
Journal of Computational Physics 448 (2022) 110740
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A parallel cell-centered adaptive level set framework for

efficient simulation of two-phase flows with subcycling and

non-subcycling

Yadong Zeng a, Anqing Xuan a, Johannes Blaschke b, Lian Shen a,∗
a Department of Mechanical Engineering and Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414, USA
b National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Lab, Berkeley, CA 94720, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 4 October 2021

Keywords:
Adaptive mesh refinement (AMR)
Two-phase flow
Level set
Subcycling
Non-subcycling

We develop a unified adaptive level set (LS) framework using the multi-level collocated
grid for incompressible two-phase flows. This framework allows us to advance all variables
level by level using either the subcycling or the non-subcycling method such that the
data advancement on each level is fully decoupled. A series of synchronization operations
are designed to keep the momentum and mass conserved across all levels. A multi-
level re-initialization method for the LS function is also proposed, which greatly improves
the mass conservation of the two-phase flows. The collocated grid allows the use of a
single set of differential schemes and interpolation operations for all variables, which
greatly simplifies the numerical implementation. The capability and robustness of the
computational framework are validated by a variety of canonical problems, including the
inviscid shear layer, gravity wave, rising bubble, and Rayleigh-Taylor instability. It is shown
that the present multi-level scheme can accurately resolve the interfaces of the two-phase
flows with gravitational and surface tension effects while having good momentum and
energy conservation. At last, a three-dimensional dam breaking problem is simulated to
show the efficiency and significant speedup of the proposed framework.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Numerical simulation of air–water interactions is of great interest in many environmental problems and engineering ap-
plications, such as wind over breaking waves [1,2], ship hydrodynamics [3], bubbly flows [4,5], and liquid jets [6]. To capture
the complex physical processes involved in the two-phase flow problems, a high grid resolution is needed around the free
surface to resolve small flow structures [7]. However, those fine structures may not be present everywhere, therefore one
does not need or maybe cannot afford a fine grid of uniformly high resolution across the whole domain. The need to resolve
local fine features can be addressed by the adaptive mesh refinement (AMR) method. AMR increases the grid resolution in
regions of interest as needed during the simulation while leaving general estimates in other regions. Since proposed in the
1980s [8,9], various classes of AMR have been developed and applied to a wide range of physical problems, including the
wave energy converters [10,11], shallow water flows [12], marine ice sheet [13], island dynamics [14], supersonic flows [15],
surfactant driven flows [16], viscous finger flow [17], stratified oceanic flows [18], and the astrophysics [19].

* Corresponding author.
E-mail address: shen@umn.edu (L. Shen).
https://doi.org/10.1016/j.jcp.2021.110740
0021-9991/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2021.110740
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2021.110740&domain=pdf
mailto:shen@umn.edu
https://doi.org/10.1016/j.jcp.2021.110740

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Based on the grid hierarchy and data structure, AMR methods can generally be classified into two groups, the
quadtree/octree-based AMR (TBAMR) [20–22] and block-structured AMR (BSAMR) [8,9,23–27]. In the TBAMR, each cell can
be split into four cells in two dimensions or eight cells in three dimensions and the hierarchy of the grid cells is organized
using a tree structure [28]. Although the tree-based structure is an intuitive representation of the grid hierarchy for the
multi-level grid and simplifies the management of the grid refinement and coarsening, it is relatively difficult to implement
the data structure [28,29]. Moreover, the connectivity between adjacent cells and the refinement history need to be stored
at every time step [30,31]. The BSAMR, on the other hand, builds the mesh as nested Cartesian grids [8,9,23–26,32]. It is
relatively easy to use the domain decomposition method for parallelization [33]. Equations on the nested grid can also be
solved efficiently utilizing the multigrid (MG) solver [23,26].

For both TBAMR and BSAMR, the choice of the grid layout can affect the complexity of the discretization scheme and
multi-level algorithm on the adaptive grid [34,35]. Most existing grid layouts fall into three categories, the collocated grid,
the staggered grid, and the semi-staggered grid. On a semi-staggered grid [23,36], the velocities are defined at the cell
center whereas the pressure is defined at the nodal center. As a result, different interpolation schemes are required for the
velocities and pressure on the multi-level grid. Moreover, two types of implicit solvers are needed for the velocity and pres-
sure equations. The staggered grid (or MAC layout), while facilitating a divergence-free velocity field, still needs different
interpolation schemes for the velocities and pressure [32,35,37–39]. Furthermore, producing a compact, accurate implicit
solver for the viscous terms is not straightforward in the context of the MAC layout [20]. The collocated grid is attractive for
non-orthogonal grids. Variables on different levels are coupled through the coarse-fine boundaries and are solved simulta-
neously. However, because of this coupling, the time step is restricted by the finest grid spacing for numerical stability. On
the other hand, the level-by-level advancement method decouples the time advancement among different levels [9,23]. This
method can be further divided into the non-subcycling method and subcycling methods [24,26]. The non-subcycling method
uses a uniform time step for all levels. Thus, the time step is also restricted by the finest level for numerical stability. The
subcycling method, where variables on different levels are advanced with different time steps, can reduce the number of
advancement steps and save the simulation time. However, the variables across different levels need to be interpolated in
time for the subcycling method, which is not required in the non-subcycling method. Furthermore, the subcycling method
needs recursive advancement steps between different levels, making it relatively difficult to implement [35].

In the past several decades, many researchers have combined AMR with the interface-tracking techniques, such as the
front-tracking method [40], and the interface-capturing techniques, such as the volume-of-fluid (VOF) method [41–43] and
level set (LS) method [44–47], to simulate two-phase flow problems. Pivello et al. [39] presented a BSAMR-based adaptive
front tracking method to simulate bubbly flows. This method represents the interface precisely with a Lagrangian mesh but
needs frequent re-meshing when the interface deforms significantly, e.g., in a violent two-phase flow. Sussman et al. [36]
proposed an adaptive LS approach for the incompressible two-phase flow within the BSAMR framework. The LS method is
also developed for the unstructured TBAMR by Kohno and Tanahashi [48]. Antepara et al. [49] embedded a conservative
LS method into the TBAMR framework. Popinet [50] combined the VOF method with the TBAMR for surface-tension-driven
interfacial flows and de Langavant et al. [16] presented a LS method on the non-graded tree-based adaptive grids for
surfactant driven flows. In the works cited above, the two-phase flow solutions are updated in time using the composite
advancement method, i.e., discretized equations of velocity and pressure are constructed and solved for multiple levels
simultaneously. To the best of our knowledge, there has been no implementation of the AMR framework that can utilize the
level-by-level advancement method, especially the subcycling method, for the simulation of two-phase flows. Considering
that complex flow structures are often present in two-phase flows, advancement using the subcycling method is desired for
reducing the computational cost.

In this paper, we propose a unified BSAMR framework to simulate two-phase flows using the LS function with both the
subcycling and non-subcycling methods on a collocated grid. The AMReX package [51] is utilized to manage the multi-level
grid and perform parallel operations. There are four contributions of this paper. First, we propose a level-by-level method
for time advancement in the context of two-phase BSAMR. To the best of our knowledge, this is the first framework that
unifies the subcycling and non-subcycling methods to simulate two-phase flows. Second, the use of the collocated grid is
also the first among the two-phase BSAMR framework. The collocated grid significantly simplifies the implementation of
multi-level differential operators and interpolation schemes. Third, we design the synchronization operations, including the
averaging, refluxing, and synchronization projection, which ensures that the flow field is divergence-free on the multi-level
grid. Numerical tests show that our algorithm has a good conservation of momentum and energy. Lastly, we propose a
robust and efficient re-initialization algorithm to maintain the LS function as the signed distance function across multiple
levels. This algorithm substantially improves the mass conservation of the two fluid phases.

The remainder of this paper is organized as follows: we start with the mathematical formulation of the Navier–Stokes
equations and LS advection equation for incompressible two-phase flows in section 2, followed by a description of the
variables and operators on the multi-level adaptive grid in section 3; next, the time advancement algorithm is presented in
section 4; validation cases and numerical tests are then given in section 5; at last, the conclusions are given in section 6.
2

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Fig. 1. Left: two-phase flow on a multi-level Cartesian grid. Right: schematic definition of the LS function.

2. Mathematical formulation

In this paper, we consider two-phase incompressible flows with gravity and surface tension effects. As illustrated in the
left part of Fig. 1, the densities of the two phases are denoted by ρ1 and ρ2, respectively; and the dynamic viscosities are
μ1 and μ2, respectively. The Navier–Stokes equations for the fluid flow with variable density and viscosity read

∂u

∂t
+ ∇ · (uu) = 1

ρ(φ)

[
−∇p + 1

Re
∇ · 2μ(φ)D̃ + ρ(φ)

ĝ

Fr2
− 1

We
κ(φ)δ(φ)n

]
, (1)

∇ · u = 0, (2)

where u is the velocity vector, p is the pressure, ρ is the density, and μ is the dynamic viscosity. The above equations
are normalized by a characteristic velocity U , characteristic length L, and the density and dynamic viscosity of phase 1, ρ1
and μ1. In the viscous term ∇ · 2μ(φ)D̃/Re, Re = ρ1U L/μ1 is the Reynolds number and D̃ = (∇u + ∇uT)/2 is the strain
rate tensor. For the gravitational term ρ(φ) ĝ/Fr2, ĝ is the unit vector in the direction of gravity and the Froude number is
defined as Fr = U/

√
gL with g being the gravitational acceleration. In the surface tension term κ(φ)δ(φ)n/We, κ(φ) is the

curvature of the interface, δ(φ) is the Dirac function, n is the unit vector of the surface normal, and We = ρ1U2L/σ is the
Weber number, with σ being the surface tension coefficient.

The two immiscible fluids are tracked by the LS function φ [36,52]. As illustrated in the right part of Fig. 1, φ is the
signed distance from the two-phase interface, with φ > 0 in the phase 1 and φ < 0 in the phase 2. The advection equation
of φ is

∂φ

∂t
+ ∇ · (uφ) = 0. (3)

The unit vector n and curvature κ(φ) of the interface in Eq. (1) are calculated as

n = ∇φ

|∇φ| , (4)

κ(φ) = ∇ · n = ∇ ·
(∇φ

|∇φ|
)

. (5)

For the numerical treatment, both the Dirac function δ(φ) and the Heaviside function H(φ) are smoothed around the
interface as [36]

δε(φ) =
{
0 |φ| < ε
1
2

[
1
ε + 1

ε cos
(

πφ
ε

)]
|φ| ≤ ε,

(6)

Hε(φ) =

⎧⎪⎨
⎪⎩
0 φ < −ε
1
2

[
1+ x

ε − 1
π sin

(
πφ
ε

)]
|φ| ≤ ε

1 φ > ε,

(7)

where ε is the smearing width and is usually set to be twice the grid spacing [36,52]. Finally, the dimensionless density
ρ(φ) and dynamic viscosity μ(φ) are given by

ρ(φ) = λ + (1− λ)H(φ), (8)

μ(φ) = η + (1 − η)H(φ). (9)

In the above equations, λ = ρ2/ρ1 and η = μ2/μ1 are the normalized density and dynamic viscosity of phase 2.
3

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Fig. 2. Diagram of a three-level adaptive grid with three types of boundaries. �i, j represents the patch j on level i for all i ≥ 0, j ≥ 1.

3. Variables and operators on multi-level adaptive grid

3.1. Concepts and definitions in BSAMR

This section introduces some important concepts of the BSAMR. In this paper, the coarsest level of the grid in the entire
computational domain
 is referred to as level 0. The finest level that the grid can be refined to is denoted as level lmax . In
other words, the total number of levels is lmax + 1. Fig. 2 illustrates a three-level adaptive grid with lmax = 2 as an example.

Grid cells can be dynamically tagged and refined following certain criteria [9]. In BSAMR, although the tagging is done
on individual cells, we do not refine or de-refine the cells individually. Instead, these tagged cells are grouped to form a
series of rectangular patches for two-dimensional grids or cuboid patches for three-dimensional grids. There can be more
than one patch on a specific level and these patches are refined simultaneously to the next level. For example, in Fig. 2,
level 2 consists of two patches. Because BSAMR uses a nesting hierarchy of rectangular patches, the union patches on level
l + 1 must be contained in the union patches on level l for all 0 ≤ l < lmax , i.e.
l+1 ⊂
l , where
l denotes the union of the
patches on level l. Because of this nesting property, three types of boundaries exist on the adaptive grid:

◦ Physical boundary: the boundary that encloses the computational domain, illustrated using the dashed lines in Fig. 2.
◦ Coarse-fine (CF) boundary: the boundary between the grid cells of different levels. These boundaries are illustrated using

the thick solid lines in Fig. 2.
◦ Fine-fine (FF) boundary: the boundary between two patches at the same level, marked using the dotted lines in Fig. 2.

Ghost cells are defined at all boundaries and their values are assigned to represent the boundary effects. The ghost
cells at the physical boundaries are filled based on the physical boundary conditions. At the CF boundaries, we adopt a
conservative interpolation (Icons) method [23,51] to fill the ghost cells of the fine level. To be specific, we reconstruct a
continuous functional form, f (x), on the ghost cells by combining the values of the coarse level and the values of the fine
level. Besides satisfying the continuity across the CF boundary, the function f (x) is also subject to the requirement that the
average of f (x) over the area of a coarse cell is equal to the original coarse cell value [53]. The conservative interpolation
scheme maintains the second-order accuracy of the proposed multi-level algorithms, as verified in section 5. At the FF
boundaries, the ghost cell values are copied from neighboring patches.

