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Abstract
The dueling bandits problem has received a lot of attention in recent years due to its applications in
recommendation systems and information retrieval. However, due to the prevalence of malicious
users in these systems, it is becoming increasingly important to design dueling bandit algorithms
that are robust to corruptions introduced by these malicious users. In this paper we study dueling
bandits in the presence of an adversary that can corrupt some of the feedback received by the
learner. We propose an algorithm for this problem that is agnostic to the amount of corruption
introduced by the adversary: its regret degrades gracefully with the amount of corruption, and in
case of no corruption, it essentially matches the optimal regret bounds achievable in the purely
stochastic dueling bandits setting.
Keywords: Dueling Bandits, Robustness, Adversarial Corruptions, Multi-armed Bandits

1. Introduction

In the dueling bandits problem there are K arms; in each trial, the learner plays a pair of arms and
receives relative feedback between these arms drawn (stochastically) according to an underlying
pairwise preference model (Yue and Joachims, 2011). This problem has gained a lot of attention in
recent years due to its numerous applications in practical settings such as recommendation systems
and information retrieval, where one does not have access to absolute feedback on individual arms,
but rather can observe relative feedback gathered implicitly from users through clicks, reviews,
ratings etc (Yue et al., 2009; Yue and Joachims, 2011; Yue et al., 2012; Urvoy et al., 2013; Ailon
et al., 2014; Zoghi et al., 2014, 2015a,b; Dudik et al., 2015; Jamieson et al., 2015; Komiyama et al.,
2015a, 2016; Ramamohan et al., 2016; Chen and Frazier, 2017).

In practice, due to the wide-spread prevalence of click-fraud, and manufactured reviews in rec-
ommendation systems and information retrieval, it is becoming increasingly important to guard
against adversarial attacks on machine learning algorithms that interact with these systems. How-
ever, existing algorithms for dueling bandits are not robust to such adversarial attacks and can fail
remarkably in the presence of even small amounts of corruption in the feedback (see Appendix C
for more details). With this motivation in mind, we consider the design of algorithms for dueling
bandits that are robust to adversarial corruption in the pairwise feedback.

Previously, Gajane et al. (2015) have studied a purely non-stochastic/adversarial version of the
dueling bandits problem, however, the regret achievable in this purely adversarial setting isO(

√
T ),

which can be considerably larger than the distribution dependent O(log T ) regret achievable in the
usual stochastic setting. In this paper we ask the following question: can we achieve regret better
than O(

√
T ) in a setting where most of the pairwise feedback is stochastic, with potentially a small

amount of adversarial corruption? In other words can we achieve distribution dependent O(log T )
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regret bounds that degrade gracefully with the amount of corruption, while being agnostic to the
amount of corruption in the received feedback? Our work is also motivated by progress in classical
stochastic bandits in the presence of adversarial corruption, where similar results have recently been
achieved (Gupta et al., 2019; Lykouris et al., 2018).

1.1. Problem (Informal)

We consider a setting where there are K arms with an unknown pairwise preference matrix µ ∈
[0, 1]K×K , where µij specifies the probability that arm i ∈ [K] is preferred to arm j ∈ [K] in a
pairwise comparison between arms i and j. Similar to prior work on dueling bandits, we assume
the existence of a Condorcet winner (or unique best arm), denoted by i∗ ∈ [K], which is an arm
that is preferred to every other arm with probability at least 1/2 (Urvoy et al., 2013; Zoghi et al.,
2014). In each trial t, nature draws the outcome of a pairwise comparison between each pair of
arms i, j ∈ [K] × [K] (independently) according to µ. Nature then reveals these outcomes to an
adversary who can reverse the outcome for some pairs of their choosing (we present the formal
corruption model in Section 2). Finally, the player pulls a pair of arms (ut, vt) ∈ [K] × [K] and
observes the outcome of the comparison between them, that has potentially been reversed by the
adversary. The goal of the player is to minimize the cumulative regret given by

∑T
t=1(∆ut + ∆vt)

over a fixed time horizon T , where ∆i := µi∗i − 1
2 for any i ∈ [K].

1.2. Overview of Results

The following theorem gives our main result:

Theorem 1 (Informal) There exists an algorithm for dueling bandits with adversarial corruptions
whose regret, with high probability, is upper bounded by

O

(
K2Ci∗

∆min

)
+O

∑
i 6=i∗

K2

∆2
i

log
K

∆i

+ Õ

∑
i 6=i∗

log T

∆i


where Ci∗ is the total number of pairs1 that include the Condorcet winner arm i∗ whose outcomes
were adversarially reversed across the entire time horizon, and ∆min := mini 6=i∗ ∆i.

The above theorem shows that the regret of our algorithm is upper bounded by the sum of three
terms – the first one depends on the amount of corruption introduced by the adversary, and the last
two are comparable to the regret bounds achieved in the completely stochastic setting, for example
Zoghi et al. (2014); Komiyama et al. (2015b). Hence, if the amount of corruption introduced by the
adversary is zero, then one can recover an asymptotically optimal regret bound that is comparable
to the one achievable in the usual stochastic dueling bandits setting. Moreover, the regret degrades
linearly with the total amount of corruption introduced by the adversary over the entire time horizon
(in Section 5 we also show that such a linear dependence on Ci∗ is necessary). Most notably, our
algorithm does not need to know the value of Ci∗ ahead of time, and is able to adapt according to
the adversary.

1. In particular, the regret achievable by our algorithm is completely independent of corruption introduced into pairs
(i, j) of suboptimal arms where i, j 6= i∗. This weaker dependence on the corruption is not a-priori obvious, and
may come as a surprise to some readers.
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Our algorithm builds upon the framework of Gupta et al. (2019) developed for classical bandits
with adversarial corruption which is based upon two key tenets: (1) no arm is completely eliminated
from play during the execution of the algorithm, (2) the choice of arms to play in any trial is ran-
domized. The former ensures that the adversary cannot simply force the best arm to get eliminated
early with a small amount of corruption, causing the algorithm to incur constant regret for the rest of
the play; and the latter ensures that the adversary cannot just corrupt the arm(s) that is (are) going to
be played in the current round, again forcing constant regret with marginal amounts of corruption.

However, the dueling bandits framework has a fundamentally different structure than classi-
cal multi-armed bandits, and consequently requires fundamentally new algorithmic and analytical
ideas. In particular, in classical bandits, there is always a total order over the arms (based on the
mean rewards µi); this means that while playing a suboptimal arm i incurs some regret, it also
provides helpful information to distinguish that arm (and possibly others) from the best arm i∗. In
other words, one always receives useful feedback during exploration which can be used to improve
play in future rounds. On the other hand, in dueling bandits with just a Condorcet winner, there is in
general no total order over the arms, due to which playing suboptimal pairs of arms (i, j) that do not
involve the Condorcet winner i∗ incurs regret without providing any meaningful information about
the Condorcet winner. Hence, the objective of minimizing regret due to sub-optimal arms becomes
intertwined with the objective of isolating the Condorcet winner, and achieving these objectives si-
multaneously while allowing for adversarial corruption in addition to sampling noise becomes the
central challenge in our setting.

Our proposed algorithm achieves both these objectives by simultaneously estimating the Con-
dorcet winner arm as well as the optimal sampling rates (which are in turn tied to their gap pa-
rameters) for each arm, and iteratively refining these estimates over time. Precisely, it maintains a
candidate Condorcet winner, which we call the anchor arm, and in each round, it samples a random
arm to play against the anchor arm such that the probability of choosing a given arm is inversely
proportional to its estimated gap. The gap of any arm i is then estimated to be the average disad-
vantage of arm i relative to an anchor arm across all rounds. However, as alluded to earlier, the key
difficulty is that in addition to the effects of adversarial corruption, the feedback received in rounds
when the anchor arm was not the Condorcet winner would also distort the estimated gaps for other
arms, leading to increased regret in future rounds due to incorrect sampling rates.

We control the long term damage caused by adversarial corruptions by dividing the execution
of the algorithm into intervals of geometrically increasing lengths (epochs), and using feedback
received only from the most recent epoch to estimate the gap parameters of all arms. To account
for incorrect identification of the Condorcet winner, we show that the feedback received in such
rounds can be thought of as just another form of adversarial corruption, and if the number of such
bad rounds can be bounded, then its impact on the total regret would also be small. In order to do
so, we have an aggressive replacement strategy for the anchor arm, and one of our key results shows
that across the execution of our algorithm, the total number of times the best arm would be replaced
as the anchor arm by any bad arm, or fail to replace a bad anchor arm is bounded by a constant
O(KCi∗/∆min + (K/∆min)2 log(K/∆min)). We couple this with showing that after sufficiently
many rounds, the best arm would necessarily have the highest sampling rate, ensuring that in the
event that it were to be replaced as the anchor arm by some suboptimal arm, it would quickly be
sampled again, and would replace the bad anchor arm. Thus, the total number of rounds where
the best arm is not the anchor arm is then bounded by a quantity which depends on the adversarial
corruption.
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1.3. Related Work

The dueling bandits problem was first proposed by Yue et al. (2009), motivated by practical applica-
tions where one receives relative feedback between arms rather than absolute feedback on individual
arms. However, this early work assumed two additional conditions on the underlying pairwise pref-
erence matrix – strong stochastic transitivity (SST) and stochastic triangle inequality (STI), which
are together much more restrictive than the Condorcet winner condition assumed by us (Yue et al.,
2009; Yue and Joachims, 2011). Urvoy et al. (2013) were probably the first ones to consider the
dueling bandits problem under the Condorcet winner setting, however, they provided a weak bound
of O(K2 log(T )) for their algorithm. Zoghi et al. (2014) and Komiyama et al. (2015b) gave algo-
rithms with an improved bound of O(K2 +K log(T )), which is comparable to the bound achieved
by our algorithm in the case of no corruption. However, none of these existing algorithms are robust
to adversarial corruption; in fact, we show in Appendix C that these algorithms can suffer from lin-
ear regret in the presence of just O(log T/∆min) corruption. More recent work on dueling bandits
has focused on relaxing the Condorcet winner condition further by considering more general win-
ner concepts (Komiyama et al., 2016; Dudik et al., 2015; Jamieson et al., 2015; Ramamohan et al.,
2016), however, these works are still restricted to the purely stochastic setting. Gajane et al. (2016)
considered a purely adversarial utility-based dueling bandits problem and proposed an algorithm
with a O(

