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ABSTRACT: The relationships between Kohn—Sham (KS) and
generalized KS (GKS) density functional orbital energies and —
fundamental gaps or optical gaps raise many interesting questions Fyndamental

including the physical meanings of KS and GKS orbital energies when Gap I i Response
computed with currently available approximate density functionals & Exciton Shift Shift ¢+
(ADFs). In this work, by examining three diverse databases with various KS Orbital Hole-Particle )
ADFs, we examine such relations from the point of view of the exciton Energy Gap Interaction - 1

shift of quasiparticle theory. We start by calculating a large number of A

excitation energies by time-dependent density functional theory

(TDDFT) with a large number of ADFs. To relate the exciton shift

implicit in TDDFT to the exciton shift that is explicit in Green’s function

theory, we define the exciton shift in TDDFT as the difference of the

response shift and the quasiparticle shift. We found a strong correlation between the response shift and the amount of Hartree—Fock
exchange included in the density functional, with the response shift varying between —1 and S eV. This range is an order of
magnitude larger than the mean errors of the TDDFT excitation energies. This result suggests that, with currently available
functionals, the KS or GKS orbital energies should be treated as intermediate mathematical variables in the calculation of excitation
energies rather than as the energies of independent-particle reference states for quasiparticle theory.

I. INTRODUCTION Scheme 1

The goal of the present paper is to study the interpretation of mm

excitonic effects in time-dependent (TD) Kohn—Sham (KS)

density functional theory (DFT) using approximate density OptG  optical gap absorption threshold
functionals in common use. There is a large amount of FunG fundamental gap IP—EA

literature on the interpretation of orbital energies in KS theory, OrbG  orbital energy gap LUMO energy — HOMO energy
especially their relation to ionization energies, electron .

affinities, and excitation energies,P27 and it has also been HS hole shift IP - (~HOMO energy)

said that, “It is interesting to ask to what extent the resulting PS particle shift (-LUMO energy) — EA
one-electron energies agree with the excited-state 2egnelrgies of Qs quasiparticle shift HS+PS = FunG - OrbG

the system calculated within quasiparticle theory.””” In order = exciton shift OptG — FunG

to discuss one’s expectation in this regard, it is useful to review
the language and the theoretical frameworks involved. In RS response shift QS + ES = OptG — OrbG
addition to the widely employed language in the literature, e.g,,
optical gap, fundamental gap, etc., we relate the implicit
excitonic effect in TDDFT to the response shift and
quasiparticle shift. The definitions of various quantities used
in this work and their relationships with one another are
illustrated in Scheme 1. We begin by discussing the difference
between two major approaches applied to the calculation of
electronic excitation energies, namely, TDDFT, widely used in
chemical physics, and many-body Green’s function theory,
widely used in condensed-matter physics. The TDDFT
approach is often discussed in terms of orbitals and

configuration state functions, whereas the Green’s function
approach is discussed in terms of quasiparticles. Excellent
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technical reviews are available elsewhere.”””" What follows is
an introduction.

In discussing the theories, we shall divide quantum
mechanical electronic structure methods into two branches:
density functional theory and wave function theory (WFT). In
DFT, we use the Hohenberg—Kohn theorem,”’ and in this
article we restrict our attention to KS-DFT,** in which the
electron density is represented by a single Slater determinant
corresponding to noninteracting electrons and to generalized
Kohn—Sham™ (GKS) theory, in which the electron density is
represented by a single Slater determinant corresponding to
partially interacting electrons. In contrast, WFT is the type of
theory that uses the Schrodinger equation without the
Hohenberg—Kohn theorems, and so WFT includes Green’s
function theory.

We start with KS-DFT and in particular with periodic solids,
which are also called crystals. We define the orbital energy gap
as the orbital energy of the bottom of the Kohn—Sham
conduction band minus the orbital energy of the top of the
Kohn—Sham valence band. Another way to say this is that it is
the energy of the lowest unoccupied crystal orbital (LUCO)
minus the energy of the highest occupied crystal orbital
(HOCO). For molecules, it is the same except we have the
energy of the lowest unoccupied molecular orbital (LUMO)
minus the energy of the highest occupied molecular orbital
(HOMO).

Returning to crystals, in KS theory, the orbital energies of
the particles (i.e., excited electrons) and holes are independ-
ent-electron energies. However, when an excitation occurs, the
electronic charge distribution relaxes (independent-particle
states are mixed by electron—electron interactions). It is
convenient, following Landau’s theory of the Fermi liquid,** to
then focus on the elementary excitations of the system and
interpret them as quasiparticles.”> This leads to the
quasiparticle spectrum, formed from elementary excitations
that do not interact. The difference between the gap in the
quasiparticle spectrum (which is called the fundamental gap)
and the independent-particle gap (orbital energy gap) is called
the quasiparticle shift, and it may be several eV for local
exchange-correlation functionals. A key element of quasipar-
ticle theory is the existence of a “noninteracting system” that
“is presumably now the IPA [independent-particle-approx-
imation] in which the Coulomb interactions between electrons
are treated in the mean field approximation”;*® the actual states
of the system are connected to the reference states by an
adiabatic connection or by perturbation theory. It is now
conventional to regard the KS states or GKS states for the (N
+ 1)-particle system (where N is the number of electrons) as
the reference IPA states for Green’s function perturbation
theory. One should keep in mind that the KS orbital
eigenvalues depend on how the effective potential is treated
in the Kohn—Sham equations;zz""7 in the present article, we
use the conventional KS and GKS definitions, the former for
local, orbital-independent functionals and the latter for
nonlocal and/or orbital-dependent functionals (for local,
orbital-independent functionals the KS and GKS orbital
energies, defined in the conventional way, are the same).