3.2. Definitions of variables and operators

We first define the following types of regions for a specific level l.

◦ Valid region (
l
valid): grid cells on level l that are not covered by finer patches.

◦ Invalid region (
l
invalid): grid cells on level l that are covered by finer patches.

We note that on level lmax ,
lmax
valid =
lmax and
lmax

invalid = ∅. On level l < lmax ,
l
valid =
l\
l+1 and
l

invalid =
l+1. Fig. 3
shows an example, where the green and orange cells represent the valid regions of level l and l +1, respectively. The orange
area is also the invalid region of level l.

In the present work, all variables, including the velocity u , pressure p, and LS function φ, are defined at cell centers, i.e.,
the collocated grid is used. Because our multi-level scheme uses a level-by-level advancement method (section 4), variables
need to be available in both the valid and invalid regions. Depending on which regions we use to describe the flow field,
we have the following two sets of variables.
4

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Fig. 3. Diagram of the variable definitions on a multi-level grid and the stencil of the discretization operators. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

◦ Composite variables: variables defined in the valid regions across a multi-level grid.
◦ Level variables: variables defined on the whole level, including both the valid and invalid regions.

All simulation results in this paper are presented using the composite variables unless specified otherwise. Corresponding
to the composite and level variables, there are also two sets of operators in the adaptive grid algorithms.

◦ Composite operators: operators defined in the valid regions across multiple levels using cell values on different levels.
◦ Level operators: operators extended from the composite operators to all regions on a single level.

We use a 2D LS function φ to show the definitions of the above two types of operators, as illustrated in Fig. 3. Although
only 2D operators are presented in this section, 3D operators can be defined in a straightforward way. For any point (i, j) ⊂

l
valid on level l, the 2D composite gradient operator Gcc,comp,l is defined as

(
Gcc,comp,lφ

)x
i, j

= φi+1, j − φi−1, j

2�xl
,

(
Gcc,comp,lφ

)y
i, j

= φi, j+1 − φi, j−1

2�yl
,

(10)

Here, the superscript cc means that the operator applies to the cell-centered variables; the superscripts comp and l indicate
that the composite operator G is evaluated in the valid regions of level l; the superscripts x and y denote the x- and y-
components of the gradient, respectively; �xl and �yl are the grid spacings in the x and y directions on level l, respectively.
If the grid cell is away from the CF boundary, no ghost cell values are needed. If the grid cell is adjacent to the CF boundary,
the values in the ghost cells are used for the evaluation of the composite gradient. For example, for the stencil shown in
Fig. 3, the value of ghost cell φi+1, j at the CF boundary is averaged from level l + 1. Similarly, for all φ2i+2,2 j ⊂
l+1

valid on
level l + 1, the composite gradient operator Gcc,comp,l+1 is defined as
5

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
(
Gcc,comp,l+1φ

)x
2i+2,2 j

= φ2i+3,2 j − φ2i+1,2 j

2�xl+1
,

(
Gcc,comp,l+1φ

)y
2i+2,2 j

= φ2i+2,2 j+1 − φ2i+2,2 j−1

2�yl+1
.

(11)

The value of ghost cell φ2i+1,2 j at the CF boundary is filled using the aforementioned conservative interpolation by combin-
ing the data on both level l and level l + 1.

Similar to the composite gradient operator Gcc,comp,l , the composite divergence operator Dcc,comp,l and the composite
Laplacian operator Lcc,comp,l are defined as

(
Dcc,comp,lφ

)
i, j

= φi+1, j − φi−1, j

2�xl
+ φi, j+1 − φi, j−1

2�yl
, (12)

(
Lcc,comp,lφ

)
i, j

= φi+1, j − 2φi, j + φi−1, j

(�xl)2
+ φi, j+1 − 2φi, j + φi, j−1

(�yl)2
. (13)

To simplify the notations in the following sections, we denote the union set of the composite operators as

Gcc,comp =
lmax⋃
i=0

Gcc,comp,l,

Dcc,comp =
lmax⋃
i=0

Dcc,comp,l,

Lcc,comp =
lmax⋃
i=0

Lcc,comp,l.

(14)

For a specified level l, the expressions of the level divergence operator Dcc,level,l , the level gradient operator Gcc,level,l , and
the level Laplacian operator Lcc,level,l are the same as Eqs. (10), (12), and (13), respectively. However, these level operators
also apply to the invalid regions of level l, i.e., φi, j ⊂ (
l

valid ∪
l
invalid). For example, when evaluating the level gradient of

φx
i, j in Eq. (10), φi+1, j is the value from the invalid region of level l, instead of the averaged value from level l + 1. For

conciseness, we replace the Dcc,level,l , Gcc,level,l , and Lcc,level,l with the conventional mathematical expressions ∇ , ∇·, ∇2

hereafter.
At last, we note that the level and composite operators are closely related to the approximate projection method used in

this work, which is discussed in section 4.1.1 and section 4.2.2.

4. Time advancement

In this work, we use a level-by-level method [24,25] for the time advancement on the multi-level grid. This method
updates the solution on each level individually in a certain order and synchronizes the composite solution across different
levels. Because the multi-level advancement algorithm is based on the single-level advancement, we first introduce the
single-level algorithm in section 4.1. Then, the multi-level algorithm is described in section 4.2.

4.1. Single-level advancement

4.1.1. Time discretization
For a single level, the momentum equation (1) is advanced by a fractional step method with the approximate projection

[54–56] to enforce the incompressibility condition (equation (2)). The LS advection Eq. (3) is updated using the Godunov
scheme [23,36,57,58].

At the beginning of each of the time advancement of level l, the velocity un,l and the LS function φn,l at time tn,l are
given. Owing to the fractional step method we used, the pressure is staggered in time [23,36,37] and thus the pressure
pn−1/2,l at time tn−1/2,l is known. Because the single-level advancement concerns only level l, we omit the superscript l in
this section. To obtain the updated velocity un+1, pressure pn+1/2, and LS function φn+1 on level l, the solver performs the
following steps:

1. Advance the LS function as

φn+1 = φn − �t [∇ · (uφ)]n+1/2 . (15)

The advection term in the above equation is calculated using the Godunov scheme detailed in section 4.1.2.
6

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
2. Solve the intermediate velocity u∗ semi-implicitly

u∗,n+1 − �t

2ρ(φn+1/2)Re
∇ · μ(φn+1)∇u∗,n+1 = un − �t [∇ · (uu)]n+1/2 +

�t

ρ(φn+1/2)

[
− ∇pn−1/2 + 1

2Re
∇ · μ(φn)∇un + ρ(φn+1/2)

z

F r2
− 1

We
κ(φn+1/2)δ(xn+1/2)n

]
.

(16)

In Eq. (16), the detailed discretization of the advection term ∇ · (uu), viscous term ∇ · (μ(φ)∇u), and surface tension term
κ(φ)δ(x)n/We are given in section 4.1.2. The LS function at tn+1/2 is calculated by

φn+1/2 = 1

2
(φn + φn+1), (17)

where φn+1 is obtained from step 1 (Eq. (15)). The ρ(φn+1/2), μ(φn), and μ(φn+1) are then obtained from Eqs. (8) and (9).
3. Apply the projection method to obtain the pressure and a solenoidal velocity field. To conduct the level projection, a

temporary variable V is defined as

V = u∗,n+1

�t
+ 1

ρ(φn+1/2)
∇pn−1/2. (18)

Then the updated pressure pn+1/2 is calculated by

Lcc,level
ρn+1/2 pn+1/2 = ∇ · V , (19)

where Lcc,level
ρn+1/2 pn+1/2 is a density-weighted approximation to ∇ · (1/ρn+1/2∇pn+1/2). Finally, the velocity can be calculated

as

un+1 = �t

(
V − 1

ρn+1/2
∇pn+1/2

)
. (20)

As defined in section 3.2, ∇· and ∇ are the cell-centered level divergence operator Dcc,level and level gradient op-
erator Gcc,level, respectively. The level gradient operator Gcc,level is not the minus transpose of the level divergence
operator Dcc,level, i.e., Gcc,level
= −(Dcc,level)T [24,25,59]. As a result, the idempotency of the approximate projection
P = I − Gcc,level(Lcc,level)−1Dcc,level is not ensured [23], i.e., P 2
= P . Yet, this nonidempotent approximate projection is
stable and appears to be well-behaved in various numerical tests [24,54,60] and practical applications [25,36]. Notably,
for a uniform single grid with periodic boundary conditions, Lai [61] theoretically proved that this approximate projection
method is stable, in that ‖P‖ ≤ 1. It should be noted that the approximate projection is applied to the intermediate velocity
u∗,n+1 (Eq. (18)). Compared with the form that projects the increment velocity u∗,n+1 − un , e.g. as that used in Almgren
et al. [23], the projection method used here can reduce the accumulation of pressure errors and lead to a more stable algo-
rithm [54,62]. We also validate the effectiveness and stability of this approximate projection in section 5.1 using a numerical
test [63].

4. Reinitialize the LS function φ to maintain φ as a signed distance function of the interface and guarantee the conserva-
tion of the mass of the two phases. In this step, a temporary LS function d(x, τ) is updated iteratively using the following
pseudo evolution equation,

∂d

∂τ
= S(φ)(1− |∇d|), (21)

with the initial condition

d(x, τ = 0) = φn+1(x), (22)

where

S(φ) = 2 (H(φ) − 1/2) . (23)

Here, τ is the pseudo time for iterations. A second-order essentially non-oscillatory (ENO) scheme is used to discretize the
distance function and a second-order Runge–Kutta (RK) method is applied for the pseudo time advancing. To ensure the
mass conservation, d(x, τ) is further corrected by minimizing the differences of the volume of each fluid between τ = 0 and
the final iteration [36,52]. Finally, the LS function φ is re-initialized by the volume corrected d.

At last, we give a summary of the single-level advancement algorithm in Algorithm 1 as follows.
7

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Algorithm 1 Single-level advancement algorithm.
1: Advance the LS function using Eq. (15);
2: Solve the intermediate velocity using Eq. (16);
3: Apply the projection method to update the pressure and velocity field following Eqs. (18)–(20);
4: Re-initialize the LS function on the single level using Eqs. (21)–(23).

4.1.2. Discretization of the advection, viscous, and surface tension terms
In this part, all discretized formulas use the level operator (section 3.2). For simplicity, only the 2D discretized formulas

are given in this section. The 3D formulas can be extended in a straightforward way.
For the discretization of the advection terms [∇ · (uφ)]n+1/2 in Eq. (15) and ∇ · (uu)n+1/2 in Eq. (16), we employ the

Godunov scheme [57], which is robust for a wide range of Reynolds number values. These terms are determined by four
sub-steps:

1. On the edges perpendicular to the x direction, the unsplit Godunov method is used to approximate the edge centered
velocity (un+1/2,L , un+1/2,R) and edge centered LS function (φn+1/2,L , φn+1/2,R) at the middle time step tn+1/2. The
superscripts L and R denote that the edge centered values are approximated from the left and right sides of that edge,
respectively. On the edges perpendicular to the y direction, the edge centered velocity (un+1/2,U , un+1/2,D) and edge
centered LS function (φn+1/2,U , φn+1/2,D) at the middle time step tn+1/2 can be calculated in the same way, where the
superscripts U and D denote that the edge centered values are approximated from the up and down sides of that edge,
respectively.

2. The Mark And Center (MAC) projection [23,36,58] is applied to obtain the divergence-free edge centered advection
velocity uadv .

3. The advection velocity uadv is then used to determine the edge centered approximate state un+1/2 and φn+1/2 from
un+1/2,L , un+1/2,R , un+1/2,U , un+1/2,D , φn+1/2,L , φn+1/2,R , φn+1/2,U , φn+1/2,D .

4. The advection velocity uadv is applied to advect the approximate state un+1/2 and φn+1/2. Finally, ∇ · (uu)n+1/2 and
[∇ · (uφ)]n+1/2 are calculated as ∇ · (uadvun+1/2) and ∇ · (uadvφn+1/2).

For the discretization of the viscous term, the x-component of ∇ · μ(φ)∇u at point (i, j) is calculated as

(∇ · μ(φ)∇u)i, j =
μi+1/2, j(ui+1, j − ui, j) − μi−1/2, j(ui, j − ui−1, j)

�x2

+ μi, j+1/2(ui, j+1 − ui, j) − μi, j−1/2(ui, j − ui, j−1)

�y2
, (24)

where the edge-centered viscosity μi+1/2, j and μi, j+1/2 are defined as

μi+1/2, j = 1

2

[
μ(φ)i, j + μ(φ)i+1, j

]
, (25)

μi, j+1/2 = 1

2

[
μ(φ)i, j + μ(φ)i, j+1

]
. (26)

The y-component of the viscous term is calculated for the velocity component v in a similar way. For the surface tension
term κ(φ)δ(x)n/We, we have

(∇φ)i, j =
(

φi+1, j − φi−1, j

2�x
,
φi, j+1 − φi, j−1

2�y

)
, (27)

ni, j =
(∇φ)i, j

(|∇φ|)i, j
, (28)

κ(φ)i, j =
n1i+1, j − n1i−1, j

2�x
+ n2i, j+1 − n2i, j−1

2�y
, (29)

where n := (n1, n2) and the delta function δ(x) is calculated from Eq. (6).

