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Niche Partitioning of the N Cycling
Microbial Community of an Offshore
Oxygen Deficient Zone

Clara A. Fuchsman*, Allan H. Devol, Jaclyn K. Saunders, Cedar McKay and
Gabirielle Rocap*

School of Oceanography, University of Washington, Seattle, WA, United States

Microbial communities in marine oxygen deficient zones (ODZs) are responsible for up
to half of marine N loss through conversion of nutrients to NoO and No. This N loss is
accomplished by a consortium of diverse microbes, many of which remain uncultured.
Here, we characterize genes for all steps in the anoxic N cycle in metagenomes from the
water column and >30 wm particles from the Eastern Tropical North Pacific (ETNP) ODZ.
We use an approach that allows for both phylogenetic identification and semi-quantitative
assessment of gene abundances from individual organisms, and place these results in
context of chemical measurements and rate data from the same location. Denitrification
genes were enriched in >30 wm particles, even in the oxycline, while anammox bacteria
were not abundant on particles. Many steps in denitrification were encoded by multiple
phylotypes with different distributions. Notably three No O reductases (nosZ), each with no
cultured relative, inhabited distinct niches; one was free-living, one dominant on particles
and one had a C terminal extension found in autotrophic S-oxidizing bacteria. At some
depths >30% of the community possessed nitrite reductase nirk. A nirkK OTU linked
to SAR11 explained much of this abundance. The only bacterial gene found for NO
reduction to N>O in the ODZ was a form of gnorB related to the previously postulated
“nitric oxide dismutase,” hypothesized to produce Ny directly while oxidizing methane.
However, similar gnorB-like genes are also found in the published genomes of many
bacteria that do not oxidize methane, and here the qnorB-like genes did not correlate
with the presence of methane oxidation genes. Correlations with NoO concentrations
indicate that these gnorB-like genes likely facilitate NO reduction to NoO in the ODZ. In
the oxycline, gnorB-like genes were not detected in the water column, and estimated
N»>O production rates from ammonia oxidation were insufficient to support the observed
oxycline NoO maximum. However, both qnorB-like and nosZ genes were present within
particles in the oxycline, suggesting a particulate source of NoO and N». Together, our
analyses provide a halistic view of the diverse players in the low oxygen nitrogen cycle.
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INTRODUCTION

Naturally occurring oxygen deficient zones (ODZs), defined here
as water containing <10nM oxygen, constitute <1% of the
ocean volume, but contribute 30-50% of N loss from the marine
system through N, production (DeVries et al, 2013). In the
absence of oxygen, microbes in these waters use a variety of
different terminal electron acceptors, including oxidized nitrogen
(nitrate and nitrite), resulting in the production of both N, and
the greenhouse gas N,O. Due to the temperature-dependent
solubility of oxygen, concentrations are predicted to be further
reduced in the future, increasing the size of ODZs (Deutsch
et al., 2011) with implications for increased N, production and
consequent N limitation of global primary production. Thus,
understanding the microbial community responsible for N
production is important to predicting the nitrogen budget of a
changing ocean.

Denitrification and anammox are the two known pathways
for N, production. Denitrification is the multi-step reduction of
NO3 to N; paired with oxidization of organic matter, reduced
sulfur, or methane. Nitrate is reduced through four reduction
steps, each encoded by a different enzyme. However, not all
denitrifying organisms possess all the enzymes needed to reduce
NO;3 all the way to N,. Many encode genes for only a subset
of the steps and rely on other microbes for the production or
consumption of their reactants and products (Zumft, 1997). This
separation of individual reactions may be possible because most
steps in denitrification occur in the periplasm (Zumft, 1997),
which should ease transport of reactants and products across
the outer membrane. Genes in the denitrification pathway are
found widespread throughout the microbial tree of life (Zumft,
1997). Some horizontal gene transfer of denitrification genes has
occurred and some denitrification genes have even been found
on plasmids (Zumft, 1997). However, duplication and divergence
of genes followed by incomplete lineage sorting maybe more
important than horizontal gene transfer in accounting for the
diversity of denitrification genes (Jones et al., 2008). Denitrifiers
are also metabolically diverse, with heterotrophic denitrifiers
coupling N reduction with organic matter oxidation and
autotrophic denitrifiers coupling N reduction with sulfur or
methane oxidation to fuel carbon fixation (Hannig et al., 2007;
Ettwig et al., 2010; Babbin et al., 2014). In contrast, autotrophic
bacteria in the order Brocadiales in the Planctomycetes phylum
are the other organisms known to carry out the anammox
process, which involves reduction of NO; with NHI to produce
N;,. The process occurs in an internal compartment where the
membrane is composed of ladderane lipids; these tightly fitting
lipids are needed to isolate the toxic intermediate hydrazine
(N,Hy) from the rest of the cell and prevent hydrazine leakage,
which would make anammox energetically unfeasible (Sinninghe
Damsté et al.,, 2002). This complex cellular structure may be
one reason why anammox is restricted phylogenetically, with
Scalindua the only genera of anammox bacteria thus far found
in the marine environment (van de Vossenberg et al., 2013).

The relative importance of anammox compared to
denitrification in marine N, production is still unclear (Lam
et al., 2009; Ward et al., 2009; Dalsgaard et al., 2012). If the

breakdown of organic matter by heterotrophic denitrifiers is
the source of ammonia to anammox, then stoichiometrically
heterotrophic denitrification should contribute 70% and
anammox 30% to N, production (Devol, 2003) though the
consumption of nitrite through nitrite oxidation can shift
this ratio to >40% anammox (Penn et al., 2016). However, in
older studies, denitrifiers, identified molecularly by targetting
the nitrite reductase gene nirS were in low abundance (Lam
et al, 2009, 2011; Jensen et al., 2011; Jayakumar et al., 2013;
Kalvelage et al, 2013) and had low diversity (Bowen et al.,
2015). More recently, using primer-independent approaches
the copper-dependent nitrite reductase encoded by nirK was
found in addition to nirS, and was more abundant (Ganesh et al.,
2014, 2015; Glass et al., 2015; Liike et al., 2016). In the Arabian
Sea and ETSP, this nirK was predominantly from ammonia
oxidizing archaea while in the ETNP #irK from nitrite oxidizer
Nitrospina was found in addition (Glass et al., 2015; Liike et al.,
2016). However, neither ammonia oxidizing archaea or nitrite
oxidizing bacteria are complete denitrifiers, so the role of nirK in
N, production is still unclear.