The elementary excitations are of two kinds: a particle added
to a system and a hole corresponding to an electron removed
from a system. A quasielectron may be considered to be a
combination of the added particle and the polarization it
induces in its environment, and a quasihole may be considered
to be the combination of the hole and the polarization it
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induces in its environment. (The environment is the rest of the
crystal or the rest of the molecule.) The quasiparticle spectrum
is thus appropriate for interpreting photoemission (removal of
an electron) and inverse photoemission (addition of an
electron) experiments. (For molecules, photoemission experi-
ments are usually called photoelectron spectroscopy.) In these
experiments an electron is removed from or added to a neutral
system, changing its charge. The quasiparticle gap (funda-
mental gap) is equal to the difference between the ionization
potential (IP) and the electron affinity (EA). Optical
spectroscopy at energies below the work function (the
analogue for molecules is below the IP) involves bound-
state-to-bound-state transitions without changing the charge.
Such bound—bound transitions require an additional consid-
eration as discussed next.

Given the unknown exact exchange-correlation functional,
the quasiparticle spectrum would provide a good approx-
imation to the true states of the neutral system (and hence to
the optical spectrum) for completely delocalized particles and
holes, which have negligible interaction, and it would also be a
reasonably good approximation for Mott—Wannier excitons, in
which the particle and the hole are bound so weakly that their
average distance is much greater than the size of a unit cell.

However, in some cases, the particle and the hole sit on the
same site. This is called a Frenkel exciton. In this case there
may be states at much lower energies (up to a few eV lower)
than the quasiparticle gap. The difference of the true state
energies from those in the quasiparticle approximation is called
an exciton shift, excitonic effect, or exciton binding energy.
Exciton shifts are of the order of magnitude of an eV for
Frenkel excitons but of the order of magnitude of 0.01—-0.1 eV
for Mott—Wannier excitons. When we compare the
fundamental gap to the gap determined as a threshold in a
charge-conserving excitation as observed in the optical
absorption or reflection spectrum or photoluminescence,*®
we must take account of both the quasiparticle shift and the
exciton shift. The two types of excitons, Mott—Wannier
exciton and Frenkel exciton, may coexist in the spectrum of a
crystal, for example, in solid argon. When one considers
molecules, the particle and hole are usually close enough to
interact strongly, and large exciton shifts may be expected.

In solid-state physics, one typically calculates the quasipar-
ticle shift by one or another version of GW theory””~*' (where
G denotes a single-particle Green’s function™™** and W
denotes the screened Coulomb interaction), and this takes one
out of the realm of DFT into WFT. The foundation for the
GW approximation is Dyson’s equation®™* involving the
interacting one-particle Green’s function, the noninteracting
one-particle Green’s function, and the self-energy, which is the
potential operator that generates a quasielectron or quasihole
and the elementary detachment and attachment energies. (The
self-energy may be distinguished from the Kohn—Sham
exchange-correlation potential that generates the ground-state
density and the ground-state energy.) The GW method
approximates the self-energy by a physically motivated
expansion of the self-energy in terms of a screened Coulomb
potential and one-electron Green’s function, and this can lead
either to one-shot calculations or to iterative ones. Usually
Kohn—Sham orbitals are used to provide a starting point for
the GW calculations. There is no reason why the initial guess
for the iterations must come from Kohn—Sham theory, i.e.,
one may use Hartree—Fock orbitals as was done in early GW
calculations,"™*” but the similarity of the physical interpreta-
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tions of the Kohn—Sham potential and the self-energy makes
the use of Kohn—Sham orbitals seem reasonable® (and the
effective perturbation added to KS orbitals might be smaller
than that added to Hartree—Fock orbitals, although one might
also argue that using the Hartree—Fock orbitals would be more
theoretically consistent). In practical nonconverged calcula-
tions, especially in noniterative calculations, the results of GW
calculations have been found to depend strongly on the
starting orbitals.

For higher accuracy, but at higher cost, one can add the so-
called vertex corrections to GW calculations, and this yields
what are sometimes called GWI calculations. The literature
contains a variety of levels of GW calculations, with or without
I, with full, partial, or no self-consistency. In the present
article, we will consider non-self-consistent GyW, calculations
based on PBE orbital energies and screening potentials; such
calculations are well-known to depend on the input data, but it
is beyond our scope to examine that dependence; we do note
though that the PBE starting point is a common one in the
literature.

The above discussion summarizes how the quasiparticle
energies are associated with non-neutral processes associated
with adding or removing an electron, e.g, photoemission
spectra and their inverse. For optical spectra (neutral
excitations), including Wannier or Frenkel excitons or most
molecular excitations, one should include the exciton shift, i.e.,
the interaction of the excited electron (particle) with the hole.
This can be done by using the Bethe—Salpeter equation
(BSE),**~>* which involves the two-particle Green’s function
and most often takes the quasiparticle energies and KS wave
functions as input. This is justified by the assumption that KS
orbitals and quasiparticle wave functions are close to each
other; this is often but not always the case. We will define the
optical gap as the threshold for optical absorption, and the
exciton shift is then equal to the difference between the optical
gap and the fundamental gap.

A complication of the above picture is that some systems
cannot be well described by perturbation theory starting from a
Slater determinant and/or their excitations cannot be adiabati-
cally connected to a single independent-electron excitation that
forms a good reference state. Such systems cannot be well
described by quasiparticle theory, although their total energies
would still be given exactly by Kohn—Sham theory with the
unknown exact density functional. Such systems are variously
called strongly correlated or multireference systems, where the
latter term refers to the need for reliable WFT calculations to
generate them from a multiconfigurational reference state
(where a configuration is a way to assign occupancies to single-
particle orbitals). Systems for which quasiparticle theory is
valid are called “normal Fermi systems”.>”

When one includes nonlocal Hartree—Fock exchange in the
exchange-correlation functional (leading to what is usually
called a hybrid functional in KS-DFT), the situation is
conceptually different than the above, and it is best justified
by GKS theory formulated using a partially interacting-electron
reference function as opposed to the Kohn—Sham non-
interacting-electrons reference function.”

