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Abstract 10 

Indoor localization is critical for many smart applications in built environments such as service 11 

robot navigation and facility management. Building information models (BIM) provide new 12 

streams of spatial and appearance information regarding building interiors that can be exploited 13 

for robust indoor localization. However, previous localization methods using BIM were unable to 14 

achieve high precision and accuracy, limiting their practical applications. To address this challenge, 15 

a new approach, “align-to-locate (A2L)”, was proposed in this study to leverage BIM as a reference 16 

to rectify and finetune coarse camera poses estimated photogrammetry. The camera pose 17 

rectification is achieved by a new registration algorithm that aims to align a photogrammetric point 18 

cloud with a BIM-referenced point cloud. The experiments demonstrated the effectiveness of the 19 

proposed A2L approach, which outperformed the state of the art with the localization error of 1.07 20 

m and the orientation deviation of 3.7°. It was also found that query point clouds generated from 21 

photographs taken along the lateral or longitude directions are more conducive for registration. 22 

Increasing the number of data collection locations and images from each location could lead to 23 

higher accuracy, but may compromise the computational speed. This study contributes to the 24 

challenging indoor localization problem by proposing the “align-to-locate” concept and evaluating 25 

its feasibility for more robust camera pose estimation through point cloud-to-BIM registration. The 26 

developed A2L approach can be integrated as a post-processing module in existing vision-based 27 

localization methods to finetune their estimated camera poses. 28 
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1. Introduction 32 

Many industrial or daily activities in built environments relies on robust indoor positioning 33 

services. An example is pedestrian navigation in large commercial buildings, where visitors need 34 

to quickly access their destinations with the help of wayfinding smartphone programs [1, 2]. For 35 

facility maintenance, precise position information is a prerequisite for augmented reality devices 36 

to retrieve corresponding contents to assist decision-making. Robots are increasingly being used 37 

for various scenarios such as construction progress inspection [3], cleaning and sterilizing [4], and 38 

comfort monitoring [5] in buildings. To enable such advanced applications, localization is an 39 

indispensable module for the robots to understand their positions in the environment. Because of 40 

the occluded and bounded nature of built environments, indoor localization is challenging. 41 

Traditional techniques based on Wi-Fi, Bluetooth, and radio frequency identification (RFID) are 42 

not only subject to severe deviations, but also requires large investment on installing and 43 

maintaining external signal emission infrastructure [6]. 44 

 45 

Compared with traditional techniques, vision-based approaches [7-10] stand out for its cost-46 

effectiveness, and being infrastructure-independent [6]. Given one or multiple photos of a scene, 47 

such approaches can recover its or their corresponding camera poses when the photos were taken. 48 

In the most common settings, however, these approaches require a pre-mapping of the environment 49 

of interest so as to estimate the camera pose in a global reference system. The pre-mapping 50 

operation is tedious and expensive to implement, hindering the wide adoption of such techniques. 51 

In recent years, the wide adoption of building information model (BIM) [11] makes it possible to 52 

fully deliver the strengths of visual localization without the need of the labor-intensive pre-53 

mapping. BIM serves as a readily available source of a wide spectrum of geospatial building 54 

information [12-14], including not only visual appearance (i.e., images), but also geometry and 55 

spatial layout (i.e., position) of indoor environments. 56 

 57 

Therefore, instead of collecting real-life photos in the field, latest research [3, 15-18] sought to 58 

exploit the information in BIM to enable visual indoor localization. To overcome the challenge of 59 

a cross-domain gap between BIM and real photographs, Ha et al. [15] proposed an image retrieval 60 

approach based on deep transfer learning features for the task of indoor localization. Chen et al. 61 

[17] demonstrated the feasibility of generative adversarial networks (GAN) in bridging the cross-62 

domain gap, and proposed a photogrammetric approach to estimating six degrees of freedom 63 

(6DoF) camera pose based on information retrieved from a style-transfer BIM. Asadi et al. [3] 64 

inferred indoor positions of inspection robots by aligning perspective vanishing points of video 65 

frames and BIM-rendered views. Inspired by [19], Acharya et al. [16, 20] and Zhao et al. [21] 66 

performed a series of works to regress 6DoF camera pose via convolutional neural networks (CNN) 67 

trained on BIM-rendered images. Despite the progress, the precision of existing BIM-enabled 68 

visual localization is still not adequate. To accomplish demanding tasks such as service robot 69 
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navigation in the built environment, a new solution with more robust localization performance is 70 

necessary. 71 

 72 

 73 

Fig. 1. The conceptual diagram of the “align-to-locate” approach for robust indoor localization. 74 

 75 

Existing BIM-enabled solutions mainly focused on matching visual features extracted from one or 76 

serval BIM-rendered views with features obtained from corresponding camera poses. However, 77 

other information or features that could have been extracted from BIM to rectify camera pose 78 

estimation have not been fully exploited. One example is the three-dimensional (3D) geometry of 79 

an indoor space formed by its surrounding walls, columns, and (or) floor and ceiling. As shown by 80 

Fig. 1, it is straightforward to separate a reference geometric model from BIM for any indoor 81 

spaces in a building. As for the as-is status of the space in real life, a photogrammetric point cloud 82 

(PC) can be easily generated from image sequences or videos of a subject’s surrounding based on 83 

the structure-from-motion (SfM) technique. By aligning the as-is PC with the reference model, the 84 

initial camera poses estimated by any previous vision-based approach [3, 15-17] can be rectified, 85 

and thus the subject’s position can be precisely located. Although this “align to locate” concept 86 

seems promising, few studies have explored how a photogrammetric PC, representing only a part 87 

of the entire environment with much data noise, can be registered to BIM for camera pose 88 

rectification and robust indoor localization. 89 

 90 

To fill the knowledge gap, this study aims to investigate a new mechanism for registering 91 

photogrammetric PCs to BIM for camera pose estimation, and analyze the influences of various 92 

data collection strategies on localization performance. This study contributes to the body of 93 

knowledge for indoor localization by proposing a novel “algin-to-locate (A2L)” approach to 94 

precisely estimating 6DoF camera poses based on a collection of photographs. The feasibility of 95 

the A2L approach was experimentally tested and evaluated, which achieved a 1.07 m localization 96 

error and a 3.7° orientation deviation. The proposed approach can be integrated with existing visual 97 

localization methods as a post-processing module to finetune the estimated camera poses to a 98 

