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Abstract

Principal component analysis (PCA) is a classical and ubiquitous method for reducing data dimension-
ality, but it is suboptimal for heterogeneous data that are increasingly common in modern applications.
PCA treats all samples uniformly so degrades when the noise is heteroscedastic across samples, as occurs,
e.g., when samples come from sources of heterogeneous quality. This paper develops a probabilistic PCA
variant that estimates and accounts for this heterogeneity by incorporating it in the statistical model.
Unlike in the homoscedastic setting, the resulting nonconvex optimization problem is not seemingly
solved by singular value decomposition. This paper develops a heteroscedastic probabilistic PCA tech-
nique (HePPCAT) that uses efficient alternating maximization algorithms to jointly estimate both the
underlying factors and the unknown noise variances. Simulation experiments illustrate the comparative
speed of the algorithms, the benefit of accounting for heteroscedasticity, and the seemingly favorable op-
timization landscape of this problem. Real data experiments on environmental air quality data show that
HePPCAT can give a better PCA estimate than techniques that do not account for heteroscedasticity.

1 Introduction

Principal component analysis (PCA) is a workhorse method for unsupervised dimensionality reduction. It
plays a foundational role in the analysis of modern high-dimensional data, and continues to be success-
fully applied across all of engineering and science. However, PCA does not account for samples having
heterogeneous quality and instead treats them uniformly. Consequently, the performance of PCA can de-
grade dramatically under heteroscedastic noise; its ability to discover underlying components is sometimes
essentially determined by the noisiest samples alone [1].

At the same time, heterogeneous quality among samples is common in practice, arising easily when
samples are obtained under varying conditions. For example, in the field of air quality monitoring, there is a
wide array of sensors available for different entities to deploy: governments use very high-quality sensors that
require regular maintenance but are very accurate, and individuals purchase off-the-shelf sensor devices that
can be deployed and left alone but have much less reliable output. These devices are measuring the same
phenomenon through very different noise characteristics. In the field of analytical chemistry, [2] considers
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spectrophotometric data that are averages over increasingly long windows of time. This heterogeneity arises
naturally when measuring signals that undergo both periods of rapid change (requiring short windows)
as well as periods of relatively stable behavior (allowing for longer windows). The shorter windows cannot
denoise by averaging as much, resulting in heteroscedasticity. Another source of heteroscedasticity is changing
ambient conditions; e.g., [3] considers astronomical data with atmospheric noise that varies across nights.
As large datasets are increasingly formed by combining samples from diverse sources, one can expect that
heteroscedastic noise will be the norm. Modern data analysis needs PCA methods that are robust to
heterogeneity and make effective use of all the available data.

This paper develops a heteroscedastic probabilistic PCA technique (HePPCAT) that attains robustness
to heteroscedastic noise by incorporating it in the statistical likelihood. The method jointly estimates both
the latent factors as well as the unknown sample-wise noise variances. Additionally, if a block of samples are
expected to have equal noise variance (e.g., because they are from the same source or sensor), the proposed
approach seamlessly incorporates this knowledge and can yield significantly improved estimates. A further
extension to the case where some variances are known and some are unknown is straightforward. Unlike the
homoscedastic setting, the resulting optimization problem seems not to have a direct SVD solution. Because
it is nonconvex and nontrivial, we develop and compare several alternating ascent algorithms.

HePPCAT is an extension of our previous work [4] that considered data with known heterogenous noise
variances and focused on estimating the latent factors alone. In this paper, the noise variances are unknown
and jointly estimated with the latent factors. This extension is important in practice because heterogeneous
data often have unknown noise variances. It is also nontrivial to do efficiently. As discussed in Section 4,
the Expectation Maximization (EM) approach used for the latent factors in [4] does not readily yield an
efficient approach in this joint estimation setting. Thus, we develop and study efficient block coordinate
ascent algorithms that alternate between updating estimates of the latent factors and estimates of the noise
variances.

Section 2 describes the model and the resulting optimization problem for HePPCAT. Section 3 discusses
related works. Section 4 derives a natural EM approach, and explains why the resulting M-step is chal-
lenging. This difficulty motivates alternating approaches that are derived in Section 5 and compared in
Sections 6 and 7. Section 8 carries out several experiments illustrating the favorable statistical performance
of HePPCAT. Section 9 illustrates HePPCAT on real data. Section 10 investigates the seemingly favorable
landscape of the nonconvex objective, illustrating that the proposed algorithms appear to converge from even
random initializations. A Julia package implementing HePPCAT and code to reproduce all experiments will
be available online at: https://gitlab.com/heppcat-group/heteroscedastic-probabilistic-pca.

2 Heteroscedastic Probabilistic PCA

As in [4], we model n1 + · · ·+ nL = n data samples in Rd from L noise level groups as:

y`,i = Fz`,i + ε`,i, i ∈ {1, . . . , n`}, ` ∈ {1, . . . , L}, (1)

where F ∈ Rd×k is a deterministic factor matrix to estimate, z`,i ∼ N (0k, Ik) are independent and identically
distributed (i.i.d.) coefficients, ε`,i ∼ N (0d, v`Id) are i.i.d. noise vectors, and v1, . . . , vL are deterministic
noise variances to estimate. Equivalently, the samples are independent with distributions

y`,i ∼ N (0d,FF′ + v`Id),

and joint log-likelihood, dropping the ln(2π)−nd/2 constant:

L(F,v) ,
1

2

L∑

`=1

[
n` ln det(FF′ + v`Id)

−1 − tr
{
Y′`(FF′ + v`Id)

−1Y`

}]
, (2)

where Y` , [y`,1, . . . ,y`,n`
] ∈ Rd×n` for ` ∈ {1, . . . , L} are the sample matrices associated with each of the

L groups. Note that F′ denotes the matrix transpose for real-valued F; the methods generalize easily to
complex matrices using the Hermitian transpose.
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Figure 1: Illustrative heteroscedastic examples with k = 1 factor and L = 2 noise variances v1 = 0.01 and
v2 = 1. HePPCAT estimates variances to account for heteroscedasticity, recovering the true latent subspace
much better than PCA.

Given the sample matrices Y1, . . . ,YL and the rank k, HePPCAT estimates the latent factors F ∈ Rd×k
and the noise variances v , (v1, . . . , vL) by maximizing the statistical log-likelihood (2). Fig. 1 shows
an illustrative example with L = 2 noise variances v1 = 0.01 and v2 = 1. When the noise is assumed
homoscedastic, i.e., L = 1, this nonconvex optimization problem can be solved via eigendecomposition of
the sample covariance matrix [5, Section 3.2], but the same is not true in general.

The groupings give a natural way to incorporate structural assumptions by grouping together samples
that are expected to have equal noise variance, e.g., samples from the same source or sensor. They are given
and not estimated. In the absence of such knowledge, each sample can be given its own group by taking
n1 = · · · = nL = 1 and L = n. HePPCAT estimates a separate noise variance for each sample in that case,
and we study some of the resulting trade-offs in Section 8.4.

Representing the factors by the rank-k eigendecomposition FF′ = U diag(λ)U′ where U = [u1, . . . ,uk] ∈
Rd×k and λ ∈ Rk yields an alternative form for the likelihood:

L(U,λ,v) =
1

2

L∑

`=1

[
− n`

{ k∑

j=1

ln(λj + v`) + (d− k) ln v`

}
− ‖Y`‖2F

v`
+ tr

{
Y′`UW(λ, v`)U

′Y`

}]
, (3)

with weighting matrices

W(λ, v) , diag

(
λ1/v

λ1 + v
, . . . ,

λk/v

λk + v

)
. (4)

Maximizing (3) with respect to U resembles a weighted PCA, but, unlike weighted PCA, it is not readily
solved by eigendecomposition in general since the weight matrices W(λ, v`) can vary with `. Jointly opti-
mizing further complicates the problem. Following a review of related work, the remainder of this paper
investigates various alternating algorithms for this joint maximization.

