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Abstract. In this work, we study the separability problem in quantum property testing,
where one is given n copies of an unknown mixed quantum state o on C¢ @ C¢, and one wants
to test whether p is separable or e-far from all separable states in trace distance. We prove
that n = £2(d*/€®) copies are necessary to test separability, assuming ¢ is not too small, viz.
e = 2(1/+/d). We also study completely positive distributions on the grid [d] x [d] as a classical
analog of separable states and prove that .Q(d/eQ) samples from an unknown distribution p
are necessary to decide whether p is completely positive or e-far from all completely positive
distributions in total variation distance.
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1 Introduction

A quantum state o on C? ® C? is said to be separable if it can be written as a convex combination
of product states, meaning states of the form p; ® ps where p; and py are quantum states on C?.
Separable quantum states are precisely those states which do not exhibit any form of quantum
entanglement. These are the only states that can be prepared by separated parties who can only
share classical information. Understanding the general structure and properties of the set of separable
states in higher dimensions is a difficult problem and is the subject of ongoing research. For instance,
deciding whether a given d? x d> matrix represents a separable state on C¢ ® C? — also known as
the separability problem in the quantum literature — is NP-hard [Gur04]. In this work, we study the
following property testing version of the separability problem:

Provided unrestricted measurement access to n copies of an unknown quantum state o on
C? ® C?, decide with high probability if o is separable or e-far from all separable states in
trace distance.

The ultimate goal is to determine the number of copies of o that is necessary and sufficient to solve
the problem, up to constant factors, as a function of d and e.

By estimating ¢ using recent algorithms for quantum state tomography [HHJ*16,OW16] and
checking if the estimate is sufficiently close to a separable state, this problem can be solved using
O(d*/€?) copies of g. In this paper, we prove a lower bound, showing that §2(d?/e?) copies of g are
necessary, provided e = 2(1/+/d).

* Supported by NSF grant CCF-1717606. This material is based upon work supported by the National Science
Foundation under grant numbers listed above. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of the National
Science Foundation (NSF).
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Analogies between quantum states and classical probability distributions have proven to be a
helpful source of inspiration throughout quantum theory. Unfortunately, entanglement is understood
to be a purely quantum phenomenon; every finitely-supported discrete distribution can be expressed
as a convex combination of product point distributions, so there are no “entangled” distributions.
But motivated by the characterization of separable quantum states using symmetric extensions and
the quantum de Finetti theorem [DPS04], we study mixtures of i.i.d. bivariate distributions which
arise in the classical de Finetti theorem. [DPS04] uses the quantum de Finetti theorem to show that
a quantum state o on C?¢ ® C? is separable (i.e. a mixture of product states) if and only if ¢ has a
symmetric extension to C? @ (C4)®* for any positive integer k. Somewhat analogously, the classical
de Finetti theorem states that a sequence of real random variables is a mixture of i.i.d. sequences of
random variables if and only if it is exchangeable [Dia77].

We call distributions which are mixtures of i.i.d. bivariate distributions completely positive due
to their connection with completely positive matrices. We show that, given sample access to an
unknown distribution p over [d] x [d], £2(d/e?) samples are necessary to decide with high probability if
p is completely positive or e-far from all completely positive distributions in total variation distance.
Our proof also yields a generalization of Paninski’s lower bound for testing if a distribution is
uniform [Pan08].

1.1 Previous work

The property testing version of the separability problem, as defined above, appears in [MdW16],
where a lower bound of 2(d?) is proven for constant e. As in [MdW16], our proof also reduces the
problem of testing if a state is separable to the problem of testing if a state is the maximally mixed
state. However, we do not make use of the entanglement of formation measure, as [MdW16] does,
and instead rely on results about the convex structure of the set of separable states. This approach
yields a more direct proof that certain random states are w.h.p. far from separable, which allows us
to take advantage of a lower bound from [OW15] (see Theorem 1).

There is an extensive literature on the subject of entanglement detection (see e.g. [GT09,
HHHHO09)]), establishing different criteria for detecting or verifying entanglement. However, it is not
obvious how these results can be applied in the property testing setting. In particular, few of these
criteria are specifically concerned with states that are far from separable in trace distance and many
only apply to certain restricted classes of quantum states.