precision level applicable in demanding tasks such as service robot navigation and AR-assisted 99 

inspection. 100 

 101 
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2. Related work 102 

2.1. Vision-based indoor localization 103 

The potential of machine vision in indoor localization has long been acknowledged for its cost-104 

effectiveness and independence from external infrastructure. The classical simultaneous 105 

localization and mapping (SLAM) based on a single camera [7] and visual odometry (VO) 106 

algorithm [8] were proposed to estimate robots’ ego-motion and their positions in unknown scenes 107 

by continuously triangulating feature correspondences among sequential camera frames. The 108 

incremental nature of such algorithms has decided that they can only yield a subject’s position 109 

relative to a local coordinate system [6, 16]. To locate the subject in a global reference frame, 110 

research efforts have been made in visual indoor localization. One line of such efforts considered 111 

the indoor localization task as a content-based image retrieval problem [15, 22, 23], in which a 112 

database of geo-registered photographs of the built environment has been collected in prior, and a 113 

camera pose of a newly image is determined by retrieving its most similar counterpart from the 114 

database. Another stream of works first reconstruct a 3D PC model of the environment by applying 115 

SfM. With the PC model as a reference, 6DoF camera pose corresponding to the query image can 116 

then be estimated either by stereo triangulation [9, 24] or training a regression model based on 117 

CNN [19].  118 

 119 

A limitation of the above approaches is their requirement for pre-mapping the built environment, 120 

either to obtain geo-registered photographs or point clouds. To avoid the tedious pre-mapping 121 

operations, latest research sought to directly extract such reference information about the 122 

environment from a building information model. While replacing real-life photographs with 123 

synthetic ones rendered by BIM seems a straightforward solution, it has been proved very difficult 124 

due to a perception gap between the two domains [15, 17]. To address the issue, Ha et al. [15] 125 

investigated the feature maps extracted by various layers in VGG, a well-known CNN architecture. 126 

They found that the deep features from pooling layer 4 performs best in bridging the cross-domain 127 

gap, and can enable accurate retrieval of BIM-rendered images for indoor localization. In [16, 20, 128 

21], the authors used edge maps of BIM-rendered images, instead of the original BIM views, as 129 

training data to develop their camera pose regression model. When similar edge maps of input real 130 

photographs were used for inference, a localization error of 1.6~2.0 m and an orientation deviation 131 

of 7°~ 11° were obtained. Different from previous studies, Chen et al. [17] attempted to address 132 

the perception gap by converting textureless BIM views to ones with photorealistic texture by style 133 

transfer technique based on GAN. Their experiments demonstrate effectiveness of the style-134 

transfer BIM in facilitating the exploitation of the rich information in BIM by traditional image 135 

features such as scale-invariant feature transform (SIFT) and edge histogram descriptor (EHD), 136 

and achieved a localization error of 1.38 m. 137 

 138 

Although great progress has been made in enabling visual localization with BIM, the performance 139 
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is still not sufficient for tasks having high requirements on localization precision. Such tasks 140 

include robot navigation in occluded indoor environments [4, 5] and AR-based facility 141 

maintenance [25]. To achieve higher precision, other information contained in BIM should be 142 

better exploited, and one aspect that can potentially contribute is the 3D geometry of an indoor 143 

space. By registering a photogrammetric point cloud into BIM, the coarse camera pose estimated 144 

by previous methods can be further rectified.  145 

 146 

2.2. Point cloud to BIM registration 147 

Point cloud registration is a general problem encountered in many applications such as autonomous 148 

driving, panorama stitching and robotics, and has been investigated for decades in the computer 149 

science community. One classical solution for PC registration is the iterative closest point (ICP) 150 

algorithm [26], which iteratively searches for an optimal rigid transformation that can minimize 151 

the overall distance among closest points between two clouds. However, ICP performs best only 152 

if the query PC is sufficiently close to the reference PC, or referred to as the problem of fine 153 

registration in [27]. For the more challenging problem of global registration, research efforts have 154 

been made, including a series of variants developed from ICP, e.g., Sparse ICP [28] and Go-ICP 155 

[29], and methods based on matching the salient features in PC, e.g., the ‘4-point congruent sets’ 156 

(4-PCS) algorithm [30]. However, there is still no universally applicable robust solution for 157 

automated PC registration. 158 

 159 

In the architecture, engineering, construction, and operation (AECO) sector, the registration of PC 160 

to BIM (PC2BIM) becomes an active research field with the proliferation of BIM. Essentially, the 161 

PC2BIM registration problem can be transformed to a PC2PC problem after quantizing the BIM 162 

meshes into points [27]. Leveraging the domain-specific characteristics (symmetry and regularities) 163 

in architecture, numerous research efforts have been made to register as-built or as-is point cloud 164 

to BIM for various applications. One such application that attracts most attentions is construction 165 

progress control, which enables the detection of construction deviation by aligning an as-built PC 166 

with an as-designed BIM. For the purpose of deviation measurement, Chen and Cho [31] proposed 167 

a method to register a laser-scanned PC with the corresponding BIM by aligning the detected 168 

columns from the two models. Kim et al. [32] proposed an algorithm pipeline, which involves pre-169 

processing, global registration based on principal component analysis (PCA) and local registration 170 

based on ICP, to allows intuitive construction progress monitoring with the aligned PC and BIM. 171 

Bueno et al. [27] took the uniqueness of construction buildings into account, and developed the 172 

‘4-Plane congruent Set’ (4-PlCS) algorithm for the global registration of laser scanning data with 173 

BIM, which can be used for construction quality and progress control. 174 

 175 

Other research endeavors aimed to facilitate AR-assisted facility maintenance [33, 34] and 176 

semantic enrichment of digital models by PC to BIM registration [35, 36]. Kopsida and Brilakis 177 
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[34] presented a semiautomated markerless solution to alignment as-is context captured by RGB-178 

D cameras with BIM for AR-based inspection. To achieve similar AR applications, Mahmood et 179 

al. [33] developed an automated registration approach based on geometric features, which was 180 

validated with PC scanned by Microsoft HoloLens. Xue et al. [35, 36] conducted a series of 181 

researches to register as-is point cloud with as-designed drawings or element models for semantic 182 

enrichment of digital twin city. Despite the extensive research input, much remains unclear how 183 

the PC2BIM registration can be used for robust indoor camera pose estimation.  184 