3 Related works

3.1 Factor analysis and (homoscedastic) probabilistic PCA

In conventional factor analysis, samples in d dimensions are modeled as follows:1

yi = Fzi + εi, i ∈ {1, . . . , n},
1While more general versions exist, for simplicity, we omit the mean and focus here on the conventional setting with Gaussian

coefficients and additive Gaussian noise that is most closely related.
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where F ∈ Rd×k contains the k factors, zi
iid∼ N (0k, Ik) are random coefficients, and εi

iid∼ N (0d,Ψ) are
random noise with diagonal covariance Ψ. The quantities F, zi, εi and Ψ are all unknown. Marginalizing out
zi and εi yields a model where only F and Ψ are to be estimated by maximizing the marginal likelihood. In
general, the column space of a maximum likelihood estimate for F will not coincide with the corresponding
principal subspace of the data. Indeed, factor analysis and PCA are somewhat distinct approaches to
dimensionality reduction; see, e.g., [6, Chapter 7].

However, maximum likelihood estimation does produce the principal subspace if the noise covariance is
assumed to be isotropic, i.e., Ψ = v Id for some noise variance v. This model is the setting of probabilistic
PCA [5]. In this case, the log-likelihood is

LPPCA(F, v) ,
1

2

[
n ln det(FF′ + vI)−1 − tr

{
Y′(FF′ + vI)−1Y

}]
,

and is maximized by F = Û diag1/2(λ̂1− λ̄, . . . , λ̂k− λ̄) and v = λ̄, where the columns of Û ∈ Rd×k are prin-

cipal eigenvectors of the sample covariance matrix (y1y
′
1 + · · ·+ yny′n)/n, λ̂1, . . . , λ̂k are the corresponding

eigenvalues, and λ̄ is the average of the remaining d − k eigenvalues [7, 8, 5]. Moreover, [5, 9] characterize
stationary points as well as the global maxima of the likelihood objective function. They also derive an effi-
cient expectation maximization (EM) algorithm related to one derived for factor analysis [10], and illustrate
how the approach naturally generalizes to similar models.

Here we develop a new probabilistic PCA method; unlike previous settings, the samples are no longer
identically distributed. Noise variances are now heterogeneous, i.e., the noise is heteroscedastic across sam-
ples. The resulting likelihood is no longer maximized by scaled eigenvectors of the sample covariance, so
new algorithms are needed. We developed an EM algorithm for estimating the factors given known noise
variances in [4]; this paper extends that work by jointly estimating both the factors and the unknown noise
variances.

3.2 Accounting for heteroscedastic noise via weighted PCA

A natural way to account for heteroscedastic noise is to use a weighted PCA [6, Section 14.2.1] that replaces
the sample covariance with a weighted sample covariance. Namely, given weights w1, . . . , wL, weighted
PCA returns the leading eigenvectors û1, . . . , ûk of

∑L
`=1 w`Y`Y

′
`. These eigenvectors solve the weighted

optimization problem

Û , [û1, . . . , ûk] ∈ argmax
U∈Rd×k:U′U=Ik

L∑

`=1

w` ‖U′Y`‖2F .

A typical choice for the weights is inverse noise variance, i.e., w` = 1/v`, so samples that are twice as noisy
get half as much weight. Doing so effectively whitens the noise, is a type of maximum likelihood weighting
[11], and can significantly improve performance [12]. However, as analyzed in [12], it can be better to more
aggressively downweight noisier samples, especially for low signal-to-noise ratio (SNR) regimes. In particular,
optimal weights for recovery of any individual component is between inverse noise variance and square inverse
noise variance, which more aggressively downweights noisier samples. Weighted PCA with general weights
does not have an obvious maximum likelihood formulation.

In contrast, this paper considers the maximum likelihood estimation of underlying factors and noise
variances jointly. The resulting optimization problem does not appear to reduce to PCA with a weighted
sample covariance, yielding a distinct approach to accounting for heteroscedasticity.

3.3 Heteroscedasticity across features

This paper focuses on noise that is heteroscedastic across samples, i.e., the samples are of varying quality.
Noise can also be heteroscedastic across features. Indeed, much of the general literature on heteroscedasticity
focuses on this manifestation. In the context of PCA, recent works have begun to study how to account
for this form of heteroscedasticity. Notably, this heteroscedasticity induces a bias along the diagonal of the
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covariance matrix, causing conventional PCA to produce inaccurate components. To correct for this bias,
[13] describes the HeteroPCA method that treats the diagonal entries as missing and iteratively imputes the
values. Alternatively, [14, 15] combine whitening of the data with spectral shrinkages tailored to optimize,
e.g., matrix denoising.

3.4 Accounting for heterogeneous clutter in RADAR

In the context of estimating low-rank clutter, [16, 17, 18] model n independent samples y1, . . . ,yn ∈ Cd as

yi = εi + ci, i ∈ {1, . . . , n},

where εi
iid∼ CN (0d, Id) is complex white Gaussian noise, and the clutter ci ∼ CN (0d, τiΣ) share a common

rank-k covariance Σ that is scaled by heterogeneous power factors τi. Equivalently, yi ∼ CN (0d, τiΣ + Id)
for i ∈ {1, . . . , n}. The goal is to estimate τ1, . . . , τn and Σ.

The low-rank covariance term τiΣ is heterogeneous, while the noise is homogeneous. In contrast, the low-
rank factor covariance in this paper is common among all the samples, and instead the noise is heterogeneous.
The two models are related through an unknown heterogeneous rescaling because

1√
τi

yi ∼ CN{0d,Σ + (1/τi)Id}, i ∈ {1, . . . , n},

has a common low-rank factor covariance Σ and heteroscedastic noise with variances 1/τ1, . . . , 1/τn. As a
result, the two problems share some common challenges and approaches. Notably, the EM factor update
(Section 5.1) is essentially the same (up to rescaling) as [18, Section III-B].

Nevertheless, the problems remain distinct due to the difference in how the unknown heterogeneity
manifests. For example, heterogeneous power factors are only identifiable up to scale, since any change in
scale can be absorbed by Σ. The heterogeneous noise model we study does not have this scale ambiguity.
Moreover, the likelihood for heterogeneous noise as a function of noise variances has a similar form as that
for heterogeneous power factors, but with significant differences. Notably, decreasing a noise variance to
zero sends the log-likelihood to −∞ with unbounded curvature in the common case where the data are
not perfectly fit. As a result, approaches well-designed for updating power factor estimates, such as the
minorizer [18, Proposition 1], cannot always be directly applied to update the noise variance estimates.
Different algorithms are needed.

In the context of heterogeneous power factors, [19] derives bounds on estimation performance and [20]
places priors on the clutter subspace. These are also interesting directions for future work on heterogeneous
noise.

3.5 Matrix Factorization

The model (1) that this paper focuses on can also be interpreted as a matrix factorization formulation that
has Gaussian coefficients and additive noise. Within this framework there exist generalizations where one
assumes other coefficient and noise distributions or even treats the factors or noise variances as random with
a prior distribution. That is, one may generalize (1) to allow other distributions on z`,i, ε`,i and/or put a
distribution on F or v1, . . . , vL. There is a great deal of literature for factor analysis in a variety of settings,
such as non-negative matrix factorization [21], Poisson matrix estimation [22], robust PCA [23], logistic
PCA [24], and others [25, 26, 27, 28, 29]. Extending these models for heterogeneous noise is an interesting
direction for future work.