4.2. Multi-level advancement

In this section, we describe how we apply the single-level advancement algorithm to the multi-level advancement
algorithm using the subcycling and non-subcycling methods (section 4.2.1) and introduce the synchronization step (sec-
tion 4.2.2). We also devise a multi-level re-initialization algorithm for the LS function across multiple levels (section 4.2.3).
The multi-level initialization of the flow field is introduced in section 4.2.4. At last, a summary of the multi-level advance-
ment algorithm is given in section 4.2.5. We note that, although some BSAMR [51,64] and TBAMR [28,31,63] frameworks
have supported a high refining ratio, in this work, we limit the refining ratio to 2 between two consecutive levels for easier
implementation.
8

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Fig. 4. Schematic of the sub-steps in the level-by-level advancement method for a three-level grid (lmax = 2). Left: the subcycling method. Right: the
non-subcycling method. The sub-steps are represented by the circled numbers.

4.2.1. Subcycling and non-subcycling methods
We consider two cycling methods, subcycling and non-subcycling, to advance variables on a multi-level grid. For the

subcycling method, the solutions on different levels are advanced with different time steps. The larger grid spacings on the
coarser levels allow a larger time step if the CFL number is kept the same on different levels. For example, if the refining
ratio between two neighboring levels is two and if the velocities are approximately the same on both levels, the time step
on the coarser level, �tl , and on the finer level, �tl+1, has the relation �tl = 2�tl+1. In the non-subcycling method, the
variables on different levels advance with the same time step, restricted by the finest level lmax to maintain the numerical
stability. In this scenario, all levels are always at the same time instant.

Fig. 4 schematically shows how the individual levels are advanced with the subcycling and non-subcycling methods for a
multi-level grid with lmax = 2. As shown in the sketch, seven sub-steps are needed to advance all levels from tn to tn + �t0

using the subcycling method. For each sub-step, the single-level advancement algorithm in section 4.1 is used for time
advancement. By comparison, it takes 12 sub-steps for the non-subcycling method. Although the non-subcycling method has
more steps, the subcycling method needs the time interpolation because of the mismatch of the time among different levels.
The values at the middle time instant are obtained using a mid-point averaging, i.e. f (tn + �tl/2) = [f (tn) + f (tn + �tl)]/2,
which gives a second-order time accuracy. This interpolation is avoided in the non-subcycling method because all levels are
at the same time instant.

4.2.2. Synchronization
Synchronization is the process of modifying the data on multiple levels to make them consistent and to better represent

the composite solution. The synchronization step is needed for both the subcycling and the non-subcycling methods [23–25].
There are three sub-steps of the synchronization step.

Sub-step 1. Average

Because variables on the finer levels are considered more accurate, the velocity u, pressure p, and LS function φ are
replaced by those on the finer levels after the averaging process. In this way, the composite solution can be obtained in all
valid regions of the multi-level grid. Because the collocated grid is used, the same averaging operator, i.e. the conservative
interpolation operator introduced in section 3.2, can be used for all flow variables.

Sub-step 2. MAC synchronization and refluxing

When calculating the advection terms, the MAC projection (section 4.1.2) is only applied level by level. As a result, the
advection velocity uadv is only divergence-free on the specific level where it is calculated but not across all levels [23,25].
For example, at the CF boundary, the advection velocity uadv,l on the coarser level l is not equal to the edge average of the
advection velocity uadv,l+1 on the finer level, leading to an imbalance of the momentum fluxes. As a result, the freestream
preservation is violated while advancing the variables level by level.

To remedy this problem, the differences between uadv on the coarser level and the finer level are quantified during the
single-level advancement (section 4.1). These velocity differences, together with flux differences, form the registers to make
the corrections for each level. Specifically, the velocity registers that hold the difference of the edge centered advection
velocity are given by

δul = −Aluadv,l + 1

2

2∑
k=1

∑
f aces

Al+1uadv,k,l+1. (30)

In the above equation, the subscript k represents the sub-steps of the finer level l + 1 since it takes two sub-steps for level
l + 1 to catch up with level l (Fig. 4),

∑
faces is the sum over the cell faces, and A is the area of each faces. The velocity flux
9

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
registers, including both the advective flux register δ f adv,l
u and the viscous flux register δ f visc,l

u , are defined in a similar way
as

δ f adv,l
u = �tl

⎛
⎝Al f adv,l

u + 1

2

2∑
k=1

∑
f aces

Al+1 f adv,k,l+1
u

⎞
⎠ , (31)

δ f visc,l
u = �tl

⎛
⎝Al f visc,l

u + 1

2

2∑
k=1

∑
f aces

Al+1 f visc,k,l+1
u

⎞
⎠ . (32)

The LS function has the advective flux register δ f adv,l
φ only, which is calculated as

δ f adv,l
φ = �tl

⎛
⎝Al f adv,l

φ + 1

2

2∑
k=1

∑
f aces

Al+1 f adv,k,l+1
φ

⎞
⎠ . (33)

In Eqs. (31)–(33), f adv,l
u , f adv,l

φ , and f visc,l
u are given by

f adv,l
u = uadvφn+1/2, (34)

f adv,l
φ = uadvφn+1/2, (35)

f visc,l
u = 1

2Re

(
μ(φn,l)∇un,l + μ(φn+1,l)∇u∗,n+1,l

)
. (36)

The mismatch of the velocity register in Eq. (30) forms the right hand side of a MAC solve for the correction δel on level l,

∇ ·
(

Al

ρn+1/2,l
∇(δel)

)
= ∇ · δul. (37)

After solving Eq. (37), a velocity correction ul
corr is obtained by

ul
corr = −∇(δel)

ρn+1/2,l
. (38)

The flux corrections associated with the above velocity correction are

f corr,lφ = ul
corrφ

n+1/2,l, (39)

f corr,lu = ul
corru

n+1/2,l. (40)

The final correction to the LS function on level l, φl
sync , is determined by the flux correction f corr,lφ in Eq. (39) and the

advective flux register δ f adv,l
φ in Eq. (33) as

φl
sync = −∇ · f corr,lφ − δ f adv,l

φ

�t · V oll
, (41)

where V oll is volume of the grid cell on level l, i.e., V oll = �xl�yl for the 2D case and V oll = �xl�yl�zl for the 3D case.
The LS function on level l is then updated as

φn+1,l := φn+1,l + �tlφl
sync . (42)

The flux correction about the velocity f corr,lu in Eq. (40), together with its advective flux register δ f adv,l
u in Eq. (31) and

viscous flux register δ f adv,l
u in Eq. (32), form a subsequent parabolic equation,

ul
sync − �t

2ρn+1/2,l Re
∇ ·
(
μ(φn+1)∇ul

sync

)
= −∇ · f corr,lu − 1

�t · V oll

(
δ f adv,l

u + 1

ρn+1/2,l
δ f adv,l

u

)
, (43)

which gives the final correction of the velocity ul
sync on level l. The updated velocity on level l is then given by

un+1,l := un+1,l + �tlul
sync. (44)

The corrections also need to propagate to all the finer levels q as

φn+1,q := φn+1,q + �tlIcons(φl
sync), (45)
10

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Table 1
Parameters for cases of the counter vortex problem.

Case No. Mesh refinement type Is refluxing performed?

1 Static No
2 Static Yes
3 Dynamic No
4 Dynamic Yes

and

un+1,q := un+1,q + �tlIcons(ul
sync) (46)

for all l < q ≤ lmax . Here, the conservative interpolation Icons is used.
At last, for any level l > 0, the velocity registers and flux registers on the coarser level l − 1 are affected by the above

correction and thus need to be updated as follows,

δul−1 := δul−1 + 1

2

∑
f aces

(Alul
corr), (47)

δ f adv,l−1
u := δ f adv,l−1

u + 1

2
�tl−1

∑
f aces

(Al f corr,lu), (48)

δ f visc,l−1
u := δ f visc,l−1

u + 1

2
�tl−1

∑
f aces

(
1

2
Alμ(φn+1)∇V l

sync

)
, (49)

δ f adv,l−1
φ := δ f adv,l−1

φ + 1

2

∑
f aces

(Al f corr,lφ). (50)

As a reminder, the above MAC synchronization and refluxing sub-step is used to maintain the conservation of momentum
and scalar in the whole flow field. To validate the efficacy of this sub-step, we assess the conservation of a passive scalar in
the inviscid flow of a counter-rotating vortex pair [24]. The initial azimuthal velocity uθ (r) of one vortex is given by

uθ (r) =
{

(

8
3R3 r

4 − 5
R4 r

3 + 10
3R2 r

)
, r < R,

(1
r

)
, r ≥ R,

(51)

where R is the radius of the vortex core, r is the distance from the vortex center (xc, yc), and
 is the vortex strength.
One vortex is centered at (xc, yc) = (0.3, 0.35) with
 = −0.35, R = 0.15 and the other is at (xc, yc) = (0.3, 0.65) with

 = 0.35, R = 0.15. The computational domain is � : [0, 1] × [0, 1]. The grid size on level 0 is 100 × 100. A passive scalar
advected by the above vortex pair is simulated. The initial scalar field is set as

s(x, y) =
{
2.0, if x ∈ [0.2,0.8] and y ∈ [0.2,0.8],
1.0, otherwise .

(52)

As the LS function is essentially a passive scalar governed by the advection equation, the simulation of s is carried out
using Eq. (3). A total of four subcycling cases are considered, varying in the mesh refinement and whether the refluxing
step is performed, as listed in Table 1. For the mesh refinement, we consider the static and dynamic refinement. For the
static refinement, grid cells are refined to lmax = 1 in the rectangular region x ∈ [0.2, 0.8] and y ∈ [0.2, 0.8]. For the dynamic
refinement, the vorticity magnitude, |ωz| > 0.75|ωmax

z |, is used as the refinement criterion.
The vorticity field at t = 0.36 for the dynamic refinement case with refluxing (case 4) is shown in the left part of Fig. 5,

which is in good agreement with [24]. The right part of Fig. 5 shows the scalar concentration and grid hierarchy at t = 0.36
for case 4. Because of the advection by the vortices, a high concentration of the scalar crosses the CF boundary, which can
lead to errors in the conservation of the scalar if the MAC synchronization and refluxing operations are not considered. To
quantify this error, the relative change of the total amount of scalar compared to the initial time is evaluated as

e(t) =
∫
� (s|t − s|t=0)dx∫

�
s|t=0dx

. (53)

The results for the above four cases are plotted in Fig. 6. When the refluxing is used (cases 2 and 4), the relative error
is within 10−16 for both the static and dynamic refinement, while noticeable errors are present in simulations without
refluxing (cases 1 and 3). This test shows that the MAC synchronization and refluxing operations are necessary and can help
the conservation of the scalar.
11

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Fig. 5. Left: Vorticity contours and grid hierarchy at t = 0.36 of the two-level subcycling case with the dynamic mesh refinement with refluxing (case 4) for
the counter vortex problem. Right: Concentration of the passive scalar s and grid hierarchy at t = 0.36 for case 4. The blue lines are the grid patches on
level 1.

Fig. 6. Comparison of the conservation errors of the passive scalar among the four cases of the counter rotating vortex. Case 1 and case 2 use the static
refinement while case 3 and case 4 use the dynamic refinement. Case 2 and case 4 consider the refluxing while case 1 and case 3 do not.

Sub-step 3. Synchronization projection

Because the level projection is only applied level by level, it does not guarantee that the velocity is divergence-free
across all levels. The synchronization projection, as the last sub-step of the synchronization, is applied to enforce this
constraint [23,24]. Using the composite operators defined in section 3.1, we first solve a correction field es by projecting
velocities on all levels [26],

Lcc,comp
ρn+1 es = 1

�tsync
Dcc,compun+1, (54)

where �tsync is equal to the time step of level 0, i.e. �tsync = �t0; Lcc,comp
ρn+1 es is a density-weighted approximation to

∇ · (1/ρn+1∇es) on all levels. We note that the ghost cell values of es need to be appropriately specified for the evaluation
of the composite operators Lcc,comp, Dcc,comp, and Gcc,comp in Eq. (14). On level 0, the ghost cell values of es are determined
by the physical boundary conditions. On level l (l > 0),

els = Icons(els, el−1
s), (55)

which means that the ghost cell values els on level of l at the CF boundaries are computed using the conservative interpo-
lation (section 3.1) by combining the values of es on both level l and l − 1 [24,25]. We remark that a single conservative
interpolation scheme can be used with all composite operators to fill the ghost cells of all cell-centered variables at the CF
boundaries [23,65]. Finally, the multi-level velocity field is updated as

un+1 := un+1 − �tsyncGcc,compes, (56)

after which un+1 becomes divergence-free in a multi-level sense.
12

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
The stability of the projection operation is an important issue. For example, for the non-graded TBAMR, the stability of
the discrete projection can be affected by the presence of the large size ratio of the adjacent cells, for which a different
projection formulation was proposed to enforce the orthogonality of the projection [63,66]. The stability of the synchroniza-
tion projection method used in the present work has been demonstrated by Martin and Colella [24] using a three-vortex
problem. The robustness and the stability of the approximate projection are related to the careful interpolations of the ghost
cell values [62,67]. Before doing the approximate projection, we use the constant extrapolation for the ghost cell values at
the physical boundaries [62]. We also apply the conservative interpolation for those on the finer levels at the CF bound-
aries [23]. Another factor contributing to the stability of the algorithm is the form of the projection. The projection is applied
to the updated velocity at the new time (un+1) rather than the increment velocity (un+1 − un), which helps to stabilize the
synchronization projection as found by Martin and Colella [24]. Furthermore, the nesting property of the BSAMR guarantees
the regularity of the multi-level grid and probably eases the burden on the convergence of the multi-level multigrid solver
compared to the non-graded TBAMR. In case a higher refining ratio is required in BSAMR, one may need to carefully imple-
ment the interpolation scheme to ensure the stability of the projection. Later in section 5.1, both the level projection and
the synchronization projection methods are tested with a sample problem [63], which further confirms the stability of the
approximate projection method.