Anammox and denitrifying bacteria may have different
niches in the ODZ. Size fractionated studies in the ETSP
and the Black Sea indicate that marine anammox bacteria are
primarily free-living (Fuchsman et al., 2012b; Ganesh et al,
2014, 2015) as are nitrate reducers (Ganesh et al.,, 2015), but
the last two steps in the denitrification pathway are enriched in
>1.6 wm suspended particles (Ganesh et al., 2014, 2015). The
most abundant nitrate reducer in the ETNP was a free-living
SARI11 in the ODZ which has two different nitrate reductases
transferred from quite distinct bacteria (gammaproteobacteria
and candidate phyla OP1) but lacks genes for the last two
steps in denitrification (Tsementzi et al., 2016). The organisms
containing genes for the last step in denitrification, N,O
reductase nosZ, are largely unknown (Ganesh et al., 2014, 2015).
The addition of sterilized sediment trap material significantly
increased denitrification and anammox rates in all three marine
ODZs (Babbin et al., 2014; Chang et al., 2014). Denitrification
rates increase more than anammox (Babbin et al., 2014;
Chang et al., 2014), probably because denitrification uses
organic matter directly while anammox uses ammonia from
organic matter degradation. N, production has also been found
inside particles composed of diatom aggregates or zooplankton
carcasses at hypoxic oxygen concentrations (Stief et al., 2016,
2017).

Denitrification in marine ODZs is generally attributed
to heterotrophic denitrification. However, some autotrophic
denitrification has been measured in incubations with sulfide
in the coastal ETSP (Canfield et al., 2010) and autotrophic N;
production by methane oxidizers has been proposed in the ETNP
(Padilla et al., 2016). Cand. Methylomirabilis oxyfera, isolated
from fresh water, can oxidize methane with nitrite, forming N,
from nitrite without an N,O intermediate (Ettwig et al., 2010).
The gene in question was dubbed nitric oxide dismutase (nod)
based on in silico analysis (Ettwig et al., 2012) and has been found
in both transcript and gene data from the ETNP (Padilla et al,,
2016). However, rates of methane oxidation in the ETNP ODZ
are the slowest rates measured in the ocean (0.034-15 x 1073
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nmol CHy L1 d™1), suggesting that methane oxidation is not a
dominant process in the ETNP (Pack et al., 2015).

Nitrite and ammonium oxidation have been shown previously
in the upper ODZ in the ETNP (Peng et al., 2015; Garcia-Robledo
et al,, 2017). Although the ETNP ODZ contains <10 nM oxygen
(Tiano et al, 2014), the low oxygen Ky, for nitrite oxidation
0.5 &= 4nM (Bristow et al., 2016), indicates nitrite oxidation is
possible when oxygen concentrations below detection. Oxygen
needed for nitrite oxidation may be provided by photosynthesis
by Prochlorococcus in the upper ODZ or by mixing of waters
from the oxycline above (Peters et al., 2016; Garcia-Robledo et al.,
2017). The K, for ammonia oxidizers is 333 & 130 nM, which
is significantly higher than for nitrite oxidation (Bristow et al.,
2016). Correspondingly, ammonia oxidation rates drop off more
rapidly than nitrite oxidation rates in the upper ODZ (Peng et al.,
2015).

Here, we take a holistic approach to the low oxygen nitrogen
cycle using metagenomics combined with existing chemical and
rate measurements. We performed a phylogenetic analysis of key
functional genes in the N cycle from assemblies of a metagenomic
10-depth profile in the water column and the >30 pum particle
attached community at three key depths in the offshore ETNP
ODZ. We identified previously unknown phylotypes for many
key N cycling genes. We then used a read placement approach
to quantify the distributions of all phylotypes for each gene in
a semi-quantitative manner and found multiple differences both
with respect to depth and presence in the particle attached vs.
whole water community.

METHODS

Hydrographic Data

Samples were collected in April 2012 aboard the R/V Thompson
TN278 using 10 L Niskin bottles on a 24 bottle CTD-rosette. A
Seabird 911 Conductivity Temperature Density meter, a Seabird
SBE 43 Dissolved Oxygen Sensor, a WETLabs ECO Chlorophyll
Fluorometer, and a Biospherical/Licor PAR/Irradiance Sensor
were attached to the rosette. Nutrient samples were filtered
(GE/F glass fiber; nominal pore size 0.7 um) before analysis.
Nutrient analyses were performed by members of the University
of Washington Marine Chemistry Laboratory on board the ship
using a Technicon AAII system as described by the World
Ocean Circulation Experiment (WOCE) Hydrographic Program
protocol (Gordon et al,, 1995). Ammonium was measured on
board the ship using the fluorometric orthophthaldialdehyde
(OPA) method due to the low detection limit (10nM)
of this method (Holmes et al, 1999). Hydrographic and
nutrient data from the cruise are deposited at http://data.
nodc.noaa.gov/accession/0109846. Eight day averaged satellite
chlorophyll (April 7, 2012) from satellite MODIS Aqua
R2014 was downloaded from http://www.science.oregonstate.
edu/ocean.productivity.

N> Gas Concentrations

N, gas samples were collected from St 136 and analyzed
as in Chang et al. (2010, 2012). Very briefly, duplicate gas
samples were collected in evacuated 185 mL glass flasks sealed

with a Louwers-Hapert valve and containing dried mercuric
chloride as a preservative. To prevent air contamination when
sampling, samples were transferred from the Niskin bottle to the
sample flask under a local CO, atmosphere. Head-space gases
were cryogenically processed to completely remove CO; and
residual water vapor and run through an inline CuO furnace
to remove oxygen. Then gases were measured at the Stable
Isotope Lab, School of Oceanography, University of Washington
on a Finnigan Delta XL isotope ratio mass spectrometer. The
anoxic samples were measured against a standard containing
zero oxygen. Background N,/Ar ratios from representative water
outside the ODZ were removed as in Chang et al. (2012), leaving
concentrations of biologically produced N».

Metagenomic Data

DNA samples were obtained from station 136 (106.543° W
17.043° N; cast 136) at 10 depths including the oxycline
and anoxic zones. Two liters of Niskin water were vacuum
filtered onto a 0.2 um SUPOR filter. At station BB2, a nearby
station (107.148° W 16.527° N; cast 141), ~4 L were prefiltered
through >30pum filters at 100, 120, and 150m depths and
subsequently filtered onto 0.2 um SUPOR filters. >30 pm filters
were sequenced for all three depths, but only the <30pm
filter from 120 m was sequenced. Particles >30 um should be
composed of sinking as well as large suspended particles (Clegg
and Whitfield, 1990). Station 136 and BB2 were only 83km
apart and hydrographic conditions were very similar (Figures
S1, S2). DNA was extracted from filters using freeze thaw
followed by incubation with lysozyme and proteinase K and
phenol/chloroform extraction. A Rubicon THRUPLEX kit was
used for library prep using 50 ng of DNA per sample. Four
libraries were sequenced on an Illumina HiSeq 2500 in rapid
mode (~25 million 150 bp paired-end reads per sample) at
Michigan State. The other 10 libraries were sequenced on an
MMumina HiSeq 2500 in high output mode (~40-70 million
125 bp paired-end reads per sample) at the University of
Utah (Table S1). Sequences were quality checked, trimmed, and
remaining adapter sequences were removed using Trimmomatic
(Bolger et al., 2014). Paired reads that overlapped were combined
with Flash (Magoc and Salzberg, 2011).