In addition to this modeling work, great progress has been made in recent years to better understand
why standard optimization algorithms perform well, even seeming to find the global minima/maxima, when
applied to nonconvex matrix factorization problems [30, 31, 32, 33, 34, 35, 36, 37]. Three recent surveys
summarize much of this progress [38, 39, 40] and thoroughly treat this related work. An overview of minorize
maximize (MM) techniques and how they are applied to related problems can be found in [41]. Recent
guarantees applied specifically to EM are found in [38]. None of the existing results apply directly to

5



our setting for two reasons: first our model has noise that is not identically distributed across columns,
and second we seek to optimize over both the factor matrix F and the additive noise variances v in our
maximum likelihood formulation. If we consider only the problem of optimizing over the factor matrix, one
could potentially extend results from [5, 32, 35] to characterize the stationary points of our objective.

Numerous works that involve matrix factorization use a spectral initialization, and several show that
this initialization is sufficiently close to a good optima [30, 42]. We also use spectral initialization in our
nonconvex optimization methods.

4 Expectation Maximization

A natural way to maximize the log-likelihood (2) is through an expectation maximization (EM) approach
that produces a sequence of iterates Ft and vt with non-decreasing log-likelihood. At each iteration, an
EM method sets up a minorizer based on conditional expectation (E-step) that it then maximizes (M-step).
This section derives an EM minorizer for the HePPCAT log-likelihood (2) at the iterates Ft and vt, where
t denotes iteration index. The resulting minorizer turns out to be challenging to maximize efficiently, so
instead Section 5 proposes alternating algorithms, where some of the updates are based on the EM minorizer
derived here.

Taking as complete data the samples Y1, . . . ,YL and (unknown) coefficients Z1, . . . ,ZL, where Z` ,
[z`,1, . . . , z`,n`

] ∈ Rk×n` for ` ∈ {1, . . . , L}, yields the following complete data log-likelihood

Lc(F,v) , ln p(Y,Z; F,v) = ln p(Y|Z; F,v) + ln p(Z; F,v)

=

L∑

`=1

(
− dn`

2
ln v` −

‖Y` − FZ`‖2F
2v`

− ‖Z`‖
2
F

2

)
, (5)

where (5) drops the constants ln(2π)−nd/2 and ln(2π)−nk/2.
For the E-step, take the expectation of (5) with respect to the conditionally independent distributions

(from Bayes’ rule and the matrix inversion lemma):

z`,i|Y,Ft,vt
ind∼ N (Mt,`F

′
ty`,i, vt,`Mt,`), (6)

where Mt,` , (F′tFt + vt,`Ik)−1, yielding minorizer

L(F,v; Ft,vt) ,
L∑

`=1

[
− dn`

2
ln v` −

‖Y`‖2F
2v`

+
1

v`
tr(Y′`FZt,`)−

1

2v`
tr{F′F(Zt,`Z

′
t,` + n`vt,`Mt,`)}

]
, (7)

where Zt,` , Mt,`F
′
tY` ∈ Rk×n` for ` ∈ {1, . . . , L}, and (7) drops terms that are constant with respect to F

and v.
The corresponding M-step involves jointly maximizing (7) with respect to both v and F, but doing so is

challenging because the interaction of the variables remains complicated. See Appendix A for more discussion.
However, optimization with respect to either (with the other fixed) is relatively easy, and Sections 5.1
and 5.2.2 use this minorizer to obtain efficient updates for the individual variables.

5 Alternating Algorithms

The challenge of jointly optimizing F and v using (2) or (7) motivates approaches that alternate between:
a) optimizing F for fixed v, and b) optimizing v for fixed F. Namely, we consider a block-coordinate ascent
of (2) with F and v as the two blocks of variables. These sub-problems are simpler but the sub-problem for
updating v using (2) or (3) is still nontrivial so this section considers several methods for updating v given
F. When either the F or v update involves the conditional expectation with respect to some complete data,
then such alternation is an instance of a space-alternating generalized EM (SAGE) algorithm [43].
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5.1 Optimizing F for fixed v (via Expectation Maximization)

Fixing v at vt, maximizing the minorizer L(F,vt; Ft,vt) in (7) with respect to F yields the EM step of [4]:

Ft+1 =

( L∑

`=1

Y`Z
′
t,`

vt,`

)( L∑

`=1

Zt,`Z
′
t,`

vt,`
+ n`Mt,`

)−1
, (8)

that we compute via the SVD Ft = UtΛ
1/2
t V′t:

Ft+1 =

( L∑

`=1

Y`Z̃
′
t,`

vt,`

)( L∑

`=1

Z̃t,`Z̃
′
t,`

vt,`
+ n`Dt,`

)−1
V′t, (9)

where Z̃t,` , Dt,`Λ
1/2
t U′tY` and Dt,` , (Λt + vt,`Ik)−1 is easily inverted because Λt and Dt,` are diagonal.

To show that this form is equivalent, note that Mt,` = VtDt,`V
′
t and Zt,` = VtZ̃t,`. See [4, Section 3] and

[18, Section III-B] for similar derivations.

5.2 Optimizing v for fixed F

Fixing F at Ft, maximization of (3) with respect to v separates into L univariate maximizations (over
v` ≥ 0) of:

L`(v`) , −
k∑

j=0

{
αj ln(γj + v`) +

βj
γj + v`

}
, (10)

where α0 , d− k, β0 , ‖(Id −UtU
′
t)Y`‖2F /n`, γ0 , 0,

j ≥ 1 : αj , 1, βj , ‖Y′`ut,j‖22/n`, γj , λt,j ,

and Ut = [ut,1, . . . ,ut,k] and λt = (λt,1, . . . , λt,k) are the eigenvectors and eigenvalues of FtF
′
t. Equation (10)

drops all terms from (3) that are constant with respect to v` as well as a factor of n`/2, and we define

L`(0) , L`(0+) =

{
+∞, if βt,` ,

∑
j∈J0

βj = 0,

−∞, otherwise,
(11)

where J0 , {j : γj = 0}. Note also that L`(+∞) = −∞ and ∀v`∈(0,∞) L`(v`) < ∞. Lacking an analytical
solution for the critical points of (10) when k > 1, we next describe several iterative methods for maximizing
L`(v`).

5.2.1 Global maximization via root-finding

If βt,` = 0, then (10) is maximized by v` = 0. Otherwise, L`(0+) = −∞ and global maxima occur only at
critical points. Differentiating (10) with respect to v` yields

L̇`(v`) ,
k∑

j=0

{
− αj
γj + v`

+
βj

(γj + v`)2

}
. (12)

An upper bound for nonnegative roots of (12) can be obtained from general root bounds for polynomials,
e.g., [44, 45]. We exploit the structure here to find a specialized bound. The k + 1 summands in (12) are,
respectively, positive to the left and negative to the right of βj/αj − γj . As a result,

L̇`(v`) > 0 for v` < vmin
` , min

j
(βj/αj − γj),

L̇`(v`) < 0 for v` > vmax
` , max

j
(βj/αj − γj),

7



so all nonnegative critical points occur in [vmin
` , vmax

` ]∩[0,∞) and can be found, e.g., via interval root-finding2

[46, Ch. 8]. Choosing the best among these critical points yields global maximizers.
This update maximally ascends the likelihood, and is perhaps the most natural choice. However, find-

ing all the roots can be computationally expensive. Moreover, it is unclear whether fully maximizing the
likelihood in this step is desirable since this update occurs within a broader alternating maximization. The
current estimate of F may be far from optimal, so fully optimizing v might slow convergence. These reasons
motivate alternative methods that we derive next.

5.2.2 Expectation Maximization

Although jointly updating F and v using (7) is challenging, it is fairly easy to update v when F is fixed.
Replacing F in (7) with the current estimate Ft and simplifying leads to the following minorizer of (3) with
respect to v`:

L(Ft,v; Ft,vt) =
L∑

`=1

n`
2

(
− d ln v` −

ρt,`
v`

)
, (13)

where

ρt,` ,
1

n`

[
‖Y`‖2F − 2 tr(Y′`FtZt,`) + tr{F′tFt(Zt,`Z

′
t,` + n`vt,`Mt,`)}

]
(14)

= ‖(Id − FtMt,`F
′
t)Y`‖2F /n` + vt,` tr(FtMt,`F

′
t).

