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ABSTRACT. Scanning tunneling spectroscopy (STS), a technique that records the change in the
tunneling current as function of the bias (d//dV’) across the gap between a tip and the sample, is a
powerful tool to characterize the electronic structure of single molecules and nanomaterials. While
performing STS, the structure and condition of the scanning probe microscopy (SPM) tips are
critical for reliably obtaining high quality point spectra. Here, we present an automated program
based on machine learning models that can identify the Au(111) Shockley surface state in dZ/dV
point spectra and perform tip conditioning on clean or sparsely covered gold surfaces with minimal
user intervention. We employ a straightforward height-based segmentation algorithm to analyze
STM topographic images to identify tip conditioning positions and used 1789 archived d//dV
spectra to train machine learning models that can ascertain the condition of the tip by evaluating
the quality of the spectroscopic data. Decision tree based ensemble and boosting models, and deep
neural networks (DNNs) have been shown to reliably identify tips in suitable conditions for STS.
We expect the automated program to reduce operational costs and time, increase reproducibility
in surface science studies, and accelerate the discovery and characterization of novel nanomaterials
by STM. The strategies presented in this paper can readily be adapted to STM tip conditioning on

a wide variety of other common substrates.
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Scanning tunneling microscopy (STM) techniques!= and associated spectroscopic (STS)
methods,*¢ such as dI/dV point spectroscopy, have been widely used to measure electronic
structures and local density of states (LDOS) of single molecules and materials with unprecedented
spatial and energy resolutions.””” However, the quality of dZ/dV spectra highly depends on the
shape of the probe tips, and atomically sharp tips with stable, well-defined apex structures are
required for obtaining reliable spectra.'®!> In most cases, STS measurements are performed in
ultra-high vacuum (UHV) and low temperature (4 K) to minimize external disturbances. Initial tip

13-15 and continuous in situ tip conditioning!>!¢ are often required throughout the

preparation
characterization of target molecules and materials. A common way to prepare STM tip is to
repetitively poke the tip into well-defined and bare substrates, i.e. coinage metals or silicon, to
remove contaminations and in the process coat the tip with a thin layer of substrate atoms.!”!” The
dZ/dV spectrum of the substrate will then be used as a reference to determine whether the tip is
suitable for STS experiments. Since the tip geometry change during the poking process is
unpredictable, the tip conditioning is typically slow and needs to be monitored continuously. It
therefore represents a key factor that restricts the speed of acquisition of high-quality STM
spectroscopic data. In order to make efficient use of the idle time of the instrument and minimize
the operational time spend on tip conditioning, we developed a program based on Python and
machine learning that can fully automate the time-consuming tip conditioning processes. The
program is designed to perform tip conditioning on Au(111) surfaces that are clean or feature a
sub-monolayer molecular coverage with minimal operator intervention. Once initiated, the
program autonomously performs tip conditioning cycles until the tip can generate publication

quality spectroscopic data on gold surfaces (see Supporting Information for the user interface).

The automation package seamlessly interfaces with control software of a Scienta Omicron STM



and autonomously analyzes the collected topographic images to find flat bare regions of Au that
are large enough for tip conditioning. The program proceeds to collect d//dV spectra at
automatically selected positions and uses machine learning models to compare their quality to
standard d//dV spectra for Au?® to decide if the tip meets the requirements for further STS
measurements. If the tip condition is inadequate, the program instructs the STM control software
to continue the conditioning cycle until the machine learning model determines the quality of the
tip to meet the set STS standard. We used 1789 dI/dV spectra previously collected in our group to
train machine learning models and to evaluate their performances. Decision tree based ensemble
and boosting models (e.g. Random Forest, AdaBoost,?! and CatBoost??) and deep neural networks
(DNNs) show reasonable performance in identifying tips that are in usable conditions with clear
Au(111) Shockley surface states (gold surface states) evident in the spectra. Experimental high-
quality dZ/dV spectra are rare and their numbers are inadequate to generate a sufficiently large
training set to train a DNN. We demonstrate that data augmentation strategies for generating
artificial d//dV spectra based on experimental data can be used to solve the data availability issue.
The data processing strategies presented here are generally applicable for automatic STM tip

conditioning on other surfaces routinely used in STM experiments.