As the final remark of this section, we discuss some differences of our synchronization algorithm from other implemen-
tations in the literature. For the averaging step, all variables can share the same averaging operator because of our adoption
of the collocated layout. We believe this averaging process is simpler than that in Almgren et al. [23] because the latter,
with a semi-staggered layout, requires different averaging operators for velocity and pressure. Secondly, in our algorithm
for the MAC synchronization and refluxing, the errors are collected from the instantaneous field as velocity and flux regis-
ters, which are then used to correct the multi-level solution. In Martin and Colella [24] and Martin et al. [25], the volume
discrepancy method is used to maintain the freestream preservation, where an auxiliary scalar is used as the indicator of
the errors and is advected in time along with the flow field. Finally, in our algorithm, the synchronization projection is
performed only when all the finer levels catch up with level 0. In other words, for every time step from tn to tn+1, only
one synchronization projection step is conducted. Compared to Almgren et al. [23], where the synchronization projection
is performed iteratively on pairs of two consecutive levels, our algorithm has fewer projection steps but is still effective as
demonstrated.

4.2.3. Multi-level re-initialization of the LS function
In the synchronization step, the property of the LS function as a signed distance function is not guaranteed in the multi-

level sense. To maintain the regularity of the LS function and improve the mass conservation, a multi-level re-initialization
algorithm (Algorithm 2) is proposed here. The core part of the algorithm to synchronize the LS functions on two consecutive
levels using the single-level re-initialization and interpolation iteratively, corresponding to the inner loop in Algorithm 2.
First, we apply the single-level re-initialization algorithm (section 4.1.1) to the LS function and interpolate the function onto
the finer level. Then the single-level re-initialization is carried out on the finer level, after which the LS function is averaged
back to the coarser level. From our testing, the LS function can usually be corrected on these two levels after three iterations
of the pair re-initialization. The above pair re-initialization process is applied to all levels, from level lmax − 1 to level 0, as
indicated by the outer loop of Algorithm 2. This ensures the LS function as the signed distance function and mitigates the
mass loss on all levels, as demonstrated by the test cases in section 5. Furthermore, our tests also show that the above
re-initialization algorithm is computationally efficient.

Algorithm 2 Multi-level re-initialization of the LS function.
1: for l = lmax − 1, 0, −1 do
2: for j = 1, Niter do
3: φ̂l ← single-level re-initialization of φl on level l
4: φl+1 ← Icons(φ̂

l)

5: φl+1 ← single-level re-initialization of φl+1 on level l + 1
6: φl ← average φ̂l+1

7: end for
8: end for

We note that our multi-level re-initialization technique is different from the one used in Sussman et al. [36], which
solves the pseudo evolution equation of φ (Eq. (21)) from the coarsest level to the finest level using the subcycling method.
In this paper, the multi-level re-initialization step starts from the finest level. The LS function on two consecutive levels are
synchronized using the iteration technique, and thus the subcycling method is not needed here.

4.2.4. Multi-level initialization of flow field
All field values, including the velocity u, pressure p, and LS function φ, need to be initialized on all levels at the

beginning of the simulation. Firstly, the velocity u and LS function φ on the coarsest level (level 0) are assigned based on
the initial conditions. Ghost cell values for these variables on level 0 are also filled by the physical boundary conditions.
Then, the grid on the next level (level 1) is generated based on the refinement criteria. After the refinement, the velocity u
and LS function φ on level 1 are determined based on the initial conditions. This “refining and filling” procedure is repeated
13

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
till the finest level lmax is reached, or till there is no need to refine the grid based on the refinement criteria. The pressure
p is initialized as zero on all levels and corrected by the level projection at the first step.

4.2.5. Summary of multi-level advancement
Algorithm 3 summarizes the unified multi-level advancement algorithm for both the subcycling and non-subcycling

methods. After the initialization, we can use either the subcycling or non-subcycling method for time advancement. The
synchronization step and the multi-level re-initialization step are then applied when a coarser level catches up with a finer
level. Finally, the grid refinement is applied before moving to the next time step. In the multi-level advancement algorithm,
the MAC projection, semi-implicit viscous solver (Eq. (16)), level projection (Eq. (19)), MAC synchronization (Eq. (37)), and
refluxing (Eq. (43)) steps use the multigrid (MG) solver on each level. The MLMG solver incorporates the mesh information
across multiple levels and is only used with the synchronization projection sub-step (Eq. (54)).

As a final remark, we emphasize that our multi-level advancement algorithm is a level-by-level advancement method,
which is different from the composite advancement method [36–38,68] in several aspects. In the level-by-level advancement
method, the level variables are used for time advancement. Each level can be advanced individually without considering the
finer levels before the synchronization step. Because the time advancements at different levels are decoupled, the constraints
of the time step on the coarser levels are alleviated. This is in contrast to the composite advancement method, where the
multi-level time advancement is based on the composite variables and only variables in the valid regions are utilized.
The MLMG solver is employed to simultaneously update the velocity and pressure in the valid regions of all levels. This
distinctly different treatment is the reason why the composite advancement method is not flexible enough to embed both
the subcycling and non-subcycling methods in a straightforward way, while the level-by-level method in the present work
can handle both cycling methods with relative ease.

Algorithm 3 Multi-level advancement algorithm.
1: Initialize u0, φ0, and p0 on level 0
2: l ← 0
3: while refinement criteria are satisfied on level l and l < lmax do
4: Regrid the patch hierarchy to obtain level l + 1
5: Initialize u0, φ0, and p0 on level l + 1
6: l ← l + 1
7: end while
8: if subcycling method is used then
9: �tl = 2lmax−l�tlmax for all 0 ≤ l < lmax

10: else
11: �tl = �tlmax for all 0 ≤ l < lmax

12: end if
13: for n = 1, nmax do � nmax is the number of time steps to be simulated
14: LevelCycling(0, t0n , t0n + �t0, �t0)
15: Apply the synchronization projection using Eqs. (54)–(56)
16: Perform the multi-level re-initialization of φ � Algorithm 2
17: Regrid the patch hierarchy and interpolate u, φ , and p onto new patches
18: end for
19:
20: procedure LevelCycling(l, tl , tlmax , �tl)
21: while tl < tlmax do
22: Perform single-level advancement on level l from tl to tl + �tl . � Algorithm 1
23: if l < lmax then
24: LevelCycling(l + 1, tl , tl + �tl , �tl+1)
25: end if
26: tl ← tl + �tl

27: end while
28: if l > 0 then
29: Average all data from finer levels to the coarser levels
30: end if
31: if l < lmax then
32: Perform MAC synchronization and refluxing using Eqs. (37)–(46)
33: end if
34: end procedure

5. Results

This section presents several canonical test cases to validate the proposed AMR framework from different aspects. First,
we shall clarify some common parameters used by these cases unless stated otherwise. For all of the following cases, �t0
denotes the time step on level 0. We use �x0, �y0, and �z0 to represent the grid spacings in x-, y-, and z-directions,
respectively, on level 0. For the multi-level grid, grid spacings on the finer level l satisfy �xl = �x0/2l , �yl = �y0/2l , and
�zl = �z0/2l for all 0 ≤ l ≤ lmax .
14

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Fig. 7. Patches on the block-structured adaptive grid for testing the stability of the projections. The red, green, and blue rectangles represent the grid patches
on levels 0, 1, and 2, respectively. The equivalent grid resolutions are 64 × 64, 128 × 128, and 256 × 256 on the red, green, and blue patches, respectively.

5.1. Stability of the projection

In this test, we examine the effectiveness and stability of the level projection (Eqs. (18) and (19)) on the single-level
grid and the synchronization projection (Eqs. (54) and (56)) on the multi-level grid. The projection is performed on the
manufactured velocity field u∗ = (u∗, v∗) from Min and Gibou [63], given by

u∗(x, y) = sin(x) cos(y) + x(π − x)y2
(y
3

− π

2

)
, (57)

v∗(x, y) = − cos(x) sin(y) + y(π − y)x2
(x
3

− π

2

)
. (58)

This manufactured velocity can be decomposed as u∗ = udiv + ∇φ, where udiv is a divergence-free velocity field and φ =
−(x3/3 − πx2/2)(y3/3 − π y2/2). We consider a computational domain � = [0, π] with u∗ · n = 0 on the domain boundary
∂�. For the single-level grid, the grid number on level 0 is 64 × 64, 128 × 128, 256 × 256, and 512 × 512, respectively.
We iteratively apply the level projection to get the approximately divergence-free velocity uappr on the single level. For the
multi-level grid, we statically refine the patches in the upper-right part of the grid. As shown in Fig. 7, the grid patches in
the rectangular region (x, y) ∈ [3π/8, 5π/8] are refined to level 1, and the grid patches in the region (x, y) ∈ [π/2, 3π/4]
are further refined to level 2. We test four multi-level grids. For each grid, the finest resolutions on level 2 are the same as
those on the single-level grid. The synchronization projection is applied to obtain uappr.

Figs. 8 and 9 show the evolution of the L∞ norm ||uN
appr − udiv||∞ and the L2 norm ||uN

appr||2 using the single-level
projection and the multi-level synchronization projection, respectively. As shown in Fig. 8, the norm errors become almost
unchanged after the first several iterations, which proves the stability of the level projection in this test. As the grid number
increases, ||uN

appr − udiv||∞ decreases [63]. The results of the multi-level synchronization projection in Fig. 9 lead to the
same conclusion, which indicate that the projection schemes in this work maintain the desired stability with the mesh
refinement, consistent with the literature [24,25,67].

5.2. Taylor Green Vortex

The Taylor Green Vortex (TGV) is a canonical problem to verify the order of convergence for new algorithms. The theo-
retical solution of the TGV problem is given by

u(x, y, t) = − cos(πx) sin(π y)e−2π2μt, (59)

v(x, y, t) = sin(πx) cos(π y)e−2π2μt, (60)

p(x, y, t) = −cos(2πx) + sin(2π y)

4
e−4π2μt, (61)

where μ = 0.001 is the dynamic viscosity.
Both the single-level and multi-level performances of our algorithms are examined here. For tests with a single level, a

periodic computational domain with size 1 × 1 is employed for all five cases, where the grid number on level 0 is 16 × 16,
15

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Fig. 8. Errors of the single-level projection. The N is the iteration number and the resolutions on level 0 are 642, 1282, 2562, and 5122. Left:
||uN

appr − udiv||∞ . Right: ||uN
appr||2.

Fig. 9. Errors of the multi-level synchronization projection. The N is the iteration number and the resolutions on the finest level ((x, y) ∈ [π/2, 3π/4]) are
the same as those of the single-level grid with 642, 1282, 2562, and 5122. Left: ||uN

appr − udiv||∞ . Right: ||uN
appr||2.

Fig. 10. Grid convergence of u, v , and p for the TGV problem on a single-level grid.

32 × 32, 64 × 64, 128 × 128, and 256 × 256, respectively. The CFL number is kept as a constant 0.5. Numerical results are
compared with the theoretical results at t = 1.0 and the L2 errors are calculated to obtain the point-wise convergence rate.
Fig. 10 shows the order of convergence for the single level cases. It is shown that the algorithms achieve the second-order
accuracy for the pressure p and a higher-order accuracy (approximately the third order) for the velocity u. The higher-order
convergence rate for u is also observed in the literature [23,62].

For cases with the multiple levels, the refinement criterion is based on the magnitude of the vorticity, i.e., the grid cells
on the coarser levels are refined to the finer levels if ωz > 0.95|ωmax

z |. The finest level in this problem lmax is 2. However,
we note that only the static mesh refinement is used here, i.e., the grid cells are only refined at the beginning and kept
unchanged throughout the simulation. This is justified because the vortex cores in this TGV problem have no translational
motions. For the case with the grid number 32 × 32 on level 0, Fig. 11 shows the generated grid and it is seen that the grid
16

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Fig. 11. Grid hierarchy for the subcycling TGV case with a grid number of 32× 32 on level 0. The contours of vorticity ωz at t = 0 are also shown.