Maximizing (13) w.r.t. v` leads to the simple update:

vt+1,` =
ρt,`
d
. (15)

Since FtMt,`F
′
t = UtΛt(Λt+vt,`Ik)−1U′t, expanding and simplifying yields the following alternative formula

for (14):

ρt,` =
k∑

j=0

(
1− γj

γj + vt,`

)2

βj + vt,`

k∑

j=1

λt,j
λt,j + vt,`

, (16)

providing a more efficient form as well as a link to (10).

5.2.3 Difference of concave approach

The univariate objective (10) is a “difference of concave” or concave+convex cost function. One standard way
to optimize such functions is to minorize each convex term with an affine function, leading to the following
concave minorizer (ignoring constants):

L̃`(v`; vt,`) , −
k∑

j=0

{
αj

γj + vt,`
v` +

βj
γj + v`

}
. (17)

Concavity of (17) eases maximization. If its derivative,

˙̃L`(v`; vt,`) ,
k∑

j=0

{
− αj
γj + vt,`

+
βj

(γj + v`)2

}
,

is nonpositive at the origin, i.e.,
˙̃L`(0+; vt,`) ≤ 0, then (17) is maximized by v` = 0. Otherwise, at least

one βj > 0 so (17) is necessarily strictly concave and is maximized at its unique critical point over v` > 0.

This critical point can be efficiently computed, e.g., via bisection by noting that
˙̃L`(v`; vt,`) < 0 for v` >

maxj{
√

(βj/αj)(γj + vt,`)− γj}.
2We used the Julia package IntervalRootFinding.jl.

8

https://github.com/JuliaIntervals/IntervalRootFinding.jl


5.2.4 Quadratic solvable minorizer

To derive a MM approach with a simple update, we separate the summation in (10) into the terms where
γj is zero and nonzero and apply the affine minorizer of (17) to the ln terms where γj > 0 as follows:

L̆`(v`; vt,`) =− αt,` ln v` −
βt,`
v`
− ζt,` v` −

∑

j /∈J0

βj
γj + v`

, (18)

where αt,` ,
∑
j∈J0

αj , ζt,` ,
∑
j /∈J0

αj

γj+vt,`
, and βt,` was defined in (11).

For j /∈ J0, let πj ,
γj

γj+vt,`
∈ (0, 1) and rewrite (18) as

L̆`(v`; vt,`) = −αt,` ln v` −
βt,`
v`
− ζt,` v` −

∑

j /∈J0

βj

πj

(
γj
πj

)
+ (1− πj)

(
v`

1−πj

)

≥ φ(v`; vt,`) , −αt,` ln v` −
βt,`
v`
− ζt,` v` −

∑

j /∈J0

βj

(
πj

1

γj/πj
+ (1− πj)

1

v`/(1− πj)

)

= −αt,` ln v` −
Bt,`
v`
− ζt,`v`, (19)

using the concavity of the function −1/x, ignoring irrelevant constants, and defining

Bt,` = βt,` +
∑

j /∈J0

βj
v2t,`

(γj + vt,`)2
.

One can verify that, by design, φ(vt,`; vt,`) = L̆`(vt,`; vt,`). The choice of πj originates from an EM algorithm
for PET [43, 47]. Differentiating the concave minorizer φ yields:

0 = −αt,`
v`

+
Bt,`
v2`
− ζt,`. (20)

This equation is solvable by the quadratic formula for ζt,`v
2
` +αt,`v`−Bt,` that has exactly one positive root.

5.2.5 Cubic solvable minorizer

Because γj > 0 in the final term of the concave minorizer in (18), that term has bounded curvature for
v` ≥ 0, with maximum (absolute) curvature

c`,j = −2βj/γ
3
j .

Thus we have the following partially quadratic concave minorizer for (10) (ignoring constants):

Ql(v`; vt,`) = −αt,` ln v` −
βt,`
v`
− ζt,` v` +

∑

j /∈J0

{
βj

(γj + vt,`)2
v` +

1

2
c`,j(v` − vt,`)2

}
. (21)

Differentiating and equating to zero yields

0 =
−αt,`
v`

+
βt,`
v2`

+ γt,` + ct,` (v` − vt,`), (22)

γt,` , −ζt,` +
∑

j /∈J0

βj
(γj + vt,`)2

,

ct,` ,
∑

j /∈J0

c`,j .

This v` update corresponds to finding the appropriate root of a cubic polynomial. One could apply multiple
v` updates based on (22). The fixed points of the resulting MM iteration are identical to the roots described
by (12), so this approach is essentially an iterative root finding method with the nice MM property of
monotonically increasing the log-likelihood.
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5.3 Convergence and stopping criterion

All of the updates described above for F and v are based on minorizers, so like all block MM methods
they provide updates that ensure the log-likelihood is monotonically non-decreasing. However, monotonicity
alone is insufficient to ensure convergence when the individual updates may not have unique maximizers [48].
An alternative to simple alternation between the F and v blocks is the “maximum improvement” variant
that calculates an update for both blocks and chooses the one that increases the likelihood the most [49].
This variant ensures convergence under modest regularity conditions (not requiring convexity or uniqueness)
appropriate for the HePPCAT problem [50, Thm. 3]. To save computation, we used the simpler alternating
maximization approach for the empirical results shown below.

A natural choice for stopping criterion is to stop once the change in the factor matrix is sufficiently
small. Namely, iterate until ‖Ft+1 − Ft‖F / ‖Ft‖F ≤ ε, where ε ≥ 0 is a user-provided tolerance, as shown in
Algorithm 1. That said, there are certainly other natural choices. For example, one could require sufficiently
small changes in the noise variance estimates or in the log-likelihood.

5.4 Initialization by homoscedastic PPCA

Without prior knowledge of the noise variances, a natural choice to initialize v and F = U diag1/2(λ) is the
homoscedastic PPCA solution [5, Section 3.2]:

U0 , Û, λ0 , (λ̂1 − λ̄, . . . , λ̂k − λ̄), v0 , λ̄1L,

where the k columns of Û ∈ Rd×k are principal eigenvectors of the sample covariance matrix (Y1Y
′
1 +

· · · + YLY′L)/n, λ̂1, . . . , λ̂k are the corresponding eigenvalues, and λ̄ is the average of the remaining d − k
eigenvalues.

The HePPCAT optimization problem is nonconvex, so better maximizers might be found by taking the
best among many random initializations, but we have not so far encountered such a case; see, e.g., the
experiments in Section 10. The landscape of the objective appears to be favorable despite its nonconvexity.
Moreover, initializing via homoscedastic PPCA provides a reasonable and nicely interpretable choice. If the
samples are in fact close to homoscedastic, this initialization is likely close to optimal already. Even if not, it
provides a homoscedastic baseline to improve upon via the alternating updates of Sections 5.1 and 5.2. All
the updates are non-descending, so all iterates are guaranteed to have likelihood no worse than homoscedastic
PPCA.