Metagenomic sequences from each sample were assembled
independently into larger contigs. For de novo assembly we
pre-processed reads with the khmer software package (Crusoe
et al,, 2015), first using normalize-by-median which implements
a Digital normalization algorithm (Brown et al., 2012) to reduce
high coverage reads to 20x coverage, followed by filter-abund.py
to trim reads of kmers with an abundance below 2, and finally we
used filter-below-abund.py to trim kmers with counts above 50
(Zhang et al., 2015). We assembled the khmer processed reads
with the VELVET (1.2.10) assembler (Zerbino, 2010), using a
kmer size of 45. The N50, or median length, for assembled contigs
ranged between 1,300 and 1,800 bp in the anoxic zone, with
~30% of reads assembled (Table S1). The Prokka annotation
pipeline (Seemann, 2014) was used for gene calling, which relies
on the Prodigal algorithm for identification of coding sequence
coordinates on the contigs (Hyatt et al., 2010), and preliminary
functional annotation identified through similarity searching
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with BLAST (Altschul et al., 1997) against UniProt (Apweiler
et al., 2004) and RefSeq (Pruitt et al., 2007) databases and with
HMMER v. 3.1 (Eddy, 2011) against protein domain databases
Pfam (Punta et al., 2012) and TIGRFAMs (Haft et al., 2013).
ETNP 2012 metagenomic reads and assembled contigs can be
found at NCBI GenBank bioproject PRINA350692.

For each gene of interest, a maximum likelihood amino acid
phylogenetic tree was constructed using published full-length
gene sequences as well as full or nearly full-length sequences
assembled from the metagenomes themselves. Rather than rely
on Prokka annotations, potential gene sequences of interest
were identified from the metagenome assemblies by searching a
custom blast database (Altschul et al., 1997) of all our assembled
open reading frames as called by Prodigal, using representative
published sequences from each section of the phylogenetic tree as
query sequences. All sequences with an e-value cut-off of < —60
were included in the phylogenetic tree for further identification.
Assembled genes with Ns were removed. In addition, full-length
published gene sequences of closely related genes to the gene
of interest were included to act as outgroups in the trees. All
assembled sequences recruited from blast were combined with
the previously published full-length gene sequences and aligned
in amino acid space with MUSCLE v. 3.8.1551 (Edgar, 2004).
Maximum likelihood phylogenetic trees were constructed with
the reference sequence alignments of the genes of interest using
the program RAxML v. 8.1.20 (Stamatakis, 2014). In this process,
sequences with exactly identical amino acid sequences were de-
duplicated (Stamatakis, 2014). The trees were constructed with a
gamma model of rate heterogeneity, and appropriate amino acid
substitution models were determined for each tree, and bootstrap
analyses (n = 100) were performed.

A phylogenetic placement approach was used to characterize
short metagenomic reads related to the targeted genes of interest
(Berger et al,, 2011) in a semi-quantitative and phylogenetically
specific manner (Saunders and Rocap, 2016). For read placement,
the short metagenomic reads were recruited via tblastn search
of the metagenomes using an e-value cut-oft of <-5 (Altschul
et al., 1997). The recruited reads were trimmed to the edge of
the gene of interest to remove any overhang of up or down-
stream sequence, trimmed to the proper reading frame of the
blast results, and converted to amino acid space. Any sequence
ambiguities and stop codons were removed. Presence of sequence
ambiguities and stop codons were negligible. Only sequences
longer than 100 bp (33 amino acids) after quality trimming were
used for placement analysis. These amino acid translated reads
were aligned to the reference sequences in amino acid space using
PaPaRa: Parsimony-based Phylogeny-Aware Read Alignment
program v. 2.5 (Berger and Stamatakis, 2011). Following the
PaPaRa alignment, paired end reads were combined into one
sequence in the same alignment using a python script and placed
as one read on the tree using the EPA: Evolutionary Placement
Algorithm portion of RAXML (Stamatakis, 2014). Reads that
placed with outgroups on each phylogenetic tree were not
counted toward that gene’s total. This was particularly important
for closely related genes such as nitrate reductase narG, with the
nxrA outgroup and for nitrite oxidoreductase nxrB with the narH
outgroup.

To take into account differences in sequencing effort between
samples and recruitment capacity among the different genes, read
placement length normalized occurrence of the target genes were
normalized to the length normalized abundance of the universal
single copy core gene RNA polymerase (rpoB; Figure S3).

Gene A reads
Length A
rpoB reads *

Length rpoB

% prokaryotic community =

Since RNA polymerase is, to our knowledge, present as a single
copy gene in all bacterial and archaeal genomes, normalization of
a target gene occurrence to RNA polymerase abundance indicates
what percentage of the prokaryotic community contains the
gene of interest. This normalization allows our placements to be
quantitative in a relative manner. However, this analysis does not
take into account that the density of prokaryotic cells may, and
undoubtedly do, change with depth.

Several papers have been published from this cruise, and we
compare our metagenomic data to previous rate, qQPCR, and lipid
data. For clarification, these data and their references are listed in
Table S2.

Previously Published Transcripts

In order to assess whether phylotypes observed in our
metagenomes were expressed in the environment, we applied
the same read placement approach to previously published
metatranscriptomic data. Transcripts from 2 size fractions (0.2-
1.6 and 1.6-30wm) at five low oxygen depths from a coastal
station in the ETNP in 2013 (18° 54.0' N, 104° 54.0' W) (Ganesh
etal., 2015) were placed on our phylogenetic trees using methods
as above. Transcript libraries had ~120,000 reads per sample.

RESULTS AND DISCUSSION

We occupied 2 stations in the offshore Eastern Tropical
North Pacific in April 2012. At these stations, the depth of
anoxia was ~105m according to oxygen measurements with
a STOX sensor (detection limit 2 & 5nM Oj; Tiano et al.,
2014). The oxycline, where oxygen concentrations decrease
rapidly, extended from 60 to 100 m (Figure 1A). STOX oxygen
concentrations were 4.7 and 0.8 uM at 90 and 100m in the
lower oxycline (Tiano et al., 2014). Ammonium concentrations,
as determined by the extremely sensitive OPA method, were
undetectable in the anoxic zone (Figure 1C), but the nitrite
maximum reached nearly 5uM at 150m (Figure 1C). N,O
concentrations had the usual large maximum in the oxycline,
but also had a second smaller maximum at 140-150m in the
anoxic zone (Figure 1F; Peng et al., 2015). Biological N, gas
increased in the anoxic zone and was between 10 and 11 pM
(Figure 1H). To characterize the functional and taxonomic
diversity of this oligotrophic ODZ community, we constructed
and sequenced metagenomes from whole water from 10 depths
(60-300m) at station 136 and from >30 um particles collected
from Niskin bottles at 3 depths at station BB2, which was
close to and very similar physiochemically to station 136
(Figure S2). We classified short read sequences by both function
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FIGURE 1 | Depth profiles of metagenomic reads encoding for enzymes used in the low oxygen N cycle and relevant chemical species. (A) CTD oxygen and nitrate
concentrations from St 136. (B) Genes used in nitrate reduction. Genes for nitrate reductases narG and napA are shown on different axes for clarity. (C) Nitrite and
OPA ammonium concentrations from St 136 as well as the gene for ammonia monooxygenase (@moA) used in ammonia oxidation. (D) Genes used for nitrite
utilization: nitrite reduction to NO (bacterial and archaea nirK, anammox nirS, and bacterial nirS), nitrite reduction to ammonium (DNRA: nrfA) and nitrite oxidation
(nxrB). (E) NoO producing genes: NO reductases norB and gnorB-like. (F) NoO concentration profile from St BB2 (Peng et al., 2015). (G) No producing genes: NoO
reductase (nosZ) represents denitrification and hydrazine oxidoreductase (hzo) represents anammox. (H) Biological N» gas from St 136. Dashed line represents the
top of the ODZ, which is at 105 m (Tiano et al., 2014). % Community is calculated in comparison to the single copy core gene RNA polymerase (rpoB).