Fig. 12. Grid convergence of u, v , and p for the TGV problem on the multiple levels under the static mesh refinement. Left: the subcycling method. Right:
the non-subcycling method.

resolution is higher as the vortex core is approached. Both the subcycling and non-subcycling methods are tested. Similar
to the single-level cases, we compare the composite solution with the theoretical results at t = 1.0 using the L2 measure
of the errors. As shown in Fig. 12, the L2 errors of u and p decrease as the grid number increases at a rate of second-
order convergence. Moreover, the L2 errors at a given grid spacing for both the subcycling method and the non-subcycling
method are comparable, indicating that the two cycling methods produce consistent results. These tests show that our
numerical schemes can achieve the desired second order of accuracy on a static multi-level mesh for both the subcycling
and non-subcycling methods.

5.3. Four-way vortex merging

The four-way vortex merging problem is used to validate the order of convergence of our algorithms for dynamically
refined meshes [22,23]. Here, four vortices are placed in a unit square domain and centered at (0.5, 0.5), (0.59, 0.5),
(0.455, 0.5 + 0.045

√
3), and (0.455, 0.5 − 0.045

√
3), respectively. Their vortex strengths are −150, 50, 50, and 50, re-

spectively. For each vortex, the vorticity ωz decays from the center (xi, yi) as (1+ tanh (100 (0.03 − ri))/ 2, where ri =√
(x− xi)

2 + (y − yi)
2. To initialize the velocity field, the vorticity field ωz is used as the source term of the Poisson equa-

tion for the stream function ψ

Lcc,compψ = ωz. (62)

The initial velocity field is then calculated as u(x, y) = ∂ψ/∂ y and v(x, y) = −∂ψ/∂ y. The Reynolds number is set to
Re = 1000. The vorticity criterion is used for the dynamic mesh refinement, i.e., the grid cells on the coarser levels are
refined to the finer levels as long as |ωz| > 0.05|ωmax

z |. The finest level lmax is 2 in this problem. As shown in Fig. 13, the
patches on the finer levels change dynamically to capture the merging vortices. The evolution of the vortices also agrees
well with the results in the literature [22,23].
17

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Fig. 13. Evolution of vorticity ωz and grid hierarchy for the non-subcycling four-way vortex merging case. The grid number on level 0 is 64 × 64 and the
patches are dynamically refined to lmax = 2. The blue rectangles represent the patches on level 2.

Fig. 14. Grid convergence of u, v , and p for the four-way merging vortex problem on the multiple levels with the dynamic mesh refinement. Left: the
subcycling method. Right: the non-subcycling method.

To obtain the point-wise convergence rate on the multi-level grid, we consider five cases here, of which the grid number
on level 0 is 16 × 16, 32 × 32, 64 × 64, 128 × 128, and 256 × 256, respectively. The CFL number is kept as a constant
0.9. Because there is no exact solution for this problem, we use the result on a 1024 × 1024 uniform grid as the reference
solution. Numerical results are compared with the reference solution at t = 0.25 and the L2 errors are calculated. Fig. 14
shows the L2 errors of u and p as a function of the grid number. We can see that our numerical scheme maintains the
second-order accuracy in the context of dynamic mesh refinement with two cycling methods.

5.4. Inviscid shear layer

The inviscid shear layer problem is used to validate the proposed algorithms under the Euler limit within the BSAMR
framework. Similar to the setup in Bell et al. [58], the computational domain is 1 × 1 with periodic boundary conditions in
both the horizontal and vertical directions. The properties of the inviscid fluid are ρ(φ) = μ(φ) = 1.0. The initial velocity is
given by

u(x, y) =
{
tanh(σ1(y − 0.25)) y ≤ 0.5

tanh(σ1(0.75 − y)) y > 0.5,
(63)

v(x, y) = σ2 sin(2πx), (64)

where σ1 = 30 and σ2 = 0.05. For this problem, we consider four cases, the parameters of which are listed in Table 2. These
cases have different refinement levels and the vorticity magnitude |ωz | > 0.75|ωmax

z | is used as the refinement criterion,
same as the four-way merging vortex problem. The comparison between the subcycling and non-subcycling methods are
also considered in these cases.

Fig. 15 plots the evolution of the vorticity ωz and the patches for the three-level subcycling case (case 3). It shows that
our simulation captures the very fine vortex structure and has a good agreement with Bell et al. [58] and Huang et al. [69].

At the Euler limit, the kinetic energy should remain constant. To validate the property of energy conservation, we eval-
uate the kinetic energy change �E(t) = E(t) − E(0), where the kinetic energy E(t) = ∫ [u2(t) + v2(t)]/2dx. The time series
�

18

Table 2
Parameters for cases of the inviscid shear layer problem.

Case No. Grid number on level 0 lmax �t0 Cycling method

1 128 × 128 1 0.001 Subcycling
2 128 × 128 1 0.001 Non-subcycling
3 128 × 128 2 0.001 Subcycling
4 128 × 128 2 0.001 Non-subcycling

Fig. 15. Evolution of the vorticity field and grid hierarchy of the inviscid shear layer problem for case 3 (three levels with subcycling). The black, red, and
blue rectangles represent the patches on levels 0, 1, and 2, respectively.

of the relative kinetic energy change, �E(t)/E(0), for each case are plotted in Fig. 16. Although �E(t)/E(0) shows small
oscillations, which might be caused by the regridding and interpolation operations across multiple levels, the maximum
relative kinetic energy variation of all these cases are within 0.12%, comparable to the 0.3% in Huang et al. [69]. Comparing
cases 1 and 3 (or cases 2 and 4), one can see that the finer grid cells enabled by the additional level of mesh improve
the conservation of the kinetic energy. In summary, our algorithm has a fairly good performance in conserving the kinetic
energy for both the subcycling and non-subcycling methods.

5.5. Zalesak’s problem

The rotation of a notched disk, i.e., the Zalesak’s problem [70], is used to validate the advection of the LS function, the
single-level re-initialization algorithm, and the multi-level re-initialization algorithm. The computational domain is a 1 × 1
periodic rectangle. A notched disk with radius r = 0.15 is initially placed at (0.5, 0.75) using the LS function φ, as shown
in Fig. 17. The height and width of the notch are 0.25 and 0.05, respectively. The disk is transported by a prescribed steady
velocity field given by

u(x, y) = 0.5− y, v(x, y) = x− 0.5. (65)
Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
19

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740

Fig. 16. Relative kinetic energy error �E(t)/E(0) among the four multi-level cases in the inviscid shear layer problem. Case 1 and case 3 use the subcycling
method while case 2 and case 4 use the non-subcycling method. For case 1 and case 2, lmax = 1. For case 3 and case 4, lmax = 2.

Fig. 17. Comparison of the shapes of the initial Zalesak disk (solid black line) and the disk after one revolution (red dashed line). Case 1 and case 2 use a
single-level grid while case 3 and case 4 use the multi-level grid with lmax = 2. Case 2 and case 4 employ the single-level re-initialization and the multi-
level re-initialization, respectively. Case 1 and case 3 do not consider the re-initialization. Only part of the computational domain ([0.2, 0.8] × [0.4, 1.0]) is
displayed of with LS function for better visualization. The green and blue lines represent patches on level 1 and level 2, respectively.
20

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Table 3
Parameters for cases of the Zalesak’s problem.

Case No. Grid number on level 0 lmax �t0 Cycling method With reinitialization?

1 192× 192 0 0.002 – No
2 192× 192 0 0.002 – Yes
3 48× 48 2 0.0005 Subcycling No
4 48× 48 2 0.0005 Subcycling Yes

Table 4
Comparison of the relative difference of the disk area at t = 2π after one revolution
among the four cases for the Zalesak’s problem. Case 1 and case 2 use the single-
level grid. Case 3 and case 4 use the multi-level grid with lmax = 2. Case 2 and 4
have the re-initialization while case 1 and 3 do not.

Case 1 Case 2 Case 3 Case 4

δ(2π) 0.042 0.00078 0.056 0.00081

The parameters of the simulation cases are given in Table 3. Cases 1 and 2 are single-level simulations and cases 3 and
4 are multi-level simulations. The refinement criterion is the distance to the interface, i.e., the grid cells (i, j) on level l
(0 ≤ l < lmax) are refined to the finer level if |φi, j | < 3.0 max(�xl, �yl), where �xl and �yl are the grid spacings in the
x and y directions, respectively. The finest level lmax is 2 in this problem. Among the four cases considered here, the re-
initialization is only performed in cases 2 and 4 to show the effect of the re-initialization operations.

The Zalesak disk rotates counterclockwise under the prescribed velocity. Ideally, the shape of the disk should stay the
same and return to its initial state after one evolution. Fig. 17 shows the shapes of the Zalesak disk, denoted by φ = 0,
at the initial moment and after one revolution. For case 1 and case 3, the notched disk deviates from its original shape
noticeably. For case 2 and case 4 with the re-initialization process, the disk shape is preserved much better. To quantify the
errors in φ, we calculate the relative errors of the disk area, δ(t), as [71]

δ(t) = 1

L

∫
�

|H(φ(t)) − H(φe(t))|dx, (66)

where φe(t) is the exact LS function and L is the perimeter of the interface. Table 4 shows the relative error after one
revolution, i.e. t = 2π , for different cases. The errors in case 2 and case 4 are two orders of magnitude smaller than case 1
and case 3, which shows the efficacy of the single-level and multi-level re-initialization algorithms. Specifically, the errors
of case 2 and case 4 have the same order of magnitude as those in [71], in which the coupled level set and volume-of-
fluid (CLSVOF) method is used. We also remark that the refluxing issue (section 4.2.2) is not a concern in this problem
because the velocity is prescribed, and the non-subcycling results (not shown here) have negligible differences from the
subcycling results. Therefore, we conclude that the single-level and the multi-level re-initialization algorithms in this work
can maintain the LS function as the signed distance function and keep the mass conserved. Our advection schemes for the
LS function are also validated with both the subcycling and non-subcycling methods.

5.6. Gravity wave

To confirm that the LS advection scheme works well when coupled with the momentum equations for two-phase flows,
a canonical decaying gravity wave case is tested here. The surface profile of a linear deep-water wave is initialized as

η(x, y) = a0 cos(kx − ωt). (67)

The velocities are

u(x, y) = a0ωeky cos(kx − ωt), v(x, y) = a0ωeky sin(kx− ωt). (68)

Here, a0 is the initial wave amplitude, k is the wave number, and ω = √gk is the angular frequency according to the
dispersion relationship. In our tests, the wave steepness a0k is set to 0.1 such that the linear wave theory is still valid.
According to Lamb [72], the wave decays with time because of viscous dissipation. Its amplitude evolution is

a(t) = a0e
−2νk2t . (69)

The Reynolds number is set to Re = ω/νk2 = 110, where ν is the kinematic viscosity of the water. Other dimensionless
number are Froude number Fr = (ωk−1)/

√
gk−1 = 1.0, Weber number We = ρwk−2g/σ = ∞, density ratio λ = ρ2/ρ1 =

0.0011, and dynamic viscosity ratio η = μ2/μ1 = 0.0085. The computational domain size is 2π × 2π and the mean water
depth is π . The free slip boundary condition is imposed at the bottom and top of the domain, and the periodic boundary
21

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Table 5
Parameters for cases of the gravity wave problem.

Case No. Grid number on level 0 lmax �t0 Cycling method

1 128 × 128 0 0.0005 –
2 256 × 256 0 0.00025 –
3 64× 64 2 0.001 Subcycling
4 128 × 128 1 0.0005 Subcycling

Fig. 18. Comparison of the evolution of the wave amplitude among the single-level cases (case 1 and case 2), the subcycling three-level case (case 3), the
subcycling two-level case (case 4), and the theoretical result for the decaying gravity wave problem. Case 1 has the coarsest resolution while case 2, case
3, and case 4 have the same finest resolution.

condition is applied at the left and right boundaries. The parameters of the four cases considered in this problem are given
in Table 5. Cases 1 and 2 are single-level cases with the latter having a higher resolution. Cases 3 and 4 use adaptive grids
and their grid spacings on the finest level are the same as case 2. The grid is refined based on the distance to the air–water
interface as in the Zalesak’s problem (section 5.5), therefore the grid resolution near the wave surface in cases 2–4 is the
same.

The amplitude evolution of the above four cases is plotted in Fig. 18. Results show that case 1, which has a relative coarse
grid resolution, has small deviation from the theoretical result. Meanwhile, the amplitude evolution in the single-level high-
resolution case (case 2), the three-level subcycling case (case 3), and the two-level subcycling case (case 4) agree well
with the linear wave theory. This result shows that, as the grid resolution increases near the water surface, the simulation
results converge to the theoretical solution. Comparing cases 3 and 4 with case 2, we note that the locally refined mesh
can yield the same result as the uniform single-level fine mesh. We remark that the small oscillations in the numerical
results could be due to using a potential flow solution as the initial condition of a viscous incompressible two-phase flow
solver [72,73]. In summary, we conclude that our algorithms satisfy the grid convergence and can accurately simulate the
two-phase gravity wave flow when multiple levels are considered.