6 Computational complexity

The primary sources of computational complexity in the EM update (8) for F are matrix multiplications
and inverses. For each ` ∈ {1, . . . , L}, computing Mt,` costs O(k2d + k3) after which computing Zt,` costs
O(k2d + kdn`), yielding a total cost of O(Lk3 + Lk2d + kdn). The remaining multiplications and inverses
cost O(kdn+ k2n+ k2d+ k3). Combining these terms and noting that k < d, n yields O(Lk2d+ kdn). The
alternative form (9) incurs an initial cost of O(k2d) to obtain the SVD of Ft, but gains efficiency since Dt,`

and Z̃t,` then cost O(k) and O(kdn`), respectively. As a result, this form has a final cost of O(kdn) overall.
A leading order source of computational complexity for all of the v` update methods is in calculating

the associated coefficients β0, . . . , βk. Doing so incurs a cost of O(kdn`) for each ` ∈ {1, . . . , L}, yielding
a cost of O(kdn) overall. For all the v` updates (Sections 5.2.1 to 5.2.5), the additional computational
cost is independent of d and n. Thus, one might suppose (since k � d, n typically) that all the updates
have essentially equal runtime. However, this is not the case. Global maximization (Section 5.2.1) and the
difference of concave approach (Section 5.2.3) both use iterative algorithms for root-finding, and the runtime
can depend significantly on not only k but also properties of (10). Moreover, when L is large, e.g., for
block sizes of n` = 1, constant factors not captured by computational complexity can also have a significant
impact. Section 7 compares the convergence speed of the various updates in practice, accounting for both
their runtime costs and per-iteration improvement in likelihood.
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Algorithm 1: HePPCAT

Input: Maximum number of iterations T , rank k, tolerance ε ≥ 0
Output: F ∈ Rd×k, v ∈ RL+
Data: [Y1, . . . ,YL], Y` ∈ Rd×n` ` = 1, . . . , L

1 Initialize F0 and v0 via homoscedastic PPCA or random initialization
2 while iterations t < T do
3 Update Ft+1, fixing v at vt, using (9).
4 Update vt+1, fixing F at Ft+1, using Root Finding or one step of one of the following updates:

• Expectation Maximization (16)

• Difference of concave minorizer (17)

• Quadratic solvable minorizer (20)

• Cubic solvable minorizer (22)

if ‖Ft+1 − Ft‖F / ‖Ft‖F ≤ ε then
stop

t← t+ 1

To further improve computational efficiency, note that all the updates depend on Y` implicitly through
Y`Y

′
`, so one could replace Y` in the updates with any proxy Y̆` for which Y̆`Y̆

′
` = Y`Y

′
`. In some cases,

e.g., when n` � d, doing so can yield significant savings.

7 Comparison of update methods

Section 5 described several update methods for v based on a variety of minorizers. It is not obvious a priori
which choice is best, so this section compares their relative performance. We consider n = 103 samples in
d = 102 dimensions generated according to the model (1) with k = 3 factors generated as F̃ = Ũ diag1/2(λ̃),

where Ũ = (ũ1, . . . , ũk) ∈ Rd×k is drawn uniformly at random from among d×k matrices having orthonormal

(a) Convergence w.r.t. L. (b) Convergence w.r.t. F. (c) Minorizers w.r.t. v at homoscedastic PPCA initialization.

Figure 2: Convergence of alternating maximization w.r.t. F and v for various v updates. We consider n = 103

samples in d = 102 dimensions with k = 3 underlying factors λ̃ = (4, 2, 1). The noise is homoscedastic: both
the first n1 = 200 and remaining n2 = 800 samples have noise variance ṽ1 = ṽ2 = 1. Walltimes are medians
taken over 100 runs of the algorithm to reduce the effect of experimental noise. Markers denote each iteration.
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(a) Convergence w.r.t. L. (b) Convergence w.r.t. F. (c) Minorizers w.r.t. v at homoscedastic PPCA initialization.

Figure 3: Same as Fig. 2 except here the noise is heteroscedastic with ṽ2 = 4 and markers are placed every
five iterations.

columns3 and λ̃ = (4, 2, 1). The first n1 = 200 samples have noise variance ṽ1 = 1, and the remaining
n2 = 800 have noise variance ṽ2.

Fig. 2 considers the homoscedastic setting where ṽ2 = 1 (yet the two variances are still unknown to the
algorithm). As a baseline, we take F? and v? to be the solutions obtained by 1000 iterations of Expectation
Maximization updates for both F and v. The associated log-likelihood is L? , L(F?,v?). Fig. 2a plots
convergence of the log-likelihood L? −L(Ft,vt) versus walltime for iterates (Ft,vt) obtained by the various
choices for the v update. Note that L? − L(Ft,vt) is the log of the likelihood-ratio between the converged
solution (F?,v?) and iterate (Ft,vt). Fig. 2b plots convergence for the F iterates with respect to the
normalized factor difference ‖FtF′t − F?F?′‖F/‖F?F?′‖F. Iterations are indicated on both plots by the
markers, and walltime only includes the updates themselves (i.e., not calculation of the log-likelihood).

Among the v update methods, global maximization typically ascends the log-likelihood the most per
iteration, but is also the most computationally expensive. As a result, it converges more slowly with respect
to walltime. The difference of concave update is computationally cheaper but ascends the least per iteration
initially. The final three updates (Cubic solvable MM, Expectation Maximization, Quadratic solvable MM)
have fairly similar computational cost and log-likelihood increase per iteration.

The global maximization update corresponds to maximizing the univariate functions L`(v`). The remain-
ing update methods each correspond to maximizing an associated minorizer. Fig. 2c plots these minorizers
at the homoscedastic PPCA initialization (Section 5.4), shifted to be zero at the current iterate. For this
homoscedastic case, the homoscedastic PPCA initialization is already close to optimal and the minorizers
(with the exception of the difference of concave minorizer) closely follow the log-likelihood.

Fig. 3 considers a heteroscedastic case with ṽ2 = 4. As in the homoscedastic case, global maximization
converges the most slowly overall due to its high computational cost per iteration (more so in fact). Likewise,
the difference of concave update is again computationally cheaper but ascends the least per iteration initially,
and the remaining three update methods converge the most rapidly. Fig. 3c illustrates the comparative
tightness of the various minorizers at the homoscedastic PPCA initialization. The initialization is far from
optimal for this heteroscedastic case, and the relative differences in tightness among the minorizers are more
clearly visible. Based on these experiments, we recommend using the EM minorizer or the quadratic solvable
minorizer for the v updates.

8 Statistical performance experiments

This section evaluates the statistical performance of HePPCAT through simulation. We consider n = 103

samples in d = 102 dimensions generated according to the model (1) with k = 3 factors generated as

F̃ = Ũ diag1/2(λ̃), where Ũ = [ũ1, . . . , ũk] ∈ Rd×k is drawn uniformly at random from among d×k matrices

3Specifically, drawn according to the Haar measure on the Stiefel manifold, see, e.g., [51, Section 2.5.1], as implemented in
the Julia package Manifolds.jl.
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|û
′ 1
ũ
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Figure 4: Comparison with homoscedastic PPCA applied on: i) full data, ii) only group 1, i.e, the n1 = 200
samples with noise variance ṽ1 = 1, and iii) only group 2, i.e., the n2 = 800 samples with noise variance
ṽ2 = σ2

2 . Lower is better in (a), and higher is better in (b)-(d). Heteroscedastic PPCA (HePPCAT)
outperforms the homoscedastic methods on all four metrics. The mean and interquartile intervals (25th to
75th percentile) from 100 data realizations are shown as curves and ribbons, respectively.

having orthonormal columns and λ̃ = (4, 2, 1). The first n1 = 200 samples have noise variance ṽ1 = 1, and
the remaining n2 = 800 have ṽ2 = σ2

2 , where we sweep σ2 from 0 to 3. We use 100 iterations of alternating
EM updates for F and v with the homoscedastic PPCA initialization.

8.1 Comparison with homoscedastic methods

Fig. 4 compares the recovery of the latent factors F̃ by HePPCAT with those obtained by applying ho-
moscedastic PPCA on: a) the full data, b) only group 1, i.e, the n1 = 200 samples with noise variance
ṽ1 = 1, and c) only group 2, i.e., the n2 = 800 samples with noise variance ṽ2 = σ2

2 . These homoscedastic
PPCA approaches are reasonable and common choices in the absence of reliable heteroscedastic algorithms;
it is worthwhile to understand their performance. The mean and interquartile intervals (25th to 75th per-
centile) from 100 data realizations are shown as curves and ribbons, respectively.