Our proof of the lower bound for testing if a distribution is completely positive is inspired by
and generalizes Paninski’s lower bound for testing if a distribution is uniform [Pan08]. In our lower
bound, we use distributions over [d] x [d] that are more structured than the distributions on [d] in
Paninski’s work. Nevertheless, our overall proof strategy is similar to Paninski’s.

1.2 Outline

In Section 2 we cover background material on completely positive distributions, quantum states and
separability, and the property testing framework that our results are concerned with. In Section 3,
we prove that testing if a distribution p on [d] x [d] is completely positive or e-far from all completely
positive distributions in total variation distance requires £2(d/€?) samples from p. Finally, in Section 4,
we show that testing if a quantum state o on C? ® C? is separable or e-far from all separable states
in trace distance requires £2(d?/€?) copies of ¢ when ¢ = 2(1/+/d).
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2 Preliminaries

This section covers the mathematical background and notation used in the rest of the paper.

2.1 Completely positive distributions

There is a well-developed theory of completely positive and copositive matrices (see e.g. [GM12,
Chapter 7]). In this section, we review some known material.

Let d be a positive integer. We consider distributions over the grid [d]? = [d]x[d] = {(1,1),(1,2),...
which we represent as matrices A € R?* 4 with A;; being the probability of sampling (i, j).

Ezample 1. If p € R? is a distribution on [d] = {1,...,d} represented as a column vector, then pp'
is the natural i.i.d. product probability distribution on [d] x [d] derived from p with p;p; being the
probability of sampling (4, 7).

Definition 1. A matriz A € R?*? js completely positive (CP) if there exist vectors vy, ..., vy €
Rio with nonnegative entries such that A can be expressed as a convex combination of their

projections viv{, ... 7Uk1}]-£, viz. A = Zle civiv] for some nonnegative real numbers cy, ..., c, € R
with ¢1 + -+ +c¢, = 1.
A distribution on [d)? represented as a matriz A is completely positive if A is a CP matrix.

Remark 1. For a CP distribution A, the associated vectors v; may be taken to be probability
distributions, since one can replace v; by v;/||v;]|1 and ¢; by ¢;||v;[|3. Thus, CP distributions are
mixtures of i.i.d. distributions.

It follows immediately from Definition 1 that a CP matrix A satisfies three basic properties:

(i) A is symmetric (AT = A),
(ii) A;; >0 for all 4,5 € [d], and

(iii) A is positive semidefinite (PSD), denoted A > 0.

A matrix satisfying these three properties is called doubly nonnegative. However, if d > 5, then there
exist doubly nonnegative matrices which are not completely positive [MM62].

Ezample 2. Let J denote the d x d matrix with J;; = 1 for all 4, j € [d] and let Unif;2 = .J/d? denote
the uniform distribution on [d]?. Since Unifg = (%, cee é)(é, A é)T, the uniform distribution on
[d]? is completely positive.

Let CP, denote the set of completely positive d x d matrices and let CPD, denote its subset
of completely positive distributions on [d]?. It is well known that CPg is a cone and that its dual
cone consists of copositive matrices, i.e. matrices M such that 2" Mz > 0 for all nonnegative vectors
T € Rio. Thus, by cone duality, if B ¢ CP4 is a non-CP matrix, then there exists a copositive
matrix W such that tr(AW) > 0 for all A € CP4 and tr(BW) < 0. This result yields witnesses
certifying nonmembership in CPD,. However, its usefulness is limited by the fact that it provides
no quantitative information about how far a nonmember A is from the set CPDy.

In what follows, we interpret distributions on [d]? as weighted directed graphs with self-loops
and obtain a sufficient condition for a distribution to be e-far in total variation distance from CPDgy
in terms of the maximum value of a cut in the corresponding graph.