 185 

2.3. Knowledge gap 186 

The literature review revealed three aspects of knowledge gaps. First, existing BIM-enabled visual 187 

indoor localization methods are not well-established, presenting much room for precision 188 

improvement. Such improvement will enable demanding tasks that require high localization 189 

performance such as navigating a service robot in the built environment. 190 

 191 

Second, prior PC2BIM registration studies mainly focused on scenarios such as construction 192 

deviation checking [27, 31, 32] that are implemented offline with dense PCs of the entire space 193 

collected by laser scanners over a certain period. These methods are not readily extendable to 194 

indoor localization because of 1) the shorter processing time required, 2) the sparse point cloud 195 

generated, and 3) the partial space represented by the point cloud. Existing methods fall short of 196 

registering such partial PCs to BIM models, nor have they investigated how to use the registration 197 

to rectify a coarse camera pose to improve localization precision. 198 

 199 

Third, dense PCs are usually generated by laser scanning [27, 31] or RGB-D cameras [34] in prior 200 

studies. However, for a photogrammetric point cloud, its quality (e.g., data noise and point density) 201 

may be compromised as the SfM reconstruction results can be impacted by the way raw 202 

photographs are taken, which subsequently affects the precision of registration and localization 203 

performance. Little research has been done to investigate effects of different data collection 204 

schemes on the camera pose estimation precision. 205 

 206 

3. Methods 207 

3.1. Preparing a referenced database for registration 208 

In order to implement the proposed approach, a referenced database needs to be constructed from 209 

the original BIM model. The referenced database will serve as the target of registration in later 210 

steps. As shown in Fig. 2, the preparation of the database involves the following steps. First, the 211 

entire BIM is divided into many model units. This division is necessary because of the partial 212 

nature of the as-is point cloud reconstructed by SfM. Without it, the partial point cloud will be 213 

directly aligned with the entire BIM model, potentially impairing the registration performance due 214 

to the interference of building elements that are not captured in the partial cloud. Each individual 215 
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room with closed space is divided as a separate model unit. As for other open areas with relatively 216 

large floor space, e.g., corridors, they are also divided to obtain separate parts with relatively 217 

regular shapes. Second, the mesh model of each unit is downsampled into a point cloud for the 218 

convenience of registration. This “mesh-to-point” operation is a widely adopted practice in 219 

existing studies [27, 32, 33]. Finally, the boundary coordinates and the range of elevation are 220 

extracted for each model unit as its corresponding metadata. The metadata can ensure that 221 

corresponding reference point cloud will be quickly indexed and retrieved with initial camera pose. 222 

 223 

Fig. 2. Preparing a database of reference point clouds from original BIM.  224 

 225 

Fig. 3. (a) An example photo-taken strategy which collect data along a longitude direction; (b) The 226 

generated as-is query point cloud; (c) The collected Photos from locations marked in (a). 227 
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 228 

3.2. Generating as-is query point cloud 229 

A point cloud of the as-is built environment is generated with the SfM technique. The point cloud, 230 

referred to as a “query” point cloud, will be used to match and align with the reference model. The 231 

query point cloud might have undesired noise and outliers, which can potentially impair the 232 

registration in later steps. Therefore, the sparse outlier removal (SOR) algorithm introduced in [37] 233 

is applied to denoise the raw point cloud. In addition, various strategies can be used to collect photos 234 

for generating the query point cloud, and Fig. 3 shows one example of such strategies. Different 235 

strategies can result in point clouds of different quality, which will then lead to different 236 

registration performance, and ultimately affect camera pose estimation accuracy. In later part of 237 

this study, a sensitivity analysis will be performed to find the best data collection practice. For each 238 

collected photo, a corresponding initial camera pose can be coarsely estimated with previous 239 

vision-based approaches such as [15], [16], and [17]. The initial camera pose will be used for 240 

coarse registration in next step.  241 

 242 

3.3. Coarse registration based on initial camera pose information 243 

A photogrammetric point cloud based SfM rationale is one with undetermined scale and has a 244 

coordinate system inconsistent with the global system used by the reference model, as 245 

demonstrated by Fig. 4 (a). However, it preserves the spatial relativity between the point cloud and 246 

the photo capture locations. With the initial camera pose estimated by previous approaches, it is 247 

viable to coarsely align the query point cloud with the reference counterpart, as depicted by the 248 

process from Fig. 4 (a) to (b). 249 

 250 

 251 

Fig. 4. (a) The inconsistent scale and coordinate system between reference and query point clouds; 252 

(b) Results of coarse registration; (c) Results of orientation alignment; (d) Results of scale 253 
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normalization; (e) Results of finetuning alignment. 254 

 255 

Suppose there are totally NP photos that have been used to generate the query point cloud, from 256 

which we can randomly select NC subsamples for coarse registration.  Let Q C{ }( 1,2,..., )i i N=C  257 

and 
coar C{ }( 1,2,..., )i i N=C  denote the transformation matrices of camera poses reconstructed in 258 

the query point cloud and estimated by coarse localization approaches, respectively. The 259 

transformation matrices are in a homogeneous form as illustrated by Eq. (1): 260 

11 12 13

21 22 23

coar

31 32 33

0

0

0

1

i i i

i i i

i

i i i

i i i

x y z

rc rc rc

rc rc rc

rc rc rc

tc tc tc

 
 
 =
 
 
  

C                          (1) 261 

Where 

11 12 13

21 22 23

31 32 33

i i i

i i i

i i i

rc rc rc

rc rc rc

rc rc rc

 
 
 
 
 

 and i i i

x y ztc tc tc    are respectively rotation matrix and translation 262 

vector.  263 

 264 

Suppose the database of reference point clouds is represented as 
R RPC{ }( 1,2,..., )kPC k N= , where 265 

NRPC is the total number of reference point clouds in the database. Then, the point cloud which has 266 

covered i i i

x y ztc tc tc    within its boundaries will be selected as the target registration reference 267 

