF at each node of the

network as the feedback controller to guarantee the tracking

performance of the reference trajectory generated by the MPC.

The contingency tube MPC is designed to guarantee the safe

transition of the network to the new operating point after

the contingency. Three requirements for the MPC should be

considered:

• Computation of the MPC solution should be fast enough

to allow real-time implementation.

• Safety constraints should be satisfied.

• Communication limitations should be respected.

Computation limitations differ with applications. In our power

grid case study, in order to speed up the computation, we

use the linearized model (16) and treat the nonlinearity as

a bounded disturbance. With a linear discrete-time model,

quadratic costs and linear state and input constraints, the MPC

can be solved by convex quadratic programming over the input

sequence û(0 : Tp−1). The MPC controller is triggered when

any bus detects a contingency that exceeds the capability of

the fixed point controller, such as connecting or disconnecting

a bus or a line loss. To obtain the reference trajectory, the

following optimization problem is solved:

min
û

J (û, x̂, x�)

s.t. x̂(t+ 1) = f̂(x̂(t), û(t), d̂(t)),

∀ i ∈ G, t = 0, 1, ..., Tp − 1, |ωi| ≤ ωmax,ff ,

C (û(0 : Tp − 1)) = 0,

(19)

where x� is the new operating point, J is the cost function,

which penalizes û and the distance between x̂ and x�. ωmax,ff

is the bound on the bus frequencies for the MPC. Later we

show that with CBF, the frequency tracking error is bounded

by ωmax,fb. Let ωmax = ωmax,ff + ωmax,fb, then the total

frequency deviation is bounded by ωmax. x̂ and û are the

reference state and input trajectories and d̂ is the predicted

disturbance sequence, which depends on the knowledge of the

contingency. In the general case f̂(x, u, d) is a linearization of

(4), for this case study, the dynamics are given by (16). The

set C is the constraint on the input caused by communication

delay, which will be discussed later. The proposed scheme

is based on the assumption that the network is close to

a steady state when the contingency happens, therefore we

can compute the reference trajectory for the whole network

assuming that the system is at steady state without real-time

state information. Once the MPC controller obtains a solution,

the solution is sent to each node as the reference trajectory.

Each node then uses a local feedback controller to track the

reference trajectory.

Since the transmission of the reference trajectory is also

subject to communication delay, we need the additional input

constraint C. Take the 9 bus test case as an example, suppose

a contingency is detected at bus 4 and the MPC is computed

at node 4. Assuming that the signal travels one edge per time-

step, then the delay at each node is shown in Fig. 8, and C
would enforce the following input structure:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

û1(0 : Tp − 1)
û2(0 : Tp − 1)
û3(0 : Tp − 1)
û4(0 : Tp − 1)
û5(0 : Tp − 1)
û6(0 : Tp − 1)
û7(0 : Tp − 1)
û8(0 : Tp − 1)
û9(0 : Tp − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (20)

which restricts the input to be zero before the reference

trajectory signal arrives.

B. Contingency Tube MPC with CBFs

A local feedback controller is needed to track the reference

trajectory generated by the MPC algorithm. The idea of

centralized tube MPC was discussed in [29], [30], and was

extended to distributed tube MPC for multiple subsystems

without coupling in the dynamics [31]. There exist, however,

strong coupling between nodes in the model of the grid

dynamics (15). We use the assume-guarantee contract method

proposed previously to handle the trajectory tracking problem

for networks with strong coupling.

We assume that there exists a nominal dynamic model f̂i for

each subsystem in the network, and the difference between the

model and the actual dynamics as described by (2) is bounded:

fi (xi, yNi
, ui, di)− f̂i (xi, yNi

, ui, di) ∈ Wfi , (21)

where Wfi is the bound for model mismatch. The goal is to

track a reference trajectory x̂(1 : Tp) that satisfies

x̂i(t+ 1) = f̂i

(
x̂i(t), ŷNi

(t), ûi(t), d̂i

)
,

ŷi(t) = h(x̂i(t)), i = 1, ..., N, t = 0, ..., Tp − 1
(22)
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Fig. 9: Linearization error

and keep the tracking error bounded. For the grid dynamics,
f̂i is linear, therefore we can write it as

f̂i(xi, yNi
, ui, di) = Aixi +Biui + E1

i yNi
+ E2

i di,

where (Ai, Bi, E
1
i , E

2
i ) are easily obtained from (16). Define

the error ei = xi − x̂i, then the error evolves as

e+i = Aiei+Bi∆ui+E1
i (yNi

− ŷNi
) +E2

i (di− d̂i) + ∆fi(t)

where ∆u
.
= ui − ûi denotes the feedback part of the input,

and ∆fi(t) defined by

fi

(
x̂i(t), ŷNi(t), ûi(t), d̂i

)
− f̂i

(
x̂i(t), ŷNi(t), ûi(t), d̂i

)
is the modeling error from linearization. We assume it is
bounded and belongs to the set Wfi . For the power grid case
study, the error is caused by linearization of the sinusoidal
functions. Since the reference trajectory has a finite duration
TsTp and ωi is bounded by ωmax for every bus, the bound on
the modeling error can be obtained, c.f. Fig. 9. We now have
everything in place to state the main result of this section.