and phylotype by placing reads on reference trees constructed
from full length genes, including those assembled from our
metagenomes.

Community Structure of Free Living and

Particle Communities

We examined community structure using the RNA polymerase
(rpoB) gene, found in all archaeal and bacterial genomes
(Figure 2, Figure S3). SARI1 was the most abundant clade
overall, making up 60% of the community at 300 m. SARII
has previously been found to be 10-40% of the community
in ODZs (Tsementzi et al., 2016). Other notable heterotrophic
clades present included SAR406, SAR116, Marine Group II
euryarchaeota, and Flavobacteria (Figure2). Autotrophic
microbes present included Cyanobacteria (photosynthesis),
Marine Group I Thaumarchaeota (ammonia oxidation),
Nitrospina (nitrite oxidation), and Cand. Scalindua (anammox),
and together they made up <20% of the community in the

oxycline and anoxic water column (Figure2). Autotrophic
S oxidizers are also known to be active in ODZs (Stewart
et al., 2012), but known S oxidizers, including SUP05, were
not identified here. However, it should be noted that a large
number of the rpoB sequences were novel phylotypes including
novel clades of Actinobacteria, Chloroflexi, Acidobacteria, and
gammaproteobacteria whose metabolic lifestyles are unknown
(Figure S3).

Particles may be hotspots of heterotrophic activity in the
ocean and harbor a microbial community distinct from those
free-living in the water column (Delong et al, 1993; Ploug
et al., 1999). To further examine the microbial community on
particles that make up the sinking organic matter in the ODZ,
we sequenced metagenomes from >30pm particles collected
from Niskin bottles at 3 depths at the offshore station BB2.
Particles >30 pm should be composed of sinking as well as large
suspended particles (Clegg and Whitfield, 1990). Estimates of 16S
rRNA abundance in the ETNP using qPCR indicated that 8-15
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FIGURE 2 | The community in the water column and in >30 micron particles as determined by RNA polymerase gene rpoB. Groups found on the rpoB phylogenetic
tree (Figure S2). Known autotrophs are labeled in the legend. Gamma fosmid represents relatives of HOT fosmid GU567967, a heterotrophic Salinisphaeraceae.

times more 16S rRNA was found per mL in free-living (<1.6 pm)
communities compared to particle (>1.6 pm) fractions (Ganesh
et al,, 2015). Thus, the free-living community likely dominates
bulk water samples. In our dataset, the microbial community
on particles (>30um) differed from the community in the
bulk water (Figure 2). Among others, SAR11, Marine Group I
archaea (ammonia oxidizing) and Cand. Scalindua (anammox),
all known to be free-living (Fuchsman et al., 2011, 2012b, Ganesh
etal, 2014, 2015), were a much smaller proportion of the particle
community. Delta proteobacteria, Planctomycetes, Flavobacteria,
Verrucomicrobia, and MGII euryarchaeota were enriched in
particles, consistent with observations in other environments
(Delong et al., 1993; Fuchsman et al., 2011, 2012b; Ganesh et al.,

2014; Glass et al., 2015; Orsi et al., 2015). In contrast to previous
observations in the ETNP (Ganesh et al., 2015), the nitrite-
oxidizer Nitrospina was not enriched in particles. This could be
due to the different size filter used to define “particles” (1.6 vs.
30 wm used here) because individual Nitrospina cells can be 6 pm
long (Spieck and Bock, 2015).

Genetic Capacity for Denitrification

Enhanced on Particles

To examine the role of sinking and large suspended particles
in production of N, by the ODZ microbial community, we
mapped metagenomic reads onto reference phylogenetic trees
constructed for key genes in the anoxic N cycle (Figure 3).
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FIGURE 3 | (A) The low oxygen N cycle with genes examined in this paper
indicated. Black arrows indicate denitrification. Purple arrows indicate
anammox. Red arrows indicate processes mediated by ammonia and nitrite
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A comparison of >30pum and <30pum communities at
120m revealed that most of the genes encoding the steps of
denitrification were enriched in the particulate fraction while
anammox genes and the nitrate reductase narG represented a
greater fraction of the community in the free-living fraction
(Figure 3). The particle associated denitrification genes were not
present in equal amounts, ranging from more than 25% of the
community possessing the NO reduction enzyme (qnorB-like) to
<5% with the nitrite reductase nirS. Overall, nitrate reductase
narG was the most abundant gene examined, present in the
equivalent of >150% of the free-living community and >50% of
the particle community. This apparent overestimate is due to the
presence of multiple copies of narG in many microbial genomes,
including the abundant ODZ SARI11 phylotypes (Tsementzi
et al., 2016), but nevertheless underscores the important role
of nitrate reduction in this environment, both on particles and
in the water column. The habitat partitioning observed here,
with anammox and narG primarily in the free living fraction
and other denitrification genes enriched in sinking particles
is consistent with data from >1.6pum suspended particles
(Ganesh et al.,, 2014, 2015). In the coastal ETNP, removal of
>1.6 um particles decimated nitrate reduction rates (Ganesh
et al, 2015), reinforcing the idea that even the free-living
bacteria in the ODZ are dependent on organic matter fluxes.
Consistent with the rpoB data, nitrite oxidoreductase (nxrB) for

nitrite-oxidizer Nitrospina was more abundant in the <30 um
fraction.

Gene Depth Profiles

We next examined the depth distribution and taxonomic
diversity of these same key genes (Figure 3A) in the oxycline
and upper 200 m of the ODZ water column. We compare these
depth profiles to measurements of chemical species that serve as
reactants and products for the reactions catalyzed by the enzymes
these genes encode (Figure 1).