5.7. Rising bubble

Next, a spherical-cap bubble rising in a liquid is simulated to validate our algorithms for a two-phase flow problem with
surface tension. Compared with the gravity wave case, where patches on the finer levels change slowly because of the slow
decay of the wave, the grid cells here are refined more dynamically to capture the rising bubble. A large computational
domain [−12, 12] × [−18, 30] is chosen to circumvent wall effects. Free-slip conditions are applied at all boundaries. A
spherical bubble of dimensionless radius one is put at (x, y) = (0, 3) surrounded by the stationary fluid as the initial condi-
tion. Based on the steady rise velocity V = 0.215 m/s and the bubble radius r = 0.0061 m in Sussman et al. [36] and Hnat
and Buckmaster [74], the dimensionless parameters in our simulation are set as Re = ρ1V r/μ1 = 9.8, Fr = V /

√
gr = 0.872,

We = ρ1V 2r/σ = 7.6, λ = ρ2/ρ1 = 0.0011, and η = μ2/μ1 = 0.0085. Three cases are simulated, of which the parameters
are listed in Table 6. For the subcycling case 2 and the non-subcycling case 3, the grid number on level 0 is 128 × 256 and
then refined to the lmax = 2, i.e., three levels in total, such that the resolution on the finest level is equivalent to case 1 with
grid number 512 × 1024. The refinement criterion is based on the distance to the air–water interface, same as the gravity
wave problem (section 5.6).

Fig. 19 shows the movement of the mass centroid of the bubble for different cases. In all of the four cases considered
here, the bubble quickly reaches a steady rising velocity. Theoretically, the steady dimensionless rising velocity Vt in this
problem is 1.0 [36,74]. Table 7 compares it with the values from the simulations. The relative errors of the four cases are
22

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Table 6
Parameters for cases of the rising bubble problem.

Case No. Grid number on level 0 lmax �t0 Cycling method

1 512 × 1024 0 0.00025 –
2 128 × 256 2 0.001 Subcycling
3 128 × 256 2 0.00025 Non-subcycling

Fig. 19. Comparison of the time series of the bubble centroid (yc(t)) between the single-level case (case 1), the three-level subcycling case (case 2), and
the three-level non-subcycling case (case 3).

Table 7
Comparison of the steady rising velocity (Vt) among the cases for the rising bubble
problem. Case 1: single-level case; case 2: three-level subcycling case; case 3: three-
level non-subcycling case.

Case 1 Case 2 Case 3 Theory

Vt 0.971 0.966 0.965 1.0

within 4%. Fig. 20 shows the time evolution of the bubble shape. Under the combined effects of buoyancy force, viscosity,
and surface tension, the bottom of the bubble moves faster than its top at the initial stage, compressing the bubble in the
vertical direction and flattening it in the horizontal direction. As shown in Fig. 20, at the later stage t = 6.0–8.0, the bubble
rises with a constant speed and its shape keeps nearly unchanged. The numerically computed bubble shapes in Fig. 20 are
found in agreement with the experiment of Hnat and Buckmaster [74] and the simulation of Ryskin and Leal [75] (results
not plotted here). This test proves that our algorithms can correctly capture the dynamics of the two-phase flow when the
surface tension effect is involved. The results also indicate that the AMR technique can reproduce the results accurately
while using the fewer grid number compared with the single-level fine-grid simulation. Furthermore, the nearly identical
results between the subcycling and non-subcycling methods, as shown in Fig. 20, validate the consistency of these two
cycling methods in our unified BSAMR framework.

5.8. Rayleigh–Taylor instability

The Rayleigh–Taylor (RT) instability problem is simulated here to validate the adaptive two-phase flow algorithms when
small vorticity structures are involved. This instability phenomenon occurs for any perturbation to the interface between a
lighter fluid (ρ2) at the bottom and a heavier fluid (ρ1) at the top. In the simulation, we follow the same setup as Guermond
and Quartapelle [76]. The computational domain is [0, 1] × [0, 4]. The initial interface is given by y(x) = 2.0 + 0.1 cos(2πx).
The density ratio is set to λ = ρ2/ρ1 = 1/3 and the Reynolds number is set to be Re = ρ1g1/2/μ1 = 3000. Five cases with
different parameters are presented in Table 8. The single-level case (case 1) has the same grid number and time step �t0
as in Guermond and Quartapelle [76] and Ding et al. [77]. For the multi-level cases, the refinement criterion is based on
the distance to the air–water interface, same as the gravity problem. From case 2 to case 5, we keep the same resolution on
the finest level as case 1 while varying the grid number on level 0. The time step is changed accordingly for the subcycling
method or the non-subcycling method.

The evolution of the air–water interface for the three-level non-subcycling case (case 5) is shown in Fig. 21. Refined
patches on the finer levels are also presented to show the change of the adaptive meshes. We observe a good agreement
when comparing the shape of the interface with Ding et al. [77] (not plotted here). A small perturbation of the interface
23

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Fig. 20. Evolution of the shape of the rising bubble for the three-level subcycling case (case 2) and three-level non-subcycling case (case 3). The bubble
shape is shown by the isoline of φ = 0. The solid black line and dashed red line correspond to case 2 and case 3, respectively. The green and blue lines
represent the patches on level 1 and level 2, respectively.

Table 8
Parameters for cases of the Rayleigh–Taylor Instability problem.

Case No. Grid number on level 0 lmax �t0 Cycling method

1 200× 800 0 0.0005 –
2 100× 400 1 0.001 Subcycling
3 100× 400 1 0.0005 Non-subcycling
4 50× 200 2 0.002 Subcycling
5 50× 200 2 0.0005 Non-subcycling

appears at t = 0 and begins to grow due to the gravity effects. The interface then rolls up into the lighter fluid, and a
long tail is then formed from t = 1 to t = 1.75. It is seen that the curling tip of the interface, as well as the secondary
vortices of the roll-ups, are fully resolved by the adaptively generated mesh. The left side of Fig. 22 compares the transient
locations of the falling fluid y f (t) and rising fluid yr(t) between the single-level case (case 1) and previous research. A good
agreement is obtained. The multi-level cases (cases 2-5) agree well with the single-level fine-grid case (case 1), as shown
on the right side of Fig. 22. By comparing the transient locations between case 2 and case 3 and between case 4 and case
5, we conclude that the subcycling and non-subcycling methods are consistent with each other, same as the rising bubble
problem (section 5.7).
24

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Fig. 21. Evolution of the air–water interface for the three-level non-subcycling Rayleigh–Taylor instability case (case 5 in Table 8). The black line represents
the isoline of φ = 0. The green and blue lines represent the patches on level 1 and level 2, respectively.

The above results show that our algorithms can accurately capture the transient locations of the fluid appearing in the
Rayleigh–Taylor instability problem, both for the subcycling method and the non-subcycling method. The refined patches can
help increase the resolution of small flow structures. This test further validates the capability of our proposed framework
for simulating incompressible two-phase flow problems.
25

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Fig. 22. Left: comparison of the tip locations of the falling fluid (y f (t)) and the rising fluid (yr(t)) between the single-level case (case 1) and the literature:
() Guermond and Quartapelle [76]; () Tryggvason [78]; () Ding et al. [77]. Right: comparison of the tip locations of the falling fluid y f (t) and the
rising fluid yr(t) between the single-level case (case 1), the two-level subcycling case (case 2), the two-level non-subcycling case (case 3), the three-level
subcycling case (case 4), and the three-level non-subcycling case (case 5).

Fig. 23. Sketch of 3D dam breaking problem. A: dam front position; B: dam height position.

Table 9
Parameters for cases of the dam breaking problem.

Case No. Grid number on level 0 lmax �t0 Cycling method

1 512 × 128× 96 0 1.25× 10−4 –
2 256 × 64× 48 1 2.50× 10−4 Subcycling
3 256 × 64× 48 1 1.25× 10−4 Non-subcycling
4 128 × 32× 24 2 5.00× 10−4 Subcycling
5 128 × 32× 24 2 1.25× 10−4 Non-subcycling

5.9. 3D dam breaking

This section investigates the 3D dam breaking, a dynamic and complex problem which is traditionally computationally
expensive. Besides validating the adaptive two-phase flow algorithms for 3D problems, another objective is to compare the
computational cost among the single-level, the subcycling, and the non-subcycling cases.

For this problem, a cubic water block with the side length a = 5.715 × 10−2 m is put at the left-bottom corner. The
computational domain size is [7a, a, 1.75a], as shown in Fig. 23. No-slip boundary conditions are imposed on the bottom
wall, while all other walls are free-slip boundaries. The d f and dh in Fig. 23 refer to the dimensional front (point A)
and the dimensional height (point B), respectively. The dimensionless front and height are then defined as d̃ f = d f /a and
d̃h = dh/a, respectively. The gravity is in the −y direction. Dimensionless parameters are set as Re = ρ1Ua/μ1 = 2950,
Fr = U/

√
ga = 1.0, We = ρ1U2a/σ = 0.54, λ = ρ2/ρ1 = 0.0012, and η = μ2/μ1 = 0.016. Table 9 gives the parameters of

five simulation cases, where case 1 is the single-level case and all other cases are the multi-level cases. From case 2 to case
5, we refine the grid to lmax = 2 or 3 using either the subcycling or the non-subcycling method. The refinement criterion is
based on the distance to the air–water interface, same as the Rayleigh–Taylor instability problem (section 5.8).

Fig. 24 compares the dimensionless front d̃ f and dimensionless height d̃h of the single-level case (case 1) with previous
experimental results and numerical results. Our results agree well with the literature. Fig. 25 shows that the time evolution
of d̃ f and d̃h for the above five cases, which again indicates the consistency of our numerical algorithms, where the sub-
cycling cases, the non-subcycling cases, and the single-level case can obtain nearly the same accuracy. The evolution of the
26

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Fig. 24. Comparison of the evolution of the dimensionless front d̃ f (left) and the dimensionless height d̃h (right) between the single-level case (case 1) and
the literature: () Martin et al. [79]; () Gu et al. [80]; () Rezende et al. [81]; () Patel and Natarajan [82]; () Nangia et al. [38]; () Nangia et al. [38].

Fig. 25. Comparison of the evolution of the dimensionless front (left) d̃ f and the dimensionless height d̃h (right) among the cases listed in Table 9.

breaking dam for the three-level subcycling case (case 4) is depicted in Fig. 26. Patches are dynamically refined around the
interface as time evolves. The shape of the dam is consistent with the results in [38].

To compare the computational cost of different cases, we profile each case for t/T = 0 − 0.3 using 64 CPU cores on the
Cray XE6m HPC machine without considering the I/O cost. Table 10 shows the total number of grid cells for different cases
at t/T = 0.1. Compared with the cases with lmax = 2, the single-level case and the cases with lmax = 1 have nearly 6.32
times and 1.45 times more cells, respectively, which indicates that the adaptive refinement could reduce the total number
of grid cells considerably. We emphasize that the time spent for each case also depends on the time step and the subcycling
cases (case 2 and case 4) have less time steps than the non-subcycling cases (case 3 and case 5).

Table 11 compares the total wall clock time among different cases. Compared with the single-level case (case 1), it is
seen that the two-level subcycling case (case 2) can obtain a 4.8 times speedup and thus save the computational cost. The
three-level subcycling case (case 4) achieves more speedup (6.4 times) compared with the single-level case. In addition,
when comparing the wall clock time of the subcycling cases (case 2 and case 4) with the corresponding non-subcycling
cases (case 3 and case 5), we find that subcycling cases reduce more computational cost. The reason is that, compared to
the non-subcycling method, the subcycling method can use larger time steps for the coarser levels.

Besides the total wall clock time, the percentages of the time spent on some key parts of the algorithms are also
documented, which can help us to identify the most time-consuming parts for optimizing the algorithms in future research.
As shown in Fig. 27, they include the MAC projection, viscous solver, level projection, and synchronization. Among them, the
level projection takes the most time (> 35%), followed by the MAC projection step (≈ 30%). Therefore, optimization of the
two projection algorithms is desired. At last, the part denoted as the “Others”, including the regridding, the interpolation
operations, and the multi-level re-initialization steps, only account for about 5% of the total computation time. This result
shows that our multi-level re-initialization algorithm is an economical way to regularize the LS function on the multi-level
grid.
27

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Fig. 26. Profiles of the breaking dam for the three-level subcycling case (case 4) at different time instants. The red, green, and blue lines represent patches
on levels 0, 1, 2, respectively.

Table 10
Number of grid cells of the cases in the dam breaking problem at t/T = 0.1.

Case No. Cells on level 0 Cells on level 1 Cells on level 2 Total cells Total cells normalized by case 4

1 6,291,456 – – 6,291,456 6.32
2 786,432 657,408 – 1,443,840 1.45
3 786,432 657,408 – 1,443,840 1.45
4 98,304 239,616 657,408 995,328 1
5 98,304 239,616 657,408 995,328 1

Table 11
Comparison of the total wall clock time Ttotal and the speedup among the single-level case (case 1), the two-level
subcycling case (case 2), the two-level non-subcycling case (case 3), the three-level subcycling case (case 4), and
the three-level non-subcycling case (case 5) for the dam breaking problem.

Case 1 Case 2 Case 3 Case 4 Case 5

Total wall time (hrs) 1.67 0.35 0.50 0.26 0.38
Speedup compared with case 1 1.0 4.8 3.3 6.4 4.4

6. Conclusions

In this work, we have developed a collocated BSAMR framework with both the subcycling and non-subcycling advance-
ment methods for the simulations of incompressible two-phase flows. The proposed multi-level advancement algorithm
based on the level-by-level advancement method uses variables in both the valid and invalid regions and decouples the
time advancement for different levels. Because of this decoupling, the time step constraint on the coarser levels is relaxed
compared with that on the finest level if the subcycling method is used. On the other hand, the non-subcyling method
avoids the time interpolation process across the different levels because data on all levels are located at the same time
instant during the simulation.