,(d,d)}
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We interpret a distribution A on [d]? as a weighted directed graph G with vertices V(G) = [d]
and edges

E(G) ={(i,5) € [d]* | Ay > 0}.
A cut z € {1} in a G is a bipartition of the vertices V(G) = E; U By with By = {i € [d] | z; < 0}
and Ey = {i € [d] | z; > 0}. The total weight of edges cut by this bipartition is

I R U Bt P SECRE S ST
(4,9)€ld)? ’ '
In particular, if A = pp" with p € R?, then
oAz = 2"pp'z = (z"p)* > 0.
By Remark 1, a CP distribution is a convex combination of matrices of the form pp'. Thus, it holds
that

Proposition 1. If A is a CP distribution, then the total weight of a cut in the graph represented
by A is at most %

This fact allows us to prove the following result which gives a sufficient condition for a distribution
to be e-far from all CP distributions in ¢! distance:

Proposition 2. Let A be a distribution on [d)%. If there exists a cut x € {+1}? with 2" Az < —e,
then ||B — All1 > € for all B € CPDy.

Proof. Let B € CPDy be arbitrary. By Hélder’s inequality, for all U € RZ* ¢ with |U| s = 1,
|B— Al >tr(U(B - A) =tr(U'B) — tr(U' A).
Let U = x2". Since 2" Bz > 0 and tr(UTA) = 2T Az < —¢,

|B - Aly >2"Bx — 2T Az > e.

2.2 Quantum states and separability

This section serves as a brief introduction to quantum states and separability. For a more compre-
hensive introduction, see e.g. [Wat18].

We work over C and use bra-ket notation to denote vectors in C¢, viz. for all vectors x,y € C¢
and matrices A € C1* 4 |z) =2, (z| =27 =27, (z@y| = (2| @ (y|, [z ®Yy) = |2) @ |y), (z]y) = 2Ty,
[2)(yl = oy', and (2] Aly) = o' Ay.

Definition 2. A quantum state p on C¢ is a positive semidefinite matriz p € C* < with tr(p) = 1.
A measurement is a set {Fy,..., Ex} of positive semidefinite matrices on C? with Ey +---+ Ej, = 1,
where 1 denotes the identity matrix.

Let p and {E1,..., E;} be as in the definition above and let p; = tr(pFE;) for i = 1,..., k. Since
p and the F; are PSD, p; > 0 foralli=1,...,k, and

p1+ o pp =tr(pEr) + -+ tr(pEy) = tr(p(Er + -+ + By)) = tr(p) = 1.

Hence, (p1,...,px) is a distribution on [k]. Applying the measurement {E1,. .., Ex} to the quantum
state p yields outcome i € [k] with probability p; = tr(pE;).
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Ezxample 3. % is a quantum state on C? called the mazimally mized state; it is analogous to the

uniform distribution on [d].
Definition 3. A state of the form p = |z){x| for some x € C? is called a pure state.

Given quantum states p and o on C%, the tensor product p ® o is a quantum state on C? @ C¢.
If p and o represent the individual states of two isolated particles, then p ® o is the state of the
physical system comprising both particles. Thus, the system composed of n identical copies of the
state p is represented as the state p®” on (C%)®".

Definition 4. A quantum state o on C? ® C? is separable if o can be expressed as a convex
combination of product states, viz. 0 = Zle cipi ® oy, where p; and o; are states on C* for
i=1,....k and c1,...,c; € R>q satisfy c1 + ...+ ¢ = 1. Thus, the physical system represented by
o may be regarded as being in the state p; @ o; with probability c;.

A state that is not separable is called entangled.

Example 4. Since % = % ® %, the maximally mixed state is separable.

Definition 5. Let Sep denote the set of separable states on C? ® C? and let Sepy denote its
cylindrical symmetrization (c¢f. [AS17, p. 81]), viz. Sepy = conv(Sep U(— Sep)), where conv(E)
denotes the convex hull of the set E.

Similar to the duality between completely positive and copositive matrices, the set Sep generates
a cone of separable operators whose dual is the cone of block-positive operators (see e.g. [AS17]). A
block-positive operator acts as an entanglement witness certifying that a given quantum state is not
separable. Thus, Proposition 4 below is comparable to Proposition 2 in that it describes witnesses
certifying that a quantum state is not just entangled but actually e-far from all separable states in
trace distance.