Fig. 4a plots the normalized factor covariance estimation error, defined as ‖F̂F̂′ − F̃F̃′‖F/‖F̃F̃′‖F where

F̂ ∈ Rd×k is the estimated factor matrix. Figs. 4b to 4d plot the component recoveries |û′1ũ1|2, . . . , |û′3ũ3|2,

where û1, . . . , û3 ∈ Rd are the principal eigenvectors of F̂F̂′. Lower is better for estimation error and higher
is better for component recovery.

When σ2 is small enough, homoscedastic PPCA applied to only group 2 performs the best among the
homoscedastic PPCA’s. In this case, group 2 is relatively clean, and the components are reliably recovered.
Using the full data incorporates more samples, but in this case including the noisier group 1 data does more
harm than good since homoscedastic PPCA treats them uniformly. There is a tradeoff here between having
more samples and including noisier samples. Finally, using only group 1 performs worst; it is smaller and
noisier.

With increasing σ2, the performance of homoscedastic PPCA degrades when applied to the full data or
group 2 since they incorporate these increasingly noisy samples. The effect is more pronounced for using
only group 2, and eventually the tradeoff reverses; using the full data becomes best among the homoscedastic
PPCA options. In particular, when σ2 = 1, the full data actually has homoscedastic noise and there is no
statistical benefit to using only either group. As σ2 continues to increase, group 2 data is eventually so noisy
that it becomes best to only use group 1. Just past σ2 > 1, however, using only group 1 remains worse than
using only the noisier group 2 data. In this regime, the more abundant samples in group 2 win out over
the cleaner samples in group 1. Which homoscedastic PPCA option performs best depends crucially on the
interplay of these tradeoffs, making it unclear a priori which to use.

HePPCAT uses all the data but estimates and accounts for the heteroscedastic noise. In Fig. 4, it
essentially matches or outperforms all three homoscedastic PPCA options across the entire range of σ2. In
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Û
′ −

Ũ
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|û
′ 2
ũ
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Figure 5: Comparison with heteroscedastic methods: HeteroPCA [13] and weighted PCA (inverse and square
inverse noise variance weights calculated using the true noise variances). Lower is better in (a), and higher
is better in (b)-(d). HePPCAT is among the best heteroscedastic methods. The mean and interquartile
intervals (25th to 75th percentile) from 100 data realizations are shown as curves and ribbons, respectively.

particular, for small σ2, it closely matches the performance of using only group 2, and for large σ2 it closely
matches that of using only group 1. In some sense, it appears to automatically ignore unreliable data. For
moderate σ2, it outperforms the three homoscedastic PPCA options. In this regime, it is suboptimal to
ignore either group of data or to use both but treat them uniformly, and HePPCAT appropriately combines
them.

Notably, HePPCAT performs nearly the same across this sweep as the variant developed in [4] that
assumed known noise variances, even though the noise variances are now unknown and jointly estimated.
See Fig. 14. Sections 8.3 and 8.4 study the quality of the noise variance estimates.

8.2 Comparison with heteroscedastic methods

Fig. 5 compares the recovery of the latent components Ũ by HePPCAT with those obtained by Het-
eroPCA [13] and by weighted PCA with: a) inverse noise variance weights, and b) square inverse noise
variance weights. HeteroPCA is an iterative method designed for noise that is heteroscedastic within each
sample; here we use 10 iterations. Weighted PCA is a simple and efficient variant of PCA that accounts for
heteroscedasticity across samples by down-weighting noisier samples. A typical choice for weights is inverse
noise variance weighting that effectively rescales samples so their (scaled) noise becomes homoscedastic.
Square inverse noise variance weighting is a choice of weights that more aggressively down-weights noisier
samples. It can be more effective for weak signals, as revealed by the analysis in [12].

Fig. 5a plots the normalized subspace estimation error, defined as ‖ÛÛ′ − ŨŨ′‖F/‖ŨŨ′‖F where we

denote the estimated factor eigenvectors as Û = [û1, . . . , ûk] ∈ Rd×k. Figs. 5b to 5d plot the corresponding
component recoveries |û′1ũ1|2, . . . , |û′3ũ3|2. As before, the mean and interquartile intervals (25th to 75th
percentile) from 100 data realizations are shown as curves and ribbons, respectively, and lower is better for
estimation error and higher is better for component recovery.

When σ2 is small, both weighted PCA methods perform similarly to HePPCAT. They both down-weight
group 1 samples and benefit from the clean group 2 samples. As σ2 increases, a gap in the performance
appears between inverse noise variance and square inverse noise variance weighted PCA. In this regime,
the more aggressive square inverse noise variance weights perform better for the weaker second and third
components. For the stronger first component, inverse noise variance weights remain comparable and are,
in fact, better for moderate σ2. Throughout the sweep, HePPCAT matches or slightly outperforms the
statistical performance of both weighted PCA methods. The relatively favorable performance of these
methods highlights the benefit of accounting for heteroscedasticity across samples. Doing so enables them
to make better use of all the available data. Note that unlike the two weighted PCA methods, HePPCAT is
not given the noise variances and instead estimates them. Moreover, to apply the weighted PCA methods
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Figure 6: Relative bias of HePPCAT estimates for noise variances and factor eigenvalues. The mean and
interquartile intervals (25th to 75th percentile) from 100 data realizations are shown as curves and ribbons,
respectively.

shown here, one must choose between the two weights (neither is uniformly better than the other), whereas
HePPCAT works well across the range of noise variances.

HeteroPCA also accounts for heteroscedastic noise, but does so primarily for heteroscedasticity within
each sample, rather than across samples. Heteroscedasticity within each sample biases the diagonal of the
covariance matrix, even in expectation, and HeteroPCA corrects for this. However, it treats the samples
themselves fairly uniformly. Consequently, its performance here closely resembles that of homoscedastic
PPCA on the full data, as shown in Fig. 4. This behavior highlights the qualitative difference between
heteroscedasticity within and heteroscedasticity across samples; they manifest differently and must both be
addressed. Section 8.5 considers a setting with noise that is heteroscedastic in both ways and illustrates the
opportunity for further works considering the combination.

8.3 Bias in estimated noise variances and factor eigenvalues

Fig. 6 plots the relative biases of the estimated noise variances v̂1 and v̂2, as well as those of the estimated
factor covariance eigenvalues λ̂ = (λ̂1, . . . , λ̂3). As before, the mean and interquartile intervals (25th to
75th percentile) from 100 data realizations are shown as curves and ribbons, respectively, but now closer
to zero is better. Positive values mean that HePPCAT has overestimated, and negative values indicate
that it has underestimated. Taken together, Figs. 6a and 6b show a general negative bias in the estimated
noise variances paired with a general positive bias in the estimated factor eigenvalues. This behavior is
consistent with a corresponding behavior for homoscedastic PPCA in the setting of homoscedastic noise [52].
Providing a similar characterization for HePPCAT and a corresponding de-biasing procedure is an exciting,
but nontrivial, direction for future work.

8.4 Dependence of noise variance estimates on block sizes

Fig. 7 fixes the noise variance of group 2 at ṽ2 = 4, i.e., σ2 = 2, and shows the noise variances estimated for
all of the n = 103 samples when the samples are passed to HePPCAT in (non-overlapping) blocks of size 1,
10 and 100. Doing so reveals how the estimates depend on block size, and captures settings where the true
latent groupings are unknown. Notably, a block size of 1 incorporates no a priori knowledge of the groupings.
Fig. 7a shows a single representative data realization, and Fig. 7b shows the mean and interquartile intervals
(25th to 75th percentile) obtained from 100 data realizations. Both include corresponding histograms on the
right showing the distributions of estimated noise variances.