0

R

k
PC . Note that the selection results of different photos might not coincide with each other; such 268 

case can be resolved with a majority vote mechanism—selecting the reference point cloud with 269 

the most 
C ( 1, 2,..., )i i i

x y ztc tc tc i N  =   falling inside.  270 

 271 

With the registration target ready, the initial transformation matrix Tinit for coarse registration can 272 

be determined as follows: 273 

0

init

1

init Q coar C

init R

( ) ,  ( 1,2,..., )

s.t.  min( ( , ))
i

i i i

ki

i N

rmse PC PC

− = =


 T

T C C
                    (2) 274 

Where rmse(PC1,PC2) is the root mean square error (RMSE) between two point clouds; 
init

iPC  is 275 
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the resulting point cloud after applying the initial transformation matrix 
init

i
T  to the original query 276 

point cloud PCQ. Let i0 denote the final selected camera pose for coarse alignment, then the adopted 277 

initial transformation matrix is 0

init

i
T , and the query point cloud after transformation is 0

init

i
PC . 278 

 279 

3.4. Precise registration 280 

The coarsely aligned point cloud PCQ is further processed for precise alignment with reference 281 

point cloud 0

R

k
PC  . The procedure includes three steps, i.e., orientation alignment, scale 282 

normalization, and alignment finetune. 283 

 284 

3.4.1. Orientation alignment based on principal component analysis 285 

The first step of precise registration is to align the point cloud pairs along the elevation direction 286 

(i.e., the Z axis), as depicted by the process from Fig. 4 (b) to (c). The rationale of using Z axis as 287 

the direction for alignment is twofold. First, in indoor localization scenarios, the collected query 288 

point cloud tends to incomplete, representing only a part of the reference space. Because of the 289 

characteristics, the building elements along z axis (i.e., ceiling and floor) have the highest chance 290 

to be captured in the point cloud. Second, compared with other axis, architecture design follows a 291 

certain regularity along the z axis, with a relatively stable floor height among different stories. This 292 

can be made used of to normalize the point cloud scale in later section.  293 

 294 

Principal component analysis (PCA) is a widely used dimension reduction technique, which can 295 

find the most representative components with high degree of variance from the original features. 296 

It does so by producing linear combinations of the original variables to generate the components, 297 

and ordering them by their eigenvalues. The area of architecture follows the general Manhattan-298 

world assumption for built environment, which states that there exist three dominant axes 299 

orthogonal to each other in manmade structure. PCA is an ideal technique to find such dominant 300 

axes (or components) from a cloud of points representing their spatial layout. Let initv  and Rv  301 

denote principal components along the elevation direction for 0

init

i
PC  and 0

R

k
PC  , respectively. 302 

Then we have: 303 

init init init

11 12 13

init init init

init init 21 22 23

init init init

31 32 33

([0 0 1], )

rz rz rz

rotmat rz rz rz

rz rz rz

 
 

= =  
 
 

Rz v                (3) 304 
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R R R

11 12 13

R R R

R R 21 22 23

R R R

31 32 33

([0 0 1], )

rz rz rz

rotmat rz rz rz

rz rz rz

 
 

= =  
 
 

Rz v                 (4) 305 

Where rotmat(a,b) is a function calculates the rotation matrix from a to b; hence, initRz  and RRz306 

represent rotation matrices from the unit vector along Z axis to initv  and Rv , respectively. Then 307 

the corresponding homogeneous transformation matrices can be obtained by incorporating 308 

coarsely estimated camera location 0 0 0i i i

x y ztc tc tc 
  : 309 

0 0 0

init init init

11 12 13

init init init

21 22 23

init init init init

31 32 33

0

0

0

1
i i i

x y z

rz rz rz

rz rz rz

rz rz rz

tc tc tc

 
 
 =
 
 
  

Tz                         (5) 310 

0 0 0

R R R

11 12 13

R R R

21 22 23

R R R R

31 32 33

0

0

0

1
i i i

x y z

rz rz rz

rz rz rz

rz rz rz

tc tc tc

 
 
 =
 
 
  

Tz                          (6) 311 

With initTz  and RTz  , the transformation matrix for orientation alignment can be obtained 312 

according to Eq. (7). 313 

1

init R( )PCA

−=T Tz Tz                           (7) 314 

Applying PCAT   to 0

init

i
PC  , we can obtain a Z direction aligned query point cloud denoted by 315 

PCAPC . 316 

 317 

3.4.2. Scale normalization 318 

After aligning the pair of point clouds along Z axis, the scale of the query point cloud is normalized 319 

to the same level as its reference counterpart, as depicted by the process from Fig. 4 (c) to (d). The 320 

scale normalization is conducted to equalize story height of the two point clouds. To obtain story 321 

height, searching for the highest and lowest points along the Z axis and subtracting the two sounds 322 

like a straightforward method, but is not viable due to the existence of noise. Inspired by [36, 38], 323 

a histogram-fit approach is proposed to determine story height of a point cloud, as shown in Fig. 324 

5. The distribution histogram of the Z component of all points is generated. In most common 325 

settings, the distribution will concentrate on the ceiling and floor regions, corresponding to the two 326 
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most important elements for height calculation. Next, the histogram is fitted by a polynomial curve 327 

with degree d (e.g., d = 8), which should not be too small so as to find sufficient peaks. After fitting, 328 

the peaks (i.e., local maxima) of the curve are detected and sorted in a descending order. The z 329 

values of the top two peaks correspond to the elevation of the ceiling and floor, respectively, and 330 

the story height can be obtained by subtracting them.  331 

 332 

Fig. 5. The proposed histogram-fit approach to determining story height.  333 

 334 

Let hR and hPCA respectively denote the story height of 0

R

k
PC   and PCAPC   derived from the 335 

aforementioned approach. Then, the scaling factor s  and corresponding transformation matrix 336 

scaleT  can be calculated as follows: 337 

R
s

PCA

h

h
 =                                (8) 338 

0 0 0

s

s

scale

s

s s s

0 0 0

0 0 0

0 0 0

(1 ) (1 ) (1 ) 1
i i i

x y ztc tc tc







  

 
 
 =
 
 

− − −  

T                 (9) 339 

Applying scaleT  to PCAPC , a new point cloud denoted by scalePC  will be obtained, which has the 340 

same scale with 0

R

k
PC , as shown in Fig. 4 (d). 341 

 342 

3.4.3. Finetune the alignment by ICP 343 
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After the above steps, we shall obtain a point cloud (i.e., scalePC ) with quite decent alignment with 344 

the reference model, i.e., one at roughly the same location and with the same Z direction and 345 

identical scale.  However, because of the coarse nature of the estimated initial camera pose, the 346 

scalePC  might still have deviation from 0

R

k
PC  in terms of translation and orientation along X and 347 

Y axis. 348 

 349 

Thus, iterative closest point is used to finetune the alignment, as demonstrated by the process from 350 