The above discussion is an attempt to explain the main
framework for considering and discussing electron excitations
in solid-state physics, with a few side remarks about molecules.
The mindset is somewhat different in chemical physics and
physical chemistry, as discussed next. When one deals with an
isolated molecule, all excitations have large electron—hole
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interactions, and the framework of starting with the
fundamental gap and then correcting the fundamental gap
for excitonic effects, is not usually considered to be the best
route toward an accurate result. For molecules there are other
possibilities such as converged WFT calculations by config-
uration interaction (CI), coupled cluster (CC) theory, or
quantum Monte Carlo (QMC). The CI, CC, QMC, BSE, KS,
and GKS options can all in principle be exact for electronic
excitation energies, although in practice one is limited by the
enormous (usually impractical) computational requirements of
a converged wave function calculation by BSE, CI, CC, or
QMC (although great progress has been made for smaller
molecules®®”). So one turns again to DFT-based approaches,
but rather than follow up a KS calculation with a GW or GWI"
calculation followed by a BSE calculation, the more popular
approach in chemical physics is time-dependent density
functional theory, which treats the electromagnetic field of
the incident light as a time-dependent potential and uses the
fact that the response of the ground state to the perturbation
by this field has poles at the frequencies corresponding to
excitation energies. This would be exact if the response were
calculated exactly and if one used the exact, frequency-
dependent exchange-correlation potential.”* "’ In practice
though, one almost always just treats the linear portion of
the response and uses the adiabatic approximation in which the
exchange-correlation potential is a ground-state frequency-
independent approximation. Even supposing one has a good
approximation to the exact required exchange-correlation
functional, TDDFT would get to the correct answer in quite
a different way than the GW-BSE approach; for example, it
does not separate the quasiparticle shift from the exciton shift.
In our work, we label the sum of the quasiparticle shift and
the exciton shift as the response shift, and we note that
TDDFT calculates the response shift without dividing it into
these two components. One way to divide it for molecular
systems it would be to carry out separate KS or GKS self-
consistent field calculations on the cation and the anion; this
would yield the fundamental gap including the relaxation
effects, and hence it would be a way to calculate the
quasiparticle shift without the exciton shift, but (for reasons
discussed in the next section) we shall not purse this approach
in the present article, which is concerned with TDDFT.
Studying the response shift is in part supported by the desire
to develop better functionals. For solids, one approach to
obtaining improved density functionals is to make the
percentage of Hartree—Fock exchange equal to the reciprocal
of the local dielectric constant; however, one should keep in
mind that the dielectric constant is a macroscopic quantity, and
the use of a local dielectric constant is a model.”’ Another
approach is to set minus the HOMO energy equal to the IP,
which is supported by the IP theorem,” but this is complicated
by the derivative discontinuity in the exact exchange-
correlation functional of KS theory.”*** Since we do not
have access to the exact exchange-correlation functional, it is
hard to get agreement for both the fundamental gap and all the
various kinds of excitation energies (for example, to develop an
exchange-correlation functional that is equally accurate for
valence, Rydberg, and charge-transfer neutral excitations as
well as for IPs and EAs), but the goal is to make such
properties as accurate as possible for as broad a class of systems
as possible, while, at least ideally, keeping good accuracy for
other aspects of energy prediction.”” For example, photo-
chemical dynamics requires not just good accuracy for vertical
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Table 1. Local Functionals and Global-Hybrid Functionals Considered in the Current Work and Their Corresponding

Percentages of Hartree—Fock Exchange

functional ref X functional
B3LYP 103,104 20 B97
B97M-V 107 0 BHHLYP
GVWNS 110,111 0 HCTHA407
MOS 114 28 MO0S-2X
MO06-2X 70 54 MO06-HF
MO8-HX 118 52.23 MO08-SO
MN12-L 120 0 MN15
MPW1B9S 123 31 MPWILYP
MPWI1PW91 124 25 MPWBIK
O3LYP 104, 127 11.61 OLYP
PBEO 125, 129 25 PBESO
revPBEO 132 25 revIPSS
SOGGA11-X 135 40.15 GPW92
7-HCTHh 138 15 TPSS
TPSSh 140 10 X3LYP

“X is the percentage of Hartree—Fock exchange.

ref X functional ref X
108 19.43 B97M-rV 106 0
104, 108 Ny GAM 109 0
112 0 HLE16 113 0
115 56 Mo06 70 27
116 100 Mo06-L 117 0
118 56.79 M11-L 119 0
121 44 MN1S-L 122 0
124 25 MPWI1PBE 124 25
123 44 N12 126 0
104, 128 0 PBE 73 0
130 50 PWI1 131 0
133 ] revIPSSh 134 10
110, 136 0 7-HCTH 137 0
139 0 TPSSO 138 25
104, 141 21.8

excitation energies but also broad accuracy in predicting the
topographies of the potential energy surfaces, including bond
energies, barrier heights, noncovalent interactions, and electro-
static interactions. One experimentally accessible property that
has not been well utilized in developing density functionals is
the exciton shift.

To assess the excitonic effect in TDDFT, we are trying to
answer the following questions: (1) What response shift is
required in TDDFT with various functionals? (2) Are there
functionals in common use for which the calculated orbital
energy gap matches well with the fundamental gap or optical
gap?

We close the introduction with two final comments. First,
we remind the reader that in the generalized Kohn—Sham
theory, i.e, when one is using functionals with a nonzero
portion of Hartree—Fock exchange, there is not a single exact
functional, but rather there is a different exact functional for
every different percentage of Hartree—Fock exchange.”*
Second, we stress that we are intentionally not using any
theorems about the unknown exact functionals nor are we
entering the debates”®*” about the implications of Janak’s
theorem” or the IP theorem.” Instead, a goal of the present
article is to test whether it is reasonable to assume that KS
states are reasonably interpreted as reference IPA states for
quasiparticle theory when one uses currently available
approximate density functionals to compute the KS states.
We intentionally avoid attributing our findings to the “true” KS
states that would be obtained with an unknown exact density
functional, as these may be different to varying degrees from
the KS states obtained with the presently used approximate
functionals.”*®

Il. DATA SETS AND COMPUTATIONAL DETAILS

Three data sets are considered in the current work. One, called
VT28,°“” consists of three vertical transition energies each for
28 small organic molecules, for a total of 84 test cases. The
geometries are obtained from ref 66, which are ground-state
equilibrium geometries optimized by Moller—Plesset second-
order perturbation theory®® (MP2) with the 6-31G*°® basis
set. With these geometries, vertical excitation energies were
calculated by TDDFT calculations with the 6-311+G(2dfp)
basis set and various exchange-correlation functionals. For each
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molecule in this data set, we consider the three singlet excited
states whose dominant excitation characters are HOMO —
LUMO, HOMO - 1- LOMO, and HOMO — LUMO + 1.