√
T ) regret bound. Contrary to Gajane et al. (2016), we consider a setting where most of

the feedback is stochastic with a bounded number of adversarial corruptions.
Robustness to adversarial corruption has also been considered recently in classical stochastic

bandits (Lykouris et al., 2018; Gupta et al., 2019). In particular, Lykouris et al. (2018) proposed
a ‘multi-layered’ active arm elimination algorithm that achieved a O(CK2 log T ) regret bound.
This result was subsequently improved to O(K log T + KC) by Gupta et al. (2019), who gave
a novel algorithm that does not completely eliminate seemingly suboptimal arms but rather plays
them a small number of times throughout the time horizon, giving them some recourse. However, as
pointed out earlier, the dueling bandits framework is fundamentally different from classical bandits,
due to which these results do not directly translate over to our setting. There has also been some
work on best-of-both-worlds classical bandits where the goal is to achieve the minimum of the two
bounds– the adversarial O(

√
T ) bound and the stochastic O(log T ) bound – depending on whether

the realized instance is adversarial or stochastic while being agnostic to the instance (Zimmert et al.,
2019; Zimmert and Seldin, 2019; Seldin and Slivkins, 2014; Seldin and Lugosi, 2017; Bubeck and
Slivkins, 2012).

On a related note, the issue of robustness to adversarial corruptions in data has also recently
gained interest in the rank aggregation community (Agarwal et al., 2020). Although the type of
feedback/observations considered in their setting is the same as ours, namely outcomes of pairwise
comparisons some of which may be adversarially corrupted, our goals are quite different; the ob-
jective considered in this work is minimizing cumulative regret over a fixed time horizon, whereas
the work of Agarwal et al. (2020) largely concerns quantifying the sample complexity of estimating
the parameters of the true underlying choice model (assumed to be the Bradley-Terry-Luce model
(Bradley and Terry, 1952; Luce, 1959)) from offline comparison data.

More generally, the problem of robustness to adversarial perturbations has been of significant
interest in statistics, starting with the work of Huber (1965, 1992). There have been significant
advancements in this area since the pioneering work of Huber, the most recent and prominent one
being the closing of the long standing gap between computationally efficient estimators and the
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information theoretic limit for robust parameter estimation of Gaussians (Diakonikolas et al., 2017,
2018, 2019).

1.4. Organization

We give a formal problem definition in Section 2. We present our algorithm Section 3 and its regret
analysis in Section 4. We provide a lower bound in Section 5, and finally present our conclusions in
Section 6.

2. Problem Setting

We consider aK-armed dueling bandits problem, where we have a set ofK arms indexed 1, 2, . . . ,K.
With each pair of arms i, j, there is associated an unknown probability µij , which is the probability
with which arm i beats arm j in a pairwise comparison between i, j. We assume that there exists
a unique arm, which without loss of generality we assume to be arm 1, which beats every other
arm with probability strictly more than 1/2. Subsequently, for any arm i 6= 1, we define the gap
∆i = µ1i−1/2. At every time step t, the player chooses to play a pair of arms {ut, vt} ∈ [K]×[K],
and subsequently observes the outcome of a pairwise comparison between arms ut, vt, which can
potentially be flipped by an adversary. The adversary is assumed to be computationally unbounded,
as well as adaptive, i.e. its decisions to flip the outcomes of comparisons between pairs of arms at
a given time step can be dependent on the players past choices, as well as the random outcomes
of comparisons between all pairs of arms throughout the history of play, including the current time
step. Since the adversary can be computationally unbounded, we can further assume the adversary
to be deterministic without loss of generality. We describe the exact process as follows

1. At the current time step t, nature draws the outcomes of comparisons Zt between all pairs
of arms i, j ∈ [K] × [K], where Ztij = 1(i � j) is the outcome of a pairwise comparison
between arms i, j, which is stochastic with probability µij .

2. The adversary observes these outcomes Zt, and potentially reverses some of them, producing
corrupted outcomes Z̃t.

3. The player chooses to play a pair of arms {ut, vt}, and observes outcome Z̃tutvt .

Our objective is to minimize the strong regret incurred across T time steps, which is defined as

RT =

T∑
t=1

(∆ut + ∆vt)

Naturally, one would expect that the incurred regret depends on the total amount of corruption
C :=

∑T
t=1

∑
i,j |Ztij − Z̃tij | introduced into the system by the adversary. Since the adversary

is adaptive, the amount of corruption C is a random variable dependent on both the outcomes of
comparisons between arms and the player’s random choices. Hence, we do not assume that the
player knows the value of C (or any bounds on C) at the start of play. Our objective is to design a
robust strategy that is completely agnostic of C, and whose regret slowly increases as a function of
C. However, as we shall soon see, our regret bounds in fact depend upon a quantity that is potentially
much smaller than C. Specifically, our regret bounds depend on C1 :=

∑
t∈T
∑

i 6=1 |Zti1 − Z̃ti1|
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which is the amount of corruption in only the comparisons involving the Condorcet winner arm.
This weaker dependence on the corruption is not a-priori obvious, and may come as a surprise to
some readers.

Remark: Our corruption model is similar to that of Lykouris et al. (2018); Gupta et al. (2019)
for the problem of classical stochastic bandits with adversarial corruption. The main difference is in
the notion of the corruption level C: both Lykouris et al. (2018) and Gupta et al. (2019) define C in
terms of the L∞ norm difference between the corrupted outcome vector and the stochastic outcome
vector in each trial, whereas we define it in terms of the L1 norm difference between the corrupted
outcome vector and the stochastic outcome vector.

3. Algorithm

Our proposed algorithm, termed Winner Isolation With Recourse (WIWR ), is a randomized, non
active-arm-elimination algorithm that simultaneously estimates the Condorcet winner arm as well
as the gap parameter for each arm with respect to the Condorcet winner arm. At trial t ∈ [T ], we
denote our estimate of the Condorcet winner by vt and refer to it as the anchor arm. At trial t,
the algorithm chooses the anchor arm vt as the right arm, whereas the left arm is chosen randomly
based on the estimates of the gap parameters.

The algorithm proceeds in epochs of geometrically increasing lengths [6]. At the start of each
epochm, the algorithm determines a sampling probability for each arm that is inversely proportional
to the gap parameter estimated at the end of the previous epoch [5]. These sampling probabilities
give a distribution over arms, which is then fixed throughout epochm. At every time step t in epoch
m, a left arm ut is sampled from the aforementioned distribution over all arms [10], and subse-
quently played against the current anchor arm vt [11] . If it is observed that across all comparisons
between arms ut and vt, ut had won a majority of them [18], the left arm ut replaces the current
anchor arm vt to become the new anchor arm vt+1 [19]. Therefore, in each trial, the algorithm is
randomized with respect to one arm of the pair, and deterministic with respect to the other.

Finally, at the end of epochm, [28] for every arm i, the gap parameter ∆m
i is estimated according

to the average performance qmi of i against anchor arms. However, the exact computation of ∆m
i

[22-26] depends on whether there exists an arm j which was the anchor for more than half of the
trials in epoch m. If there exists such an arm j [22], then ∆m

i is estimated to be lower confidence
of the average disadvantage of arm i only when it was played as the left arm against anchor arm j
in epoch m [24,28]; and if there is no such arm in that epoch [25], then ∆m

i is estimated to be the
lower confidence of the average disadvantage of arm i against anchor arms when arm i was played
as the left arm in epoch m [26,28]. The former case corresponds to a scenario where the algorithm
has good confidence that arm j is the Condorcet winner as it is chosen as the anchor for more than
half of the epoch, whereas the latter represents a scenario of uncertainty for the algorithm where it
has to compute the gaps against an ‘average’ anchor arm. Furthermore, these gap parameters are
only estimated to a precision of 2−m in epochm, which gives us this geometric nature of the lengths
of the epochs. The pseudo-code for the algorithm is given in Algorithm 1.

4. Regret Analysis

The following theorem gives a high probability bound on the total regret incurred by our WIWR
algorithm.
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Algorithm 1 Winner Isolation With Recourse (WIWR )
1: Parameters: Confidence δ ∈ (0, 1), time horizon T .
2: Initialize T 0 = 0, v0 ∼Uniform[K], ∆0

i = 1/2 for all i ∈ [K], Pij = 0 for all i, j ∈ [K]× [K].

3: λ← 2304 ln
(

40K2

δ log T
)

.
4: for Epochs m = 1, 2, 3 . . . do
5: nmi ← λ(∆m−1

i )−2 for all arms i ∈ [K].
6: Nm ←

∑
i∈[K] n

m
i , and Tm = Tm−1 +Nm.

7: Wm
i ← 0, rmi ← 0 for all arms i ∈ [K], and rmij ← 0 for all pairs i, j ∈ [K] × [K], i 6= j
{Wm

i : number of times arm i was the anchor arm,
rmi : number of times arm i beat the anchor arm when i the left arm,
rmij : number of times arm i beat arm j when i was the left arm and j was the anchor arm}

8: for t = Tm−1 + 1 to Tm do
9: Wm

vt ←Wm
vt + 1.

10: Sample ut ∼Multinomial(nm1 , . . . , n
m
K)/Nm.

11: Play pair (ut, vt), and observe outcome Z̃tutvt = 1(ut � vt)
12: Update Putvt ← Putvt + (2Z̃tutvt − 1), and Pvtut ← Pvtut + (1− 2Z̃tutvt).
13: if ut = vt then
14: rmut ← rmut + 1/2.
15: else
16: rmutvt ← rmutvt + Z̃tutvt , and rmut ← rmut + Z̃tutvt .
17: end if
18: if Putvt > 0 then
19: Update vt+1 ← ut.
20: end if
21: end for
22: if ∃ j ∈ [K] : Wm

j ≥ Nm/2 then
23: wmj ←Wm

j /N
m

24: qmi ← rmij /(w
m
j n

m
i ) for all i ∈ [K] \ {j}, and qmj ← 1/2.