Nitrification Genes

The ammonia monooxygenase (amoA) gene for ammonia-
oxidizing archaea had a maximum of 15% of community at 100 m
at the bottom of the oxycline (Figure 1C). This maximum in
amoA was below the primary maxima in ammonium and nitrite
concentrations found at 60 m. This depth profile combined with
ammonia oxidation rates from Peng et al. (2015) indicate that
nitrite is being produced in the 80-100 m region, despite the
lack of measurable nitrite in this region. The gene encoding
the nitrite oxidizing enzyme nitrite oxidoreductase (nxrB) is
unmeasurable at 70 m, but 3% of the community at 90 m, and
had a maximum of 7% of the community in the ODZ at
110m that can be solely attributed to Nitrospina (Figure 1D,
Figure S6). The presence of Nitrospina nxrB in the upper
ODZ is consistent with nxrB transcript data from the ETNP
(Garcia-Robledo et al., 2017). The presence of Nitrospina may
help explain the lack of measurable nitrite in the 80-100 m
region.

Nitrate Reduction

The first step in denitrification, nitrate reduction to nitrite, can be
carried out by nitrate reductases encoded by either narG or napA,
both of which were detected here. However, narG was an order of
magnitude more abundant than all the other denitrification genes
(Figure 1B). The narG maximum at 160 m corresponded with
a reduction in nitrate concentrations and the secondary nitrite
maximum (Figures 1A-C), implying nitrate reduction activity.
Again, after normalizing with the single copy core gene, more
than 100% of the community contained the narG, implying
multiple copies per genome in some bacteria. SAR11, which is
very abundant in our rpoB data (Figure 2), is known to have
two distinct narG in the same cell (Tsementzi et al., 2016) and
we found both SARI1 narG types here along with six other
phylotypes (Figure 4). If we assume that all SAR11 genomes have
2 types of narG, we calculate that 75-105% of the total microbial
community has narG. This number may suggest that other
groups in addition to SARII also possess duplicate copies of
narG. In contrast, the two phylotypes of napA totaled only 5% of
the community in the ODZ (Figure 1B, Figure S4). The capacity
for nitrate reduction is clearly prevalent in the community.
Examination of selected long contigs containing narG indicated
multiple nitrate reductase subunits and at least one nitrate
transporter (narU, narT, or narK) in all cases (Figure S5). Contigs
associated with OTU I contained a transposase, indicating the
potential for horizontal gene transfer (Figure S5).
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Nitrite Reduction

The nitrite produced by nitrate reduction can have many fates,
including further reduction to NO, oxidation back to nitrate,
and reduction to ammonia. We found evidence for existence
of all of these pathways, in differing amounts. As mentioned
previously, the gene encoding the nitrite oxidizing enzyme
nitrite oxidoreductase (nxrB) had a maximum in the upper
ODZ (Figure 1D). In contrast nrfA, encoding the DNRA nitrite
reductase to ammonia, was present but always <2% of the
community (Figure 1D). Only one phylotype of nrfA was present
(Figure S7).

The second step in denitrification, nitrite reduction to NO,
was dominated by nirK (copper containing nitrite reductase)
although nirS (iron containing nitrite reductase) was also
detected in much lower abundances (Figure 1D). nirK had a
maximum at the top of the ODZ at 100 m, where it was possessed
by ~30% of the community (Figure 1D). At least 10 phylotypes
were detected and five were present in >1% of the community
(Figure 5). Three of these phylotypes, (OTU I, Chloroflexi, and
MGI thaumarchaeota) had a maximum in the lower oxycline
and were undetectable below 140 m (Figures 5B,D,E), while the
nirK from nitrite oxidizer Nitrospina had maxima within the
ODZ at 110m (Figure 5F). Only one nirK phylotype (OTU
II) was clearly particle attached and this phylotype also had a
maximum in the ODZ (Figure 5C). OTU II nirK was found
on an assembled contig with a nosZ gene (Figure 6), which is
discussed with that nosZ phylotype below. We note that unlike
previous metagenomic examination of nirK (Glass et al., 2015;
Liike et al., 2016), MGI Thaumarchaeota were not the dominant
nirK containing organism. Instead bacterial OTU I was 21%
of the community at 100 m (Figure 5). Since transcripts from
the 2013 ETNP cruise examined in Glass et al. (2015) place on
our OTU I nirK, it seems this difference between reports may
be methodological rather than due to interannual variability.
Unfortunately, assemblies of OTU I #irK from our study were
short contigs. However, a published SAR11 metagenomic contig
from the coastal ETNP contained a partial nirK (scaffold 00818)
(Tsementzi et al., 2016). This partial SAR11 nirK sequence was
too short (242 bp) to be a branch on our phylogenetic tree,
but aligned with 98.6% identity to the OTU I cluster here using
MUSCLE (Edgar, 2004). The published representative of cluster
OTU I on our phylogenic tree is from a fosmid obtained Station
ALOHA (HF0770-09N23) which also appears to be a SAR11
relative (best BLAST hit for the fosmid using the nt database:
SARI11 relative CP003809 HIMB5, E-value: 0.0). Presence in
some SAR11 bacteria would explain how OTU I of nirK could
be so abundant (Figure 5B). While nirK was more abundant
on particles than in the water column at 120 m (Figure 3),
at 100m, nirK was more abundant in bulk water (26%) at
station 136 than on particles (11%) at BB2, (Figure S8). This
difference is due to the dominance of SAR11 #nirK OTU I in
the water column at the top of the ODZ and is consistent
with the free-living nature of SAR11 determined from rpoB
(Figure 2).

Although nirS was present in a much lower percentage of
the community than nirK, at least five distinct phylotypes were
still present (Figure S9). With the exception of anammox nirS

(Figure 1D), the other 4 phylotypes were present in <2% of
the community, and all had maxima within the ODZ at 140 m.
Two of these phylotypes (OTU II and III) were particle-attached
(Figure S9). The prevalence of the nirK copper nitrite reductase
over nirS is consistent with other untargeted approaches that
have also detected nirK (Ganesh et al., 2014, 2015; Glass et al.,
2015; Litke et al, 2016) in ODZs but it is at odds with
prior primer-based approaches that indicated nirK was not
environmentally relevant in ODZs (Jayakumar et al., 2013).

Nitric Oxide Reduction

The third step in denitrification, NO reduction to N,O, is
mediated by nitric oxide reductase, encoded by genes norB
or gnorB (Lam et al., 2011). However, the canonical forms of
these genes were present in very low abundance in this water
column (<0.9% norB; Figure 1). Instead most of our assembled
sequences and short read sequences cluster (Figure?7) with a
form of the gnorB suggested by in silico analysis to be nod (nitric
oxide dismutase) in the methane-utilizing denitrifier Cand.
Methylomirabilis from the NC10 phylum, which was theorized
to reduce NO straight to N without a N, O intermediate (Ettwig
et al., 2012). However, our data is not consistent with all of
the genes detected here encoding a nitric oxide dismutase.
Many bacteria that have gnorB genes in this cluster are not
known to dismutate nitric oxide and some also contain nitrous
oxide reductase in their genomes (Figure 7). The gnorB-like
gene has a maximum at 140m at the same depth as the
second N,O peak (Figures 1E,F) where N,O production rates
are modeled to have a maximum (Babbin et al., 2015). However,
neither norB nor gnorB was present at these depths (Figure 1).
Theoretically, NO released from a cell could abiotically or non-
enzymatically produce N,O with iron or thiols under anoxic
conditions (Hughes, 2008; Kampschreur et al., 2011; Kozlowski
et al., 2016), but this has not been shown in the environment.
Thus, if the gnorB-like gene is not involved in N,O production,
there are no known genes present to produce N,O in the
ODZ. Though we can’t rule out the presence of an unknown
novel gene for N,O production, it would have to be in a
completely different gene family from norB/qnorB/gnorB-like
to be missed by our methods. When the quinol binding site
and active site of gnor, gnor-like, putative nod, and ETNP
assembled contigs are compared, the quinol binding site appears
to have more variability between gene types than the active
site (Figure S10). While our assembled ETNP sequences do
share the differences in the active site seen in the putative nod
enzyme, these changes are also seen in the other gnorB-like
genes (Figure S10). We suggest that at least some, potentially
all, of the gnorB-like phylotypes detected here retain their
function as nitric oxide reductases like their homologs norB and
qnorB.

