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ABSTRACT. Scanning tunneling spectroscopy (STS), a technique that records the change in the 

tunneling current as function of the bias (dI/dV) across the gap between a tip and the sample, is a 

powerful tool to characterize the electronic structure of single molecules and nanomaterials. While 

performing STS, the structure and condition of the scanning probe microscopy (SPM) tips are 

critical for reliably obtaining high quality point spectra. Here, we present an automated program 

based on machine learning models that can identify the Au(111) Shockley surface state in dI/dV 

point spectra and perform tip conditioning on clean or sparsely covered gold surfaces with minimal 

user intervention. We employ a straightforward height-based segmentation algorithm to analyze 

STM topographic images to identify tip conditioning positions and used 1789 archived dI/dV 

spectra to train machine learning models that can ascertain the condition of the tip by evaluating 

the quality of the spectroscopic data. Decision tree based ensemble and boosting models, and deep 

neural networks (DNNs) have been shown to reliably identify tips in suitable conditions for STS. 

We expect the automated program to reduce operational costs and time, increase reproducibility 

in surface science studies, and accelerate the discovery and characterization of novel nanomaterials 

by STM. The strategies presented in this paper can readily be adapted to STM tip conditioning on 

a wide variety of other common substrates. 
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Scanning tunneling microscopy (STM) techniques1-3 and associated spectroscopic (STS) 

methods,4-6 such as dI/dV point spectroscopy, have been widely used to measure electronic 

structures and local density of states (LDOS) of single molecules and materials with unprecedented 

spatial and energy resolutions.7-9 However, the quality of dI/dV spectra highly depends on the 

shape of the probe tips, and atomically sharp tips with stable, well-defined apex structures are 

required for obtaining reliable spectra.10-12 In most cases, STS measurements are performed in 

ultra-high vacuum (UHV) and low temperature (4 K) to minimize external disturbances. Initial tip 

preparation13-15 and continuous in situ tip conditioning15,16 are often required throughout the 

characterization of target molecules and materials. A common way to prepare STM tip is to 

repetitively poke the tip into well-defined and bare substrates, i.e. coinage metals or silicon, to 

remove contaminations and in the process coat the tip with a thin layer of substrate atoms.17-19 The 

dI/dV spectrum of the substrate will then be used as a reference to determine whether the tip is 

suitable for STS experiments. Since the tip geometry change during the poking process is 

unpredictable, the tip conditioning is typically slow and needs to be monitored continuously. It 

therefore represents a key factor that restricts the speed of acquisition of high-quality STM 

spectroscopic data. In order to make efficient use of the idle time of the instrument and minimize 

the operational time spend on tip conditioning, we developed a program based on Python and 

machine learning that can fully automate the time-consuming tip conditioning processes. The 

program is designed to perform tip conditioning on Au(111) surfaces that are clean or feature a 

sub-monolayer molecular coverage with minimal operator intervention. Once initiated, the 

program autonomously performs tip conditioning cycles until the tip can generate publication 

quality spectroscopic data on gold surfaces (see Supporting Information for the user interface). 

The automation package seamlessly interfaces with control software of a Scienta Omicron STM 



and autonomously analyzes the collected topographic images to find flat bare regions of Au that 

are large enough for tip conditioning. The program proceeds to collect dI/dV spectra at 

automatically selected positions and uses machine learning models to compare their quality to 

standard dI/dV spectra for Au20 to decide if the tip meets the requirements for further STS 

measurements. If the tip condition is inadequate, the program instructs the STM control software 

to continue the conditioning cycle until the machine learning model determines the quality of the 

tip to meet the set STS standard. We used 1789 dI/dV spectra previously collected in our group to 

train machine learning models and to evaluate their performances. Decision tree based ensemble 

and boosting models (e.g. Random Forest, AdaBoost,21 and CatBoost22) and deep neural networks 

(DNNs) show reasonable performance in identifying tips that are in usable conditions with clear 

Au(111) Shockley surface states (gold surface states) evident in the spectra. Experimental high-

quality dI/dV spectra are rare and their numbers are inadequate to generate a sufficiently large 

training set to train a DNN. We demonstrate that data augmentation strategies for generating 

artificial dI/dV spectra based on experimental data can be used to solve the data availability issue. 

The data processing strategies presented here are generally applicable for automatic STM tip 

conditioning on other surfaces routinely used in STM experiments. 