25: else
26: qmi ← rmi /n

m
i for all i ∈ [K].

27: end if
28: For all i ∈ [K], ∆m

i ← max
{

2−m, 1
2 − q

m
i −

∆m−1
i
8

}
29: If minj∈[K] ∆m

j > 2−m, round ∆m
i = 2−m for an arbitrary i ∈ argminj∈[K]∆

m
j

30: end for

Theorem 1 With probability at least 1− δ, the regret of WIWR (Algorithm 1) is bounded by

O

 C1

∆min
+
∑
i 6=1

1

∆2
i

ln
K

δ∆i

K2 ln
1

δ
+
∑
i 6=1

log T

∆i
ln

(
K

δ
log T

) ,

where K is the number of arms, T is the time-horizon, ∆i = µ1i − 1
2 , ∆min = mini 6=1 ∆1i,

and C1 :=
∑

t∈T
∑

i 6=1 |Zti1 − Z̃ti1| is the total amount of adversarial corruption in comparisons
involving the Condorcet winner arm 1.
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The proof of the above theorem is broadly structured into two main components. The first
component is a high probability bound on the deviation in the fundamental random variables that
determine the behavior of our algorithm, which include parameters such as the estimated gaps of
all arms in any epoch, the actual number of plays of any arm as the left arm in any epoch, and the
number of times any suboptimal arm beats the Condorcet winner arm. This is followed by a bound
on the regret incurred by our algorithm assuming that the deviations in the aforementioned variables
are small.

Notation. We begin by introducing some notation which will be used extensively in the analysis
to follow. For any epochm, arm i, we define ñmi to be the actual number of times arm iwas sampled
as the left arm in epoch m. For any time step t, and pair of arms i, j, we define εtij to be a random
variable that is 1 if arms i, j were played at time t, i.e. either ut = i, vt = j or ut = j, vt = i.
Furthermore, for any time step t, and pair of arms i, j, we define ctij to be a random variable that
is 1 if the adversary flipped the stochastic outcome of a comparison between arms i, j at time t,
and subsequently, for any epoch m, we define Cmij =

∑Tm

t=Tm−1+1 c
t
ij to be the total number of

times the adversary flipped the stochastic outcome of a comparison between arms i, j in epoch m.
We denote Cmi =

∑Tm

t=Tm−1+1

∑
j 6=i c

t
ij to be the total number of times the adversary flipped the

stochastic outcome of any comparison involving arm i in epoch m. For any epoch m, arm i, we
define wmi =

∑Tm

t=Tm−1+1 1(i = vt)/Nm to be the fraction of times arm i was the anchor arm
in that epoch. Finally, for any epoch m, we define Dm =

∑Tm

t=Tm−1+1 1(1 6= vt) to be the total
number of times arm 1 was not the anchor arm in that epoch. Note that since we consider a fully
adaptive adversary, all of these quantities are random variables, and all of our subsequent bounds
depend on the realizations of these random variables.

First, observe that the epochs are of bounded lengths.

Lemma 2 The length Nm of any epoch m is such that

22(m−1) ≤ Nm

λ
≤ K22(m−1)

As a consequence, the maximum number of epochs is bounded by log T .

Proof Observe that in any epoch m, there exists at least one arm j for which ∆m
j = 2−m, which

is enforced by our rounding scheme at the end of the epoch. Due to this, Nm+1 ≥ nm+1
j = λ22m,

proving the lower bound on the length of epoch m+ 1. The upper bound follows by observing that
for any epoch m, ∆m

i ≥ 2−m for all arms i ∈ [K], due to which nm+1
i ≤ λ22m for all i. This gives

us Nm+1 =
∑

i∈[K] n
m+1
i ≤ Kλ22m. This lower bound on the length of any epoch also implies

the upper bound on the number of epochs; the final epochM will have length at least 22M−2, which
implies M ≤ log 4T .

We now define a set of desirable events that will be later shown to occur with high probability.
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Definition 3 For any given 0 < δ ≤ 1, we define the following events:

E0 := ∀m, i : ñmi ≤ 2nmi

E1 := ∀m, (i, j) :

∣∣∣∣∣ rmij
nmi w

m
j

− µij

∣∣∣∣∣ ≤ 2Cmij
Nm

+
∆m−1
i

8
or wmj <

1

2

E2 := ∀m, i :

∣∣∣∣ rminmi − µi1
∣∣∣∣ ≤ 2(Cmi1 +Dm)

Nm
+

∆m−1
i

8

E3 := ∀m :

(
1

2
+
Dm

Nm
∆min

)
− rm1
nm1
≤ Cm1
Nm

+
∆m−1
i

8

E4 := ∀i 6= 1, s ≤ T :
s∑
t=1

εti1(2z̃ti1 − 1) < 0 or
s∑
t=1

εti1 ≤
4Ci1
∆i

+
2

∆2
i

ln
20K

δ∆2
i

Finally, we define event E := {E0 ∩ E1 ∩ E2 ∩ E3 ∩ E4} to be the intersection of all of the afore-
mentioned events.

At a high level, event E0 guarantees that in every epoch, the number of times any arm was played as
the left arm is not too much more than the expected number of times it was supposed to have been
played. Events E1, E2, E3 are all guarantees on the deviation in the average reward (probability)
estimates qmi of any arm in any epoch; E1 provides guarantees in the event that some arm j was the
anchor arm for over half of the epoch, whereas E2, E3 provide a weaker, but more general guarantee,
which is useful when no arm remained the anchor for a majority of the epoch. Finally, E4 guarantees
that after we have seen sufficiently many comparisons between arm 1 and any other arm i, in the
event that arm 1 is the anchor, and arm i is sampled as the left arm, arm i can never replace arm 1 as
the anchor arm, and in the event that arm i is the anchor, and arm 1 is sampled as the left arm, arm i
will always be replaced as the anchor arm by arm 1. This bound will be useful to prove that the total
number of time steps where arm 1 was not the anchor arm is small, which is crucial as all the time
steps where arm 1 was not the anchor not just incur large regret, but also affect the gap estimation
for all other arms, which further increases the regret.

Lemma 4 The event E := {E0 ∩ E1 ∩ E2 ∩ E3 ∩ E4} occurs with probability at least 1− δ/2.

The proof of this claim starts with the following tail bounds which will be used to bound the
probabilities of the complement of each of the above stated events. The detailed proofs of the fol-
lowing tail bounds are technically involved, so in the interest of space, we defer them to Appendix B.

Lemma 5 For any fixed epoch m, arm i, we have for any β ≥ e−λ/2

Pr(ñmi ≥ 2nmi ) ≤ β

Applying the above bound with β = δ/(10K log T ), followed by a union bound over all K arms
and log T epochs gives us that Pr(¬ E0) ≤ δ/10.

Lemma 6 For any fixed epoch m and an ordered pair of unique arms (i, j), we have for any
β > 4e−λ/2304

Pr

(∣∣∣∣∣ rmij
nmi w

m
j

− µij

∣∣∣∣∣ ≥ 2Cmij
Nm

+
∆m−1
i

8
and wmj ≥

1

2

)
≤ β

9
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Applying the above bound with β = δ/(10K2 log T ), followed by a union bound over allK(K−1)
choices of unique ordered pairs of arms, and log T epochs gives us that Pr(¬ E1) ≤ δ/10.

Lemma 7 For any fixed epoch m, arm i 6= 1, we have for any β > 4e−λ/2304

Pr
(∣∣∣∣ rminmi − pi1

∣∣∣∣ ≥ Cmi1 +Dm

Nm
+

∆m−1
i

8

)
≤ β

Applying the above bound with β = δ/(10K log T ), followed by a union bound over all (K − 1)
suboptimal arms, and log T epochs gives us that Pr(¬ E2) ≤ δ/10.

Lemma 8 For any fixed epoch m, we have for any β > 4e−λ/2304,

Pr
((

1

2
+
Dm

Nm
∆min

)
− rm1
nm1
≥ Cm1
Nm

+
∆m−1

1

8

)
≤ β

Applying the above bound with β = δ/(10 log T ), followed by a union bound over all log T epochs
gives us that Pr(¬ E3) ≤ δ/10. One can verify that all substitutions of β are valid, since λ =
2304 ln((40K2 log T )/δ).

Lemma 9 We have for any fixed arm i, any β > 0,

Pr

(
∃s ≤ T :

s∑
t=1

εti1(2z̃ti1 − 1) > 0 and
s∑
t=1

εti1 >
4Ci1
∆i

+
2

∆2
i

ln
2

β∆2
i1

)
≤ β

Applying the above bound with β = δ/(10K), followed by a union bound over all K arms gives us
that Pr(¬ E4) ≤ δ/10.

A union bound over all of the above events gives us that Pr(¬ E) ≤ δ/2, implying that the event
E occurs with probability at least 1− δ/2, proving Lemma 4. From this point on, we shall condition
on event E .

The key idea behind the subsequent proof is that a given amount of corruption can distort the
empirical probability estimates computed by our algorithm only by a bounded amount, as indicated
by events E1, E2, and E3. Therefore, once the epochs become long enough for the algorithm to col-
lect sufficiently many uncorrupted samples relative to the total amount of corruption, its effect on
the computed estimates will become negligible. Therefore, while the algorithm could incur arbitrar-
ily large regret in the initial epochs where the effect of the corruption would be most pronounced,
after sufficiently many epochs, the subsequent regret incurred will be small as the algorithm would
have collected enough uncorrupted samples in each of the following epochs to compensate for the
corruption. The epoch after which this property holds depends on the (realized) amount of total
corruption involving the Condorcet winner arm (arm 1), and the algorithm is completely agnostic
of this fact. Henceforth, we shall refer to this threshold epoch as m0 := d(1/2) log(8C1/λ∆min)e.

We begin by showing that for all epochs m after the threshold epoch m0, the gap estimate for
arm 1 will always be good.

Lemma 10 Conditioned on event E , for any epoch m ≥ m0, we have that ∆m
1 = 2−m.

