
1 **Align to locate: Registering photogrammetric point clouds to BIM for robust indoor**
2 **localization**

3
4 Junjie Chen^a, Shuai Li^{b,*}, Weisheng Lu^a

5
6 ^a Department of Real Estate and Construction, The University of Hong Kong, Hong Kong, China
7 ^b Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville,
8 TN, USA

9
10 **Abstract**

11 Indoor localization is critical for many smart applications in built environments such as service
12 robot navigation and facility management. Building information models (BIM) provide new
13 streams of spatial and appearance information regarding building interiors that can be exploited
14 for robust indoor localization. However, previous localization methods using BIM were unable to
15 achieve high precision and accuracy, limiting their practical applications. To address this challenge,
16 a new approach, “align-to-locate (A2L)”, was proposed in this study to leverage BIM as a reference
17 to rectify and finetune coarse camera poses estimated photogrammetry. The camera pose
18 rectification is achieved by a new registration algorithm that aims to align a photogrammetric point
19 cloud with a BIM-referenced point cloud. The experiments demonstrated the effectiveness of the
20 proposed A2L approach, which outperformed the state of the art with the localization error of 1.07
21 m and the orientation deviation of 3.7°. It was also found that query point clouds generated from
22 photographs taken along the lateral or longitude directions are more conducive for registration.
23 Increasing the number of data collection locations and images from each location could lead to
24 higher accuracy, but may compromise the computational speed. This study contributes to the
25 challenging indoor localization problem by proposing the “align-to-locate” concept and evaluating
26 its feasibility for more robust camera pose estimation through point cloud-to-BIM registration. The
27 developed A2L approach can be integrated as a post-processing module in existing vision-based
28 localization methods to finetune their estimated camera poses.

29
30 **Keywords:** Smart building; Location-based services; Indoor localization; Building information
31 model (BIM); Point cloud; Registration.

* Corresponding author.

E-mail address: sli48@utk.edu (S. Li).

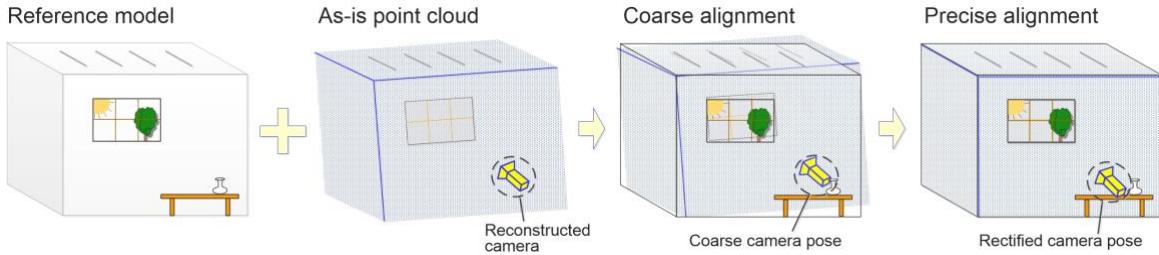
32 **1. Introduction**

33 Many industrial or daily activities in built environments relies on robust indoor positioning
34 services. An example is pedestrian navigation in large commercial buildings, where visitors need
35 to quickly access their destinations with the help of wayfinding smartphone programs [1, 2]. For
36 facility maintenance, precise position information is a prerequisite for augmented reality devices
37 to retrieve corresponding contents to assist decision-making. Robots are increasingly being used
38 for various scenarios such as construction progress inspection [3], cleaning and sterilizing [4], and
39 comfort monitoring [5] in buildings. To enable such advanced applications, localization is an
40 indispensable module for the robots to understand their positions in the environment. Because of
41 the occluded and bounded nature of built environments, indoor localization is challenging.
42 Traditional techniques based on Wi-Fi, Bluetooth, and radio frequency identification (RFID) are
43 not only subject to severe deviations, but also requires large investment on installing and
44 maintaining external signal emission infrastructure [6].