Locating tip conditioning positions in topographic images. In order for the program to 

perform autonomous tip conditioning, it needs to be able to identify suitable positions to poke the 

tip and record dI/dV point spectra. An algorithm that can process STM topographic images and 

identify unobstructed clean substrate areas is required. Programs aiming to automate topographic 

image analysis and STM operations have been reported before,19,23-30 but most of these algorithms, 

some associated with machine learning methods, are designed for more complicated purposes such 

as atom manipulation. Our program employs a fast and direct method that segments topographic 



images based on apparent height and scans the labeled images as a 5 nm by 5 nm window to locate 

possible substrate areas for tip conditioning. The image processing procedure is visualized in 

Figure 1. Topographic STM images were collected on a Au(111) substrate covered with a sub 

monolayer of graphene nanoribbons (GNRs). Raw topographic images tend to be tilted, as shown 

in Figure 1a, since STM tips are generally not aligned perfectly perpendicular to the sample 

surface. Therefore, the first step of image processing is to calculate the best fit plane of the image 

using normal equation, a commonly used method in linear algebra, and subtract the plane from the 

raw image. The normal equation flattened image of Figure 1a is shown in Figure 1b. The program 

will analyze the apparent height distribution of the flattened image, visualized as a histogram in 

Figure 1e, and identify peaks that represent the most prevalent z-heights. The flattened image can 

thus be segmented based on apparent height and labeled by the sequence of peaks in the histogram, 

as shown in Figure 1c and highlighted in Figure 1e. For our GNRs/Au(111) systems or for clean 

Au(111) surfaces, we group pixels within –0.05 nm to +0.05 nm of each prevalent height together 

and assign them with the same label (Figure 1e). For pixels that are not included in any group, we 

label them 0 (shown as dark blue areas in Figure 1c and 1d). This range can be adjusted based on 

the height variances of different surfaces used in STM. After labeling the topographic images, the 

program will use a 5 nm by 5 nm window to scan the image line by line and register areas that 

contain the same non-zero label (Figure1d). The middle of each registered square is considered a 

good location to poke or record dI/dV point spectra. This selection ensures that both the tip 

preparation and STS point spectroscopy will not be performed over molecular adsorbates or step 

edges. In each tip conditioning cycle, the program will control the STM to take two consecutive 

dI/dV spectra at one of the selected locations and use a machine learning model (discussed below) 

to analyze the second spectra. If the machine learning model predicts that the tip is not in the 



desired condition, the program will control the STM to perform a 2 nm poke at the same location 

and move to the next cycle. Tip conditioning cycles are performed at positions that are separated 

by at least 15 nm to avoid poking or performing STS over spurious particles dropped on the surface 

during previous conditioning cycles. In the example illustrated in Figure 1, the tip conditioning 

cycles are performed at locations marked by arrows in Figure 1d. The 5 nm window and 15 nm 

separations were determined based on the optimal requirements of our specific STM instrument 

but can be adjusted to other systems. We use machine learning models to analyze the second 

spectra in each tip conditioning cycle since the tip condition tends to change during the STS 

measurement immediately after a poke. This cycle is designed to be conservative to avoid potential 

damage to the tip and can be adjusted based on user preference. 



Figure 1. Topographic STM image segmented and labeled by the automated program. (a) Raw 

topographic STM image of graphene nanoribbons on Au(111). (b) Figure (a) flattened using 

normal equation. (c) Figure (b) segmented and labeled topographic image based on apparent height 

(see text). (d) Image showing tip conditioning positions determined autonomously by the program. 

Arrows highlight positions where tip conditioning cycles (see text) will be performed (e) 

Histogram of pixel heights for Figure (b). Highlighted regions represent –0.05 nm to +0.05 nm 

range centered around each peak. Figure (c) is labeled based on the highlighted regions. 

Conventional strategies used to flatten topographic images using normal equation will not 

completely level the image if molecules on the surface are not evenly distributed or if step edges 



are present within the scanning window. To resolve these cases, STM users normally choose three 

points in the image that are expected to have the same height to define a new best fit plane for 

image flattening. In our program, we incorporate a function that can perform three point flattening 

automatically. After the program identifies all suitable positions for tip conditioning using the 

method mentioned above, it will pick the central coordinates of the three most separated squares 

in the label 1 region. The average height within each of the three squares in the topographic image 

is assigned to the corresponding central coordinate and used to calculate the new best fit plane. To 

demonstrate the performance of automatic three points flattening, we present an example in Figure 

2. Figure 2a,c,e show the results of an STM image flattened by normal equation and labeled using 

the methods demonstrated in Figure 1. Figure 2b shows the three points flattened result of Figure 

2a. The height distributions of Figure 2a and 2b are presented in Figure 2g, from which we can see 

that the additional three points flattening technique leads to a significant improvement in the 

leveling of the image when compared to the normal equation method. Furthermore, our 

segmentation and labeling algorithm performs much better on three point flattened images, as 

demonstrated in Figure 2d,f. 