10



STOCHASTIC DUELING BANDITS WITH ADVERSARIAL CORRUPTION

Proof Observe that for any epoch m ≥ m0, we have that Nm ≥ λ22m−2 ≥ 2C1/∆min. We have
one of the following three possibilities: (1) Arm 1 is the anchor arm v for over half the epoch, (2)
Some arm j 6= 1 is the anchor arm v for over half the epoch, or (3) No arm is the anchor arm v for
over half the epoch. We shall prove that ∆m

1 = 2−m in each of these three cases.
Case 1 (Arm 1 is the anchor arm v for over half the epoch). In this case, by definition of our

algorithm, we have that qm1 = 1/2 due to which

∆m
1 = max

{
2−m,

1

2
− qm1 −

∆m−1

8

}
= max

{
2−m,

1

2
− 1

2
−

∆m−1
i

8

}
= 2−m

Case 2 (Arm i 6= 1 is the anchor arm v for over half the epoch). In this case, by event E1, we
have that qm1 = rm1i/(w

m
i n

m
1 ) ≥ p1i−2Cmi1 /N

m−∆m−1
1 /8 ≥ 1/2+∆min−2C1/N

m−∆m−1
1 /8.

Thus, we have

∆m
1 = max

{
2−m,

1

2
− qm1 −

∆m−1
1

8

}
≤ max

{
2−m,

1

2
−
(

1

2
+ ∆min −

2C1

Nm
− ∆m−1

1

8

)
− ∆m−1

1

8

}
≤ max{2−m,−∆min + ∆min} = 2−m

Case 3 (No arm is the anchor arm v for over half the epoch). Observe that when this event
occurs, we have that Dm/Nm > 1/2. In this case, by event E3, we have that rm1 ≥ 1/2 +
Dm∆min/N

m − Cm1 /Nm −∆m−1
1 /8 ≥ 1/2 + ∆min/2− C1/N

m −∆m−1
1 /8. Thus, we have

∆m
1 = max

{
2−m,

1

2
− rm1 −

∆m−1
1

8

}
≤ max

{
2−m,

1

2
−
(

1

2
+

∆min

2
− C1

Nm
− ∆m−1

1

8

)
− ∆m−1

1

8

}
≤ max

{
2−m,

−∆min + ∆min

2

}
= 2−m

where the second to last inequality in both Cases 2 and 3 follows from the fact thatNm ≥ 2C1/∆min.
Thus, we have that ∆m

1 = 2−m for all epochs m ≥ m0.

Next, we use the above guarantee to both upper and lower bound the gap estimates ∆m
i for every

arm i 6= 1 for all epochs m ≥ m0.

Lemma 11 Conditioned on event E , for any epoch m ≥ m0, for all arms i 6= 1, we have

3

4
∆i −

2(Cmi1 +Dm)

Nm
−
Cm−1
i1 +Dm−1

2Nm−1
− 2−m

2
≤ ∆m

i ≤ ∆i +
2(Cmi1 +Dm)

Nm
+ 2−m

Proof We first establish the upper bound in our claim. Conditioned on event E , we begin by
observing that for any epoch m, the estimate qmi is always lower bounded by

qmi ≥ µi1 −
2(Cmi1 +Dm)

Nm
−

∆m−1
i

8

11
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To see this, observe that in epoch m, one of the following three events must occur: (1) arm 1 is the
anchor arm for over half the epoch, in which case qmi = rmi1/(w

m
1 n

m
i ), (2) some arm j 6= 1 is the

anchor arm for over half the epoch, in which case qmi = rmij /(w
m
j n

m
i ), or (3) no arm is the anchor

arm for over half the epoch, in which case qmi = rmi /n
m
i . In case (1), our claimed lower bound

is guaranteed by event E2, whereas in cases (2), (3), we must have Dm/Nm > 1/2 by definition,
which corresponds to the trivial lower bound of 0. Therefore, we have that

∆m
i = max

{
2−m,

1

2
− qmi −

∆m−1
i

8

}
≤ 2−m +

1

2
− qmi −

∆m−1
i

8
≤ 2−m + ∆i +

2(Cmi +Dm)

Nm

proving the upper bound claimed in Lemma 11, where the final inequality follows by our aforemen-
tioned lower bound on qmi , and by definition of µi1.

We now use this upper bound on all ∆m
i to establish the lower bound. Observe that for any

epoch m, the estimate qmi is always upper bounded by

qmi ≤ µi1 +
2(Cmi1 +Dm)

Nm
+

∆m−1
i

8

The proof of this follows in an identical manner as the proof of our lower bound; in case (1), the
upper bound is guaranteed by event E2, whereas in cases (2),(3), we must have Dm/Nm > 1/2
which corresponds to the trivial upper bound of 1. By Lemma 10, for all epochs m ≥ m0, we have
∆m

1 = 2−m due to which the rounding step is not applied, and the estimate

∆m
i = max

{
2−m,

1

2
− qmi −

∆m−1
i

8

}
≥ 1

2
−
(

1

2
−∆i +

2(Cmi1 +Dm)

Nm
+

∆m−1
i

8

)
−

∆m−1
i

8

≥ ∆i −
2(Cmi1 +Dm)

Nm
−

∆m−1
i

4

≥ ∆i −
2(Cmi1 +Dm)

Nm
− 1

4

(
2−(m−1) + ∆i +

2(Cm−1
i1 +Dm−1)

Nm−1

)
≥ 3

4
∆i −

2(Cmi1 +Dm)

Nm
−
Cm−1
i1 +Dm−1

2Nm−1
− 2−m

2

proving the lower bound claimed in Lemma 11, where the second inequality follows by our afore-
mentioned upper bound on qmi and definition of µi1, and the second to last inequality follows by
substituting the upper bound on ∆m−1

i .

We use the guarantee provided by Lemma 10 to also show that after epoch m0, the total number
of time steps where arm 1 is not the anchor arm is bounded by a constant with high probability.

Lemma 12 Conditioned on event E , we have with probability at least 1− δ/2,

∑
m>m0

Dm ≤

 4C1

∆min
+
∑
i 6=1

2

∆2
i

ln
10K

δ∆2
i

K ln
6

δ

12
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Proof First, observe that for all epochs m > m0, we have that the sampling probability of arm 1
pm1 ≥ 1/K. This directly follows from Lemma 10, and the upper bound on Nm from Lemma 2.
Let us call the event where arm 1 either gets replaced as the anchor arm by some other arm i 6= 1,
or fails to replace an anchor arm i 6= 1 when it is sampled as the left arm as a violation event. Then
a simple corollary of event E4 gives us that the total number of violation events across all T time
steps is upper bounded by
T∑
t=1

1
[
(ut = 1 or vt = 1) and vt+1 6= 1

]
≤
∑
i 6=1

4Ci1
∆i

+
∑
i 6=1

2

∆2
i

ln
10K

δ∆2
i

≤ 4C1

∆min
+
∑
i 6=1

2

∆2
i

ln
10K

δ∆2
i

We shall refer to this upper bound on the total number of violation events as V . For each i ∈ [V ],
we define a random variable xi that counts the number of time steps until we see the first draw of
arm 1 as the left arm following the ith violation event. In the case that there are strictly fewer than
V violation events, we set xi = 0 for the remaining unrealized events. Since at every time step,
arm 1 is independently sampled with probability ≥ 1/K, we can treat

∑V
i=1 xi as a sequence of

independent Bernoulli trials until we observe V successes, where the probability of success in each
trial is ≥ 1/K. Therefore,

Pr

(
V∑
i=1

xi > VK ln
6

δ

)
≤ Pr

(
V∑
i=1

xi >

(
1 + ln

2

δ

)
V K

)

≤ Pr
(

Bernoulli
(
V K + V K ln

2

δ
,

1

K

)
< V

)
≤ Pr

(
Bernoulli

(
V K + V K ln

2

δ
,

1

K

)
− (V + V ln

2

δ
) < −V ln

2

δ

)
≤ exp

(
−2V 2 ln2(2/δ)

V K + V K ln(2/δ)

)
≤ exp

(
−V ln(2/δ)

K

)
which is at most δ/2 since V ≥ K, with the penultimate inequality following from a standard
Hoeffding’s bound. Once arm 1 is sampled as the left arm, it either replaces the anchor arm at
that time step, or fails to replace it, leading to another violation event. In either case, we have that
the total number of time steps following all violation events where arm 1 is not drawn as the left
arm is bounded by V K ln 6/δ, and since there are at most V violation events, there are at most
V + V K ln 6/δ time steps in total where arm 1 is not the anchor arm, proving our claim.

Equipped with the upper and lower bounds on the gap estimates, and the upper bound on the
number of time steps where arm 1 is not the anchor, we are ready to prove the regret bound of
Theorem 1.
Proof (of Theorem 1) We begin by conditioning on both the event E , as well as the event where the
upper bound in Lemma 12 holds. We first show that the total regret incurred by our algorithm after
epoch m0 + 2 := d(1/2) log(8C1/λ∆min)e+ 2 is bounded by

∑
m>m0+2

Rm = O

C1 +
∑
m>m0

KDm +
∑
j 6=1

λ log T

∆j
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To see this, we have that the regret incurred by our algorithm after epoch m0 + 2

∑
m>m0+2

Rm =
∑

m>m0+2

Tm∑
t=Tm−1+1

(∆ut + ∆vt)

≤
∑

m>m0+2

Dm +
∑
i 6=1

ñmi ∆i


≤

∑
m>m0+2

Dm + 2
∑

m>m0+2

∑
i 6=1

nmi ∆i

where the final inequality follows by event E0. We shall henceforth refer to the term nmi ∆i = Rmi ,
and we shall bound this term for each epoch, and each arm separately. Remember that nmi =
λ(∆m−1

i )−2. For a fixed epoch m, and arm i, we have the following three cases

Case 1: ∆i ≤ 4 · 2−m
In this case, we have ∆m−1

i ≥ 2−(m−1) ≥ ∆i/2 by definition of our algorithm, giving us

Rmi ≤
4∆iλ

∆2
i

≤ 4λ

∆i

Case 2: ∆i > 4 · 2−m and 2(Cm−1
i1 +Dm−1)/Nm−1 + (Cm−2

i1 +Dm−2)/(2Nm−2) ≤ ∆i/4
By the lower bound on ∆m−1

i in Lemma 11, we have

∆m−1
i ≥ 3

4
∆i −

2(Cm−1
i1 +Dm−1)