The second data set, called VT160,* consists of two vertical
transition energies each for 80 diverse medium-sized and large
molecules (called “real-life compounds” in ref 69). The
molecules include, for example, hydrocarbons, dyes, fluoro-
phores, inorganic compounds, and transition metal complexes,
cations. The two transition energies for each molecule are the
singlet vertical excitations whose dominant excitation character
is HOMO — LUMO at two geometries, which correspond to
the minimum energy of the ground state and that
corresponding to the minimum of the excited state as
optimized by KS-DFT and TDDFT, respectively, with the
M06-2X"° exchange-correlation functional and the 6-31+G-
(d)°® basis set. (These geometries are given in the Supporting
Information of ref 69.) Hence there is a total of 160
geometries. With these geometries, KS-DFT and TDDFT
calculations were performed with the def2-TZVPP’' basis set
and various exchange-correlation functionals.

The third data set, called GW100,”* consists of 100 diverse
molecules that include diatomic metal compounds, small
metallic clusters, alkaline metal halides, alkaline earth metal
compounds, and organic molecules. These molecules cover a
wide range of excitation energies and IPs. The geometries are
taken from ref 72, where they were obtained either from
experiment or optimized by KS-DFT with the PBE func-
tional”* and the def2-QZVP’" basis set. For comparison, we
calculated vertical excitation energies were calculated by
TDDFT with the def2-QZVP basis set and various exchange-
correlation functionals. For each molecule, the data set
includes one singlet excited state whose dominant character
is HOMO — LUMO.

The functionals considered in the current work and their
corresponding percentages (X) of Hartree—Fock exchange
(Hartree—Fock exchange) are summarized in Table 1.

All calculations are performed with Q-Chem 4.4.”% All
calculations are carried out in the framework of KS theory™” for
local density approximations and gradient approximations and
by GKS theory” (rather than by using an optimized effective
potential®) for orbital-dependent functionals. Note that KS
theory and GKS theory are the same for local density

https://dx.doi.org/10.1021/acs.jctc.0c00320
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Figure 1. Response shift as a function of the percentage of the Hartree—Fock exchange employed in the functionals. (a) PBEX functionals with the
VT28 data set. (b) Functionals listed in Table 1 with the VT28, VT160, and GW100 data sets. Each point in the plots represents the average

response shift for a given functional.

approximations and gradient approximations. For orbital-
dependent functionals, though, the distinction is important
because although the total energies are the same with the GKS
and optimized effective potential formulations, the orbital
energies are different. The response shifts are computed in the
present article by using7 adiabatic TDDFT with the Tamm-—
Dancoff approximation,”® which will simply be called TDDFT
in the rest of the article. (Our general experience is that the
conclusions would not be significantly different if we used the
full linear response instead of the Tamm-—Dancoff approx-
imation.)

lll. RESULTS AND DISCUSSION

In discussing the results for molecules, we will use the language
in Scheme 1. Note that for crystals, the IP becomes the work
function, the orbital gap becomes the band gap, the HOMO
becomes the HOCO (valence band maximum), and the
LUMO becomes the LUCO (conduction band minimum).
Notice that the hole shift and particle shift are defined in such
a way that the quasiparticle shift can be written as their sum.

lll.A. Response Shift of TDDFT. First, we investigated the
response shift of TDDFT for the data set VI28 by using a
series of exchange-correlation functions called PBEX func-
tionals. A PBEX functional is defined as starting with the local
PBE functional and replacing the X percentage of local
exchange by the Hartree—Fock exchan%e with no other
changes. Notice that the standard PBES0"" functional is the
same as PBEX with X = 50, and the standard PBE0Q'*>'*’
functional (also sometimes called PBE1PBE) is the same as
PBEX with X = 25. In the current work, we consider X values
ranging from 0 to 100 with 10 as the increment size.

Panel a of Figure 1 shows the response shift of TDDFT as a
function of the percentage of the Hartree—Fock exchange in
the PBEX functional. Each dot in the scatter plot represents
the average response shift over the 28 data for one functional
plotted vs that functional’s value of X. The plot shows that the
percentage of the Hartree—Fock exchange has a strong
influence on the response shift. For X =~ 10, the orbital energy
gap is very close to the optical gap; the equality of these gaps
corresponds to a zero response shift.

Panel b of Figure 1 shows the response shift of TDDFT for
data sets VT28, VT160, and GW100 for the functionals of

Table 1. The exchange-correlation functionals in Table 1
involve a great variety of local exchange and correlation
components, so we might expect to find a weaker correlation
between the response shift and percentage of Hartree—Fock
exchange in panel b than we found in panel a, where the
Hartree—Fock exchange was systematically replacing a
percentage of the local exchange with all other aspects of the
functional held fixed. Surprisingly, though, the correlation in
panel b remains strong and dramatic for all three databases.
This indicates that the percentage X of Hartree—Fock
exchange is by far the most important element in the size of
the predicted response shift. A linear regression line fitted to all
three data sets passes through zero at 9.7% Hartree—Fock
exchange.

The individual data point comparisons for the correlation of
the optical gap with the orbital energy gap are shown in Figure
2 for three popular functionals, PBE, B3LYP, and M06-2X.
These functionals have percentages of Hartree—Fock exchange
equal to 0, 20, and 54, respectively. The results in Figure 2 are
consistent with Figure 1 in that for local functionals (which
have the percentage of Hartree—Fock exchange equal to zero),
the orbital energy gap tends to systematically underestimate
the predicted excitation energy, leading to a positive predicted
response shift, and as X increases, the excitation energy for a
given orbital energy gap tends to get lower.