Fig. 4 (d) to (e). The ICP technique is an optimization algorithm that aims to minimize the error 351 

metric between two clouds of points by iteratively trying out different transformations. Suppose 352 

ICP

j
T  is an arbitrary transformation matrix, then the process of ICP is mathematically described as 353 

follows: 354 

0

ICP

ICP scale ICP

ICP R

( C , )

s.t.  min( ( , ))
j

j j

kj

PC Trans P

rmse PC PC

 =


 T

T
                      (10) 355 

Where Trans(PC, T) represents the resulting point cloud after applying transformation matrix  T 356 

to PC. The meaning of rmse(PC1,PC2) is the same as mentioned in section 3.3. In practice, it is 357 

computational inefficient to find the global minimum of 0

ICP R( , )
kjrmse PC PC  . Therefore, the 358 

iteration is terminated when certain criteria are met, e.g., maximum number of iterations or 359 

tolerance of RMSE. Suppose the optimal transformation matrix given by ICP is 0

ICP

j
T , then the 360 

final precisely aligned query point cloud can be obtained and denoted by 0

ICP

j
PC . 361 

 362 

3.5. Rectify camera pose with the point cloud transformation matrix 363 

With a series of transformation matrices to register the query PC to the reference BIM, the initial 364 

camera poses can be rectified for robust indoor localization. The precise camera pose of i (i = 365 

1,2,…,NC) photo is calculated according to the following equation: 366 

0 0

prec Q init PCA scale ICP C,   ( 1,2,..., )
i ji i i N= =C C T T T T                (11) 367 

Where the camera pose prec

iC   is presented by a form of homogeneous transformation matrix, 368 

including both description of orientation and location of the camera. Suppose prec

iC  is represented 369 

as follows: 370 
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11 12 13

21 22 23

prec

31 32 33

0

0

0

1

i i i

i i i

i

i i i

i i i

x y z

rp rp rp

rp rp rp

rp rp rp

tp tp tp

 
 
 =
 
 
  

C                          (12) 371 

Then the estimated camera position is i i i

x y ztp tp tp   . The camera posture/orientation can be 372 

characterized by a vector along the camera line of sight, which is computed as follows:  373 

11 12 13

prec 21 22 23

31 32 33

[0 0 1]

i i i

i i i

i i i

rp rp rp

rp rp rp

rp rp rp

 
 

=   
 
 

v                      (13) 374 

Therefore, the camera direction vector prec 31 32 33

i i irp rp rp =  v . 375 

 376 

4. Experimental study 377 

In order to validate the efficacy of the proposed approach, experimental studies were implemented 378 

in a campus building at the University of Tennessee, Knoxville (UTK). The BIM model of the 379 

building is a .rvt file with level of development (LOD) 350. The initial camera pose was estimated 380 

with the approach proposed by [17]. Both the coarse and precise registration algorithms were 381 

instantiated in MatLab. The used computing hardware is an OptiPlex 7080 computer with Intel(R) 382 

Core (TM) i7-10700 CPU and NVIDIA GeoForce RTX 2070 SUPER GPU. 383 

 384 

4.1. The constructed reference database 385 

Our experiment zone was set up at the third floor of the UTK campus building. Fig. 6 (a) shows 386 

the floor plan of the experiment zone, wherein we selected 11 spaces to construct the reference 387 

database. The “Section Box” function of Autodesk Revit was used to segment a separate model 388 

unit for each space, which was then exported as an individual .fbx file. Fig. 6 (b) shows snapshots 389 

of the 11 separated BIM model units. The model units of FBX format were imported to Blender 390 

for further processing, e.g., removing redundant elements. Finally, the mesh models were loaded 391 

into CloudCompare for “Mesh-to-Point” conversion, and metadata (e.g., XYZ range and 392 

boundaries) extraction.  393 

 394 
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 395 

Fig. 6. (a) Floor plan and spaces used for constructing the reference database; (b) Separated models 396 

units of the referenced space; (c) The generated point clouds in the reference database. 397 

 398 

Fig. 6 (c) shows the obtained reference point clouds, where points corresponding to different 399 

spaces have been highlighted by different colors. Metadata corresponding to all the 11 reference 400 

point clouds is listed in Table S1 in the Supplementary Material.  401 

 402 

4.2. Query data collection schemes 403 

As highlighted by the red rectangle in Fig. 6 (a), the query data was collected on a platform at the 404 

west end of space #2, covering an area of 112.8 m2. We designated 30 data collection points on the 405 

platform, locations of which are presented in Fig. 7 (a). At each location, a video of its surrounding 406 

environment was recorded with a digital video (DV) camera (SONY HDR-CX760V). The DV 407 

camera was attached to a tripod to maintain its stability, and was designated to spin 360° around 408 

the central vertical axis of the tripod during the recording. Each video lasts for around 2~3 minutes, 409 

from which static image frames can be extracted for the production of photogrammetric PCs. There 410 

are many off-the-shelf commercial solutions (e.g., Agisoft Metashape, Pix4D) or open-source 411 

packages (e.g, WebODM) for photogrammetry applications. As a preliminary study aiming to 412 

testify the effectiveness of the proposed A2L approach, we select one of the most mature products 413 

in the market, Agisoft Metashape, for point cloud reconstruction from a bunch of images. For 414 
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practical deployment in future applications, Web application programming interface (API) of 415 

commercial or open-source photogrammetry software [39, 40] can be integrated as a service 416 

implemented on the cloud. For performance evaluation, the camera pose corresponding to a 417 

selected photograph from each data collection point was measured to serve as the ground-truth 418 

value. The camera orientations of the selected photographs are indicated by the arrow directions 419 

in Fig. 7 (a). In addition, the coarse camera poses of the selected photographs were estimated with 420 

the approach proposed by [17]. 421 

 422 

Fig. 7. (a) Distribution of the 30 designated data collection points; (b) Schematic diagram of the 423 

point distribution types when using different strategies. 424 

 425 

Different strategies can be used to combine the images taken from different data points for 426 

generating the query PC. Three aspects of factors are considered, which are the number of locations 427 

(NoL), number of images per location (NoI), and distribution of locations (DoL). The NoL (e.g., 428 

NoL = 3, 4, 5, 6) reflects the quantity of data points from which the corresponding photographs 429 

are used to generate the point cloud, while NoI (e.g., NoI = 5, 10, 15, 20) is the number of used 430 

photographs from each selected data point. As shown in Fig. 7 (b), DoL indicates how the selected 431 

locations distribute, which includes three main types, i.e., longitude, lateral, and diagonal 432 

distribution. To determine the best strategy, different combinations of the three factors will be used 433 

to generate query PCs, and their registration and final localization performance will be investigated 434 

and compared. Table 1 lists all the combinations investigated in this study. For example, the 435 