Sequences for nod-like/gnorB-like genes from metatranscript
assemblies in the coastal ETNP were combined with NC10 16S
rRNA sequences related to Cand. Methylomirabilis as evidence
to suggest a role for methane oxidation in N, production in
ODZs (Padilla et al, 2016). The transcripts from the 2013
cruise place on our tree at OTUs II, III, and IV (Figure 7)
and assembled sequences from Padilla et al. (2016) belong to
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our OTU III (Figure S10). In our dataset, however, there is no  contig was the Flavobacteria Lutibacter sp. LPI (#CP013355),
correlation between any gnorB-like gene OTUs and subunits  confirming the Flavobacteria affinity of this nosZ. The other 4
of methane mono-oxygenase, pmoA, and pmoB. NC10 pmoA  phylotypes represent novel clades. One clade of nosZ sequences
was possessed by at most of 0.1% of the community, and  clustered with Chloroflexi, but this clade was not represented by
pmoB was barely above detection and no NC10 pmoB was  multi-gene contigs. The Flavobacteria and potential Chloroflexi
detectable in our metagenomes. In contrast, the gnorB-like  phylotypes both had their maxima at the upper N,O peak and
gene was present in >25% of the community in particles made up roughly similar % community in the water and on
(Figure 3). Thus, the large difference in % community between  particles (Figures 8B,C, Figure S13). The other three unidentified
gene in these two pathways makes it seems unlikely that  phylotypes each had maxima at the second N,O maximum at
the abundant organisms containing the gnorB-like gene are 140 m (Figures 8D-F). One of the nosZ phylotypes had the C
involved in methane oxidation. Additionally, when our long  terminal extension typical of S oxidizing bacteria, suggesting it
contigs containing gnorB-like gene are examined, none of the = may belong to an autotrophic denitrifier, and this phylotype was
contigs had BLAST hits in National Center for Biotechnology  enriched in particles (Figures 8A,F, Figure S13). This clade was
Information (NCBI) nucleotide collection database (nt) (NCBI  represented by a contig containing 23 gene sequences (ETNP
Resource Coordinators, 2017) with E values < —20. Contig ~ 120m NODE 137405) including a photosystem I gene psaC
120 m particle NODE 148559 has competence genes right next  along with nosL, nosD, and nosZ (Figure S12). The fourth nosZ
to the gnorB-like gene, implying that gnorB-like gene could  phylotype, OTU I, was predominately free-living (Figure 8D,
have been transferred (Figure S11), and in general, the contigs ~ Figure S13). This phylotype was represented by three extensive
appear to be dissimilar to each other, even between multiple  contigs (Figure S12). Multiple genes on the contigs identified
contigs in the same gnorB-like phylotype (OTU II; Figure  this organism as a heterotroph, including beta-galactosidase.
S11). Thus, the gnorB-like gene appears to be in multiple  Particles were dominated by the fifth nosZ phylotype, OTU II
organisms in the ETNP, which are not related to Cand.  (Figure 8E, Figure S13). Two extensive contigs represent the
Methylomirabilis or other bacteria in the NCBI nucleotide  upper branch of OTU II (Figure S12). Along with genes for

database. nosL, nosD, and nosZ, contig ETNP 180 m NODE 320139 also
contained a nirK gene belonging to nirK OTU 1I, a phylotype
N> Gas Production that was also particle attached. Thus, nosZ phylotype OTU II

The final step in denitrification, N, production from N,O, and nirK OTU II are both the same unidentified organism
is mediated by nosZ, which was elevated from 90 to 140m (Figure 6).

(Figure 1G). The nosZ gene depth profile had two maxima Genes  representing  the second N,  producing
at 100 and 140 m (Figure 1), which corresponded to the two  pathway, anammox, had a maximum from 120 to 180m
N,O concentration maxima in the lower oxycline and at 140 m. ~ (Figures 2D,G, 9A). Notably the depth profile of the gene for
Potential N,O reduction rates also had a maximum at 140m  hydrazine oxidoreductase (hzo), the final step in the anammox
(2.7 nM/d, Babbin et al, 2015). The N,O reductase gene pathway, was consistent with both the nirS and rpoB reads that
nosZ had 5 phylotypes in the ETNP. Notably these ETNP branched with Cand. Scalindua (Figure 9A). As expected, only
nosZ phylotypes were completely different from sequences from  one phylotype of anammox bacteria was present on both hzo
the coastal ETSP (Castro-Gonzalez et al., 2015) (Figure 8A).  and nirS phylogenetic trees (Figures §9, §14). The combined
ETNP N,O reductase (nosZ) phylotypes could be separated = maxima in anammox genes and nosZ corresponded to the
into two groups based on their depth distribution with maxima  upper N> gas maximum (Figure 1H). This depth profile for
corresponding to the two NZO concentration maxima (Figure 8) anammox genes is consistent with intact ladderane hpld data
It is possible that these different depth profiles represent different ~ from the same station (Sollai et al., 2015) and with calculated
tolerances of the organisms to oxygen. The Flavobacterial ~anammox rates (Figure 9A). Anammox rates were estimated
nosZ was abundant at the top of the ODZ with a maximum by subtracting N,O reduction rates (Babbin et al., 2015) from
at 100 m, Corresponding to the upper nos’Z gene maxima total N pI'OdllCtiOI’l rates from BB2 (Bdbbln et al,, 2014) and
(Figure 8B). This group is represented by one extensive 11  these differential rates showed some variability, but still had
gene contig (ETNP 120 m NODE 73975) containing nosD, nosZ, @ maximum at the same depth as the metagenomic reads
and cytochrome c (Figure S12). The best BLAST hit for this  (Figure 9A).
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Correlation of Functional Gene Abundance
with Activity