Locating tip conditioning positions in topographic images. In order for the program to
perform autonomous tip conditioning, it needs to be able to identify suitable positions to poke the
tip and record d//dV point spectra. An algorithm that can process STM topographic images and
identify unobstructed clean substrate areas is required. Programs aiming to automate topographic
image analysis and STM operations have been reported before,'%>3-3° but most of these algorithms,
some associated with machine learning methods, are designed for more complicated purposes such

as atom manipulation. Our program employs a fast and direct method that segments topographic



images based on apparent height and scans the labeled images as a 5 nm by 5 nm window to locate
possible substrate areas for tip conditioning. The image processing procedure is visualized in
Figure 1. Topographic STM images were collected on a Au(111) substrate covered with a sub
monolayer of graphene nanoribbons (GNRs). Raw topographic images tend to be tilted, as shown
in Figure la, since STM tips are generally not aligned perfectly perpendicular to the sample
surface. Therefore, the first step of image processing is to calculate the best fit plane of the image
using normal equation, a commonly used method in linear algebra, and subtract the plane from the
raw image. The normal equation flattened image of Figure 1a is shown in Figure 1b. The program
will analyze the apparent height distribution of the flattened image, visualized as a histogram in
Figure le, and identify peaks that represent the most prevalent z-heights. The flattened image can
thus be segmented based on apparent height and labeled by the sequence of peaks in the histogram,
as shown in Figure 1c and highlighted in Figure le. For our GNRs/Au(111) systems or for clean
Au(111) surfaces, we group pixels within —0.05 nm to +0.05 nm of each prevalent height together
and assign them with the same label (Figure 1e). For pixels that are not included in any group, we
label them O (shown as dark blue areas in Figure 1c and 1d). This range can be adjusted based on
the height variances of different surfaces used in STM. After labeling the topographic images, the
program will use a 5 nm by 5 nm window to scan the image line by line and register areas that
contain the same non-zero label (Figureld). The middle of each registered square is considered a
good location to poke or record d//dV point spectra. This selection ensures that both the tip
preparation and STS point spectroscopy will not be performed over molecular adsorbates or step
edges. In each tip conditioning cycle, the program will control the STM to take two consecutive
d//dV spectra at one of the selected locations and use a machine learning model (discussed below)

to analyze the second spectra. If the machine learning model predicts that the tip is not in the



desired condition, the program will control the STM to perform a 2 nm poke at the same location
and move to the next cycle. Tip conditioning cycles are performed at positions that are separated
by at least 15 nm to avoid poking or performing STS over spurious particles dropped on the surface
during previous conditioning cycles. In the example illustrated in Figure 1, the tip conditioning
cycles are performed at locations marked by arrows in Figure 1d. The 5 nm window and 15 nm
separations were determined based on the optimal requirements of our specific STM instrument
but can be adjusted to other systems. We use machine learning models to analyze the second
spectra in each tip conditioning cycle since the tip condition tends to change during the STS
measurement immediately after a poke. This cycle is designed to be conservative to avoid potential

damage to the tip and can be adjusted based on user preference.
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Figure 1. Topographic STM image segmented and labeled by the automated program. (a) Raw
topographic STM image of graphene nanoribbons on Au(111). (b) Figure (a) flattened using
normal equation. (¢) Figure (b) segmented and labeled topographic image based on apparent height
(see text). (d) Image showing tip conditioning positions determined autonomously by the program.
Arrows highlight positions where tip conditioning cycles (see text) will be performed (e)
Histogram of pixel heights for Figure (b). Highlighted regions represent —0.05 nm to +0.05 nm

range centered around each peak. Figure (c) is labeled based on the highlighted regions.

Conventional strategies used to flatten topographic images using normal equation will not

completely level the image if molecules on the surface are not evenly distributed or if step edges



are present within the scanning window. To resolve these cases, STM users normally choose three
points in the image that are expected to have the same height to define a new best fit plane for
image flattening. In our program, we incorporate a function that can perform three point flattening
automatically. After the program identifies all suitable positions for tip conditioning using the
method mentioned above, it will pick the central coordinates of the three most separated squares
in the label 1 region. The average height within each of the three squares in the topographic image
is assigned to the corresponding central coordinate and used to calculate the new best fit plane. To
demonstrate the performance of automatic three points flattening, we present an example in Figure
2. Figure 2a,c,e show the results of an STM image flattened by normal equation and labeled using
the methods demonstrated in Figure 1. Figure 2b shows the three points flattened result of Figure
2a. The height distributions of Figure 2a and 2b are presented in Figure 2g, from which we can see
that the additional three points flattening technique leads to a significant improvement in the
leveling of the image when compared to the normal equation method. Furthermore, our
segmentation and labeling algorithm performs much better on three point flattened images, as

demonstrated in Figure 2d,f.
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Figure 2. Topographic STM image processed with different methods by the automated program.