From Figure 1, we know that the variation in response shifts
due to the change in percentage of the Hartree—Fock exchange
is very large; the average response shift can change by more
than S eV as one progresses from local functionals (X = 0) to
functionals with 100% of Hartree—Fock exchange. This is
especially striking if it is considered in the context of Figure 3,
which compares the TDDFT and BSE excitation energies for
the data set VT'160, where the BSE ones are considered to be
accurate reference values. This comparison indicates that the
TDDFT excitation energies are close to those of BSE, usually
within 0.4 eV. We conclude that the huge variation in the
response shifts must be canceling out wide variations in the
orbital energy gap so that the optical gaps come out
reasonable.

l1.B. Quasiparticle Shift of TDDFT. One complication of
analyzing the shifts is that a Kohn—Sham functional might be
designed such that the HOMO orbital energy equals the exact
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sets: (a) PBE, (b) B3LYP, and (c) M06-2X. Each panel on the left has
288 dots representing each of the comparisons without averaging. The
three panels on the right are zoomed in for the energy range from 0 to
10 eV, which is outlined by a square in the left-side panels. Each panel
has a line at 45 deg to guide the eye in interpreting the correlation.

0.8 /™% MSD
S 0.6  local functionals hybrid functionals
©
2
w 0.4
& O
m
s T
8 "IN '
-
-0.2
R E PSP BARRAR D PRORRROESD ROP PP RIS PRI RN PRIEY,
S SR NI SH R IR S EHRR RS OSSP TR SO
S S SN N R S S e R G Gt S T S S S DI e
5 PRSI OIS PR SN
ry < 3 &, < O S
é $g £

Figure 3. Mean signed deviation (MSD) and mean unsigned
deviation (MUD) between TDDFT and BSE excitation energies of
the VT160 data set. The hybrid functionals arranged in order of
increasing percentage of Hartree—Fock exchange.

ionization potential (such a procedure is motivated by the
theorem,” and such functionals have been called optimally
tuned hybrids*®), then the GW correction to the ionization
potential should be zero. However, most approximate
functionals have not been designed this way, and our goal
here is to examine the systematic trends in currently available
density functionals in the language of Scheme 1.
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Strictly speaking, we are not computing the quasiparticle
shift. Instead, we are computing the quasiparticle shift that
would be needed to make the density functional give an
accurate fundamental gap. This is because the response in
TDDFT cannot simply be separated into a quasiparticle shift
and an exciton shift as in BSE. Within the realm of DFT, one
may in fact compute the “true” quasiparticle shift (or hole shift
or particle shift) in various ways. These methods include (a)
computing the excitation energies of ionized states by TDDFT,
(b) computing the differences of KS-DFT ground state
energies for the neutral, cationic, and anionic species (this
method is usually denoted as ASCF in the literature), and (c)
employing a Koopmans-like approach that does not allow
orbital relaxation. Method a is impractical because there are an
infinite number of Rydberg states below the first ionized state.
Method b is in fact employed in practical calculations, but
there are complications. For example, anions might be
unbound for small molecules when using local functionals.
Another issue is that the excitation energies of bound states
computed by ASCF are not the same as those computed by
TDDFT, so for consistency one should compare IPs computed
by ASCF to excitation energies computed by ASCF, but
ASCF excitation energies can usually be computed only when
the excited state has a different symmetry than the ground
state. Method c is inconsistent with TDDFT because excited
states in TDDFT can use the ground-state virtual orbitals,
where Koopmans’ ions cannot.

In this section, we therefore employ an indirect scheme; we
approximately assess the quasiparticle shift by comparing the
magnitudes of the HOMO and LUMO orbital energies with
IPs and EAs. This provides estimates of what hole shift,
particle shift, and quasiparticle shift would be required by each
functional to get the experimental IPs and EAs starting with
that functional’s orbital energies.

For this purpose, we compare the magnitudes of the HOMO
and LUMO orbital energies to the experimental data for IPs
and EAs in ref 72. The experimental data covers 97 IP data and
26 EA data. The required hole shift averaged over the 97 data
points and the required particle shift averaged over 26 data
points are shown in Figure 4. The required quasiparticle shift is
computed by addition of the required hole shift and particle
shift. Linear regression on this data suggest that the required
hole shift, particle shift, and quasiparticle shift reach 0 for
functionals with a Hartree—Fock exchange around 82%, 82%,
and 83%, respectively. This seems to indicate that one could
obtain density functionals whose frontier orbital energies give
the IP and EA if one optimized functionals with X in the range
80—85%, which reflects some trends already available in the
literature.”>**”””® Hybrid functionals employing an amount of
Hartree—Fock exchange equal to the inverse of a dielectric
constant have suggested a larger X is required for larger band
gap semiconductors due to stronger electronic screen-
ing.61’79_86 Molecules, most of which have large fundamental
gaps, are in some sense close to large band gap semi-
conductors, and this may help to understand why a large X is
required.*” However, the better accuracy for IPs with very large
X may reflect a cancellation of errors since raising X so high
can lower the accuracy of other predictions.*® A more physical
solution may require the use of range-separated hybrid
functionals (with high X at large interelectronic separation
and lower X at smaller interelectronic separation), as
considered further below.
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Figure 4. Hole shift, particle shift, and quasiparticle shift predicted by
combining the orbital energies of the functionals listed in Table 1 with
the experimental data in ref 72.

An alternative way to interpret Figure 4 is that one is
combining experimental data with independent-particle orbital
energies to predict the polarization effects that constitute the
hole shift, particle shift, and quasiparticle shift. With that
interpretation, we see that different density functionals give
widely different predictions, and if we accepted this
interpretation, we would conclude that they model ionization
and attachment with very different physical pictures.