Notably, the estimates are fairly concentrated around the true latent noise variances of ṽ = (1, 4) at
blocks of size 100 even though this choice splits the first group of n1 = 200 samples into two groups and the
second group of n2 = 800 into eight groups. These groups are visible in Fig. 7a as bars that tie together
samples in the same block. Interestingly, blocks of size 10 are not much more noisy, while being significantly
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Figure 7: Estimated noise variances for varying block sizes.
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Figure 8: Normalized factor estimation error (median and interquartile intervals) for varying block sizes.
The three block sizes have practically identical performance.

less restrictive. Moreover, even using blocks of size 1, at which point each sample is allowed its own noise
variance estimate, provides relatively reliable estimates that cluster around the latent noise variances. The
data contain enough information to obtain reasonable estimates of these noise variances. Nevertheless, when
samples can be reasonably grouped together into blocks, e.g., grouping them by source or sensor, doing so
can significantly denoise the estimates even when the blocks are relatively small. An interesting direction
for future work is to jointly estimate these clusters from the data.

Fig. 8 plots the corresponding normalized factor estimation errors for v2 = σ2
2 where σ2 ranges from 0 to

3. The median and interquartile intervals (25th to 75th percentile) from 100 data realizations are shown as
curves and ribbons, respectively. We use the median here because the means for runs of block size 1, which
are likely the most challenging, appeared to be skewed by outliers. Notably, all three block sizes perform
quite closely to HePPCAT with known blocks and outperform homoscedastic variants (cf. Fig. 4a).

8.5 Additional heteroscedasticity within samples

Fig. 9 considers data that is heteroscedastic not just across samples, but also within samples. As before, the
first group of n1 = 200 samples have noise variance v1 = 1, but now the second group of n2 = 800 samples

have a noise variance fixed at v
(1)
2 = 4 for the first d(1) = 20 features and noise variance v

(2)
2 = σ2

2 for the
remaining d(2) = 80 features, where σ2 ranges from 0 to 3. Noise in the first group is homoscedastic within
each sample, but except for σ2 = 2, noise in the second group is heteroscedastic within each sample. Fig. 9a
shows an example data realization for σ2 = 3; observe that the first group are uniformly noisy, the first 20
features of the second group are noisier, and the final 80 features are noisiest.

Fig. 9b plots the subspace estimation error across this range of heteroscedastic settings for homoscedastic
PPCA; HePPCAT, which accounts for heteroscedasticity across samples; and HeteroPCA [13], which primar-
ily accounts for heteroscedasticity within each sample. Namely, HeteroPCA accounts for bias in the diagonal
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Figure 9: Heteroscedasticity across both features and samples.

of the covariance that is caused by within-sample heteroscedasticity, but treats the samples themselves uni-
formly. When σ2 is small, accounting for heteroscedasticity within each sample is more important and
HeteroPCA is better. However, the tradeoff reverses and HePPCAT becomes better as σ2 grows towards
σ2 = 2, at which point samples are heteroscedastic only across samples. Interestingly, heteroscedasticity
across samples appears to continue to dominate for σ2 > 2. Homoscedastic PPCA is generally worst, as
it does not account for either heteroscedasticity. HePPCAT performs similarly for small σ2, where within-
sample heteroscedasticity seems to dominate, and HeteroPCA is similar for large σ2, where across-sample
heteroscedasticity seems to dominate. These results highlight a qualitative difference between across-sample
and within-sample heteroscedasticity; both must be addressed. Developing methods that simultaneously
handle both types of heteroscedasticity, which outperform all three methods across this range, is an exciting
direction for future work.

9 Real Data Experiments

This section applies HePPCAT to environmental monitoring data containing air quality measurements from
both a few high precision instruments and a large network of low-cost consumer-grade sensors. High precision
measurements are provided by the U.S. Environmental Protection Agency (EPA) and its partners. They
maintain a nationwide network of Air Quality Index (AQI) sensor stations that measure, monitor, and
distribute air quality data on the AirNow platform [53]. The recent proliferation of low-cost consumer-grade
AQI sensors, such as PurpleAir [54], provides a second source of data. These sensors stream data continuously
to developer platforms, such as ThingSpeak [55], creating a network of crowd-sourced air quality data with
greater spatial coverage and resolution but generally lower precision.

We consider PM2.5 particulate concentration readings (in µg/m3) from the AirNow platform and from
outdoor PurpleAir sensors across the central California region, i.e., within longitudes (-123.948, -119.246)
and latitudes (35.853, 39.724), at the top of every hour from February 9-13, 2021. We chose 10 random
PurpleAir sensors nearby each of 46 AirNow sensors to obtain balanced sensing coverage, and omitted hours
where at least one of the AirNow sensors did not record a measurement. This gave n1 = 46 AirNow samples
y1,i and n2 = 460 PurpleAir samples y2,i, where each sample y`,i is a vector of d = 108 readings of PM2.5

across time. Fig. 10 displays the map of the sensor locations for visualization. AirNow measurements are
calibrated and averaged over hour-long windows by the U.S. EPA, whereas we collected the instantaneous
readings from the PurpleAir sensors nearest to each hour. We centered the two sensor groups Y1 and Y2

separately by subtracting from each its sample mean.
Lacking ground truth, we evaluate how well the subspace learned by HePPCAT on a subset of the

samples generalizes to the rest. Namely, we randomly select n
(train)
1 = 25 AirNow samples and n

(train)
2 = 250

PurpleAir samples as training data Y(train) ∈ Rd×n(train)

. The remaining n
(test)
1 = 21 AirNow samples and

n
(test)
2 = 210 PurpleAir samples serve as test data Y(test) ∈ Rd×n(test)

. The training data Y(train) is then
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Figure 10: Sensor locations of AirNow (green triangles) and PurpleAir (purple circles) in the central Cali-
fornia region of our experiments.

(a) A single representative trial. (b) Boxplots from all 200 trials.

Figure 11: Noise variance estimates from HePPCAT for a single representative trial (a), and across all 200
trials (b). In (a), the first 25 samples in green are from AirNow, and the remaining purple samples are from
PurpleAir. A single noise variance is estimated for each group. Boxplots in (b) show the spread of these
estimates across the 200 trials. Units are in (µg/m3)2.

used to estimate a basis for a k = 30 dimensional subspace Û ∈ Rd×k using PPCA and HePPCAT. We also

consider PPCA-AN (PPCA on only the AirNow group Y
(train)
1 ) and PPCA-PA (PPCA on only the PurpleAir

group Y
(train)
2 ). For each estimated Û, the performance on test data Y(test) is quantified by the normalized

root mean-squared error (NRMSE) of the subspace reconstruction, i.e., ‖Y(test)−ÛÛ′Y(test)‖F/
∥∥Y(test)

∥∥
F

.

We also consider the corresponding NRMSE evaluated on only the AirNow test data Y
(test)
1 and on only the

PurpleAir test data Y
(test)
2 , as well as all the training data counterparts.

We repeated this experiment for 200 random train-test splits of the data. Fig. 11a shows the noise variance
estimates from HePPCAT from a representative trial. The estimated noise variance for the PurpleAir samples
is substantially higher than that for AirNow samples, illustrating heterogeneity within this data. This is
reasonable given that the PurpleAir data comes from low-cost consumer-grade sensors, while the AirNow
data comes from high precision instruments. The corresponding box plots (indicating median, interquartile
range, and outliers) in Fig. 11b show the spread of these estimates across the 200 trials. The estimates
remain fairly consistent.

Fig. 12 shows boxplots for the training and test NRMSEs across the 200 trials. As expected, PPCA (on
full data) generally has the lowest training NRMSE on full data, PPCA-AN is generally best on AirNow
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(a) NRMSE with respect to full training data Y(train), AirNow training data Y
(train)
1 , and PurpleAir training data Y

(train)
2 .

(b) NRMSE with respect to full test data Y(test), AirNow test data Y
(test)
1 , and PurpleAir test data Y

(test)
2 .