Nm−1
−

(Cm−2
i1 +Dm−2)

2Nm−2
− 2−(m−1)

2

≥ 3

4
∆i −

1

4
∆i −

1

4
∆i

≥ ∆i

4

In this case, we have

Rmi ≤
16λ∆i

(∆i)2
≤ 16λ

∆i

Case 3: ∆i > 4 · 2−m and 2(Cm−1
i1 +Dm−1)/Nm−1 + (Cm−2

i1 +Dm−2)/(2Nm−2) > ∆i/8
In this case, we have

4

2m
< ∆i <

16(Cm−1
i1 +Dm−1)

Nm−1
+

4(Cm−2
i1 +Dm−2)

Nm−2

Again, by definition of our algorithm, we have ∆m−1
i ≥ 2−(m−1), from which we can upper bound

the regret

Rmi ≤ λ∆i2
2(m−1)

≤ λ22(m−1)

(
16(Cm−1

i1 +Dm−1)

Nm−1
+

4(Cm−2
i1 +Dm−2)

Nm−2

)
≤ 64(Cm−1

i1 +Dm−1 + Cm−2
i1 +Dm−2)

14
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where the final inequality follows from the lower bound Nm ≥ λ22(m−1). From Cases 1, 2 and 3,
we get that for any epoch m > m0 + 2, arm i,

Rmi ≤ 64(Cm−1
i1 +Dm−1 + Cm−2

i1 +Dm−2) +
16λ

∆i

Putting this together, we get that∑
m>m0+2

∑
i 6=1

Rmi ≤ 64
∑

m>m0+2

∑
i 6=1

(Cm−1
i1 +Dm−1 + Cm−2

i1 +Dm−2) +
∑

m>m0+2

∑
i 6=1

16λ

∆i

≤ 64
∑

m>m0+2

(Cm−1
1 + Cm−2

1 ) + 64K
∑

m>m0+2

(Dm−1 +Dm−2) +
∑
i 6=1

4λ log T

∆i

≤ 128C1 + 128K
∑
m>m0

Dm +
∑
i 6=1

4λ log T

∆i

Thus, the total regret of our algorithm post epoch m0 + 2 is

∑
m>m0+2

Rm = O

C1 +
∑
m>m0

KDm +
∑
i 6=1

λ log T

∆i


All that remains is to bound the total regret incurred by our algorithm in the first m0 +2 epochs,

which is at most the number of time steps in these epochs. Thus, we have

m0+2∑
m=1

Rm ≤
m0+2∑
m=1

Nm ≤ Kλ
m0+2∑
m=1

22m ≤ Kλ
2m0+4∑
n=1

2n ≤ 256KC1

∆min

Thus, the total regret incurred by our algorithm is bounded by

R = O

KC1

∆min
+
∑
m>m0

KDm +
∑
i 6=1

λ log T

∆i


Substituting

∑
m>m0

Dm with the bound in Lemma 12, we get our claimed bound on the total
regret

R = O

K2C1

∆min
ln

1

δ
+
∑
i 6=1

K2

∆2
i

ln
K

δ∆i
ln

1

δ
+
∑
i 6=1

log T

∆i
ln
K log T

δ


which holds when both event E occur, as well as the bound in Lemma 12 holds, which together
holds with probability at least (1− δ/2)2 ≥ 1− δ.
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5. Lower Bound

We further show that any algorithm for dueling bandits must incur a regret of Ω(C), even under a
weaker non-adaptive adversary. Consider an instance of dueling bandits with two arms 1, 2 where
Pr(1 � 2) = 1/2 + ∆ for any ∆ > 0. Consider a randomized adversary that uses the following
corruption mechanism: if adversary chooses to corrupt the outcomes at time step t ∈ [T ], then the
corrupted feedback is chosen to be

Z̃t12 = Zt12(1− yt), where yt ∼ Bernoulli
(

4∆

1 + 2∆

)
Observe that across all time steps that the adversary chooses to corrupt, the distribution of Z̃12

is identical to the completely stochastic model with Pr(1 � 2) = 1/2−∆. For any choice of C, the
adversary corrupts the outcomes of the comparisons between arms 1, 2 for the first O(C/∆) time
steps, in which case, we have the realized amount of corruption to be O(C) with high probability. It
is now straightforward to see that any algorithm must incur Ω(C) regret in just these first O(C/∆)
time steps; if there is an algorithm that incurs o(C) regret in the first O(C/∆) time steps in the
corrupted instance, then it must incur Ω(∆(C/∆)) − o(C) = Ω(C) regret in just these time steps
in an uncorrupted instance where the true underlying probability of arm 1 beating arm 2 is Pr(1 �
2) = 1/2 −∆. This follows from the fact that in these first O(C/∆) time steps, the instance with
adversarial corruption is statistically identical to the uncorrupted instance with the roles of the two
arms reversed.

6. Conclusion

We study the problem of robustness in stochastic dueling bandits, where we consider a powerful
adversarial corruption model in which we allow some of the observed pairwise feedback to be cor-
rupted by an adaptive and computationally unbounded adversary. Furthermore, we assume only
the existence of Condorcet winner in our model, which is significantly weaker than some com-
mon assumptions in this literature such as SST, STI or BTL that impose an ordering over arms. In
this setting, we design a novel algorithm that is agnostic to the amount of corruption introduced
into the system by the adversary, which, with high probability, incurs regret O(K2C/∆min +∑

i 6=i∗(K2/∆i) ln(K/∆i)) + Õ(
∑

i 6=i∗ 1/∆i) without any prior knowledge of C, the realized
amount of adversarial corruption in the feedback across the time horizon. Most notably, this bound
is asymptotically optimal in the completely stochastic setting when there is no adversarial corrup-
tion, and degrades gracefully with increasing amounts of corruption. To the best of our knowledge,
these are the first guarantees of this kind for dueling bandits.

Our work motivates some natural open problems: in contrast to the regret achievable in classical
bandits with adversarial corruption, where the dependence on the adversarial corruption is O(KC),
our regret bounds of O(K2C/∆min) are somewhat weaker. However, dueling bandits under just
the Condorcet winner condition is a fundamentally more challenging setting than classical bandits,
which motivates the question of whether this additional dependence on the minimal gap ∆min is
inevitable, and whether our lower bound can be improved to reflect it. Secondly, is it possible to
improve this dependence on the corruption term under more restrictive assumptions such as SST,
STI or BTL on the preference matrix? Another interesting direction would be to extend our results
to dueling bandits with other notions of “winner arms”, such as Copeland winners, top cycles, Banks
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sets etc., each of which have their own separate notion of regret. These in some sense are even more
general settings of dueling bandits as, unlike Condorcet winners which may not exist, these notions
of winners are guaranteed to exist in any preference matrix (Ramamohan et al. (2016)).
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Appendix A. Concentration Inequalities

In this section, we record all of the concentration inequalities used in this this paper. These are all
well known inequalities; see Cesa-Bianchi and Lugosi (2006) for the former two inequalities, and
Freedman (1975) (Theorem 1.6) for the last inequality.

Theorem 13 (Multiplicative Chernoff Bounds) Let X1, . . . , Xn be independent Bernoulli ran-
dom variables, with X denoting their sum, and E(X) = µ denoting their mean. Then for any
δ > 0, we have that

Pr (|X − µ| ≥ δµ) ≤ 2 exp

(
−δ2µ

3

)
Theorem 14 (Bernstein’s Martingale Inequality) Let X1, . . . , Xn be a bounded martingale dif-
ference sequence with respect to a certain filtration {Fi}0,≤i<n, and with |Xi| ≤ K. Let

Si =

i∑
j=1

Xj

20



STOCHASTIC DUELING BANDITS WITH ADVERSARIAL CORRUPTION

be the associated martingale. Denote the sum of the conditional variances by

Σ2
n =

n∑
j=1

E[X2
j |Fj−1]

Then for all constants t, v > 0,

Pr(Sn >
√

2vt+ (
√

2/3)Kt and Σ2
n ≤ v) ≤ e−t

Theorem 15 (Freedman’s Inequality) Let X1, . . . , Xn be a bounded martingale difference se-
quence with respect to a certain filtration {Fi}0,≤i<n, and with |Xi| ≤ K almost surely. Let

Si =

i∑
j=1

Xj

be the associated martingale. Denote the sum of the conditional variances by

Σ2
i =

i∑
j=1

E[X2
j |Fj−1]

Then for all constants t, v > 0,

Pr(∃ i ≤ n : Si > t and Σ2
i ≤ v) ≤ exp

(
−t2

2v + 2Kt/3

)

Appendix B. Proofs

B.1. Proof of Lemma 5

Lemma 5 For any fixed epoch m, arm i, we have for any β ≥ e−λ/2

Pr(ñmi ≥ 2nmi ) ≤ β

Proof For any fixed epoch m, we first begin by conditioning on all the random variables prior to
epoch m, due to which the quantities Nm, Tm−1, and nmi for all arms i ∈ [K] become constants.
For any epoch m, arm i, for every time step t ∈ Tm, let Y t

i be an indicator for arm i being sampled
as the left arm. Then we have that ñmi =

∑
t∈Tm Y

t
i . Furthermore, we have that the expected value

E(ñmi ) = nmi ≥ λ, and that all Y t
i are independent random variables. A standard application of

Chernoff Bounds gives us that the probability of the said event (conditioned on all random variables
prior to epoch m) is at most e−λ/2 ≤ β. Finally, observe that this bound holds for any realization
of these random variables we conditioned on, due to which it also holds unconditionally.