Another way to assess the quasiparticle gap of TD-DFT is to
compare to the GyW, results of ref 72; in particular, we
compare to the GoW| results denoted as AIMS-P16 in ref 72.
(The AIMS-P16 data cover the whole GW100 data set.) We
compare minus the HOMO energy to the GyW,, IP, minus the
LUMO energy to the GyW, EA, and the orbital energy gap to
the GoW, fundamental gap. Since the goal of GW theory is to
convert the orbital energies into quasiparticle energies, this
would be a direct measure of the required quasiparticle gaps if
GoW, were accurate. Reference 72 shows that, although there
are some significant quantitative errors, there does exist a
rough correlation of the GyW, predictions with the IPs and
EAs. Therefore, the comparison is interesting, and it is shown
in Figure 5. One sees strong correlation between the required
hole, particle, and quasiparticle shifts and the percentage of
Hartree—Fock exchange in the functionals. The linear
regression in Figure S for the whole shift is close to that
computed from experimental results in Figure 4, but the linear
regression of the particle shift is very different, although they
have similar slopes. The linear regressions in Figure S indicate
that the required hole shift, particle shift, and quasiparticle shift
for DFT orbital energies to match the GyW, quasiparticle
energies reach 0 for functionals with X of 70%, 18%, and 51%,
respectively. Therefore, in order to obtain orbitals whose
HOMO and LUMO energies are close to the (negatives) of
the GoWy-predicted IPs and EAs, very different percentages of
Hartree—Fock exchange would be required in the functionals.

Table 2 presents the mean signed error (MSE) and mean
unsigned error (MUE) of the GoW, calculations of ref 72 from
the experimental IPs, EAs, and FunGs. (There are 97
experimental IPs, 26 experimental EAs, and 23 experimental
fundamental gaps in the GW100 data set.) The MSEs of the
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X

Figure S. Hole shift, particle shift, and quasiparticle shift predicted by
combining the orbital energies of the functionals listed in Table 1 with
GoW, results (GW/AIMS-P16 data from the GW100 data set) of ref
72.

GyW, calculations for IP, EA, and FunG are 0.59, 1.76, and
1.23 eV, respectively.

Table 2 also compares the KS and GKS orbital energies to
the same experimental data. The deviations from the
experimental data are labeled as errors for the GyW,
calculations because those calculations are supposed to yield
quasiparticle energies. However, for the KS and GKS
calculations, they are labeled as deviations, and the signed
deviations are defined such that they have the meaning of hole
shifts, particle shifts, and quasiparticle shifts. In addition to the
functionals listed in Table 1, Table 2 also includes additional
range-separated functionals, namely, CAM-B3LYP,*” HSE-
HJS, %?" M11,”* MN12-SX,”* N12-SX,”* @wB97,”* wB97M-
V,”> @wB97X,”* ®wB97X-D,”° wB97X-D3,”” wB97X-rV,”*
®B97X-V,”® and wM06-D3.%” Examining this table shows
that in some cases, the KS or GKS orbital energies are closer to
experimental IPs, EAs, and fundamental gaps than are the
GoW, quasiparticle energies. In particular, for IPs, although
none of the local and global-hybrid orbital energies are closer
than GyW, to experiment, seven of the range-separated
functionals do achieve this. For EAs, there are many global-
hybrid and range-separated functionals whose orbital energies
are more accurate than the predictions of GyW,. For the
FunGs, one global-hybrid (MO06-HF) and many range-
separated hybrid functionals have orbital energies that predict
the gap more accurately than GyW, quasiparticle calculations.
Furthermore, there are several range-separated hybrid func-
tionals that have smaller MUDs for all three quantities (IP, EA,
and FunG) than the MUE of GyW,. Among these range-
separated hybrid functionals, M11 has the smallest MUD of IP
(0.42 eV), ®B97X-D has the smallest MUD of EA (0.65 eV),
and wB97X-D3 has the smallest MUD of the fundamental gap
(0.63 eV). (We note that we have not tested optimally tuned
functionals.)

A negative quasiparticle shift corresponds to greater
relaxation in the cation than the anion, which seems reasonable
since the added electron in the anion is often held only weakly.
Therefore, it is encouraging that the MSD column for the
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Table 2. Mean Unsigned and Signed Errors of G,W,/AIMS-P16 Quasiparticle Energies as Compared to Experimental Data
and Mean Unsigned and Signed Deviations of KS and GKS Orbital Energies from the Same Experimental Data”

methods IP (HS) EA (PS) FunG (QS)
Quasiparticle Calculations
MUE MSE MUE MSE MUE MSE
GyW, 0.59 0.50 1.76 -1.57 1.23 —0.64
Local and Global-Hybrid Functionals
MUD MSD MUD MSD MUD MSD
B3LYP 2.87 2.82 1.71 1.71 3.94 3.94
B97 2.99 295 1.57 1.57 3.93 3.93
B97M-rV 3.60 3.58 2.08 2.08 4.97 4.97
B97M-V 3.61 3.58 2.08 2.08 4.97 4.97
BHHLYP 1.42 1.39 0.87 0.67 1.88 1.88
GAM 4.04 4.01 2.12 2.12 §5.31 §5.31
HCTH407 3.79 3.75 2.43 243 5.38 5.38
HLE16 241 2.35 3.36 3.36 S.11 S.11
LDA 3.84 3.8 2.46 2.46 5.40 54
MOS 2.71 2.65 1.34 1.34 3.47 347
MO0S-2X 1.24 1.19 0.81 0.62 1.61 1.61
Mo06 2.69 2.65 1.50 1.50 3.65 3.65
Mo06-2X 1.34 1.29 0.90 0.75 1.84 1.84
MO06-HF 0.97 —-0.89 0.84 —-0.06 1.01 —0.66
MO06-L 3.85 3.84 1.84 1.84 5.01 5.01
MO08-HX 1.30 1.25 1.15 1.0 2.13 2.13
MO08-SO 1.19 1.13 1.03 091 1.82 1.82
M11-L 3.50 3.48 243 243 5.26 5.26
MN12-L 3.56 3.54 2.01 1.94 4.86 4.86
MN1S 191 1.88 0.97 091 2.42 2.42
MNI1S-L 3.52 3.51 1.94 1.94 4.81 4.81
MPW1B9S 2.45 2.45 1.12 1.08 3.15 3.15
MPWILYP 2.73 2.68 1.49 1.49 3.64 3.64
MPWI1PBE 2.64 2.6 1.44 1.44 3.53 3.53
MPW1PW91 2.63 2.59 1.46 1.46 3.53 3.53
MPWBI1K 1.76 1.76 0.78 0.68 2.22 2.22
N12 4.06 4.02 2.19 2.19 5.38 5.38
O3LYP 341 3.37 1.86 1.86 4.57 4.57
OLYP 4.11 4.07 2.16 2.16 S5.44 S5.44
PBE 3.97 3.94 2.27 2.27 5.38 5.38
PBEO 2.65 2.61 1.44 1.44 3.53 3.53
PBESO 1.32 1.28 0.82 0.67 1.78 1.78
PWI1 3.92 3.88 2.34 2.34 5.40 5.40