2.3 The property testing framework

In the property testing model, we have a set O of objects and also a distance function dist : O x O — R.
A property P is a subset of O and the distance between an object x € O and the property P is
defined by dist(z, P) = inf,ep dist(x,y). An algorithm 7T is said to test P if, given some type of
access to x € O (e.g. independent samples or identical copies), T accepts  w.h.p. when x € P and
T rejects x w.h.p. when dist(z, P) > e.
In Section 3, O is the set of distributions on [d] x [d], dist is the total variation distance, and
P = CPDy C O is the set of CP distributions. Given samples x1,...,x, from a distribution p on
[d]?, a testing algorithm 7 for CPDy satisfies
p € CPD; = P[T(x1,...,2,) accepts] >

)

p e-far from CPDy = P[T (x1,...,x,) accepts] <

Wl Wl

In Section 4, O is the set of quantum states on C? @ C%, dist(p,0) = 3|0 — o||; is the trace
distance between quantum states, and P = Sep is the set of separable states on C? ® C?¢. Given
measurement access to n copies p®" of a state p € C¢ @ C?, a testing algorithm for Sep is a
two-outcome measurement {Fy, E1} on (C?)®" satisfying:

2
0€Sep = tr(E0%") =1] > 3 0 e-far from Sep = tr(F;o®") =1] <
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3 Testing complete positivity

Let d be a positive integer. If d is odd, we can reduce to the case of d — 1 by using distributions that
don’t involve outcome d € [d], and the asymptotics of £2(d/e?) remain unchanged. Hence we may
assume, without loss of generality, that d is even.

We begin by defining a family of distributions on [d]? which are e-far from CPDy. Let S C [d] be
a subset of size |S| = 4. Thus, |S¢| = ¢ and

d2
|S><SCUS°><S|:\SxS°|+\SCxS|:?_

Let ¢s : [d]?> — R be the function defined by

1+e, z€85x85US xS
¢s(x) = .
1 —¢, otherwise.

Hence,

2 2
avg ds(x) = d12<d2(1+e) + %(1 6)) -

ze([d]?

So we may think of ¢g as a density function with respect to the uniform distribution on [d]?.

Let x € {£1}? be defined as follows: for all i € [d], if i € S, then x; = 1, otherwise z; = —1.
Let A® be the matrix defined by Afj = ¢s5((i,7))/d?. Thus, A is a symmetric distribution on

[d]? and x is a cut. The total weight of this cut is % . 12;6 = % + 5. Therefore, for every subset
S C [d], the distribution A% is not completely positive. Moreover, T A%z = —¢, so, by Proposition 2,
|AS — B||; > € for every CP distribution B. In other words, for every subset S C [d] with |S| = £,

AS is a distribution on [d]? which is e-far in ¢! distance from every CP distribution on [d]?.
Fix 2 = [d]? and let ¢ : 2™ — R denote the function defined by

o(x) = avg dg(x1)- - ds(an).
SC[d]
|S|=d/2

Let D,, denote the distribution on £2™ defined by the density ¢ and let d,2(—, _) denote the x2-distance
between probability distributions, i.e. for distributions P and Q on {2,

@]

The following proposition will be shown to imply our lower bound:

dy2(P,Q) =

x~Q

Proposition 3. If d,2(D,, Unif%") > L, then n = 02(d/e?).
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Proof. Let H denote the uniform distribution over subsets S C [d] with |S| = d/2. Thus,

cam D, (x)?
ol vity) - (T o) -
d

zenn
o(x)?

= ( > o ) -1

xEeEN™
= E ¢=)°-1

wNUnif%’L
2

B mNUEJ‘if;@Q" [(S]NEH ps(x1) - ¢S($n)) ] -1

_ E [ B os(@1) ds(@a)os (@) s (@a)| — 1

x~Unif®" | S,8'~
a2

S,SENH wNU]Eif;@JL ds(1) - Ps(xn)ps (x1) - dsr(xn) — 1

P (. ¢s<x>¢5f(w>)n]—1.