“#1#2#3” means that photographs from data collection points #P1, #P2, and #P3, as indicated in 436 

Fig. 7, are used to generate corresponding PCs. Note that for each combination, different numbers 437 

of photographs can be used, i.e., NoI = 5, 10, 15, 20. The total number of locations is the 30 data 438 

collection points presented in Fig. 7, which, however, will not be fully made use of in certain 439 
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strategies due to insufficient number of points meeting the required distribution. For example, 440 

when the “DoL=Longitude” and “NoL=4” are used, the number of points in each row will not be 441 

divided evenly by four, leaving some points excluded, e.g., the #P5 and #P6 in the first row.  442 

 443 

Table 1. Details of the investigated data collection strategies. 444 

DoL NoL 
NoI 

5 10 15 20 

Longitude 3 
#1~#3, #4~#6, #7~#9, #10~#12, #13~#15, #16~#18, #19~#21, #22~#24, 

#P25~#27, #28~#30 

 4 #1~#4, #9~#12, #14~#17, #20~#23, #25~#28 

 5 #1~#5, #8~#12, #13~#17, #20~#24, #25~#29 

 6 #1~#6, #7~#12, #13~#18, #19~#24, #25~#30 

Diagonal 3 
#1#8#14, #2#9#15, #4#11#18, #7#19#26, #10#17#24, #13#20#27, 

#16#23#29 

 4 #1#7#13#20, #2#8#14#21, #3#9#15#22, #10#17#24#30, #12#18#23#28 

 5 #1#7#13#20#27, #2#9#15#16#23, #3#10#17#24#30, #8#14#21#22#28 

Lateral 3 #2#8#13, #3#9#14, #4#10#16, #5#11#17, #6#12#18, #15#21#27 

 4 #2#8#13#19, #3#9#14#20, #4#10#16#22, #5#11#17#23, #6#12#18#24 

 5 
#2#8#13#19#25, #3#9#14#20#26, #4#10#16#22#28, #5#11#17#23#29, 

#6#12#18#24#30 

* Note: 1. The “DoL”, “NoL” and “NoI” stands for distribution of locations, number of locations, and number 

of images per location, respectively; 

      2. The “#xx#xx#xx” stands for the combination of data collection points as depicted in Fig. 7 (a). 

 445 

4.3. Performance evaluation 446 

Four metrics were used to comprehensively evaluate the performance of the proposed approach, 447 

including localization error, orientation error, computation time, and pose recovery rate. The 448 

localization error is reflected by the Euclidean distance (m) between the predictive and the 449 

observed camera locations, and the orientation error, on the other hand, is measured by the angle 450 

deviation (°) between the predictive and the observed camera line of sight. The computation time 451 

includes both the time used to generate the query PC and the time of registration. When generating 452 

a point cloud, camera pose of some photos relative to the cloud may not be reconstructed due to 453 

unsuccessful alignment. In such case, the subsequent registration will not be able to recover their 454 

camera pose in the global reference system. To measure performance in this aspect, the pose 455 

recovery rate (PRR) was proposed and defined as the proportion of successfully recovered camera 456 

poses accounting for the total number of investigated poses. 457 

 458 
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A prerequisite for robust localization by PC2BIM registration is the correct selection of the 459 

reference PC. Among all the investigated test data, 26 out of 30 initial coarse camera poses 460 

estimated by [17] were correctly located within the range of reference space #2 (see Fig. 6 for the 461 

layout of the reference spaces). After majority voting, a correct reference model (i.e., space #2) 462 

has been selected for all the query point clouds generated from the strategies listed in Table 1. By 463 

trying out all the listed strategies (see Section 4.4), the combination of “NoL = 5”, “NoI = 15”, and 464 

“DoL = Lateral” is observed to perform best in trading of precision against time performance.  465 

 466 

Fig. 8. Results of each registration step for query point clouds generated based on “NoL = 5”, “NoI 467 
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= 15”, and “DoL = Lateral” strategy, where the query and reference point clouds are highlighted 468 

by magenta and green, respectively. 469 

 470 

Fig. 8 shows a step-by-step breakdown of the registration process for three example PCs generated 471 

under the “NoL = 5”, “NoI = 15”, and “DoL = Lateral” strategy. Despite the incompleteness and 472 

uncertainties in terms of scale, location and orientation, the query PCs have been successfully 473 

aligned with their reference counterpart after registration. To be more specific, the coarse 474 

registration puts the query PC into the right place; then, the orientation alignment rectified its 475 

direction so as to be in line with the reference PC; the scale normalization makes scale of the point 476 

cloud pairs consistent with each other; and finally, the transformation of the query point cloud is 477 

finetuned by ICP for precise and robust alignment. The success of the registration lays the 478 

foundation for subsequent camera pose estimation. Fig. 9 shows the camera poses estimated by our 479 

approach, where in Fig. 9 (a) the deviation with the ground-truth locations is visualized with dash lines, 480 

and in Fig. 9 (b) the localization and orientation errors for all the investigated camera poses are 481 

presented. It is observed that errors of the estimated camera poses for batch #3 are higher than those of 482 

others, which is mainly because of its relatively poor registration performance. As depicted in the last 483 

row of Fig. 8, observable deviation can be found for batch #3 (2nd column, consisted of point 484 

#4#10#16#22#28) as compared to the well aligned PC for batch #1 (1st column, consisted of point 485 

#2#8#13#19#25), which holds the highest localization precision among the five batches. For batch #5, 486 

two camera poses have not been successfully recovered by SfM, as also presented in the 3rd column of 487 

Fig. 8. 488 

 489 

Fig. 9 indicates that 23 out of the 25 camera poses have been successfully recovered, with an 490 

average localization and orientation error of 1.07 m and 3.7°, respectively. As listed in Table 2, 491 

performance of the proposed A2L approach was compared with that of three BIM-enabled visual 492 

localization methods [16, 17, 20] proposed in recent years. BIM-PoseNet [16] was a deep neural 493 

network trained on synthetic images rendered by BIM and their corresponding rendering camera 494 

poses, which was later improved by [20] via exploiting the spatio-temporal BIM-rendered view 495 

sequences. In [17], a style transfer generative network was employed to further improve the 496 

localization precision, which, however, resulted in relatively large camera orientation errors. It was 497 

observed that the A2L approach significantly improved the precision of vision-based indoor 498 

localization enabled by BIM. However, as the proposed approach requires generating query point 499 

clouds from photographs, it takes more time for computation compared with other approaches. 500 
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 501 