Figure 2. Topographic STM image processed with different methods by the automated program. 

(a) STM image of Au(111) surface flattened using normal equations. (b) Figure (a) flattened using 

three points alignment. (c) Figure (a) segmented and labeled based on apparent height. (d) Figure 

(b) segmented and labeled based on apparent height. (e) Image showing tip conditioning positions 



detected by the program in Figure (a). (f) Image showing tip conditioning positions detected by 

the program in Figure (b). (g) Histogram of pixel height for Figure (a) and (b). 

Evaluating tip condition from dI/dV spectra using machine learning models. For a tip 

conditioning program to be practical, it needs to be able to exit the cycle when the tip is in a state 

suitable for STS measurement. The program is designed to work on clean or sparsely covered 

Au(111) surfaces, so the quality of dI/dV spectra taken on gold substrate itself can be used as an 

indicator for the quality of the tip. While an experienced researcher can readily identify a clean 

STS spectrum recorded e.g. on Au(111), there is no unique criteria that could be hard coded into 

an automated program. To resolve this challenge, we herein apply machine learning models trained 

on a library of archived gold dI/dV spectra to analyze and evaluate the traces collected as part of 

the tip conditioning process. We manually labeled archived spectra based on parameters like signal 

to noise ratio, position of the characteristic surface state, and appearance of unknown features with 

respect to an idealized dI/dV point spectrum of a Au(111) surface. Each dI/dV spectrum is graded 

on a scale between 0 to 4, with 4 corresponding to an ideal curve and 0 to curves entirely lacking 

a defined feature for the gold surface states or featuring significant undefined peaks from tip 

adsorbates (including spectra taken on molecules or on other substrates). A sample of dI/dV spectra 

with different grades are presented in Figure 3. Spectra with clear gold surface states are graded 

between 2 to 4 while spectra without gold surface states are graded as 0 or 1. The number of dI/dV 

spectra with different grades are listed in Table 1. As our archive only contains a limited number 

of spectra graded at 3 and 4 for training, we initially grouped dI/dV spectra with grade 2, 3, and 4 

together and train them against spectra with grade 0 and 1 to obtain models that can reliably 

identify a Schockley gold surface state. 

 



Figure 3. Example STS curves that have been assigned with different grades. 

Table 1. Number of dI/dV spectra with different grade. Spectra with clear gold surface states are 

graded between 2 to 4. 

Grade 0(Bad) 1 2(OK) 3 4(Good) Total 

Training Label 

(Au Surface State?) 
False True  

Number 410 955 334 84 6 1789 

 

Before training machine learning models, we uniformly scale the STS data by normalizing the 

maximum dI/dV value between –0.75 V and 0.00 V in each curve to 1, so that the relative intensity 

of the gold surface state can readily be determined during the normalization. We note that –1.5 V 

to 2.0 V represents the most important bias window in STS measurements, so in each dI/dV 

spectrum we pick dI/dV values at 896 evenly spaced biases between –1.5 V to 2.0 V and generate 

a new curve suitable for machine learning training and prediction. We used 80% of the archived 

data (1094 labeled false and 338 labeled true) for training and 20% of the data (271 labeled false 

and 86 labeled true) for testing. To evaluate the performance of different models, we compared 

their precision scores and recall scores acquired on the test set and their Receiver Operating 

Characteristic (ROC) curves generated from three-fold cross-validation data on a training set.31 To 

benchmark the performance of our machine learning models we used a simple correlation model 



that does not rely on machine learning as a reference. This correlation method classifies the spectra 

in our data set based on their mean squared error with respect to a highest quality reference dI/dV 

spectrum (see Supporting Information for details). The results of our benchmarking results are 

summarized in Table 2 along with the corresponding ROC curves in Figure 4a. 

Table 2. Performance of different machine learning models* on differentiating STS curves with 

gold surface states. 