21



STOCHASTIC DUELING BANDITS WITH ADVERSARIAL CORRUPTION

B.2. Proof of Lemma 6

Lemma 6 For any fixed epoch m and an ordered pair of unique arms (i, j), we have for any
β > 4e−λ/2304

Pr

(∣∣∣∣∣ rmij
nmi w

m
j

− µij

∣∣∣∣∣ ≥ 2Cmij
Nm

+
∆m−1
i

8
and wmj ≥

1

2

)
≤ β

Proof For any fixed epoch m, we first begin by conditioning on all the random variables prior to
epoch m, due to which the quantities Nm, Tm−1, and nmi for all arms i ∈ [K] become constants.
For epoch m, let Em = [Tm−1 + 1, . . . , Tm] be the Nm time steps within that epoch. For the fixed
arm i, anchor arm j, for every time step t ∈ Em, let εtj be an indicator for the anchor arm vt = j,
and Y t

i be an indicator for the left arm ut = i. Furthermore, let Ztij be the stochastic outcome of the
comparison 1(i � j), and let ctij = Z̃tij − Ztij be the corruption introduced by the adversary. Thus,
we have that the relative reward rmij of arm i with respect to anchor arm j in epoch m as

rmij =
∑
t∈Em

Y t
i ε
t
j(Z

t
ij + ctij)

Let
Amij =

∑
t∈Em

Y t
i ε
t
jZ

t
ij , Bm

ij =
∑
t∈Em

Y t
i ε
t
jc
t
ij

To analyze the deviation in Amij , consider the sequence of random variables X1, . . . , XNm
, where

Xt = εtj(Y
t
i Z

t
ij − pmi µij) for any t ∈ Em. Then {Xt}Nm

t=1 is a martingale with respect to the
filtration {F t}Nm

t=1 generated by the random variables {Y s
j }j∈[K],s≤t, {Zsij}i,j∈[K]×[K],s≤t+1, and

{εsj}j∈[K],s≤t+1. This is because conditioned onF t−1, Y t
i andZtij are independent random variables

with mean pmi , and µij respectively and εtj becomes a deterministic quantity which is 1 iff the anchor
arm vt = j. Thus,

E[Xt|F t−1] = εtjE[Y t
i Z

t
ij − pmi µij ] = 0

Next, we can bound the conditional variance

Σ =
∑
t∈Em

E[(Xt)2|F t−1] =
∑
t∈Em

εtjE[(Y t
i Z

t
ij − pmi µij)2|F t−1] ≤Wm

j p
m
i = wmj n

m
i ≤ nmi

Observe that ∑
t∈Em

Xt = Amij −Wm
j p

m
i µij = Amij − wmj nmi µij

We have that

Pr

(∣∣∣∣∣ Amij
wmj n

m
i

− µij

∣∣∣∣∣ ≥
√

8 ln 4/β

nmi
+

√
8 ln 4/β

3nmi
and wmj ≥ 1/2

)

= Pr

(∣∣∣∣∣ ∑
t∈Tm

Xt

∣∣∣∣∣ ≥ wmj √8nmi ln 4/β +

√
8wmj ln 4/β

3
and wmj ≥ 1/2

)

≤ Pr

(∣∣∣∣∣ ∑
t∈Tm

Xt

∣∣∣∣∣ ≥√2nmi ln 4/β +

√
2 ln 4/β

3
and Σ ≤ nmi

)
≤ β/2
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Where the final inequality follows by Bernstein’s inequality for Martingales. Finally, since we have
that nmi ≥ λ ≥ 2304 ln 4/β, we have that

Pr

(∣∣∣∣∣ Amij
wmj n

m
i

− µij

∣∣∣∣∣ ≥
√

9 ln 4/β

nim
and wmj ≥ 1/2

)
≤ β/2

To bound the deviation inBm
ij , consider the sequence of random variablesX1, . . . , XNm

, where
Xt = εtjc

t
ij(Y

t
i − pmi ) for any t ∈ Em. Then {Xt}Nm

t=1 is a martingale with respect to the
filtration {F t}Nm

t=1 generated by the random variables {Y s
j }j∈[K],s≤t,{Zsij}i,j∈[K]×[K],s≤t+1, and

{εsj}j∈[K],s≤t+1. This is because conditioned on F t−1, Y t
i is an independent random variable with

mean pmi , and εtj , c
t
ij becomes deterministic quantities. Thus,

E[Xt|F t−1] = εtjc
t
ijE[Y t

i − pmi ] = 0

Next, we can bound the conditional variance

Σ =
∑
t∈Em

E[(Xt)2|F t−1] =
∑
t∈Em

εtj
∣∣ctij∣∣E[(Y t

i − pmi )2|F t−1] ≤ pmi
∑
t∈Em

∣∣ctij∣∣ εtj ≤ nmi
Observe that ∑

t∈Em
Xt = Bm

ij − pmi
∑
t∈Em

εtjc
t
ij

We have that

Pr

(
Bm
ij

wmj n
m
i

≥
2Cmij
Nm

+

√
8 ln 4/β

nmi
+

√
8 ln 4/β

3nmi
and wmj ≥ 1/2

)

≤ Pr

(
Bm
ij

wmj n
m
i

−
∑

t∈Em ε
t
jc
t
ij

wmj N
m

≥

√
8 ln 4/β

nmi
+

√
8 ln 4/β

3nmi
and wmj ≥ 1/2

)

= Pr

(∑
t∈Em

Xt ≥ wmj
√

8nmi ln 4/β +

√
8wmj ln 4/β

3
and wmj ≥ 1/2

)

≤ Pr

(∑
t∈Em

Xt ≥
√

2nmi ln 4/β +

√
2 ln 4/β

3
and Σ ≤ nmi

)
≤ β/4

Where the final inequality follows by Bernstein’s inequality for Martingales. Finally, since we have
that nmi ≥ λ ≥ 2304 ln 4/β, we have that

Pr

(
Bm
ij

wmj n
m
i

≥
2Cmij
Nm

+

√
9 ln 4/β

nmi
and wmj ≥ 1/2

)
≤ β/4

We can similarly bound −Bm
ij /w

m
j n

m
i , giving a final absolute deviation bound on B as

Pr

(∣∣∣∣∣ Bm
ij

wmj n
m
i

∣∣∣∣∣ ≥ 2Cmij
Nm

+

√
9 ln 4/β

nmi
and wmj ≥ 1/2

)
≤ β/2
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Combining the deviation bounds on Amij , B
m
ij through a union bound, we have that

Pr

(∣∣∣∣∣ rmij
nmi w

m
j

− µij

∣∣∣∣∣ ≥ 2Cmij
Nm

+

√
36 ln 4/β

nmi
and wmj ≥

1

2

)
≤ β

Following the observation that nmi = λ/(∆m−1
i )2, and λ ≥ 2304 ln 4/β, we have that the proba-

bility of the said event (conditioned on all random variables prior to epoch m) is at most β. Finally,
observe that this bound holds for any realization of these random variables we conditioned on, due
to which it also holds unconditionally, hence proving our claim.

B.3. Proof of Lemma 7

Lemma 7 For any fixed epoch m, arm i 6= 1, we have for any β > 4e−λ/2304

Pr
(∣∣∣∣ rminmi − µi1

∣∣∣∣ ≥ Cmi1 +Dm

Nm
+

∆m−1
i

8

)
≤ β

Proof For any fixed epoch m, we first begin by conditioning on all the random variables prior to
epoch m, due to which the quantities Nm, Tm−1, and nmi for all arms i ∈ [K] become constants.
For epochm, letEm = [Tm−1+1, . . . , Tm] be theNm time steps within that epoch. For every time
step t ∈ Em, let Y t

i be an indicator for the left arm ut = i. Furthermore, let Zti1 be the stochastic
outcome of the comparison 1(i � 1), and let cti = Z̃tivt − Z

t
i1 be the corruption, either introduced

by the adversary or caused by arm i playing against an anchor arm vt 6= 1 (we shall simply treat the
latter as another source of adversarial error). Then we have

rmi =
∑
t∈Em

Y t
i (Zti1 + cti)

We define
Ami :=

∑
t∈Em

Y t
i Z

t
i1 and Bm

i :=
∑
t∈Em

Y t
i c
t
i

To bound the deviation inAmi , we have that Zti1 is an independent {0, 1} random variable with mean
µi1, and Y t

i is an independent {0, 1} random variable with mean pmi . Thus, we have E(Ami ) =
nmi µi1. Thus, by a standard multiplicative Chernoff bound, we have,

Pr

(∣∣∣∣Aminmi − µi1
∣∣∣∣ ≥

√
3 ln 4/β

nmi

)
= Pr

(
|Ami − E(Ami )| ≥

√
3E(Ami ) ln 4/β

µi1

)
≤ β/2

To bound Bm
i , consider the sequence of random variables X1, . . . , XNm

, where Xt := (Y t
i −

pmi )cti for all t. Then {Xt}Tmt=1 is a martingale difference sequence w.r.t. the filtration {F t}Nm

t=1

generated by r.v. {Y s
j }j∈[K],s≤t, {Zsij}i,j∈[K]×[K],s≤t+1. This is because the corruption cti becomes

a deterministic value conditioned on F t−1, due to which

E(Xt|F t−1) = E(Y t
i − pmi |F t−1)cti = 0
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Next, we can bound the conditional variance

Σ =
∑
t∈Em

E[(Xt)2|F t−1] =
∑
t∈Em

|cti|E[(Y t
i − pmi )2|F t−1] ≤ pmi

∑
t∈Em

|cti| ≤ nmi

Observe that ∑
t∈Em

Xt = Bm
i − pmi

∑
t∈Em

cti

We have that

Pr

(
Bm
i

nmi
≥ Cmi1 +Dm

Nm
+

√
2 ln 4/β

nmi
+

√
2 ln 4/β

3nmi

)

≤ Pr

(
Bm
i

nmi
−
∑

t∈Tm c
t
i

Nm
≥

√
2 ln 4/β

nmi
+

√
2 ln 4/β

3nmi

)

≤ Pr

(∑
t∈Tm

Xt ≥
√

2nmi ln 4/β +

√
2 ln 4/β

3
and Σ ≤ nmi

)
≤ β/4

where the second inequality follows by observing that
∑

t∈Em c
m
i ≤ Cmi1 + Dm, and the final

inequality follows by Bernstein’s inequality for Martingales. Finally, since we have that nmi ≥ λ ≥
2304 ln 4/β, we have that