8,8 ~H | \@~Unit ;2

For a subset E C [d], let xg be the +1-valued indicator function defined by xg(xz) =1 if z € E and
XE(z) = —1 otherwise. Note that ¢g(z) =1 — xg(z1)xE(z2)e for all x € 2. Hence,

¢s(@)ds (x) =1 = (xs(x1)xs(x2) + x5 (T1) X5 (T2))e + X5 (1)x5 (T2) X5 (T1) X357 (T2)€”.

For a fixed outcome of S and x uniformly random, yg(z1) and xs(x2) are independent uniform
+1-valued bits. So, in expectation, the terms involving just € in the expression above drop out.
Moreover, xs(@1)xs (x1) and xs(x2)xs (x2) are independent. Hence,

E  ¢s(@)ps(m)=1—¢€- ( E  xs(z1)xs (581))

x~Unif ;2 x~Unif ;2

Let r =[S N S’|, where S, 8" ~ H, and let & denote the mean of xg(x1)xs (x1) appearing above.
It is easy to check that & = 4r/d — 1. Thus,

do(n Unifi) < (B |14€8)"]-1< B [en(@8)] -1= B [owp(ne's)] - 1

Since exp(ne?d?) —1 > 0,

a5 1o [ 252\
S,SENH[GXP(M 8] -1 7/0 Sﬁsl?NH[exp(ne 6%) —1 > t]dt.

Since exp(ne2d?) — 1 >t is equivalent to

1

d d (log(l1+1t)\?
S22 (2B TY
r4+4( ne?
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it follows that

o0
dy2(Dy, Unif") < /0 s & [r
where f(t) = log(1 + t)/ne.
Since r = [S NS’ is invariant under permutations of [d], it follows that 7 is distributed according
to the hypergeometric distribution with d/2 draws from a set of d elements with d/2 successes. If X
is a random variable distributed according to the hypergeometric distribution with m draws from a
set of N elements with k successes, then (see e.g. [Skal3])

X k
P [m > N + s} < exp(—232m).
Hence,
P |r 2>}+t = P |r>- 4+ | <exp(—dt?)
8,8 ~H d— 2 S,8'~H| — exp
whence,
d Wf)+1)]| <e df(t)/4)
— X .
S, S’N?-L 4 p(=
Therefore,

d2 (D, Unit) < /0 " expl—df(t)/4)dt

o0 d
= —— log(l+1t))dt
/O eXp< e og(1+ ))
</ 1 \° 1
:/ —_— dt: s
0 14+t c—1

where ¢ = d/4ne®. Since dy2(Dy,, Unif$") > 1/3, it follows that ¢ < 4, so n > d/16¢2. Therefore,
= 2(d/€?), as needed.

Let drv(_, ) denote the total variation distance between probability distributions. Let p € CPDy
and let g be a distribution e-far from CPDy.

A testing algorithm f : ([d]?)" — {0,1} for complete positivity determines a probability event
E C ([d*)" satistying p®"(E) > 2/3 and ¢®"(E) < 1/3. Hence, Unif*(E) > 2/3 and, since D,, is
supported on distributions e-far from CPDgy, D, (E) < 1/3. Therefore, drv (D, Unif$") > 1/3 and
the following corollary establishes the lower bound:

Corollary 1. If drv(D,, Unif%2") > 1/3, then n = 2(d/€).

Proof. For all distributions p and v, 2dpy (i, v)? < dy2(p, v). Hence,

(d/4ne* —1)7! > d,2(Dy, Unif%") > 2drv (D, UnifR*)? >

@\1\9

where the first inequality is obtained in the proof of Proposition 3. Therefore, n = £2(d/e?).
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4 Testing separability

Let d be a positive integer. As in the previous section, we may assume, without loss of generality,
that d is even.

Let H = C? ® C?, let U(H) denote the set of unitary operators on H, and recall that Sep
denotes the set of separable states on #H. For all operators T on H, let ||T'||, denote the Schatten
p-norm of T', viz. |T|, = (tr(|T|p))%, where |T| = VT1T is the absolute value of the operator T.
Let di.(0,0) = 3||o — o1 denote the trace distance between quantum states ¢ and o.