Model Precision (On test set) Recall (On test set) 
ROC 

Area Under Curve 

Correlation 0.408 0.529 0.679 

SGD 0.595 0.547 0.807 

SVM 0.685 0.733 N/A** 

Logistic 

Regression 
0.587 0.628 0.913 

Decision Tree 0.746 0.616 0.790 

Random Forest 0.825 0.605 0.928 

AdaBoost 0.829 0.674 0.942 

CatBoost 0.842 0.744 0.943 

MLP 0.792 0.663 0.940 

CNN 0.806 0.674 0.935 

*SGD, SVM, MLP, and CNN denote stochastic gradient descent, support vector machine, 

multilayer perceptron, and convolutional neural network, respectively. AdaBoost and CatBoost 

are boosting methods based on decision tree. Correlation represents a basic model that does not 

rely on machine learning (see text). See supporting information for model details. **SVM is 

generally not used to predict the probability of classification so a ROC curve is not applicable for 

SVM. 



Figure 4. Performance of machine learning models on differentiating STS curves with gold 

surface states. (a) Receiver Operating Characteristic (ROC) curves for machine learning models. 

The curves are generated from classification probability results of three-fold cross-validation on 

the training set (except for the correlation curve, see Supporting Information). (b) Contribution of 

each data point on the classification of STS curves using a random forest model (feature 

importance). An STS curve with grade 4 is presented as reference in blue. 

From Table 2 and Figure 4a we can see that the correlation method, regression methods, and 

several basic machine learning methods can in general differentiate high quality STS curves from 

poor ones but their classification results are inferior to decision tree based ensemble and boosting 

models or deep neural networks (MLP, CNN). Figure 4b shows a representation of the weight of 

each data point in the STS curve on making the classification decision if a random forest model is 



applied. We notice that the model performs classification mainly based on data points between –

0.75 V and 0.00 V, emphasizing the characteristic region associated with the gold surface state. 

This suggests that machine learning models can indeed learn to differentiate a gold surface state 

based on our labeling. 

While the performance of machine learning models judged just by the precision and recall scores 

alone (Table 2) is consistently superior to correlation and regression models the identification of 

high-quality STS spectra is not flawless. We largely attribute this to the inconsistency of manual 

labeling of the training set since there is no objective criteria for grading the dI/dV spectra. The 

differences between spectra with different grades are often minor, especially for spectra that are 

graded as 1 or 2. Therefore, ambiguity in manual classification introduces significant noises into 

the dataset. The limited number of grade 4 spectra for training is another reason for the 

performance of machine learning models. Deep neural networks tend to overfit our sample despite 

the simple architectures (see Supporting Information) we used in our program. Furthermore, for 

the machine learning models to work we have to group spectra with grade 2, 3, and 4 together and 

label them as acceptable for STS. In order to better understand the qualitative performance of 

machine learning models, we presented in Figure 5 some of the dI/dV spectra in the test set that 

were predicted as false positives and false negatives by an AdaBoost model. We can see from 

Figure 5a that the spectra that have been predicted as false positives are not entirely unsuitable for 

STS, and if the tip conditioning program were to stop when obtaining one of these spectra, the 

operator may only need to do a few more mild tip conditioning operations before applying the tip 

to experimental measurements. On the other hand, the false negative spectra presented in Figure 

5b are not ideal gold spectra and represent tips that show undesirable artifacts in some sections of 

the spectrum. These false negative spectra may have been graded as 2 and labeled as true for 



training. Therefore, we are satisfied with the performances of our AdaBoost, CatBoost models and 

deep neural networks on identifying STM tips that are in reasonable conditions for STS 

measurements. 

Figure 5. Sample dI/dV spectra in the test set that are classified as (a) false positives (labeled as 

false, predicted as true) and (b) false negatives (labeled as true, predicted as false) by an AdaBoost 

model. 

Since CatBoost models are only compatible with 64-bit systems and deep neural networks 

require more complex environments to deploy (with only a marginal boost on performances), we 

recommend the application of an AdaBoost model and will use this as the default model for our 

tip conditioning program. We have deployed the program on a Scienta Omicron STM (Matrix 

version 3.2 and 3.4) and repeated tests showed that our tip conditioning software requires on 

average 2 to 5 h before the program classifies the tip as appropriate for STS and exits the loop. 

Since the program will only stop after the tip has been classified as good in two consecutive tip 

conditioning cycles (four dI/dV spectra recorded as discussed above), the state of the tip tends to 



be stable and will not change drastically following further manipulation. We experience that our 

tip conditioning program can make efficient use of the idle time of the STM (e.g. unused 

instrument time over night or between shifts) and significantly reduces the amount of regular 

operating hours expended on manual tip conditioning for STS measurements. 