Although gene presence assessed by metagenomics only confirms
the potential for a given function, the anammox data suggest
a close correspondence in space between the presence of an
organism and its activity in this environment. We further
assessed this relationship in two other well-characterized
microbial groups, the ammonia-oxidizing MGI Thaumarchaeota,
and the nitrite oxidizer Nitrospina. The depth profile of the

ammonia monooxygenase gene amoA was tightly correlated with
MGI Thaumarchaeota specific nirK and rpoB reads, and all
three genes had a maximum at 100 m (Figure 9B). Previously
determined qPCR measurements of amoA at BB2 also had a
maximum at 100m (Peng et al., 2015), and the overall depth
profiles were consistent with a slope of 1106.2 cells per mL/%
community with amoA (R* = 0.7). Rates of ammonia oxidation,
which were calculated including ammonia oxidized to both
nitrite and nitrate (Peng et al., 2015) had a maximum at
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FIGURE 9 | A comparison between genes and rates. (A) Genes for anammox bacteria Cand. Scalindua for nitrite reductase (nirS), hydrazine oxidoreductase (hzo) and
single copy core gene rpoB. Anammox rates are calculated by subtracting No O reduction rates (Babbin et al., 2015) from total Ny production rates from BB2 (Babbin
et al., 2014). PC-monoether ladderane lipid values are from St 136 in Sollai et al. (2015), but are normalized to fit on the % community axis; values are 15 pg/L at
110m, 72 pg/L at 1560 m, 27 pg/L at 2560 m, and 25 pg/L at 350 m. (B) genes for ammonia oxidizing MGl Thaumarcheota for ammonia monooxygenase (@moA), nitrite
reductase (nirK), and single copy core gene rpoB. Ammonia oxidizing rates and amoA qPCR are from BB2 in Peng et al. (2015). (C) genes from nitrite oxidizing
bacterium Nitrospina for nitrite reductase (nirK), nitrite oxidoreductase (nxrB), and single copy core gene rpoB. Nitrite oxidizing rates are from BB2 in Peng et al.
(2015). Dashed line represents the top of the ODZ. % Community is calculated in comparison to the single copy core gene RNA polymerase (rpoB).

80 m, above the maxima in both qPCR and metagenomic reads
(Figure 9B).

The gene encoding the nitrite oxidizing enzyme nitrite
oxidoreductase (nxrB) had a maximum in the ODZ at 110 m,
again consistent with Nitrospina specific nirK and rpoB reads.
Unlike in the Arabian Sea (Liike et al., 2016), here nitrite
oxidoreductase can be solely attributed to Nitrospina (Figure 9C,
Figure S6). Like isolate Nitrospina gracilis (Liicker et al., 2013),
it appears that the ODZ Nitrospina has two copies of the nxrB
gene per genome, as determined by comparison with the single
copy core gene rpoB (Figure 9C). This genetic potential for nitrite
oxidation within the ODZ is consistent with measured nitrite
oxidation rates of >100 nM/d at BB2 (Figure 9C) (Peng et al,,
2015) and nitrite oxidation rates had a similar depth profile as the
metagenomic read depth profile for Nitrospina. Nitrite oxidizers
in the ETSP had a high affinity for oxygen with a low oxygen Kp,
of 0.5 & 4.0 nM (Bristow et al., 2016). It has been suggested that
oxygen production by Prochlorococcus in the ODZ can fuel nitrite
oxidation (Garcia-Robledo et al., 2017).

The three examples above, Cand. Scalindua, MGI
Thaumarchaeota, and Nitrospina, demonstrate that the
read placement technique produces consistent results when
applied to multiple genes in the same organism, supporting
the use of normalized read placement as a semi quantitative
method to examine microbial depth profiles. This approach
is also valuable for understanding distributions of as yet
uncharacterized organisms. For example, previously, the
phylogeny of metagenomic and metatranscriptomic reads
in ODZs have been identified with BLAST using the NCBI
nucleotide collection database (nt/nr) (Ganesh et al., 2014,
2015; Glass et al., 2015). When re-examining this previous
data with our read placement approach that incorporates the
corresponding metagenome assemblies on the reference tree,

we find the same functional gene identification (narG, nirK
etc) as found with BLAST, but the phylogenetic affiliation of
each gene can be better determined. BLAST identifications
depend greatly on the composition of the database (Fuchsman
and Rocap, 2006), and is a determination via local alignment.
The placement approach can provide a higher resolution
determination among closely related organisms in part because
the whole sequence is used for comparison to a known
reference (Berger et al., 2011). For example, using BLAST
against NCBI nt/nr database, the phylogenetic identity of nitric
oxide reductase transcripts from the coastal ETNP in 2013
was highly variable with depth (Ganesh et al.,, 2015). However,
here these transcripts consistently place on three uncultured
ETNP gnor-like OTUs assembled from our metagenome,
which were not present in the original NCBI nt/nr BLAST
database (Figure 7). Similarly, the identity of N,O reductase
nosZ transcripts from this same ETNP metatranscriptome were
reported as predominantly unknown prokaryote (Ganesh et al.,
2015). Read placement of those transcripts on a phylogenetic
tree indicates that the unknown prokaryote transcripts are
all OTU 1I (Figure 8), which can now be linked to other N
cycling genes (Figure 6) through our assembly and to a particle-
attached lifestyle (Figure 8). Thus, read placement techniques
in combination with assemblies from the relevant environment
allow us to take the next step in understanding the community
in ODZs.

N>O and N> Production in the Oxycline

We apply this holistic approach to analysis of N cycling genes
with chemical measurements and rate data to the oxycline above
the ETNP ODZ, which has been implicated as a potential source
of N,O, a potent greenhouse gas, to the atmosphere (Cohen
and Gordon, 1978; Yamagishi et al.,, 2007; Babbin et al., 2015).
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Here, concentrations of NyO were highest (106 nM) at 90m
within the oxycline (Figure 1F, Peng et al.,, 2015). In addition
to production by nitric oxide reductases during denitrification,
N,O is also produced by ammonia oxidizing archaea (Santoro
et al,, 2011). The enzymes involved in this process are unclear
and the last step of N,O production may be non-enzymatic in
archaea (Kozlowski et al., 2016). From isotopomer analysis of
N,O in the upper ETNP oxycline, ammonia oxidizers contribute
more than denitrifiers to N,O production, but in the lower
oxycline both processes may be present (Yamagishi et al,
2007). Indeed, in the ETSP incubation experiments indicated
that both ammonia oxidation and denitrification contributed
to N,O production in the lower oxycline (Ji et al., 2015).
Here, at station BB2, ammonia oxidation rates, which were
solely attributed to archaea, were measurable throughout the
oxycline, corresponding with the N,O maximum, and were still
13 nM/d at 103m (Peng et al., 2015). This is consistent with
our metagenomic data indicating MGI Thaumarchaeota made
up to 12% of the community at 100m, corresponding to the
upper N,O maximum (Figures 2E,F, 5). However, if ammonia-
oxidizing archaea were the only source of N,O here, the by-
product N,O would be ~20% of oxidized ammonia in the
oxycline at BB2 (Peng et al., 2015). N, O yields of marine archaea
under normal oxygen conditions are <1% (Santoro et al., 2011;
Loscher et al., 2012) though yields up to 1.6% were found in
the oxycline of the ETSP (Ji et al., 2015). Thus, some form
of denitrification in the lower oxycline (90-100 m) is necessary
to explain the N»O measurements (Babbin et al., 2015; Peng
et al,, 2015). However, here no nitric oxide reductases (either
norB or gnorB-like) were detected in the water column at 90 m
and norB was only present in 1% of the community at 100 m
in our whole water samples (Figure 1). We suggest production
of N,O inside particles can explain these N;O measurements.
Although gnorB-like nitric oxide reductase was not detected in
the water column in the oxycline at station 136, it was present
in particles (5.5% of the particle community) at the base of
the oxycline (100 m) at station BB2 and norB was also present
(2.2% of the particle community) (Figure S8). Thus, particle
communities in the oxycline have the capacity to produce N,O.
This is understandable as there are oxygen gradients inside
marine organic particles (Ploug et al., 1997), and measurements
of diatom aggregates indicate that at ~100 wmol L™! ambient
O, and below aggregates contained anoxic regions from which
N,O and N production could be measured (Stief et al., 2016).
Zooplankton carcasses may also be sites of denitrification below
~10 pmol L™ ambient O, (Stief et al., 2017). Thus, based on
the measured STOX oxygen concentrations (4.7 and 0.8 wM at 90
and 100 m) the majority of particles should contain anoxic zones
in the ETNP lower oxycline. N, O production from sediment trap
material under oxic conditions has been shown previously in the
North Pacific (Wilson et al., 2014).