Fig. 9. Camera poses estimated by the proposed “align to locate” approach. 502 

 503 

Table 2. Comparison with previous visual localization approaches based on BIM. 504 

Approach Localization error (m) Orientation error (°) 

BIM-PoseNet [16] 2.00 7.73 

Recurrent BIM-PoseNet [20] 1.60 9.29 

Chen et al. [17]  1.38 10.1 

A2L (Our approach) 1.07 3.7 

 505 

4.4. Sensitivity analysis 506 

Sensitivity analysis is performed to determine how different data collection strategies will affect 507 

the camera pose estimation performance. The sensitivity analysis is based on the combinations of 508 

data collection points listed in Table 1. The average localization error, orientation error, 509 

computation time, and the pose recovery rate of all the investigated locations in a strategy are used 510 

to represent its corresponding performance. The first, middle and last column of Fig. 10 show 511 
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results of the four performance metrics for the lateral, longitude, and diagonal distribution, 512 

respectively. In each graph, the horizontal axis is the number of images (NoI) per location, and the 513 

number of locations (NoL) used in different strategies is depicted by different scattered curves. 514 

 515 

Fig. 10 demonstrates a clear trend of improving pose estimation performance along with the 516 

increase of NoI. Both the localization and orientation errors, the two primary metrics to describe 517 

pose estimation precision, decrease as the NoI grows, although the decreasing level varies with the 518 

change of distribution directions (e.g., lateral, longitude, or diagonal). For the success rate of pose 519 

recovery, a larger NoI results in a higher PRR. The observed pattern can be explained by the basic 520 

rationale of point cloud generation based on SfM. A low NoI usually means less likelihood of 521 

overlap among the photographs, undermining the quality of the generated point cloud for effective 522 

registration or even making it difficult to reconstruct the corresponding camera poses (as indicated 523 

by the low PRR in Fig. 10 (g)~(i) when NoI=5, or the extreme cases in Fig. 10 (c) and (f)). With 524 

the growth of NoI, the improving query point clouds lead to better registration performance, and 525 

consequently higher precision is obtained. However, the positive effects of increasing NoI 526 

becomes marginal when it exceeds 15. In addition, a higher NoI also means more images to process, 527 

making the required computation time longer.  528 

 529 

As for the number of locations for data collection, a higher NoL should presumably contribute to 530 

higher pose estimation precision. This has been well reflected in the metrics of localization error 531 

and PRR. In Fig. 10 (a) and (b), for example, if we neglect the condition of “NoI = 5” when the 532 

PRR is too low to allow objective evaluation, the scatter curves for higher NoL tend to distribute 533 

in lower position along the vertical axis, indicating smaller localization error. Fig. 10 (g) and (h) 534 

demonstrate an opposite pattern, with scatter curves representing greater NoL distributing at higher 535 

positions which indicate better chances of successful pose recovery. Comparatively, the effects of 536 

NoL on orientation errors are relatively difficult to identify, as the metrics for different NoL values 537 

all distribute closely at a low level (see Fig. 10 (d) and (e)).  538 

 539 
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 540 

Fig. 10. Results of sensitivity analysis: (a)(d)(g)(j) performance for lateral distribution of locations; 541 

(b)(e)(h)(k) performance for longitude distribution of locations; (c)(f)(i)(l) performance for 542 

diagonal distribution of locations. 543 

 544 

The last notable factor is DoL, the influence of which can be evaluated by horizontally comparing 545 

the average performance metrics across each row in Fig. 10. The overall performance, concerning 546 
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localization error, orientation error and pose recovery rate, gradually deteriorates as the DoL is 547 

changed from “lateral”, to “longitude”, and to “diagonal” distribution. As shown by Fig. 10 (g), 548 

(h) and (i), for example, the average PRR has already reached 80% when NoI equals 10 with the 549 

“lateral” distribution applied, while the highest average PRR for the “diagonal” distribution never 550 

exceeds 70%, whichever NoI is considered. The same trend can be clearly observed in the 551 

orientation error as well from Fig. 10 (d), (e) and (f), and is reaffirmed by a similar pattern revealed 552 

by the localization errors in Fig. 10 (a), (b) and (c). 553 

 554 

To summarize, when using the proposed A2L approach for robust indoor camera pose estimation, 555 

it is recommended to collect data from laterally distributed locations, with around 15 photographs 556 

from each location. Although more data collection locations can lead to higher precision, it also 557 

requires longer computation time; thus, the NoL should be set in a reasonable range (e.g., NoL = 558 

5) to balance between precision and efficiency.  559 

 560 

5. Discussion 561 

5.1. Advantages of the proposed approach 562 

To tackle the challenge of indoor localization, this study proposes an “align-to-locate” approach 563 

for robust estimation of camera poses in built environments. The proposed approach outperformed 564 

the precision of previous methods, improving BIM-enabled visual localization to 1.07 m for 565 

localization error and 3.7° for orientation deviation. The high precision of the approach makes it 566 

suitable to various application scenarios such as facility inspection with robots and pedestrian 567 

navigation. Sensitivity analysis has been conducted to investigate the effects of different data 568 

collection strategies on pose estimation performance, indicating an evident trend of precision 569 

improvement with the increasing number of images from per locations. 570 

 571 

Other than precision, another strength of the proposed approach lies in its compatibility with 572 

existing methods. Rather than replacing them, it leverages camera poses estimated by existing 573 

methods as initial parameters for coarse registration with the reference BIM model. In our 574 

experiments, the validation was implemented with the initial camera pose provided by [17]. 575 

However, other methods such as [16, 20] can also be applicable, as long as their estimated camera 576 

poses are corresponding to a selection of the photographs used to generate the query PC. Therefore, 577 

our approach serves as a general post-processing module, which can be seamlessly added to 578 

existing methods to rectify and finetune the initial camera poses for better reliability and robustness 579 

in practical applications. 580 

 581 

5.2. Processing time and optimization 582 

The proposed approach took about 25 s to process a batch of photographs when the “1.07 m and 583 