Pr

(
Bm
i

nmi
≥ Cmi1 +Dm

Nm
+

√
3 ln 4/β

nmi

)
≤ β/4

We can similarly bound −Bm
i /n

m
i , giving a final absolute deviation bound on Bm

i as

Pr

(∣∣∣∣Bm
i

nmi

∣∣∣∣ ≥ Cmi1 +Dm

Nm
+

√
3 ln 4/β

nmi

)
≤ β/2

Combining the above guarantees through a union bound, we have that

Pr

(∣∣∣∣ rminmi − µi1
∣∣∣∣ ≥ Cmi1 +Dm

Nm
+

√
12 ln 4/β

nmi

)
≤ β

Following the observation that nmi = λ/(∆m−1
i )2, and λ ≥ 2304 ln 4/β, we have that the proba-

bility of the said event (conditioned on all random variables prior to epoch m) is at most β. Finally,
observe that this bound holds for any realization of these random variables we conditioned on, due
to which it also holds unconditionally, hence proving our claim.
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B.4. Proof of Lemma 8

Lemma 8 For any fixed epoch m, we have for any β > 4e−λ/2304,

Pr
((

1

2
+
Dm

Nm
∆min

)
− rm1
nm1
≥ Cm1
Nm

+
∆m−1

1

8

)
≤ β

Proof For any fixed epoch m, we first begin by conditioning on all the random variables prior to
epoch m, due to which the quantities Nm, Tm−1, and nmi for all arms i ∈ [K] become constants.
For epoch m, let Em = [Tm−1 + 1, . . . , Tm] be the Nm time steps within that epoch. For every
time step t ∈ Em, let Y t

1 be an indicator for the left arm ut = 1. Furthermore, let Zt1j be the
stochastic outcome of the comparison 1(1 � j), and let ct1j = Z̃t1j − Zt1j be the corruption due to
the adversary flipping the outcome between the pair (1, j) in round t. Then we have

rm1 =
∑
t∈Em

Y t
1

∑
j∈[K]

εtj(Z
t
1j + ct1j)

We define
Am1 :=

∑
t∈Em

Y t
1

∑
j∈[K]

εtjZ
t
1j and Bm

1 :=
∑
t∈Em

Y t
1

∑
j∈[K]

εtjc
t
1j

To bound the deviation inAm1 , consider the sequence of random variablesX1, . . . , XNm
, where

Xt =
∑

j∈[K] ε
t
j(p

m
1 µ1j − Y t

1Z
t
1j) for any t ∈ Em. Then {Xt}Tmt=1 is a martingale with respect to

the filtration {F t}Tmt=1 generated by the random variables {Y s
j }j∈[K],s≤t, and {Zsij}i,j∈[K]×[K],s≤t+1.

This is because conditioned on F t−1, Y t
1 is an independent random variable with mean pm1 , and all

the εtj become deterministic quantities. Thus,

E[Xt|F t−1] =
∑
j∈[K]

εtjE[pm1 µ1j − Y t
1Z

t
1j ] = 0

To bound the conditional variance, observe that conditioned on F t−1, all the εtj become determin-
istic quantities. Furthermore, for a fixed t exactly one of εtj take value 1, and the rest take value
0

Σ =
∑
t∈Em

E[(Xt)2|F t−1] =
∑
t∈Em

∑
j∈[K]

εtjE[(pm1 µ1j − Y t
1Z

t
1j)

2|F t−1] ≤ pm1
∑
t∈Em

∑
j∈[K]

εtj ≤ nm1

Observe that

∑
t∈Em

Xt = pm1
∑
t∈Em

∑
j∈[K]

εtjµ1j −Am1 = pm1

Nm

2
+
∑
t∈Em

∑
j 6=1

εtj∆j

−Am1
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Thus, we have that

Pr

1

2
+

1

Nm

∑
t∈Em

∑
j 6=1

εtj∆min

− Am1
nm1
≥

√
2 ln 4/β

nm1
+

√
2 ln 4/β

3nm1


≤ Pr

1

2
+

1

Nm

∑
t∈Em

∑
j 6=1

εtj∆j

− Am1
nm1
≥

√
2 ln 4/β

nm1
+

√
2 ln 4/β

3nm1


≤ Pr

(∑
t∈Em

Xt ≥
√

2nm1 ln 4/β +

√
2 ln 4/β

3
and Σ ≤ nm1

)
≤ β/4

where the first inequality follows by observing that ∆min ≤ ∆j for all j, and the final inequality fol-
lows by Bernstein’s inequality for Martingales. Following the observation that

∑
t∈Tm

∑
j 6=1 ε

t
j =

Dm, and that nm1 ≥ λ ≥ 2304 ln 4/β, we have that

Pr

((
1

2
− Dm

Nm
∆min

)
− Am1
nm1
≥

√
3 ln 4/β

nm1

)
≤ β/4

To bound the deviation inBm
1 , consider the sequence of random variablesX1, . . . , XNm

, where
Xt =

∑
j∈K ε

t
jc
t
1j(Y

t
1 − pm1 ) for any t ∈ Em. Then {Xt}Tmt=1 is a martingale with respect to the

filtration {F t}Tmt=1 generated by the random variables {Y s
j }j∈[K],s≤t, and {Zsij}i,j∈[K]×[K],s≤t+1.

This is because conditioned on F t−1, Y t
1 is an independent random variable with mean pm1 , and ct1j ,

εtj all become deterministic quantities. Thus,

E[Xt|F t−1] =
∑
j∈[K]

εtjc
t
1jE[Y t

1 − pm1 ] = 0

To bound the conditional variance, observe that conditioned on F t−1, all the ct1j , ε
t
j become deter-

ministic quantities. Furthermore, exactly one of them takes value 1, and the rest take value 0

Σ =
∑
t∈Em

E[(Xt)2|F t−1] =
∑
t∈Em

∑
j∈[K]

εtj
∣∣ct1j∣∣E[(Y t

1Z
t
1j−pm1 µ1j)

2|F t−1] ≤ pm1
∑
t∈Em

∑
j∈[K]

εtj
∣∣ct1j∣∣ ≤ nm1

Observe that ∑
t∈Em

Xt = Bm
1 − pmi

∑
t∈Em

∑
j∈[K]

εtjc
t
1j
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We have that

Pr

(
Bm

1

nm1
≥ Cm1
Nm

+

√
2 ln 4/β

nm1
+

√
2 ln 4/β

3nm1

)

≤ Pr

Bm
1

nm1
− 1

Nm

∑
t∈Em

∑
j∈[K]

εtjc
t
1j ≥

√
2 ln 4/β

nm1
+

√
2 ln 4/β

3nm1


= Pr

(∑
t∈Em

Xt ≥
√

2nm1 ln 4/β +

√
2 ln 4/β

3

)

≤ Pr

(∑
t∈Em

Xt ≥
√

2nm1 ln 4/β +

√
2 ln 4/β

3
and Σ ≤ nm1

)
≤ β/4

Where the final inequality follows by Bernstein’s inequality for Martingales. Finally, since we have
that nmi ≥ λ ≥ 2304 ln 4/β, we have that

Pr

(
Bm

1

nm1
≥ Cm1
Nm

+

√
3 ln 4/β

nm1

)
≤ β/4

We can similarly bound −Bm
1 /n

m
1 , giving a final absolute deviation bound on B as

Pr

(∣∣∣∣Bm
1

nm1

∣∣∣∣ ≥ Cm1
Nm

+

√
3 ln 4/β

nm1

)
≤ β/2

Combining the above two guarantees through a union bound, we have that

Pr

((
1

2
+
Dm

Nm
∆min

)
− rm1
nm1
≥ Cm1
Nm

+

√
12 ln 4/β

nm1

)
≤ β

Following the observation that nm1 = λ/(∆m−1
1 )2, and λ ≥ 2304 ln 4/β, we have that the proba-

bility of the said event (conditioned on all random variables prior to epoch m) is at most β. Finally,
observe that this bound holds for any realization of these random variables we conditioned on, due
to which it also holds unconditionally, hence proving our claim.

B.5. Proof of Lemma 9

Lemma 9 We have for any fixed arm i, and β > 0,

Pr

(
∃s ≤ T :

s∑
t=1

εti1(2Z̃ti1 − 1) > 0 and
s∑
t=1

εti1 >
4Ci1
∆i

+
2

∆2
i

ln
2

β∆2
i1

)
≤ β
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Proof For ease of exposition, for any fixed arm i, every time step t, we define new random variables
ỹti1 = 2Z̃ti1 − 1, yti1 = 2Zti1 − 1. We start by observing that

Pr

(
∃s ≤ T :

s∑
t=1

εti1ỹ
t
i1 > 0 and

s∑
t=1

εti1 >
4Ci1
∆i

+
2

∆2
i

ln
2

β∆2
i

)

= Pr

(
∃s ≤ T :

s∑
t=1

εti1(yti1 + cti1) > 0 and
s∑
t=1

εti1 >
4Ci1
∆i

+
2

∆2
i

ln
2

β∆2
i

)

≤ Pr

(
∃s ≤ T :

s∑
t=1

εti1y
t
i1 + 2Ci1 > 0 and

s∑
t=1

εti1 >
4Ci1
∆i

+
2

∆2
i

ln
2

β∆2
i

)

≤ Pr

(
∃s ≤ T :

s∑
t=1

εti1y
t
i1 +

1

2

s∑
t=1

εti1∆i > 0 and
s∑
t=1

εti1 >
4Ci1
∆i

+
2

∆2
i

ln
2

β∆2
i

)

≤ Pr

(
∃s ≤ T :

s∑
t=1

εti1y
t
i1 +

1

2

s∑
t=1

εti1∆i > 0 and
s∑
t=1

εti1 >
2

∆2
i

ln
2

β∆2
i

)
where the penultimate inequality follows from the fact that

∑s
t=1 ε

t
i1 ≥ 4Ci1/∆i. Now consider

the sequence of random variables X1, . . . XT , where Xt = εti1(yti1 + 2∆i). Then {Xt}Tt=1 is a
martingale with respect to the filtration {F t}Tt=1 generated by the variables {εri1}r≤t+1. This is
because conditioned on F t−1, εti1 becomes a deterministic quantity, giving us