We begin by defining a family of quantum states which are with high probability O(e)-far from
Sep. For 0 < e <1/2, let D, be the diagonal matrix on H defined by

. 1+ 2 1+2¢ 1—2€¢ 1—2¢
D, = diag R I R R R > ,

where tr(D.) = 1, and let D denote the family of all quantum states on H with the same spectrum
as D, viz. D = {UD.UT | U € U(H)}.
Our lower bound will rely on the following theorem from [OW15]:

Theorem 1. 2(d?/€?) copies are necessary to test whether a quantum state o on H is the mazimally
mized state or o € D.

If U is a random unitary on ‘H distributed according to the Haar measure, then g = UD.U' is
a random element of D. This induced probability measure is invariant under conjugation by a fixed
unitary: for all V€ U(H), VoV has the same distribution as o. We want to show that:

Lemma 1. There is a universal constant Cy such that for all C’o/\/a < €< 1/2, the following holds
when o = UDU" is a uniformly random state in D: P[Vo € Sep, |lo—o|1 > 2¢] > %

As € tends to zero, the elements of D get closer to the maximally mixed state and eventually
become separable, by the Gurvits-Barnum theorem [GB02]. Indeed, if ¢ < 1/(2v/d? — 1), then
D C Sep. Hence, some assumption on € is necessary for Lemma 1 to hold.

Lemma 1 and Theorem 1 easily imply the desired lower bound:

Theorem 2. Let ¢ be a quantum state on C* @ C? and let e = 2(1/V/d). Testing if ¢ is separable
or e-far from Sep in trace distance requires 2(d?/e?) copies of o.

Proof. Let {Ey, E1} be a measurement corresponding to a separability testing algorithm using n
copies of . To apply the lower bound in Theorem 1, we use {Ey, E1} to define an algorithm that
decides w.h.p. if a state o is equal to the maximally mixed state % or p € D.

Let ¢®™ be given with either o € D or o = d%. Note that, for all ¢ € D, dy, (o, d%) > ¢ holds. Let
U be a random unitary. If ¢ is the maximally mixed state, then VoVT = o for all V € U(H), so
(UoUT®" = & Otherwise, UpU" is a random state in D.

Applying the separability test {Eo, E1} to UpU', we have that:

(1) if UpU'" = o = 4z, then UoU'" is separable, so tr((UoU")®"E}) = tr(¢®"E) > 2,
(ii) if o € D, then the probability of error is

gtr((UQUT)‘g”El) < P[UU" is e-close to Sep] + Pltest fails | UpU" is e-far from Sep]

S 1,1.2_5 s
which is at most 5 + 5 - § = g, using Lemma 1.



10 C. Badescu and R. O’Donnell

Thus, using the separability test, we can distinguish w.h.p. between o = dl% and ¢ € D using n copies
of o. Therefore, by Theorem 1, n = 2(d?/€?).

It remains to show that Lemma 1 holds. Its proof relies on two main facts: first, that Sep is
approximated by a polytope with exp(O(d))) vertices which are separable pure states; and, second,
that a random element of D is e-far from a fixed pure state except with probability exp(—O(d)).

The first fact follows from the next lemma which is a rephrasing of [AS17, Lemma 9.4]:

Lemma 2. There exists a constant C > 0 such that, for every dimension d, there is a family N
of pure product states on H (i.e. states of the form |r @ y){x ® y| with x,y € C?) with |N| < C¢
satisfying

conv(N U —N) C Sep, C 2conv(N U—-N).

Now, we wish to upper bound the probability that a random element of D is e-far from a fixed
pure state. The following result provides a sufficient condition for a state o on H to be e-far from a
state o € D:

Proposition 4. Let p € D be arbitrary and let W =
tr(oW) > —€||[W||wo, then o — o1 > €.

7o For all quantum states o on H, if

Proof. Note that

1 144€ 4€?
2 e g o Wile=

1

2¢
i

(o) = = — tx(o?) =

oo

By Holder’s inequality for matrices, tr((c — 0)W) < |lo — 9|1 - ||W]|c0- Hence,

tr(oW) — tr(oW) et tr(cW)

W ][oo Wleo

lo — el =

When ¢ = |z)(z| with € H and ¢ = UD.UT, we have

1

() alW) = (el la) = (ol (5 ~ 0D ) o) = (ol0

- De)zﬂm = W - (2|UZU|a),
(1)

where Z = diag(—1,...,—1,1,...,1) is just 1 /d? — D, divided by ||W||oo. Hence, |0 — |z){z|||1 > €
holds if (z|UZU'|z) > —e.