Theorem 3. Consider the power system dynamics in (15),
denoted as f , and the linearized model in (16), denoted as f̂ .
For a reference trajectory [x̂(1 : Tp), û(0 : Tp − 1)] satisfying
(22), if for each bus, there exists a feedback controller ∆ui =
ki(xi − x̂i, yNi

− ŷNi
, di − d̂i) such that for a given bound

∆Di of di − d̂i, a given set Si ⊆ Xi and a given bound on
|y − ŷ| ≤ ∆ymax, the following is true:

∀ xi(t) ∈ x̂i(t) + Si, di(t) ∈ d̂i(t) + ∆Di
∀ |yNi

(t)− ŷNi
(t)| ≤ ∆ymax

Ni
,

xi(t+ 1) = fi (xi, yNi
, ui, di) ∈ x̂i(t+ 1) + Si

max
xi(t)∈x̂i(t)+Si

|hi(xi)− ŷi| ≤ ∆ymax
i , t = 0, ..., Tp − 1,

where ∆ymax
Ni

is a projection of ∆ymax onto YNi
and the

“+” signs between vectors and sets denote direct sums. Then
let ui = ûi + ki(xi − x̂i, yNi − ŷNi , di − d̂i), for any x(0)
satisfying xi− x̂i ∈ Si, disturbance satisfying di(t) ∈ d̂i(t) +
∆Di, the closed loop trajectory stays inside the tube defined
as {x(1 : Tp) | x(t) ∈ x̂(t) + S1 × ...× SN}.

Proof. The proof can be obtained by directly applying Theo-
rem 2 on the error dynamics.

To implement the contingency tube MPC, we first compute
an RCI for the error dynamics taking the bound on disturbance
and model mismatch into account. When a contingency occurs,
the MPC scheme (19) is solved to obtain a reference trajectory

Fig. 10: New England grid structure and failure locations

x̂, then at each node, the following CBF supervisory control
is implemented:

ui(t) = arg min
u∈Ui

∥∥u− u0i (t)∥∥2
s.t. ḃi(xi − x̂i, u) + κbi(xi − x̂i) ≥ 0,

(23)

where bi is the CBF for the ith node defined based on the RCI
Si, u0i is the nominal control signal for the ith node, which
can be simply chosen as ûi, or alternatively chosen as ûi plus
a local feedback part. In the next section, the legacy control
u0i is picked as ûi plus an LQR feedback component.

C. Simulation of the Contingency Tube MPC

To validate the proposed contingency tube MPC scheme,
we use the high-fidelity power grid simulator PST [32] as
the simulation environment. PST allows several types of
contingency cases, such as the 3-phase error, loss of line and
loss of load. The New England network from PST is picked
for demonstration, which contains 39 buses with 10 of them
generator buses, as shown in Fig. 10. The red nodes are the
generator buses and the green nodes are the pure load buses.
The two tested contingencies are:
• Case 1: Load bus loss at bus 7
• Case 2: Line between bus 3 and 4 trips

When bus 7 disconnects, the network is able to find a new
set point without changing the generation. When the line
between bus 3 and 4 disconnects, the network cannot balance
itself with the original generation. So an optimal power flow
(OPF) routine (AC OPF routine in Matpower toolbox [33])
is performed to get the new generation together with the
new operating point, and the contingency tube MPC is used
to complete the transition to the new operating point. The
sampling time and horizon for the contingency tube MPC is
set at 50ms and 2.5s (Tp = 50).

We insert sinusoidal load fluctuation with the maximum
magnitude allowed by the RCI at every bus to simulate the
effect of uncontrolled load disturbance. Once the contingencies
(bus loss in case 1 and line loss in case 2) are detected,
the contingency tube MPC kicks in at the nearest node to
the contingency (bus 6 in case 1 and bus 4 in case 2) to
compute the reference trajectory for the transition to the new
operating points. Then the plan is then communicated across
the network; the signal is assumed to travel two edges per
sampling interval.