Local and Global-Hybrid Functionals

MUD MSD MUD MSD MUD MSD

revPBE 4.03 3.99 2.19 2.19 5.38 5.38
revPBEO 2.69 2.65 1.39 1.39 3.53 3.53
revIPSS 3.87 3.84 2.06 2.06 5.14 5.14
revIPSSh 3.35 3.31 175 175 4.40 4.40
SOGGAI11-X 1.83 179 1.04 1.01 247 247
SPW92 3.84 3.80 2.45 2.45 5.40 5.40
7-HCTH 3.79 3.75 2.34 2.34 5.31 5.31
7-HCTHH 3.09 3.05 1.79 1.79 4.21 4.21
TPSS 3.89 3.86 2.11 2.11 5.20 5.20
TPSSO 2.58 2.54 133 133 3.39 3.39
TPSSh 3.48 3.16 1.79 1.79 4.46 4.46
X3LYP 2.81 2.77 1.63 1.63 3.83 3.83

Functionals with Range-Separated Screened Exchange

MUD MSD MUD MSD MUD MSD

HSE-HJS 3.04 3.01 1.80 1.80 426 426
MN12-SX 291 2.87 2.09 2.09 4.54 4.54
N12-SX 3.09 3.06 1.77 1.77 430 430

Functional with Range-Separated Exchange Increasing to 65% at Long Range
MUD MSD MUD MSD MUD MSD

CAM-B3LYP 1.30 1.26 0.79 0.58 1.51 1.51

Functionals with Range-Separated Exchange Increasing to 100% at Long

Range

MUD MSD MUD MSD MUD MSD
Ml11 0.42 0.16 0.80 -0.10 0.75 -0.03
wB97 0.43 0.10 0.88 -0.59 0.82 —0.65
®B97M-V 0.54 0.41 0.73 -0.25 0.66 —-0.05
®wB97X 0.49 0.32 0.78 —-0.44 0.69 —-0.33
wB97X-D 0.86 0.80 0.65 —0.16 0.65 0.33
wB97X-D3 0.62 0.53 0.73 -0.33 0.63 —0.05
wB97X-rV 0.49 0.31 0.79 —-0.42 0.69 —-0.31
wB97X-V 0.49 0.31 0.79 —-0.42 0.69 —-0.31
wMO06-D3 0.44 0.24 0.95 —0.62 0.77 —-0.53

“All values are in the units of eV.

fundamental gap in Table 2 is negative for all the functionals
for which the percentage of Hartree—Fock exchange is 100 at
large interelectronic separation, but it is disconcerting that it is
positive for all the other functionals.

ll.C. Exciton Shift of TDDFT. One can assess the exciton
shift in TDDFT by combining information about the response
shift and the quasiparticle shift. For the GW100 data set, we
have given the response shift in Figures 1 and 2 and the
quasiparticle shifts in Figures 4 and S and Table 2. Figure 6
compares the hole shift and response shift to the exciton shift.
The exciton shift is computed as the response shift minus the
quasiparticle shift. Notice that the response shift used here is
the same as the one shown in Figure 1b, and the quasiparticle
shift used here is the same as the one in Figure 4a, which is
obtained by comparing to the experimental data. Figure 6
shows that the exciton shift is surprisingly stable with respect
to changing the percentage of Hartree—Fock exchange in the
functional. Despite the various functional forms employed in
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the functionals in Table 1, the averaged exciton shift is in the
narrow range of —4.8 to —5.1 eV.

How can we interpret this narrow range? We have defined
the RS as the TDDFT excitation energy minus the orbital gap,
and we have defined the QS as the experimental fundamental
gap minus the orbital gap. Then we computed the ES as RS
minus QS, which yields TDDFT excitation energy minus
experimental fundamental gap. Since the latter is independent
of the choice of functional (and hence independent of X), the
variation represents simply the variation in the average
TDDEFT excitation energy, which, as we have shown in Figure
3, is very stable with respect to the percentage X employed in
the functionals (much more stable than the orbital energy
gap). Therefore, the near constancy (constant within 0.4 eV)
of the lower curve in Figure 6 is simply a consequence of the
fact that, averaged over all the transitions, the TDDFT
excitation energy varies by only ~0.4 eV. This is reasonable

https://dx.doi.org/10.1021/acs.jctc.0c00320
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Figure 6. Response shift, quasiparticle shift, and exciton shift as a X

function of Hartree—Fock exchange in the functionals listed in Table
1 for the GW100 data set.

since most of the functionals are good to within ~0.4 eV so
their average cannot vary much more than that.

ll.D. Generalized Response Shift in TDDFT. In the
above discussion, we have limited our discussion to excitations,
ionizations, and attachments involving only the HOMO and
LUMO, and the languages of response shift, quasiparticle shift,
and exciton shift are limited to HOMO (HOCO, or valence
band maximum) and LUMO (LUCO, or conduction band
minimum). Although this is sometimes enough for phenom-
enological discussions due to Kasha’s rule,"” a more detailed
understanding of photoexcitation processes often requires
consideration of higher excited states whose excitation
character may be dominated by, for example, HOMO — 1
— LUMO or HOMO — LUMO + 1. The crystalline analogue
of a HOMO — 1 — LUMO transition would be a transition
from a state in the valence band that is not at the top of the
valence band to a state at the bottom of the conduction band,
and the quasiparticle hole associated with this transition is
clearly different from the quasiparticle hole associated with the
HOCO — LUCO transition. There is no well-established
language for distinguishing the different holes; the present
article is, however, focused on discussing molecular excitations,
so from this point on, we use the language of molecules. For
the quasiparticle concept to be useful, we must consider
excitations that are dominated by a single independent-particle
excitation, i.e., by a transition from the HOMO — m to the
LUMO + n. We will call the orbital energy difference the (m,n)
orbital energy interval. The difference in energy between the
ionization potential when the HOMO — m electron is removed
and the electron affinity in which an electron is added to the
LUMO + n will be called the fundamental (m,n) interval, and
the excitation energy associated with this transition will be
called the optical (m,n) interval. Using the intervals rather than
gaps, we can define three generalized shifts: the (m,n)
quasiparticle shift, the (mmn) exciton shift, and the (m,n)
response shift. The special cases of (m,n) = (0,0) reverts back
to the gaps.