N,O is also potentially consumed in the lower oxycline,
forming Nj. Although denitrification can be 50% inhibited
by 200-300nM O, (Dalsgaard et al, 2014), N, production
in the oxycline is consistent with the N, gas concentration
profile (Figure 1H). Potential N,O reduction rates extend into
the oxycline (I nM/d at 85m), though vials for these rates

were incubated anaerobically (Babbin et al., 2015). Importantly,
measured gas in the water column, either N,O or Ny,
represents both water column and particulate production. As
with N,O production, particles may also be important for
N, production in the oxycline. N»O reductase (nosZ) was
found in 3-5% community in bulk water in the oxycline
at station 136 (Figure1G), and only two phylotypes were
present (Flavobacteria and Chloroflexi) (Figures 8B,C). This
suggests that all denitrifiers may not have the same oxygen
inhibition threshold or that Flavobacteria and Chloroflexi are
facultative denitrifiers. Notably, nosZ was also enriched in
the 100m particles at station BB2 where it was contained
by 13% of the community (Figure S8) represented by nosZ
OTU 1II and Flavobacteria nosZ (Figure8). Thus, much
of the N, gas production in the oxycline may occur on
particles.

Niche Partitioning

Microbes containing N cycling genes examined here separate
into three groups with distinct niches: particle-attached, free-
living with tolerance to low levels of oxygen, free-living with
preference to complete anoxia. Genes in bacteria attached to
particles could either be taking advantage of the abundant
organic matter there or of the more reduced conditions found
inside particles. It appears that three phylotypes of narG, one
phylotype of nirK, two phylotype of nirS, two phylotype of
gnor-like and two phylotype of nosZ genes are particle attached,
including the nosZ affiliated with S-oxidizers (Figures 4, 5, 7, 8,
Figures S9, S13). In the water column, genes can be separated
into two niches based on oxygen content. Genes found in the
upper ODZ are likely exposed to nanomolar oxygen either by
mixing or by O, production by ODZ Prochlorococcus (Garcia-
Robledo et al.,, 2017). Some OTUs appear to be tolerant of oxygen
while others are only abundant below 120 m after all possible
O, has been removed. Genes from oxygen utilizing microbes,
ammonia oxidizing archaea and nitrite oxidizing bacteria were
found in the upper ODZ (Figure 9). Genes for anammox bacteria
were abundant below 120 m (Figure 9), which could imply a
lack of tolerance to oxygen or competition with ammonia and
nitrite oxidizers for its reactant ammonium (Penn et al., 2016).
All of the nirK phylotypes that are enriched in bulk water are
found in the upper ODZ while all the nirS OTUs are abundant
below 120m (Figure 5, Figure S9), implying different oxygen
tolerances for bacteria with these genes. Additionally, all the
gnor-like genes were abundant below 120m (Figure 7). Two
water column nosZ phylotypes were found in the upper ODZ
while one free-living nosZ was abundant below 120 m (Figure 8,
Figure S13), indicating diversity of oxygen tolerance between
types of denitrifiers. The free-living SAR11 narG phylotypes were
abundant throughout the ODZ, but not in the oxycline, so did
not clearly fall into our defined water-column niches (Figure 4,
Figure S13). Due to their differing depth profiles and niches,
it is possible that not all these free-living microbes have all
the genes necessary to perform complete denitrification. In all,
these data highlight the diversity of N reducing microbes in
the ODZ.
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Synthesis

Here we describe gene abundances and distinct phylotypes
for all key steps in the low oxygen N cycle in an open-
ocean ODZ community. Although gene presence only indicates
potential activity, relative gene abundances here correlated
closely with features in chemical profiles and measured rates
for denitrification, anammox, ammonia oxidation, and nitrite
oxidation (Babbin et al., 2014, 2015; Peng et al,, 2015). Both
anammox and N, producing denitrifiers were present in the
water column with denitrifiers found at shallower depths,
reaching the oxycline. Overall, denitrification genes, with the
exception of nitrate reductase, were enriched in >30pum
particles. However, when examined at a phylotype level, two
N, O reductase phylotypes were enriched on particles while three
other nosZ phylotypes were actually not enriched in particles.
Furthermore, Flavobacteria and Chloroflexi nosZ phylotypes
had maxima within lower oxycline, while the remaining nosZ
phylotypes had maxima within the ODZ. These data highlight
the diversity of denitrifiers both phylogenetically and potentially
functionally.

While we did not find evidence for denitrification without
an N;O intermediate by autotrophic methane-oxidizers,
autotrophic denitrification is still a distinct probability in
the ETNP. The presence of a C-terminal extension on nosZ
in a group of assembled contigs indicated the presence of a
S-oxidizing autotrophic denitrifying phylotype on particles.
A S-oxidizing autotrophic denitrifier was previously found
on particles in the suboxic zone of the Black Sea (Fuchsman
et al,, 2012a). These data support the possibility of low level but
widespread S cycling in particles under low oxygen conditions.

The largest N;O maxima in the ETNP are in the oxycline
above the ODZ. Since ammonia oxidation rates are too low to
support all the N, O production in the oxycline (Peng et al., 2015),
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an additional source of N,O production is likely (Babbin et al.,
2015). Our metagenomic data supports production of N, O inside
particles in the oxycline, rather than denitrification in the water
column.

In a warming ocean with lower oxygen concentrations, the
area of both ODZs and the oxycline above them may expand.
Understanding the diversity and function of water column and
particle associated communities in these regions may be critical
for correctly predicting the magnitude of N loss and N, O release
to the atmosphere.
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