Since we are interested in the case when g = UD.U' is random, it suffices to show that
(z|UZUT|z) concentrates in the interval [—e, €]. This fact follows easily from the next lemma:

Lemma 3. Let k be a positive even integer. If w € C* is a uniformly random unit vector, then, for
sufficiently large k,

1
P ||(u|Z]uw)| > gek™ | < dexp(—VEe?/8),

where Z = diag(1,...,1,—1,...,—1) is a k X k diagonal matriz with tr(Z) = 0 and ¢ may be any
positive constant.



Lower bounds for testing complete positivity and quantum separability 11

Proof. Let w = (ay+iby,...,ar+iby) € CF be a uniformly random unit vector with a1, ..., ay, by, ..., by €
R and let v € R?* be defined by

v = (al,...,ag,bl,...,b%,a%+1,...,ak,bg+1,...,bk).
Let D be the 2k x 2k diagonal matrix D = diag(1,...,1,—1,...,—1) with tr(D) = 0. Thus, v is a
uniformly random real unit vector such that (v|D|v) = (u|Z|u).
Let ®1,..., Tk, Yy, -- -, Y € R be 2k standard Gaussian random variables. Let X = x?+- - —|—a:i

and Y =y? + -+ y% By the rotational symmetry of multivariate Gaussian random variables, v
has the same distribution as

(wla"'axkaylw-.ayk)
X+Y '

Hence, (v|D]v) and §;§: have the same distribution. Since X and Y are independent x? random

variables with k degrees of freedom each, it holds that (see e.g. [Wail9, Example 2.11])
X
PHk — 1‘ > t} < 2exp(—kt?/8),

for all t € (0,1) and similarly for Y. Hence, for t = ck='/%, we have P[|X — k| > ck*/*] <
2 exp(—Vke?/8).
If | X — k| < ck3/* and |Y — k| < ck®/4, then, for k sufficiently large,
X -Y| 2ck®/4 c

1
Dlv)| = < = —ck™14,
(D)l = %5 < g —ogen ~ A —1 <3¢

Hence, P[|(v|DJv)| < 3ck=Y4] > 1 — dexp(—Vkc?/8).

If U is a random unitary distributed according to the Haar measure on U(H) and = € H is a fixed
unit vector, then w = U|x) is a uniformly random unit vector in . Hence, we can apply Lemma 3
to [{(u|Z|u)| to get

P(|(c[UZU"[2)]| > €] < 4exp(~de*/8), (2)

where c is an arbitrary positive constant and ¢ > %cd’l/z.
We now have all the elements needed to prove Lemma 1:

Proof (Proof of Lemma 1). Let o = UD.U" be a uniformly random element of D and let W = (%2 —0.
Thus, assuming € > cd /2,

P[Vo € Sep, drv(,0) > €
= P[Vo € Sep, ||l@ — oll1 > 2¢]

> P[Vo € Sep, tr(cW) > —2¢||W/||] (by Proposition 4)
> P[Vo € 2conv(N U —N), tr(cW) > —2¢||W || 5] (by Lemma 2)
=PV|z){z] e NU-N, 2tr(|z){z|W) > —2¢|| W] 0] (by convexity)

=P|V|z)(z| e N, [(z|UZUT|z)| < e} (by Equation (1)).
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By a union bound, this probability is at least

1-—

|z

> P[|<x\UZUHz>| >e| >1—|N]|-dexp(—dc?®/8) = 1 — dexp(d(log C — ¢2/8)),
MeoleN

where the first inequality was by Equation (2). Hence, if ¢ = /8(log C + 1), then

P[Vo € Sep, drv(e,0) > ¢] > 1 —4exp(d(logC —c?/8)) = 1 — dexp(—d) >

[SCIR )

)

for d > log 12.
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