Fig. 11 shows the PST simulation of case 1, the load failure
occurs at t = 4s. The blue line is the state, the magenta

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCNS.2020.3029183

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10

0 1 2 3 4 5 6 7 8
-0.15

-0.1

-0.05

0 1 2 3 4 5 6 7 8

0

0.05

0.1

0 1 2 3 4 5 6 7 8

-0.05

0

0.05

Fig. 11: Case 1: Bus failure contingency

Fig. 12: Robust Control Invariant set with state and input
trajectories at bus 31

line represents the tube (i.e. the region the state is confined
to lie in), the green line represents the new set point for
the phase angle and the red line represents the bound for
frequency. We show the state trajectory of bus 6, the bus
closest to the contingency, and bus 31, the closest generator
bus to the contingency. When the contingency happens, the
frequency breached the constraint for a slight moment, the
reason for this violation of the safety constraint are (i) the
dynamics under the contingency are not modeled accurately
(ii) the violation happened instantly after the loss of bus 7,
before the contingency tube MPC is able to kick in and react.
Once the contingency tube MPC scheme kicks in, the state
trajectory was kept within the tube and the network eventually
reaches the new operating point without violating the safety
constraint. In practice, infrequent small violations over very
small time periods are tolerated. In Fig. 12 we plot the
state trajectory w.r.t. the RCI and the inputs to the system
at bus 31 (generator bus). The two figures on top show the
state and input trajectories before the contingency at t = 4s.
Due to the sinusoidal fluctuation of the load, the phase angle
also fluctuates, but it never left the RCI; Fig. 12(a). In Fig.
12(b), the blue curve shows the legacy controller input, and
the red curve shows the CBF controller input. The timing of
the interventions coincide with the timing when the state is
close to the boundary of the RCI. Fig. 12(c) and (d) show the
state and input trajectories after the contingency. Note that in
the contingency tube MPC scheme, we require the error state
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Fig. 13: Case 2: Line failure contingency

x− x̂ instead of the state x to stay inside the RCI. After the
temporary deviation right after the contingency, x − x̂ stays
inside the RCI due to the CBF controller.

Fig. 13 shows the simulation for the line loss case. Similarly,
the contingency tube MPC together with the CBF controller
is able to keep the system trajectory within the tube and take
the whole network to the new operating point.

VIII. CONCLUSION

We consider the application of robust control invariant set
and control barrier functions on network systems to prevent
large deviations from the desired working condition. The key
idea is to use assume-guarantee contracts to break the large
network into small subsystems. The coupling between subsys-
tems are treated as bounded disturbances which are handled
with a network assume-guarantee contract. We show that a
network assume-guarantee contract satisfying the validity con-
dition guarantees robust set invariance for the whole network
system. Furthermore, we propose an epigraph algorithm that
searches for a valid contract, and enjoys linear complex-
ity when the network is sparse or the coupling terms are
summable. Based on the network assume-guarantee contract
idea, we further propose a contingency tube MPC scheme that
is capable of handling contingencies with changing operating
points while respecting communication limitations.

APPENDIX A
ROBUST LINEAR PROGRAMMING FOR RCI COMPUTATION

We briefly review the robust linear programming algorithm
for minimal robust control invariant set (mRCI) computation
proposed in [16]. A set is robust control invariant if there
exists a controller that keeps any trajectory starting within the
set inside the set under all possible disturbances.

Definition 6. Given a discrete-time dynamical system:

x+ = f(x, u, w), x ∈ Rn, u ∈ U , w ∈ W (24)

where x, u, and w are the state, control input, and disturbance.
A set S ⊆ Rn is robust control invariant if ∀x ∈ S, ∀w ∈
W, ∃ u ∈ U s.t. x+ = f(x, u, w) ∈ S.

In addition, we assume w = [wm;wu], where wm and wu

are the measured and unmeasured disturbances, respectively.
The control policy can depend on wm, but not on wu.
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The mRCI algorithm assumes a discrete-time linear model:

x+ = Ax+Bu+ Ew. (25)

The RCI takes a polytopic form Poly(P, q) with the hyper-
plane orientation fixed to P . A one-step propagation computes
a new polytope Poly(P, q+) that contains all possible x+ with
x ∈ Poly(P, q), and w ∈ W under the dynamics in (25). We
assume the control law takes the form u = Kffw

m +Kfbx,
but note that once the mRCI is computed, it is enforced by
control barrier functions, as reviewed in Section III-A. The
linear control law here is simply used to show that there exists
a control strategy that renders the set robustly control invariant,
it does not have to be implemented.