(a) STM image of Au(111) surface flattened using normal equations. (b) Figure (a) flattened using
three points alignment. (c) Figure (a) segmented and labeled based on apparent height. (d) Figure

(b) segmented and labeled based on apparent height. (¢) Image showing tip conditioning positions



detected by the program in Figure (a). (f) Image showing tip conditioning positions detected by

the program in Figure (b). (g) Histogram of pixel height for Figure (a) and (b).

Evaluating tip condition from dZ/d}V spectra using machine learning models. For a tip
conditioning program to be practical, it needs to be able to exit the cycle when the tip is in a state
suitable for STS measurement. The program is designed to work on clean or sparsely covered
Au(111) surfaces, so the quality of dZ/dV spectra taken on gold substrate itself can be used as an
indicator for the quality of the tip. While an experienced researcher can readily identify a clean
STS spectrum recorded e.g. on Au(111), there is no unique criteria that could be hard coded into
an automated program. To resolve this challenge, we herein apply machine learning models trained
on a library of archived gold d//dV spectra to analyze and evaluate the traces collected as part of
the tip conditioning process. We manually labeled archived spectra based on parameters like signal
to noise ratio, position of the characteristic surface state, and appearance of unknown features with
respect to an idealized d//dV point spectrum of a Au(111) surface. Each dZ/dV spectrum is graded
on a scale between 0 to 4, with 4 corresponding to an ideal curve and 0 to curves entirely lacking
a defined feature for the gold surface states or featuring significant undefined peaks from tip
adsorbates (including spectra taken on molecules or on other substrates). A sample of d//dV spectra
with different grades are presented in Figure 3. Spectra with clear gold surface states are graded
between 2 to 4 while spectra without gold surface states are graded as 0 or 1. The number of d//dV
spectra with different grades are listed in Table 1. As our archive only contains a limited number
of spectra graded at 3 and 4 for training, we initially grouped d//dV spectra with grade 2, 3, and 4
together and train them against spectra with grade 0 and 1 to obtain models that can reliably

identify a Schockley gold surface state.
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Figure 3. Example STS curves that have been assigned with different grades.

dirdV(a.u.)

Table 1. Number of d//dV spectra with different grade. Spectra with clear gold surface states are

graded between 2 to 4.
Grade 0(Bad) 1 20K) 3 4(Good) Total
Training Label
False True
(Au Surface State?)
Number 410 955 334 84 6 1789

Before training machine learning models, we uniformly scale the STS data by normalizing the
maximum d//dV value between —0.75 V and 0.00 V in each curve to 1, so that the relative intensity
of the gold surface state can readily be determined during the normalization. We note that —1.5 V
to 2.0 V represents the most important bias window in STS measurements, so in each d//dV
spectrum we pick d//dV values at 896 evenly spaced biases between —1.5 V to 2.0 V and generate
a new curve suitable for machine learning training and prediction. We used 80% of the archived
data (1094 labeled false and 338 labeled true) for training and 20% of the data (271 labeled false
and 86 labeled true) for testing. To evaluate the performance of different models, we compared
their precision scores and recall scores acquired on the test set and their Receiver Operating
Characteristic (ROC) curves generated from three-fold cross-validation data on a training set.3! To

benchmark the performance of our machine learning models we used a simple correlation model



that does not rely on machine learning as a reference. This correlation method classifies the spectra
in our data set based on their mean squared error with respect to a highest quality reference d//dV
spectrum (see Supporting Information for details). The results of our benchmarking results are
summarized in Table 2 along with the corresponding ROC curves in Figure 4a.

Table 2. Performance of different machine learning models* on differentiating STS curves with

gold surface states.