E[Xt|F t−1] = εti1E[yti1 + 2∆i] = 0

To bound the partial conditional variance, we have

Σs =
s∑
t=1

E[(Xt)2|F t−1] = 4
s∑
t=1

εti1

(
1

4
−∆2

i

)
≤

s∑
t=1

εti1

Now we have that

Pr

(
∃s ≤ T :

s∑
t=1

εti1y
t
i1 +

1

2

s∑
t=1

εti1∆i > 0 and
s∑
t=1
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2

∆2
i

ln
2

β∆2
i

)

= Pr

(
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t=1
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s∑
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1

2

s∑
t=1

εti1∆i and
s∑
t=1

εti1 >
2

∆2
i

ln
2

β∆2
i

)
Taking a union bound over all values of

∑s
t=1 ε

t
i1 gives us

Pr

(
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s∑
t=1

Xt > 2

s∑
t=1

εti1∆i −
1

2

s∑
t=1
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s∑
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2
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i
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2

β∆2
i

)

=
T∑

z= 2

∆2
i

ln 2

β∆2
i

+1

Pr

(
∃s ≤ T :

s∑
t=1

Xt >
3

2
z∆i and

s∑
t=1

εti1 = z

)

≤
T∑

z= 2

∆2
i

ln 2

β∆2
i

+1

Pr

(
∃s ≤ T :

s∑
t=1

Xt >
3

2
z∆i and Σs ≤ z

)
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We can bound the each individual term inside the summation using Freedman’s inequality, giving
us for any z,

Pr

(
∃s ≤ T :

s∑
t=1

Xt >
3

2
z∆i and Σ ≤ z

)
≤ exp

(
−
(

3

2

)2 z2∆2
i /2

(3/2)(z∆i) + z

)
≤ exp

(
−z∆2

i /2
)

which subsequently gives us

Pr

(
∃s ≤ T :

s∑
t=1

εti1ỹ
t
i1 > 0 and

s∑
t=1

εti1 >
4Ci1
∆i

+
2

∆2
i

ln
2

β∆2
i

)
≤

T∑
z= 2

∆2
i

ln 2

β∆2
i

+1

e−z∆
2
i /2

≤ exp

(
− ln

2

β∆2
i

) T∑
x=1

e−x∆2
i /2

≤ β

where the final inequality follows from the fact that
∑T

x=1 e
−x∆2

i /2 ≤
∑∞

x=1 e
−x∆2

i /2 ≤ 1/(e∆2
i /2−

1) ≤ 2/∆2
i .

Appendix C. Limitations of Existing Dueling Bandit Algorithms

In this section, we shall demonstrate the limitations of the four canonical algorithms for stochastic
dueling bandits in the presence of adversarial corruptions. In particular, we show an explicit con-
struction of an adversary that can force a regret of Ω(T ) with just O(log T ) corruption for each of
the algorithms discussed below. For all four algorithms, we consider an instance of dueling bandits
with just two arms 1, 2, where arm 1 beats arm 2 with probability Pr(1 � 2) = 1/2 + ∆ for any
choice of constant ∆ > 0. We begin by constructing a common randomized adversary which will
be used to foil all of the existing algorithms.

The adversary. Consider a randomized adversary that uses the following corruption mech-
anism: Suppose the adversary chooses to corrupt the outcomes at time step t ∈ [T ], then given
an outcome Zt12, if Zt12 = 1, i.e. arm 1 beat arm 2, then the adversary tosses a coin with bias
4∆/(1 + 2∆), and if this coin turns up heads, then the adversary reverses the outcome to make
Z̃t12 = 0. If it turns up tails, or if Zt12 = 0, then the adversary leaves Zt12 untouched. The exact
time steps when the adversary chooses to apply this corruption will vary depending on the algorithm
under consideration. Observe that across all time steps the adversary chooses to corrupt, the distri-
bution of Z̃12 is identical to the case where arm 2 beats arm 1 with probability Pr(2 � 1) = 1/2+∆.

C.1. The IF algorithm

The IF algorithm of Yue et al. (2009) is a tournament style arm-elimination algorithm for dueling
bandits under the STI, SST assumption that uses an explore-then-exploit type framework. It begins
by selecting a random “anchor” arm b̂ and playing all other arms against it in a round-robin fashion.
If it is observed that some arm i loses to the anchor arm b̂ with confidence, then arm i is removed
from play. If it is observed that some arm i beats the anchor arm b̂ with confidence, then the anchor
arm, and all arms that have empirically lost to the anchor arm are removed from play, and this arm

30



STOCHASTIC DUELING BANDITS WITH ADVERSARIAL CORRUPTION

i becomes the new anchor arm b̂. One of the key lemmas (Lemma 1) of Yue et al. (2009) states that
the total number of comparisons between any pair of arms i, j will, with high probability, be at most
O((logKT )/∆2

ij) until the inferior arm gets eliminated. Thus, our adversary simply corrupts the
comparisons between arms 1, 2 for the first O((log T )/∆2) time steps. With high probability, arm
1 will be removed from play within these time steps since it appears inferior to arm 2 by a factor
of ∆, following which the algorithm will incur a constant regret for the remaining time horizon
without any additional corruption by the adversary. Thus, the total amount of realized corruption is
O((log T )/∆) for which the algorithm suffers a total regret of Ω(∆T ).

C.2. The BTM algorithm

The BTM algorithm of Yue and Joachims (2011) is an arm-elimination algorithm for dueling bandits
under the STI, relaxed SST assumption. At all times, it maintains a set of active arms, and in each
round, it selects a “left arm” to be the one that has be played the least (as the left arm) amongst
all arms in the active set, and plays it against a uniformly at random arm from the active set. For
every arm in the active set, the algorithm records the empirical probability of that arm winning
when it was selected as the left arm, and discards the worst performing arm from the set of active
arms when the lower confidence of the best performing arm is larger than the upper confidence
of the worst performing arm. The key lemma (Lemma 3) of Yue and Joachims (2011) states that
with high probability, the number of comparisons each arm in the active set accumulates before the
worst arm bk in the active set gets discarded is bounded by O((logKT )/∆2

1k). Thus, as in the case
of the IF algorithm, our adversary simply corrupts the comparisons between arms 1, 2 for the first
O(log T/∆2) time steps. With high probability, arm 1 will be removed from play within these time
steps since it appears inferior to arm 1 by a factor of ∆, following which the algorithm will incur
constant regret for the remaining time horizon without need for any additional corruption by the
adversary. Thus, the total amount of realized corruption is O((log T )/∆) for which the algorithm
suffers a total regret of Ω(∆T ).

C.3. The RUCB algorithm

The RUCB algorithm of Zoghi et al. (2014) is an algorithm for dueling bandits under the general
Condorcet winner assumption. Unlike BTM, and IF, it is not an arm elimination algorithm, and at a
high level, can be thought of as the dueling bandits counterpart of the UCB algorithm for classical
bandits. It essentially maintains a matrix W of wins where Wij is the number of times arm i beat
arm j, using which it computes the relative upper confidence bounds uij on Pr(i � j) for every pair
i, j. At any time step, it chooses to play a “left arm” that has the highest upper confidence bound
amongst all arms i that have a relative upper confidence bound uij > 1/2 for all j 6= i. The right arm
is then chosen to be the arm j with the highest relative upper confidence bound uji, where uii = 1/2.
The key proposition (Proposition 2) of Zoghi et al. (2014) states that with high probability, the total
number of times any pair of arms i, j will be played is bounded byO((logKT )/min{∆2

i ,∆
2
j}). In

our case, the adversary will corrupt the outcomes only in time steps where the BTM algorithm plays
the pair 1, 2, which can be determined at the start of any time step t ∈ [T ] by conditioning on the
past outcomes of comparisons between arms 1, 2. Thus, in the presence of adversarial corruption,
the effective distribution looks identical to one where Pr(1 � 2) = 1/2 − ∆, due to which with
high probability, the algorithm will incur a cumulative regret of Ω(∆T ). Furthermore, with high
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probability, arms 1, 2 will only be played O((log T )/∆2) times across the entire time horizon, due
to which the realized amount of adversarial corruption is just O((log T )/∆).

C.4. The RMED algorithm

The RMED algorithm of Komiyama et al. (2015a) is an instance optimal algorithm for dueling
bandits under the general Condorcet winner assumption. Like the RUCB algorithm, it is not an arm
elimination algorithm, and the choice of arms it chooses to play in any time step is deterministic
upon conditioning on the past outcomes between all pairs of arms. At a high level, at every time
step, it maintains a set of arms that are likely to be the Condorcet winner arm, and cycles through
them in a fixed order, playing each of these candidate arms against the arm that is most likely to
beat it (the exact choice of the opponent arm depends on the specific variant of the RMED algorithm
under consideration i.e. RMED1, RMED2, or RMED2FH, but the key fact that we exploit in each
of these variants is that this choice is deterministic for every candidate arm being played upon
conditioning on the past outcomes of comparisons between all pairs of arms). The key lemmas
(Lemma 5,6) of Komiyama et al. (2015a) imply that with high probability, the total number of times
any suboptimal arm i will be played against the Condorcet winner arm is bounded by O((K1+ε +
log T )/d(µi1, 1/2)) for any constant ε > 0, where d(µi1, 1/2) is the KL divergence between µi1
and 1/2. This upper bound can be further simplified to O((K1+ε + log T )/∆2

i ) using Pinsker’s
inequality. In our example, the adversary will corrupt the outcomes only in time steps where the
RMED algorithm plays the pair 1, 2, which can be determined at the start of any time step t ∈ [T ] by
conditioning on past outcomes between arms 1, 2. Using an identical argument as in the case of the
RUCB algorithm, we have that the RMED algorithm (all variants) will incur a cumulative regret of
Ω(∆T ), and furthermore, the realized amount of adversarial corruption will be just O((log T )/∆).
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