The one-step propagation is formulated as a robust linear
programming problem by assuming a linear form of the control
law u = Kffd + Kfbx. Robust linear programming (with
polytopic uncertainty) is then solved via linear programming
using dualization. Thus, it enjoys order constant complexity.

In the power grid case study, with dynamics Σi described
by (16), we assume that phase angles of the neighboring
nodes and the local generation and uncontrolled load are
measured disturbances. The unmeasured disturbance is due
to the communication delay between the neighboring nodes.
Suppose node i and j are neigbors, the bound on frequency
is ωmax, and the time delay of communication is τ . Then
the maximum difference between the actual value of θj and
the value used for feedback is ωmaxτ . The bound of the
unmeasured disturbance for the ith node wui is then given
as |wui | ≤

∣∣∣BiKi
ff

∣∣∣ωmaxτ where Bi and Ki
ff are the input

matrix and feedforward gain of the ith node. The following
one-step propagation solves for a polytopic set Poly(P, q+)
that contains all possible x+ with x ∈ Poly(P, q) and w ∈ W:

min
Kff ,Kfb,q+

cᵀq+

s.t. ∀ x ∈ Poly(P, q),∀ w ∈ W,

P
(
Ax+B

(
Kᵀ
ffw

m +Kᵀ
fbx
)

+ Ew
)
≤ q+,

Kᵀ
ffw

m +Kᵀ
fbx ∈ U ,

(26)

which is solvable with robust linear programming [34].

Remark 6. We enforce an additional constraint that for the
generator buses, the frequency stays bounded |ωi| ≤ ωmax,
which is easily enforced as a constraint on q+.

Optimization (26) solves the one-step propagation problem,
which is embedded in an iterative algorithm to find a minimal
robust control invariant set. The algorithm is initiated from
a small q and iteratively updates q with q+. If q+ ≤ q,
then P(P, q) is robustly control invariant, and the algorithm
terminates, as shown in Algorithm 1.

APPENDIX B
PROOF OF THEOREM 1

By assumption 3 and 4, piae and piaf [0] exists so that φiae and
φiaf [0] are satisfied. By assumption 1, define the following
recursion:

pg[k] = Λ̂(paf [k])

paf [k + 1] = Γ(pg[k]).
(27)

Algorithm 1 Robust LP algorithm for mRCI

1: procedure RCI-IO(Σ, P , q0, W , U , ε)
2: q ← q0

3: do

4:

Find
[
q+,Kff ,Kfb

]
s.t.

∀ x ∈ Poly(P, q), ∀ w ∈ W,Kffw
m +Kfbx ∈ U ,

x+ ∈ Poly(P, q+ − ε1L)
5: q ← q+

6: while q+ ≤ q + ε1L
7: return [q,Kff ,Kfb]
8: end procedure

Then, we can build an infinite sequence of STLs that the
network system satisfies from assumption 1, 2, and (27):

N∧
i=1

ϕiae(p
i
ae) ∧

N∧
i=1

ϕiaf (piaf [0])∧(
N∧
i=1

ϕiae(p
i
ae) ∧

N∧
i=1

ϕiaf (piaf [0])⇒
N∧
i=1

ϕig(p
i
g[0])

)
∧(

N∧
i=1

ϕig(p
i
g[0])⇒

N∧
i=1

ϕiaf (piaf [1])

)
∧

...

which implies (9).
APPENDIX C

PROOF OF THEOREM 2

Let Si = Fi(y
max
Ni

), and define a network assume-guarantee
contract with

φiae =(xi(0) ∈ Si) ∧� (di ∈ Di)
∧� (ui = ki(xi, yNi

, di)) , (28a)

φiaf =ϕiaf (T ) = �[0,T ] |yNi
| ≤ ymax

Ni
, (28b)

φig =ϕig(T̂ ) = �[0,T̂ ]xi ∈ Si; (28c)

where ki is the feedback law that keeps xi within Si. By the
definition of an RCI, the existence of ki is guaranteed. Let
Λ̂(T ) = T + Ts, Γ(T̂ ) = T̂ , where Ts is the time step of the
discrete dynamics in (2).

Among the 4 assumptions of Theorem 1, Assumption 1 is
satisfied by the definition of an RCI. With (11), Assumption
2 is satisfied with Γ defined above. Assumption 3 is satisfied
by (28a) and Assumption 4 is satisfied by setting T = 0 in
(28b). Then, by Theorem 1, the guarantee for the network

system is φ̂ig =
∞∧
k=0

�[0,k·Ts]xi ∈ Si, which is simplified to

∀ i = 1, ..., N,�[0,∞)xi ∈ Si.
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