Possible improvements for machine learning models. With our current machine learning 

models, the program may exit the tip preparation cycle at a dI/dV spectrum that features a clear 

gold surface state but is not entirely featureless in the region between –1.5 V to –0.5 V or +0.5 V 

to 2.0 V region (e.g. gray shading in Figure 5a–b). In order to obtain machine learning models that 

can differentiate an ideal dI/dV spectra from slightly inferior ones, we require a larger library of 

grade 3 and 4 spectra that can be split into valid training and test sets. As the pace of expansion of 

our library of Au(111) surface spectra is gradual, we herein used a method to generate artificial 

spectra to fill this intermediate gap. In an effort to accelerate the process we set out to generate a 

training set of artificial spectra based on 90 grade 3 and 4 spectra identified in our library (Table 

1). We used linear combinations of 25 randomly selected good spectra to generate a large library 

of 1000 artificial dI/dV point spectra. The randomly generated weights of the 25 spectra are 

Dirichlet distributed and sum to 1. We rated these 1000 artificial spectra as grade 3 or higher and 

used the library of real spectra with grade 0, 1, and 2 to train deep neural networks (training/test 

split ratio 80/20). While the precision scores of this machine learning algorithm exceed 97% with 

recall scores greater than 99% on the test set for both MLP and CNN models, when applied to 90 

real grade 3 or higher spectra, only 20 spectra of this subset are classified correctly. This indicates 

that in this case deep neural networks do classification based on the artificial features introduced 

during the creation of the spectra. Regularization methods can be used to avoid overfitting so that 



60 out of 90 real spectra can be classified as good, but the precision score will decrease to 70% 

and the number of false positives increases. 

It is worth considering that were we to obtain a model that can differentiate grade 3 and 4 spectra 

from grade 0, 1, and 2, and then apply that model to our tip conditioning program, the much more 

stringent criteria lead to a significant increase in run time before the program successfully exits the 

cycle. Our current machine learning algorithms represent a practical compromise between 

effective use of idle instrument time and the quality factor of the SPM tip obtained through the tip 

conditioning process. The performance of our AdaBoost model represents a suitable balance 

between these two requirements and has been shown to be the most useful for the purpose of 

automated STM tip conditioning. 

We present an automated tip conditioning program for STS measurements based on Python and 

machine learning. We developed an algorithm to process and analyze topographic STM images to 

find suitable positions for tip conditioning on clean or sparsely covered gold surfaces. For each tip 

conditioning cycle, we collect two consecutive dI/dV spectra at an autonomously selected tip 

conditioning position and use a machine learning model to determine if the spectra are 

commensurate with the expected dI/dV spectrum for the Au(111) surface state. If the condition of 

the tip is inadequate the program will instruct the STM control software to perform a poke at the 

same location and move to a new location before entering the next cycle. Machine learning models 

were trained on a library of archived dI/dV spectra on Au. Decision tree based ensemble and 

boosting models and deep neural networks show similar performances when identifying suitable 

STM tips featuring dI/dV spectra with clear gold surface state. Among these machine learning 

models AdaBoost was selected as the default for the automated tip conditioning software as it is 

robust, adaptable, and faster than other models. Our program has been implemented with a Scienta 



Omicron STM but the method to process topographic images and the machine learning models 

can be easily transplanted to other STM platforms or software packages. We expect that our 

program can make efficient use of the idle time of the STM and greatly reduce the amount of 

valuable instrument time expended on tip conditioning for STS measurements. 

Experimental Methods. All topographic images and dI/dV spectra were collected using a 

Scienta Omicron STM under ultrahigh vacuum at 4.2 K. The tips were either electrochemically 

etched from polycrystalline tungsten wire or manually cut from Pt/Ir (80/20) wire using a wire 

cutter. No significant difference in the quality of images or spectra were observed between the two 

types of tips. Tips were manually conditioned for imaging and then conditioned for STS 

measurements using the autonomous tip conditioning program. 

Images and spectra presented in this paper were collected on Au(111) on mica substrates. Images 

and spectra were collected at a tunneling set point of Vbias = 0.05 V, It = 20 pA. Spectra were 

collected using a lock-in amplifier (Stanford Research Systems Inc., Model SR830) with a 

modulation frequency of 455 Hz and a modulation amplitude of 10 mV.  

The operations of STM were controlled by an Omicron Matrix console and accessed by Python 

through the RemoteAccess_API provided by Omicron. Machine learning models were 

implemented using the Scikit-Learn (0.22.1) module of Python and Keras (2.2.4) with TensorFlow 

backend. 
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