Compared with the staggered grid and the semi-staggered grid, the collocated grid used here have several benefits. For
example, the Godunov scheme, which is robust to for flows with a wide range of Reynolds number, can be implemented in
a straightforward way when the collocated grid is used, as done in the present work. In addition, one set of interpolation
schemes and average operations is used for all variables in the context of the collocated grid. Moreover, only the cell-
centered MG solver is needed for the velocity and pressure fields.

The synchronization algorithm proposed in this work is the key to maintain the consistency of variables across multiple
levels so that the variables can better represent the composite solution during the level-by-level advancement. When a
fine level catches up with a coarse level, the cell-centered averaging sub-step first replaces the variables on the coarser
levels with the more accurate solution on the finer levels. Then, the MAC synchronization and refluxing sub-step provide
28

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
Fig. 27. Percentages of the wall clock time for different parts in the BSAMR algorithms. The cases considered include the single-level case (case 1), the
two-level subcycling case (case 2), the two-level non-subcycling case (case 3), the three-level subcycling case (case 4), and the three-level non-subcycling
case (case 5).

corrections to the multi-level solution from the velocity and flux registers to ensure the momentum conservation on the
entire flow field.

In this work, we have also developed a novel re-initialization algorithm for the LS function on the multi-level grid to
improve the accuracy of the two-phase interface capturing in the BSAMR framework. It employs an iteration technique to
synchronize the LS function on two consecutive levels pair by pair. This algorithm leads to a substantial improvement in
the mass conservation of the two-phase flow.

The accuracy and robustness of the computational framework are validated with several canonical tests. The results have
shown that our numerical schemes obtain the second-order accuracy as designed and conserve the mass, momentum, and
energy well. The subcycling and non-subcycling methods produce consistent and accurate results. We have also shown that
the multi-level cases can achieve the same level of accuracy with fewer grid cells than the single-level fine-grid cases.
In particular, for the 3D dam breaking problem, the multi-level simulation is able to capture the evolution of the dam
accurately with substantial speedup compared with the single-level simulation. The synchronization and multi-level re-
initialization algorithms developed in this work are also shown to be computationally efficient. Therefore, we conclude that
the proposed AMR framework is promising for high-fidelity simulations of complex two-phase flows. In the future, we plan
to extend this framework to support a high refining ratio between different levels.

CRediT authorship contribution statement

Yadong Zeng: Conceptualization, Methodology, Writing – original draft. Anqing Xuan: Formal analysis, Validation, Writ-
ing – review & editing. Johannes Blaschke: Software, Validation. Lian Shen: Funding acquisition, Project administration,
Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

Y. Z., A. X., and L. S. gratefully acknowledge the support to this work by the Office of Naval Research (N00014-17-
1-2658 and N00014-19-1-2139) and National Science Foundation (OCE-1924799) on this work. Y. Z. would also like to
gratefully thank the researchers in the Lawrence Berkeley National Lab (LBNL) for the discussions about the synchronization
algorithms.

References

[1] A. Iafrati, F. De Vita, R. Verzicco, Effects of the wind on the breaking of modulated wave trains, Eur. J. Mech. B, Fluids 73 (2019) 6–23.
29

http://refhub.elsevier.com/S0021-9991(21)00635-5/bib137DD7CA380FCD6A6C71898DA6401D8Bs1

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
[2] Z. Yang, B.-Q. Deng, L. Shen, Direct numerical simulation of wind turbulence over breaking waves, J. Fluid Mech. 850 (2018) 120–155.
[3] V. Bertram, Practical Ship Hydrodynamics, Elsevier, 2011.
[4] J. Hua, J. Lou, Numerical simulation of bubble rising in viscous liquid, J. Comput. Phys. 222 (2007) 769–795.
[5] L. Deike, E. Ghabache, G. Liger-Belair, A.K. Das, S. Zaleski, S. Popinet, T. Séon, Dynamics of jets produced by bursting bubbles, Phys. Rev. Fluids 3 (2018)

013603.
[6] T. Ménard, S. Tanguy, A. Berlemont, Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary break-up

of a liquid jet, Int. J. Multiph. Flow 33 (2007) 510–524.
[7] A. Prosperetti, G. Tryggvason, Computational Methods for Multiphase Flow, Cambridge University Press, 2009.
[8] M.J. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys. 53 (1984) 484–512.
[9] M.J. Berger, P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys. 82 (1989) 64–84.

[10] Y.-H. Yu, Y. Li, Reynolds-averaged Navier–Stokes simulation of the heave performance of a two-body floating-point absorber wave energy system,
Comput. Fluids 73 (2013) 104–114.

[11] Y. Zeng, L. Shen, Modelling Wave Energy Converter (WEC) pointer absorbers using AMR techniques with both subcycling and non-subcycling, Earth
Space Sci. Open Arch. (2020) 1.

[12] S. Popinet, A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations, J. Comput. Phys. 302 (2015) 336–358.
[13] S.L. Cornford, D.F. Martin, D.T. Graves, D.F. Ranken, A.M. Le Brocq, R.M. Gladstone, A.J. Payne, E.G. Ng, W.H. Lipscomb, Adaptive mesh, finite volume

modeling of marine ice sheets, J. Comput. Phys. 232 (2013) 529–549.
[14] P. Mistani, A. Guittet, D. Bochkov, J. Schneider, D. Margetis, C. Ratsch, F. Gibou, The island dynamics model on parallel quadtree grids, J. Comput. Phys.

361 (2018) 150–166.
[15] M. Al-Marouf, R. Samtaney, A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry, J. Comput. Phys. 337

(2017) 339–378.
[16] C.C. de Langavant, A. Guittet, M. Theillard, F. Temprano-Coleto, F. Gibou, Level-set simulations of soluble surfactant driven flows, J. Comput. Phys. 348

(2017) 271–297.
[17] L. Ding, C. Shu, H. Ding, N. Zhao, Stencil adaptive diffuse interface method for simulation of two-dimensional incompressible multiphase flows, Comput.

Fluids 39 (2010) 936–944.
[18] V.K. Chalamalla, E. Santilli, A. Scotti, M. Jalali, S. Sarkar, SOMAR-LES: a framework for multi-scale modeling of turbulent stratified oceanic flows, Ocean

Model. 120 (2017) 101–119.
[19] M. Zingale, A. Almgren, M.B. Sazo, V. Beckner, J. Bell, B. Friesen, A. Jacobs, M. Katz, C. Malone, A. Nonaka, et al., Meeting the Challenges of Modeling

Astrophysical Thermonuclear Explosions: Castro, Maestro, and the AMReX Astrophysics Suite, J. Phys. Conf. Ser. 1031 (2018) 012024, IOP Publishing.
[20] A. Guittet, M. Theillard, F. Gibou, A stable projection method for the incompressible Navier–Stokes equations on arbitrary geometries and adaptive

Quad/Octrees, J. Comput. Phys. 292 (2015) 215–238.
[21] M. Mirzadeh, A. Guittet, C. Burstedde, F. Gibou, Parallel level-set methods on adaptive tree-based grids, J. Comput. Phys. 322 (2016) 345–364.
[22] S. Popinet, Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys. 190 (2003) 572–600.
[23] A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell, M.L. Welcome, A conservative adaptive projection method for the variable density incompressible Navier–

Stokes equations, J. Comput. Phys. 142 (1998) 1–46.
[24] D.F. Martin, P. Colella, A cell-centered adaptive projection method for the incompressible Euler equations, J. Comput. Phys. 163 (2000) 271–312.
[25] D.F. Martin, P. Colella, D. Graves, A cell-centered adaptive projection method for the incompressible Navier–Stokes equations in three dimensions, J.

Comput. Phys. 227 (2008) 1863–1886.
[26] M.L. Minion, A projection method for locally refined grids, J. Comput. Phys. 127 (1996) 158–178.
[27] Y. Zeng, L. Shen, A unified AMR framework for multiphase flow and fluid-structure interaction problems with both non-subcycling and subcycling, in:

APS Division of Fluid Dynamics Meeting Abstracts, 2019, pp. S19–001.
[28] C. Burstedde, L.C. Wilcox, O. Ghattas, p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput. 33

(2011) 1103–1133.
[29] T. Isaac, C. Burstedde, L.C. Wilcox, O. Ghattas, Recursive algorithms for distributed forests of octrees, SIAM J. Sci. Comput. 37 (2015) C497–C531.
[30] M. Williamschen, C.P. Groth, Parallel anisotropic block-based adaptive mesh refinement algorithm for three-dimensional flows, in: 21st AIAA Compu-

tational Fluid Dynamics Conference, 2013, p. 2442.
[31] C. Min, F. Gibou, A second order accurate level set method on non-graded adaptive Cartesian grids, J. Comput. Phys. 225 (2007) 300–321.
[32] M. Vanella, P. Rabenold, E. Balaras, A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid–structure interaction prob-

lems, J. Comput. Phys. 229 (2010) 6427–6449.
[33] B.T. Gunney, R.W. Anderson, Advances in patch-based adaptive mesh refinement scalability, J. Parallel Distrib. Comput. 89 (2016) 65–84.
[34] C. Burstedde, D. Calhoun, K. Mandli, A.R. Terrel, ForestClaw: hybrid forest-of-octrees AMR for hyperbolic conservation laws, Parallel Comput. 25 (2014)

253–262.
[35] B.E. Griffith, R.D. Hornung, D.M. McQueen, C.S. Peskin, An adaptive, formally second order accurate version of the immersed boundary method, J.

Comput. Phys. 223 (2007) 10–49.
[36] M. Sussman, A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell, M.L. Welcome, An adaptive level set approach for incompressible two-phase flows, J. Comput.

Phys. 148 (1999) 81–124.
[37] A.P.S. Bhalla, R. Bale, B.E. Griffith, N.A. Patankar, A unified mathematical framework and an adaptive numerical method for fluid–structure interaction

with rigid, deforming, and elastic bodies, J. Comput. Phys. 250 (2013) 446–476.
[38] N. Nangia, B.E. Griffith, N.A. Patankar, A.P.S. Bhalla, A robust incompressible Navier–Stokes solver for high density ratio multiphase flows, J. Comput.

Phys. 390 (2019) 548–594.
[39] M.R. Pivello, M.M. Villar, R. Serfaty, A.M. Roma, A.d. Silveira-Neto, A fully adaptive front tracking method for the simulation of two phase flows, Int. J.

Multiph. Flow 58 (2014) 72–82.
[40] S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys. 100 (1992) 25–37.
[41] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201–225.
[42] M. Renardy, Y. Renardy, J. Li, Numerical simulation of moving contact line problems using a volume-of-fluid method, J. Comput. Phys. 171 (2001)

243–263.
[43] J.E. Pilliod Jr, E.G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. Comput. Phys. 199 (2004) 465–502.
[44] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79

(1988) 12–49.
[45] D. Adalsteinsson, J.A. Sethian, A fast level set method for propagating interfaces, J. Comput. Phys. 118 (1994).
[46] J.A. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci. USA 93 (1996) 1591–1595.
[47] F. Gibou, R. Fedkiw, S. Osher, A review of level-set methods and some recent applications, J. Comput. Phys. 353 (2018) 82–109.
[48] H. Kohno, T. Tanahashi, Numerical analysis of moving interfaces using a level set method coupled with adaptive mesh refinement, Int. J. Numer.