With this language we can now extend our consideration to
the (1,0) and (0,1) excitations. Specifically, we investigate the
(1,0) response shift and (0,1) response shift in TDDFT for the
VT28 data set. Figure 7 shows these generalized response
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Figure 7. Generalized response shift as a function of percentage of
Hartree—Fock exchange employed in the functionals for VT28 data
set. The (1,0) response shift and (0,1) response shift are shown as
pink and green dots, respectively.

shifts, and this figure shows that the generalized response shift
is like the (0,0) one in having a strong correlation with the
percentage of Hartree—Fock exchange.

IV. CONCLUDING REMARKS

The relationship between the Kohn—Sham orbital energy
spectrum, the quasiparticle spectrum, and the optical spectrum
raises many questions. Historically, Jones and Gunnarsson
stated'”" that “The solution of the Dyson equation leads to the
quasiparticle (QP) FS [Fermi surface], and the solution of the
Kohn-Sham (KS) equation leads to a second, which we refer to
as the KS-FS. It is a longstanding question whether the two
surfaces, obtained using the exact self-energy and the exact
exchange-correlation potential, respectively, are identical.” We
now know that they are not identical,'”” and the present study
examined this kind of relationship, often discussed in the
condensed-matter context, from a molecular point of view. By
investigating three representative data sets, namely, the VT28,
VT160, and GW100 sets, we found that the response shift in
TDDFT (the difference between the quasiparticle gap and the
optical gap) is drastically affected by the amount of Hartree—
Fock exchange employed in density functionals. We can
conclude that this effect is very general because of the diversity
of the databases and functionals we employed; the databases
include very different molecules, molecules at geometries other
than the ground-state minimum, and excited states that are
dominated by different characters, and the exchange-
correlation functionals we examined have a variety of
functional forms.

The response shift in TDDFT is negative for the most
functionals but may be positive for local functionals or
functionals with low (<10%) Hartree—Fock exchange. If
interpreted physically in the quasiparticle picture, these
positive response shifts would indicate a repulsive effect
between the excited electrons and holes, which is the opposite
of what one expects by Coulomb’s law. The response shift
changes linearly from about +1 eV to —5 eV as one increases
the Hartree—Fock exchange from 0 to 100% in the density
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functionals, yet the predicted excitation energies are accurate
to an order of magnitude better than this range of response
shifts. We conclude that one should not interpret the response
shifts of functionals currently in practical use as physical effects
(polarization or relaxation accompanying excitation, or screen-
ing), but rather, for most density functionals in common use
(which are quite different from the unknown exact functional),
we should interpret the orbital energies as mathematical
intermediate quantities without a physical interpretation. We
recommend that density functional calculations with currently
available functionals should be interpreted in terms of their
predictions of physical observables like fundamental gaps and
optical gaps and not in terms of intermediate mathematical
quantities like orbital energies (except for optimally tuned
hybrids,”” where by design the HOMO and LUMO should be
taken seriously in terms of IP and EA).

As a side product, we found functionals with approximately
10% of Hartree—Fock exchange (the actual number obtained
by linear regression is 9.7%) may yield an average response
shift of zero. That means if one uses a functional with roughly
10% Hartree—Fock exchange, the obtained orbital energy gaps
may resemble the molecular excitation energies.

The response shift is generalized beyond HOMO — LUMO
transitions, and the generalized (0,1) and (1,0) response shifts
are found to have a very similar behavior as a response shift in
TDDFT. Although the response shift cannot be separated
uniquely into a quasiparticle shift and exciton shift, we have
assessed the quasiparticle shift and exciton shift by comparing
the orbital energies to GyW, quasiparticle energies as well as to
experimental IPs, EAs, and FunGs. Our calculations show that
the assessed quasiparticle shift is strongly dependent on the
percentage of Hartree—Fock exchange employed in a func-
tional. In fact, the required quasiparticle shift is the amount of
energy required for the orbital gap to be equal to the
fundamental gap. When compared to experimental fundamen-
tal gaps or GyW, fundamental gaps, when Hartree—Fock
exchange varies from 0 to 100%, the assessed quasiparticle shift
may vary from 3.7 to —3.6 eV for the experimental comparison
and from 5.2 to —1.1 eV for the GyW,, comparison. Such large
variations of the difference of the KS orbital from the
fundamental gap indicate that practical density functional
approximations behave very differently from what is assumed
in quasiparticle theory. Since the averaged experimental or
GoW, fundamental gaps do not depend on our choice of
density functional, the small variation of the assessed exciton
shift in fact represents the small variation of TDDFT excitation
energies among the various functionals. As a result, the exciton
shift calculated this way is relatively stable and is between —4.8
to =S5.1 eV.

Why is the excitonic effect much larger in TDDFT for
functionals with a larger Hartree—Fock exchange? For
example, we observe functionals with 100% of Hartree—Fock
exchange, e.g., PBEX with X = 100 and M06-HF, the response
shift can reach —5 eV. In quantum chemistry language, one
should think of the excitation as a process that involves both
orbital relaxation and configuration interaction (of course for
full CI, there is no need to consider the orbitals anymore). In
solid-state physics language, one thinks of the excitation as a
process that involves creation of an electron—hole pair
(remove an electron from the valence band and create an
electron in the conduction band) followed by electron—hole
interaction. Usually, one employs GW to obtain accurate
electron and hole energies, and the electron—hole interactions

are described by BSE. One can think of the excitonic effect in
TDDFT as including both the exciton binding energy and the
quasiparticle shift for functionals with a larger Hartree—Fock
exchange. Hence, the response shift in TDDFT is large for
functionals with a large Hartree—Fock exchange.
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