Figure 12: Air quality data were split into training and test sets. A k = 30 dimensional subspace basis Û
was estimated from the training data using PPCA and HePPCAT, as well as PPCA-AN (PPCA trained
using only the AirNow group) and PPCA-PA (PPCA trained using only the PurpleAir group). We evaluate

the NRMSE ‖Y− ÛÛ′Y‖F/ ‖Y‖F with respect to both training and test data (as well as their AirNow and
PurpleAir subsets). Lower is better for all plots. As expected, HePPCAT is never best on training data.
However, it is among the best on all test cases, indicating that it has found explanatory components across
both data sources.
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Oracle init (planted model) Homoscedastic PPCA init Random inits

Figure 13: Convergence gaps of each algorithm to the maximum converged log-likelihood per heteroscedastic
noise experiment. n = [200, 800] and v1 = 1.0.

training data, and likewise for PPCA-PA on PurpleAir training data. Compared with PPCA (on full data),
HePPCAT has worse training NRMSE on the full data and on the PurpleAir data, but has better training
NRMSE on the cleaner AirNow data. Turning to test NRMSE, however, HePPCAT is among the best with
respect to not only AirNow data, but also the full data and even the PurpleAir data. HePPCAT appears to
more effectively leverage information from both the cleaner but fewer AirNow samples and the noisier but
more numerous PurpleAir samples.

Overall, the experiments here with air quality data illustrate heterogeneity arising naturally in real data
and the potential for improved generalization by using HePPCAT.

10 Investigation of the landscape

This section empirically illustrates the favorable landscape of our optimization problem and our algorithms’
convergence to the globally optimal solution for synthetically generated data. Even though the nonconvexity
of the problem might lead one to wonder if the choice of initialization matters, we find that does not appear
to be the case. We generate the same low-rank heteroscedastic model as described in Section 8 and sweep
across σ2

2 values 0.1, 1.0, 2.0, and 3.0. The first regime should see HePPCAT largely down-weight group 1
and perform PCA on just group 2. At σ2

2 = 1, the dataset is statistically homoscedastic, and we expect the
landscape to behave similarly to that of PCA, which enjoys a well-known landscape that features no spurious
local maxima and strict saddles [32]. As σ2

2 increases, the distribution of the noise variances becomes more
bimodal, and the PPCA solution deviates farther from the optimal log-likelihood value. In the low-noise end,
the second data block has four times as many samples as the first block and a tenth of the noise variance.
In the noisiest setting, the second data block has three times the noise variance.

For each noise setting, we record each algorithms’ log-likelihood at iteration t and in Fig. 13 show
the difference to the maximum log-likelihood found among all algorithms and trials. We run 100 trials
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of each HePPCAT algorithm with the initial estimate of F drawn randomly with i.i.d. Gaussian N (0, 1)
entries and the initial estimate of v drawn randomly with i.i.d. entries uniform on [0, 1). We also examine
initializations from the homoscedastic PPCA solution and from the oracle planted model parameters. The
converged likelihood values for each algorithm and choice of initialization concentrate tightly around the
same maximum, with this behavior consistent across a wide range of heteroscedastic noise levels, indicating
a well-behaved landscape.

In the homoscedastic regime, the results are consistent with our expectation that the PPCA initialization
should be close to optimal, as shown in the second column of Fig. 13. We observe as the data noise variances
become more imbalanced, the PPCA initialization becomes farther away from the global maximum, but is
still orders of magnitude better in likelihood than random initialization. The oracle initialization has the best
likelihood for all the heteroscedastic settings as expected, but is still suboptimal since we are maximizing a
finite-sample likelihood. An interesting direction is to study how heteroscedastic noise affects the likelihood
and its maximum in finite sample settings.

11 Conclusion

This paper developed efficient algorithms for jointly estimating latent factors and noise variances from data
with heteroscedastic noise. Maximizing the likelihood is a nontrivial nonconvex optimization problem, and
unlike the homoscedastic setting, it is seemingly unsolvable via singular value decomposition. The proposed
algorithms alternate between updating the factor estimates and the noise variance estimates, with several
choices for the noise variance update. It is unclear a priori which choice is best, and we compared their
empirical convergence speeds in practice. Further numerical experiments studying the statistical performance
highlighted the significant benefits of properly accounting for heteroscedasticity. Experiments on air quality
data illustrated heterogeneity arising naturally in real data and improved generalization by using HePPCAT.
Given the nonconvexity of the problem, one might wonder if initializing differently could lead to better
maximizers. We provided empirical evidence that this is not the case; the landscape, while nonconvex,
appears favorable.

Extensions of the approach to handle more general settings, e.g., missing data or additional heterogeneity
across features, are interesting directions for further work. Likewise, there are many variations of PCA, e.g.,
nonnegative matrix factorization, and generalizations, e.g., unions of subspaces, that one could consider. An
extension to consider kernel PCA would be interesting [56, 57], as noted by a reviewer. One might also
incorporate a clustering step in the alternating algorithm to estimate not only the noise variances but also
the blocks sharing a common noise variance. Alternatively, one could consider the L groupings to be another
latent variable in the log-likelihood, and attempt to jointly estimate them. Estimating the rank is another
direction for further work. Many classical methods were designed for homoscedastic noise, and recent works,
e.g., [14, 58, 59, 60], have begun to explore this problem under heteroscedastic settings. Some avenues
for improving convergence speed are using momentum / extrapolation [61] of the alternating maximization
updates, as well as incremental variants. One could also consider tackling the M-step in Section 4 via an
inner block coordinate ascent with updates similar to those in Sections 5.1 and 5.2.2 that ascend the EM
minorizer (7). This paper also raises several natural conjectures about the landscape of the nonconvex
objective, which are beyond our present scope and are exciting areas for further theoretical analysis. Finally,
it was observed in the homoscedastic setting that noise variance estimates tend to have a downward bias
that can be characterized and accounted for [52]. A similar bias in variance estimates appears to occur in
the heteroscedastic setting, and extending the previous approaches is a promising direction.
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|û
′ 2
ũ
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Figure 14: Comparison of the statistical performance of HePPCAT with the variant developed in [4] that
assumed known noise variances, under the experimental sweep in Sections 8.1 and 8.2. Lower is better in
(a), and higher is better in (b)-(d). HePPCAT performs nearly the same even though the noise variances
are now unknown and jointly estimated.

A Challenges in Expectation Maximization

To carry out Expectation Maximization via Section 4, one might attempt to maximize (7) with respect to
both v and F by first completing the square:

L(F,v; Ft,vt) = −
L∑

`=1

(
dn`
2

ln v`+
‖Y`‖2F

2v`

)
+

1

2
tr
{

T(v)S(v)−1T(v)′
}
− 1

2

∥∥∥FS(v)1/2 −T(v)S(v)−1/2
∥∥∥
2

F
,

where the first two lines are constant with respect to F, and

T(v) ,
L∑

`=1

1

v`
Y`Z

′
t,`, S(v) ,

L∑

`=1

1

v`
(Zt,`Z

′
t,` + n`vt,`Mt,`).

Thus (7) is maximized with respect to F by F = T(v)S(v)−1, yielding the maximization problem with
respect to v of

L(T(v)S(v)−1,v; Ft,vt) =
1

2
tr
{

T(v)S(v)−1T(v)′
}
−

L∑

`=1

(
dn`
2

ln v` +
‖Y`‖2F

2v`

)
. (23)

Equation (23) is not easily optimized with respect to v for L > 1 because of the matrix product in the trace.
This term introduces coupling among the noise variances v` that may keep the problem from separating
into L univariate problems. Intuitively, the noise variances v` appear to be coupled via their impact on the
optimal latent factors F. Novel approaches to efficiently optimize (23), e.g., by studying its critical points,
is an interesting direction for future work.

B Comparison with known noise variances

Fig. 14 compares HePPCAT with the oracle variant developed in [4] that used known noise variances; the
experimental setup matches that of Sections 8.1 and 8.2. Even though the noise variances are unknown and
jointly estimated in HePPCAT, the performance is nearly the same.
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