ROC
Model Precision (On test set) Recall (On test set)

Area Under Curve
Correlation 0.408 0.529 0.679
SGD 0.595 0.547 0.807
SVM 0.685 0.733 N/A**
Iﬁ‘;‘;'irs:::ion 0.587 0.628 0.913
Decision Tree 0.746 0.616 0.790
Random Forest 0.825 0.605 0.928
AdaBoost 0.829 0.674 0.942
CatBoost 0.842 0.744 0.943
MLP 0.792 0.663 0.940
CNN 0.806 0.674 0.935

*SGD, SVM, MLP, and CNN denote stochastic gradient descent, support vector machine,
multilayer perceptron, and convolutional neural network, respectively. AdaBoost and CatBoost
are boosting methods based on decision tree. Correlation represents a basic model that does not
rely on machine learning (see text). See supporting information for model details. **SVM is

generally not used to predict the probability of classification so a ROC curve is not applicable for
SVM.
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Figure 4. Performance of machine learning models on differentiating STS curves with gold
surface states. (a) Receiver Operating Characteristic (ROC) curves for machine learning models.
The curves are generated from classification probability results of three-fold cross-validation on
the training set (except for the correlation curve, see Supporting Information). (b) Contribution of
each data point on the classification of STS curves using a random forest model (feature

importance). An STS curve with grade 4 is presented as reference in blue.

From Table 2 and Figure 4a we can see that the correlation method, regression methods, and
several basic machine learning methods can in general differentiate high quality STS curves from
poor ones but their classification results are inferior to decision tree based ensemble and boosting
models or deep neural networks (MLP, CNN). Figure 4b shows a representation of the weight of

each data point in the STS curve on making the classification decision if a random forest model is



applied. We notice that the model performs classification mainly based on data points between —
0.75 V and 0.00 V, emphasizing the characteristic region associated with the gold surface state.
This suggests that machine learning models can indeed learn to differentiate a gold surface state
based on our labeling.

While the performance of machine learning models judged just by the precision and recall scores
alone (Table 2) is consistently superior to correlation and regression models the identification of
high-quality STS spectra is not flawless. We largely attribute this to the inconsistency of manual
labeling of the training set since there is no objective criteria for grading the d//dV spectra. The
differences between spectra with different grades are often minor, especially for spectra that are
graded as 1 or 2. Therefore, ambiguity in manual classification introduces significant noises into
the dataset. The limited number of grade 4 spectra for training is another reason for the
performance of machine learning models. Deep neural networks tend to overfit our sample despite
the simple architectures (see Supporting Information) we used in our program. Furthermore, for
the machine learning models to work we have to group spectra with grade 2, 3, and 4 together and
label them as acceptable for STS. In order to better understand the qualitative performance of
machine learning models, we presented in Figure 5 some of the d//dV spectra in the test set that
were predicted as false positives and false negatives by an AdaBoost model. We can see from
Figure 5a that the spectra that have been predicted as false positives are not entirely unsuitable for
STS, and if the tip conditioning program were to stop when obtaining one of these spectra, the
operator may only need to do a few more mild tip conditioning operations before applying the tip
to experimental measurements. On the other hand, the false negative spectra presented in Figure
5b are not ideal gold spectra and represent tips that show undesirable artifacts in some sections of

the spectrum. These false negative spectra may have been graded as 2 and labeled as true for



training. Therefore, we are satisfied with the performances of our AdaBoost, CatBoost models and
deep neural networks on identifying STM tips that are in reasonable conditions for STS

measurements.
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Figure 5. Sample d//dV spectra in the test set that are classified as (a) false positives (labeled as
false, predicted as frue) and (b) false negatives (labeled as true, predicted as false) by an AdaBoost

model.

Since CatBoost models are only compatible with 64-bit systems and deep neural networks
require more complex environments to deploy (with only a marginal boost on performances), we
recommend the application of an AdaBoost model and will use this as the default model for our
tip conditioning program. We have deployed the program on a Scienta Omicron STM (Matrix
version 3.2 and 3.4) and repeated tests showed that our tip conditioning software requires on
average 2 to 5 h before the program classifies the tip as appropriate for STS and exits the loop.
Since the program will only stop after the tip has been classified as good in two consecutive tip

conditioning cycles (four d//dV spectra recorded as discussed above), the state of the tip tends to



be stable and will not change drastically following further manipulation. We experience that our
tip conditioning program can make efficient use of the idle time of the STM (e.g. unused
instrument time over night or between shifts) and significantly reduces the amount of regular
operating hours expended on manual tip conditioning for STS measurements.