Methods Fluids 45 (2004) 921–944.
30

http://refhub.elsevier.com/S0021-9991(21)00635-5/bib5F75F408CBD00FC1E10D054F9E9A6CA3s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibC4910235D7A4DAEDA12475BD6AFCBD2Cs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib86E8B660150239F2805157F1C0F2AE86s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibA025B4D64F30E115102702D1563BFA15s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibA025B4D64F30E115102702D1563BFA15s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibBC67653EED1F351A154B61CCD939FC5As1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibBC67653EED1F351A154B61CCD939FC5As1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib03AFC7F0B17834A06885E3E3AE926020s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib2CC03EB35613C5F4590B14EEF6559D63s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibF0D18DBD716ED5ED4CE2A4CDF0BDA675s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibC8BA68F6115FB8CEBDAD068D278B0609s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibC8BA68F6115FB8CEBDAD068D278B0609s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib6D16A0A1A932A4177057974E69395D91s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib6D16A0A1A932A4177057974E69395D91s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib14628BC7B40431539440B54EFA1E8D10s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib32AACFF1743983256BA57B2B7C2A1934s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib32AACFF1743983256BA57B2B7C2A1934s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib9DF1C070B3A5FC64D1B5F711214B2A84s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib9DF1C070B3A5FC64D1B5F711214B2A84s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib1A9ED61612B301D7398C0D3BE10CC7B4s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib1A9ED61612B301D7398C0D3BE10CC7B4s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib08E04989535938183EAB736E14F32DEDs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib08E04989535938183EAB736E14F32DEDs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib553F11B47EE7D46FFC8EDFAAC5E61C62s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib553F11B47EE7D46FFC8EDFAAC5E61C62s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib2243D4B04E6014D5EAB8B7F377ED0FA8s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib2243D4B04E6014D5EAB8B7F377ED0FA8s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibC577063A6EF8D67E6C01E4ECEAC8A68As1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibC577063A6EF8D67E6C01E4ECEAC8A68As1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib1AC0D5A0A2F093C2529147EB1ABAF151s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib1AC0D5A0A2F093C2529147EB1ABAF151s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibBC06BD922304C281D03E0913C60A1C3Es1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibD7CB056E51DD5002CE952CBA6494811Bs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib5B9F747D73E0B0E502849EFBAD92A8BDs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib5B9F747D73E0B0E502849EFBAD92A8BDs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib03A3671F3B79C13955B2D70770EDF160s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibD566F70D0E4D8BC4C301C3656613F649s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibD566F70D0E4D8BC4C301C3656613F649s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib7DD7C333A64DCE6CF01465C1E2B209DAs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib8A82F67823FD7D2C7BF5AB33117197B4s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib8A82F67823FD7D2C7BF5AB33117197B4s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib8BEC5C5BE8E6EAEF7B74F954EB128A6Fs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib8BEC5C5BE8E6EAEF7B74F954EB128A6Fs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib72A5D8FA536BFD98F3E566578E9125F7s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib64780AA4CE79460EE6375328492F7074s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib64780AA4CE79460EE6375328492F7074s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib96D20583DE85C99BD6FBF96751F9500Fs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibE3BADB20A05183211C3D7B3B1F69CB52s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibE3BADB20A05183211C3D7B3B1F69CB52s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib6D5CF0997AC39ABBD44D471CD2528385s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib8A40EB59933B59E88FFEEA0FFA5702B9s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib8A40EB59933B59E88FFEEA0FFA5702B9s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib410AFC969E1D801B549DDDD344D84DCDs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib410AFC969E1D801B549DDDD344D84DCDs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib6F18199BE15C357302712F5DF15895A0s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib6F18199BE15C357302712F5DF15895A0s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib696A0D8DE598378DB671741B5CEE23EFs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib696A0D8DE598378DB671741B5CEE23EFs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib93183C62690DAA16AD32BA1E1B55F4D1s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib93183C62690DAA16AD32BA1E1B55F4D1s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibB32A8DC20875C210B808ED3ED6CB4EA5s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibB32A8DC20875C210B808ED3ED6CB4EA5s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib432CE66590E5569954A0AC35CF40B6BFs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibA9E8D0BC670BE930F9DDCF033223878As1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib1871391811C04FC128948CEBD9B3CDC7s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib1871391811C04FC128948CEBD9B3CDC7s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibB4392999C9663C93DA9D6A5827D39A88s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib0806BE07938DA46C1BDE0D3143EF703As1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib0806BE07938DA46C1BDE0D3143EF703As1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib09FBC713568CE10988F308247BEA7A1As1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibF6356C40A5DE7FA87F9142613171337As1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib2D5A2247EA792C5D230BE3C9F1E3D314s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib4C1F46596D9187914D3ED86704D6BD47s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib4C1F46596D9187914D3ED86704D6BD47s1

Y. Zeng, A. Xuan, J. Blaschke et al. Journal of Computational Physics 448 (2022) 110740
[49] O. Antepara, N. Balcázar, J. Rigola, A. Oliva, Numerical study of rising bubbles with path instability using conservative level-set and adaptive mesh
refinement, Comput. Fluids 187 (2019) 83–97.

[50] S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys. 228 (2009) 5838–5866.
[51] W. Zhang, A. Almgren, V. Beckner, J. Bell, J. Blaschke, C. Chan, M. Day, B. Friesen, K. Gott, D. Graves, et al., AMReX: a framework for block-structured

adaptive mesh refinement, J. Open Sour. Softw. 4 (2019).
[52] M. Sussman, E. Fatemi, An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow,

SIAM J. Sci. Comput. 20 (1999) 1165–1191.
[53] M. Zingale, Introduction to Computational Astrophysical Hydrodynamics, Open-Astrophysics-Bookshelf, 2017.
[54] W.J. Rider, Approximate Projection Methods for Incompressible Flow: Implementation, Variants and Robustness, LANL Unclassified Report LA-UR-94-

2000, Los Alamos National Laboratory, 1995.
[55] W.J. Rider, Filtering non-solenoidal modes in numerical solutions of incompressible flows, Int. J. Numer. Methods Fluids 28 (1998) 789–814.
[56] A.S. Almgren, J.B. Bell, W.Y. Crutchfield, Approximate projection methods: Part I. Inviscid analysis, SIAM J. Sci. Comput. 22 (2000) 1139–1159.
[57] P. Colella, A multidimensional second order Godunov scheme for conservation laws, J. Comput. Phys. 87 (1990) 171–200.
[58] J.B. Bell, P. Colella, H.M. Glaz, A second-order projection method for the incompressible Navier–Stokes equations, J. Comput. Phys. 85 (1989) 257–283.
[59] M.F. Lal, A Projection Method for Reacting Flow in the Zero Mach Number Limit, Ph.D. thesis, University of California at Berkeley, 1993.
[60] A.S. Almgren, J.B. Bell, W.G. Szymczak, A numerical method for the incompressible Navier–Stokes equations based on an approximate projection, SIAM

J. Sci. Comput. 17 (1996) 358–369.
[61] M.F. Lai, A projection method for reacting flow in the zero Mach number limit, Ph.D. thesis, University of California, Berkeley, 1993.
[62] R.D. Guy, A.L. Fogelson, Stability of approximate projection methods on cell-centered grids, J. Comput. Phys. 203 (2005) 517–538.
[63] C. Min, F. Gibou, A second order accurate projection method for the incompressible Navier–Stokes equations on non-graded adaptive grids, J. Comput.

Phys. 219 (2006) 912–929.
[64] P. Colella, D.T. Graves, T. Ligocki, D. Martin, D. Modiano, D. Serafini, B. Van Straalen, Chombo software package for AMR applications design document,

Available at the Chombo website: http://seesar.lbl .gov /ANAG /chombo /(September2008), 2009.
[65] L.H. Howell, J.B. Bell, An adaptive mesh projection method for viscous incompressible flow, SIAM J. Sci. Comput. 18 (1997) 996–1013.
[66] F. Gibou, L. Chen, D. Nguyen, S. Banerjee, A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with

phase change, J. Comput. Phys. 222 (2007) 536–555.
[67] D.L. Brown, R. Cortez, M.L. Minion, Accurate projection methods for the incompressible Navier–Stokes equations, J. Comput. Phys. 168 (2001) 464–499.
[68] N. Nangia, N.A. Patankar, A.P.S. Bhalla, A DLM immersed boundary method based wave-structure interaction solver for high density ratio multiphase

flows, J. Comput. Phys. 398 (2019) 108804.
[69] Z. Huang, G. Lin, A.M. Ardekani, A mixed upwind/central WENO scheme for incompressible two-phase flows, J. Comput. Phys. 387 (2019) 455–480.
[70] S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys. 31 (1979) 335–362.
[71] M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J.

Comput. Phys. 162 (2000) 301–337.
[72] H. Lamb, Hydrodynamics, Cambridge University Press, 1993.
[73] S. Xie, D. Yang, Y. Liu, L. Shen, Simulation-based study of wind loads on semi-submersed object in ocean wave field, Phys. Fluids 28 (2016) 015106.
[74] J. Hnat, J. Buckmaster, Spherical cap bubbles and skirt formation, Phys. Fluids 19 (1976) 182–194.
[75] G. Ryskin, L. Leal, Numerical solution of free-boundary problems in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a quiescent

liquid, J. Fluid Mech. 148 (1984) 19–35.
[76] J.-L. Guermond, L. Quartapelle, A projection FEM for variable density incompressible flows, J. Comput. Phys. 165 (2000) 167–188.
[77] H. Ding, P.D. Spelt, C. Shu, Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys. 226 (2007) 2078–2095.
[78] G. Tryggvason, Numerical simulations of the Rayleigh–Taylor instability, J. Comput. Phys. 75 (1988) 253–282.
[79] J.C. Martin, W.J. Moyce, J. Martin, W. Moyce, W.G. Penney, A. Price, C. Thornhill, Part IV. An experimental study of the collapse of liquid columns on a

rigid horizontal plane, Philos. Trans. R. Soc. Lond. A 244 (1952) 312–324.
[80] Z. Gu, H. Wen, C. Yu, T.W. Sheu, Interface-preserving level set method for simulating dam-break flows, J. Comput. Phys. 374 (2018) 249–280.
[81] R.V. Rezende, R.A. Almeida, A.A.U. de Souza, S.M.G.U. Souza, A two-fluid model with a tensor closure model approach for free surface flow simulations,

Chem. Eng. Sci. 122 (2015) 596–613.
[82] J.K. Patel, G. Natarajan, A novel consistent and well-balanced algorithm for simulations of multiphase flows on unstructured grids, J. Comput. Phys. 350

(2017) 207–236.
31

http://refhub.elsevier.com/S0021-9991(21)00635-5/bib1648B2A772643F811F92D23E8C702EF8s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib1648B2A772643F811F92D23E8C702EF8s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibF9BF3A78C4A04C5262E8629D01FC9623s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib79D52EFF8BFCF51347F0B37F8BC4B3ABs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib79D52EFF8BFCF51347F0B37F8BC4B3ABs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibEEE456EB6FEE0474C3E3367266F079A4s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibEEE456EB6FEE0474C3E3367266F079A4s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib21275F1E163F6D3ED48C203E69612948s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib8E3213972622627FC111619741F7E323s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib8E3213972622627FC111619741F7E323s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib2DA9B821208B7F6C31EFC25DC37384E0s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib89FEC42E1C5A705F2E31BE2162033E7Fs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib347826F92D5FE982B3864D32B24A6378s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibC72DA8B8F1E7A827DE82ECF296C95B4Ds1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib1E3E557CBBDC49F630655ADB496A63B0s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib3C18A50EC4E64A15CE0593FB8EE5B606s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib3C18A50EC4E64A15CE0593FB8EE5B606s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib34D588AD34652BA22DC3885487B5CC9Bs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib64EE3DE5CB0C9AFE4734D27C23AE9735s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibDD9AD481786CE8BC600E7D5AD99CD2F1s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibDD9AD481786CE8BC600E7D5AD99CD2F1s1
http://seesar.lbl.gov/ANAG/chombo/(September2008)
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibAF1DBD2F669B18CDC6B51E043370B38Es1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib9CD1E899804286D479673443F20D2477s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib9CD1E899804286D479673443F20D2477s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibD678FF8F37D55C2E321275C30CB8EA80s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibE4DEEC45A2AED01B0BB207B41ADACB98s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibE4DEEC45A2AED01B0BB207B41ADACB98s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib6C7272FFD0E1CABE7924E6B48EF086FBs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib43A393FE9E832107E50BA1165A053E09s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibF6BE5DFAF62D39A9B61E0063A143BFA2s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibF6BE5DFAF62D39A9B61E0063A143BFA2s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib62F625890364251EABFBEF8B10136902s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib545219D5895D376B58BD8524220C9C2Fs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibFF2A1AFA8C87CC3767BFFCAAD0BAE39Cs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib88C5859C889016FAAD54FE60BD881041s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib88C5859C889016FAAD54FE60BD881041s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bibCA3D7886C9A6E7E4194BD8A077F2135Ds1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib5C2E7A541217597E2BE6C3E47DA149E3s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib4C4D6B90EB5CED5708DBF7BFAA247344s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib81149E73348813806252A4199C80400Fs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib81149E73348813806252A4199C80400Fs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib0BF960D6CA01CBDFA0408A7F79C7AE7Cs1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib2C057E515CF43B1989FE8404588F1849s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib2C057E515CF43B1989FE8404588F1849s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib86253C088A84032037EF4E6CEA3D0FD4s1
http://refhub.elsevier.com/S0021-9991(21)00635-5/bib86253C088A84032037EF4E6CEA3D0FD4s1

	A parallel cell-centered adaptive level set framework for efficient simulation of two-phase flows with subcycling and non-s...
	1 Introduction
	2 Mathematical formulation
	3 Variables and operators on multi-level adaptive grid
	3.1 Concepts and definitions in BSAMR
	3.2 Definitions of variables and operators

	4 Time advancement
	4.1 Single-level advancement
	4.1.1 Time discretization
	4.1.2 Discretization of the advection, viscous, and surface tension terms

	4.2 Multi-level advancement
	4.2.1 Subcycling and non-subcycling methods
	4.2.2 Synchronization
	4.2.3 Multi-level re-initialization of the LS function
	4.2.4 Multi-level initialization of flow field
	4.2.5 Summary of multi-level advancement

	5 Results
	5.1 Stability of the projection
	5.2 Taylor Green Vortex
	5.3 Four-way vortex merging
	5.4 Inviscid shear layer
	5.5 Zalesak’s problem
	5.6 Gravity wave
	5.7 Rising bubble
	5.8 Rayleigh--Taylor instability
	5.9 3D dam breaking

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