3.7°” performance was achieved under the strategy of “NoL = 5”, “NoI = 15”, and “DoL = Lateral”. 584 
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A large portion of the processing time (i.e., ~17 s) was used to generate the PC in an offline manner, 585 

which is relatively long. Therefore, optimization of the time performance is explored in this sub-586 

section.  587 

 588 

As SfM is based on the processing of the provided image batch (e.g., feature extraction, and 589 

correspondence detection), reducing image resolution might be able to shorten the required 590 

processing time. Experiments have been implemented with the “NoL = 5, NoI = 15, and DoL = 591 

Lateral” strategy to validate the hypothesis. Resolution of the original images is 1920×1080, which 592 

was downscaled successively to 1440×810, 960×540, and 480×270 for comparison. It was found 593 

that downsizing the original images by 0.25 to a resolution of 1440×810 reduced the required 594 

processing time for nearly a half, while can still maintain a decent quality of the generated PC. The 595 

computation time can be further reduced by continuing to downsize the images, which, however, 596 

would provide too few pixels to allow successful reconstruction, as have been discussed in [41]. 597 

Fig. 11 shows the trends with the PC generated from the “#2#8#13#19#25” batch as an example. 598 

Considering all five batches with the resolution of 1440×810, the SfM time performance is 599 

significantly improved to 7.84 s per batch, while the average localization and orientation errors 600 

remain at the original level of around 1.13 m and 4.03°. For batches of 960×540 and 480×270 601 

resolution, because of the extremely low SfM reconstruction quality, no camera pose has been 602 

properly recovered.  603 

 604 

The above results indicate that reasonably reducing the image size can contribute to the 605 

improvement of efficiency without impairing precision of the recovered camera poses. However, 606 

the level of downsizing should never exceed a certain range; otherwise, the SfM reconstruction 607 

would be jeopardized or even fail.  608 

 609 

Fig. 11. Comparison of point clouds generated from images of different resolution (taking the 610 

“#2#8#13#19#25” batch as an example). Note that SfM reconstruction from images of 480×270 611 

failed, and thus the corresponding point cloud does not exist.  612 

 613 

5.3. Consideration for practical applications 614 

As a proof of concept, the query PC in this study is generated offline by standalone SfM software 615 
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(i.e., Metashape), the integration of which into practical applications is an issue to consider. To 616 

address the concern, following use cases are proposed: 617 

 618 

On the one hand, the query point clouds can still be generated offline by SfM, but on a cloud server. 619 

In this case, the Web API provided by commercial software (e.g., Agisoft Metashape [39], Pix4D) 620 

or open-source packages (e.g., WebODM [40]) can be seamlessly integrated with robots or any 621 

other devices requiring positioning services. As processing a batch of images for SfM can take up 622 

to a few seconds (see section 5.2), real-time implementation is not realistic. In most cases, such 623 

real-time localization is not necessary as well. Instead, a “stop-and-localize” solution can be used. 624 

To be more specific, the robots can take a bunch of indoor photos according to the recommended 625 

data collection strategy, and then upload them to the cloud for SfM, registration, and camera pose 626 

estimation. The A2L only needs to be implemented at the beginning for providing initial global 627 

coordinates, or be executed periodically for drift rectification. Thereafter or for the time windows 628 

in-between, tracking algorithms such as visual odometry and dead reckoning can be used to 629 

provide continuous information of the device’ position. 630 

 631 

On the other hand, the point cloud can also be generated continuously “on the go”, which can 632 

either be done by visual SLAM [7] or newly introducing incremental SfM algorithms [8, 42] that 633 

allow real-time implementation. In this “on-the-go” solution, since the query point cloud is 634 

incrementally updated as the robots navigate through its surrounding environment, separate 635 

computation time for SfM is not required, making the algorithm more efficient. However, even 636 

though recent studies [43, 44] have demonstrated the sufficient accuracy of point clouds generated 637 

by such incremental approaches, their quality might still be different from those produced by 638 

offline tools, which consequently can lead to uncertainty in the registration with BIM. How the 639 

online generated photogrammetric point clouds might impact the camera pose estimation would 640 

be an interesting research topic worth investigation. As a preliminary study aiming primarily at 641 

developing and validating the A2L approach, we leave the topic for future research. 642 

 643 

6. Conclusions 644 

Visual indoor localization enabled by BIM is an active research field in recent years, owning to its 645 

merits of being infrastructure independent and free from pre-mapping. However, applicability of 646 

existing approaches in demanding scenarios is hindered by their relatively low precision. This 647 

study proposes an “align-to-locate (A2L)” approach that can rectify the coarse camera poses 648 

provided by existing approaches for robust indoor localization. The method achieved camera pose 649 

estimation by registering an as-is photogrammetric point cloud to a repository of reference BIM 650 

models via a series of operations such as coarse registration, orientation alignment, scale 651 

normalization, and alignment finetuning. Effectiveness of the A2L approach was demonstrated by 652 

an experimental study implemented at a campus building of the University of Tennessee, Knoxville. 653 

It achieved a precision of 1.07 m and 3.7° for localization and orientation error, respectively, 654 
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refreshing the state of the art of its kind. A sensitivity analysis was performed to understand the 655 

influence of different data collection strategies on localization performance, implying the 656 

superiority of the “lateral” strategy than the “diagonal” strategy. While more photographs from 657 

more data collection points may potentially lead to higher precision, it requires additional 658 

processing time. The A2L approach is compatible with existing methods to finetune their estimated 659 

camera poses for advanced applications such as robot navigation. 660 

 661 

Future research is suggested to address the following limitations. The most notable one is the 662 

efficiency issue. Although for robotic applications, the time for data collection and point cloud 663 

reconstruction can be neglected, there is room to further optimize the required computation time 664 

for PC2BIM registration (~ 6 s). In this research, an off-the-shelf commercial solution, Agisoft 665 

Metashape, was used to produce the query point clouds offline. As different software/algorithms 666 

can generate point clouds of various quality, it would be interesting for future research to compare 667 

the performance of different SfM and SLAM solutions, and identify the best-performed one. 668 

Another limitation is one universally observed in vision-based localization, i.e., the adverse effect 669 

of uniform design and self-similarity in built environments. Such effects could impair the 670 

performance mainly by providing incorrect initial camera pose in the coarse registration stage. As 671 

a countermeasure, extra information (e.g., user input, data collected by other sensors) can be 672 

integrated to reduce ambiguities. 673 
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