Possible improvements for machine learning models. With our current machine learning
models, the program may exit the tip preparation cycle at a d//dV spectrum that features a clear
gold surface state but is not entirely featureless in the region between —1.5 V to —0.5 V or +0.5 V
to 2.0 V region (e.g. gray shading in Figure 5a-b). In order to obtain machine learning models that
can differentiate an ideal d//dV spectra from slightly inferior ones, we require a larger library of
grade 3 and 4 spectra that can be split into valid training and test sets. As the pace of expansion of
our library of Au(111) surface spectra is gradual, we herein used a method to generate artificial
spectra to fill this intermediate gap. In an effort to accelerate the process we set out to generate a
training set of artificial spectra based on 90 grade 3 and 4 spectra identified in our library (Table
1). We used linear combinations of 25 randomly selected good spectra to generate a large library
of 1000 artificial dZ/dV point spectra. The randomly generated weights of the 25 spectra are
Dirichlet distributed and sum to 1. We rated these 1000 artificial spectra as grade 3 or higher and
used the library of real spectra with grade 0, 1, and 2 to train deep neural networks (training/test
split ratio 80/20). While the precision scores of this machine learning algorithm exceed 97% with
recall scores greater than 99% on the test set for both MLP and CNN models, when applied to 90
real grade 3 or higher spectra, only 20 spectra of this subset are classified correctly. This indicates
that in this case deep neural networks do classification based on the artificial features introduced

during the creation of the spectra. Regularization methods can be used to avoid overfitting so that



60 out of 90 real spectra can be classified as good, but the precision score will decrease to 70%
and the number of false positives increases.

It is worth considering that were we to obtain a model that can differentiate grade 3 and 4 spectra
from grade 0, 1, and 2, and then apply that model to our tip conditioning program, the much more
stringent criteria lead to a significant increase in run time before the program successfully exits the
cycle. Our current machine learning algorithms represent a practical compromise between
effective use of idle instrument time and the quality factor of the SPM tip obtained through the tip
conditioning process. The performance of our AdaBoost model represents a suitable balance
between these two requirements and has been shown to be the most useful for the purpose of
automated STM tip conditioning.

We present an automated tip conditioning program for STS measurements based on Python and
machine learning. We developed an algorithm to process and analyze topographic STM images to
find suitable positions for tip conditioning on clean or sparsely covered gold surfaces. For each tip
conditioning cycle, we collect two consecutive d//dV spectra at an autonomously selected tip
conditioning position and use a machine learning model to determine if the spectra are
commensurate with the expected d//dV spectrum for the Au(111) surface state. If the condition of
the tip is inadequate the program will instruct the STM control software to perform a poke at the
same location and move to a new location before entering the next cycle. Machine learning models
were trained on a library of archived d//dV spectra on Au. Decision tree based ensemble and
boosting models and deep neural networks show similar performances when identifying suitable
STM tips featuring d//dV spectra with clear gold surface state. Among these machine learning
models AdaBoost was selected as the default for the automated tip conditioning software as it is

robust, adaptable, and faster than other models. Our program has been implemented with a Scienta



Omicron STM but the method to process topographic images and the machine learning models
can be easily transplanted to other STM platforms or software packages. We expect that our
program can make efficient use of the idle time of the STM and greatly reduce the amount of
valuable instrument time expended on tip conditioning for STS measurements.

Experimental Methods. All topographic images and d//dV spectra were collected using a
Scienta Omicron STM under ultrahigh vacuum at 4.2 K. The tips were either electrochemically
etched from polycrystalline tungsten wire or manually cut from Pt/Ir (80/20) wire using a wire
cutter. No significant difference in the quality of images or spectra were observed between the two
types of tips. Tips were manually conditioned for imaging and then conditioned for STS
measurements using the autonomous tip conditioning program.

Images and spectra presented in this paper were collected on Au(111) on mica substrates. Images
and spectra were collected at a tunneling set point of Veias = 0.05 V, It = 20 pA. Spectra were
collected using a lock-in amplifier (Stanford Research Systems Inc., Model SR830) with a
modulation frequency of 455 Hz and a modulation amplitude of 10 mV.

The operations of STM were controlled by an Omicron Matrix console and accessed by Python
through the RemoteAccess API provided by Omicron. Machine learning models were
implemented using the Scikit-Learn (0.22.1) module of Python and Keras (2.2.4) with TensorFlow
backend.
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The source code will be made available at https://github.com/Kaiden713/auto_stm
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