45
46 Compared with traditional techniques, vision-based approaches [7-10] stand out for its cost-
47 effectiveness, and being infrastructure-independent [6]. Given one or multiple photos of a scene,
48 such approaches can recover its or their corresponding camera poses when the photos were taken.
49 In the most common settings, however, these approaches require a pre-mapping of the environment
50 of interest so as to estimate the camera pose in a global reference system. The pre-mapping
51 operation is tedious and expensive to implement, hindering the wide adoption of such techniques.
52 In recent years, the wide adoption of building information model (BIM) [11] makes it possible to
53 fully deliver the strengths of visual localization without the need of the labor-intensive pre-
54 mapping. BIM serves as a readily available source of a wide spectrum of geospatial building
55 information [12-14], including not only visual appearance (i.e., images), but also geometry and
56 spatial layout (i.e., position) of indoor environments.

57
58 Therefore, instead of collecting real-life photos in the field, latest research [3, 15-18] sought to
59 exploit the information in BIM to enable visual indoor localization. To overcome the challenge of
60 a cross-domain gap between BIM and real photographs, Ha et al. [15] proposed an image retrieval
61 approach based on deep transfer learning features for the task of indoor localization. Chen et al.
62 [17] demonstrated the feasibility of generative adversarial networks (GAN) in bridging the cross-
63 domain gap, and proposed a photogrammetric approach to estimating six degrees of freedom
64 (6DoF) camera pose based on information retrieved from a style-transfer BIM. Asadi et al. [3]
65 inferred indoor positions of inspection robots by aligning perspective vanishing points of video
66 frames and BIM-rendered views. Inspired by [19], Acharya et al. [16, 20] and Zhao et al. [21]
67 performed a series of works to regress 6DoF camera pose via convolutional neural networks (CNN)
68 trained on BIM-rendered images. Despite the progress, the precision of existing BIM-enabled
69 visual localization is still not adequate. To accomplish demanding tasks such as service robot

70 navigation in the built environment, a new solution with more robust localization performance is
71 necessary.



73
74 **Fig. 1.** The conceptual diagram of the “align-to-locate” approach for robust indoor localization.

75
76 Existing BIM-enabled solutions mainly focused on matching visual features extracted from one or
77 several BIM-rendered views with features obtained from corresponding camera poses. However,
78 other information or features that could have been extracted from BIM to rectify camera pose
79 estimation have not been fully exploited. One example is the three-dimensional (3D) geometry of
80 an indoor space formed by its surrounding walls, columns, and (or) floor and ceiling. As shown by
81 Fig. 1, it is straightforward to separate a reference geometric model from BIM for any indoor
82 spaces in a building. As for the as-is status of the space in real life, a photogrammetric point cloud
83 (PC) can be easily generated from image sequences or videos of a subject’s surrounding based on
84 the structure-from-motion (SfM) technique. By aligning the as-is PC with the reference model, the
85 initial camera poses estimated by any previous vision-based approach [3, 15-17] can be rectified,
86 and thus the subject’s position can be precisely located. Although this “align to locate” concept
87 seems promising, few studies have explored how a photogrammetric PC, representing only a part
88 of the entire environment with much data noise, can be registered to BIM for camera pose
89 rectification and robust indoor localization.

90
91 To fill the knowledge gap, this study aims to investigate a new mechanism for registering
92 photogrammetric PCs to BIM for camera pose estimation, and analyze the influences of various
93 data collection strategies on localization performance. This study contributes to the body of
94 knowledge for indoor localization by proposing a novel “align-to-locate (A2L)” approach to
95 precisely estimating 6DoF camera poses based on a collection of photographs. The feasibility of
96 the A2L approach was experimentally tested and evaluated, which achieved a 1.07 m localization
97 error and a 3.7° orientation deviation. The proposed approach can be integrated with existing visual
98 localization methods as a post-processing module to finetune the estimated camera poses to a
99 precision level applicable in demanding tasks such as service robot navigation and AR-assisted
100 inspection.

102 **2. Related work**

103 **2.1. Vision-based indoor localization**

104 The potential of machine vision in indoor localization has long been acknowledged for its cost-
105 effectiveness and independence from external infrastructure. The classical simultaneous
106 localization and mapping (SLAM) based on a single camera [7] and visual odometry (VO)
107 algorithm [8] were proposed to estimate robots' ego-motion and their positions in unknown scenes
108 by continuously triangulating feature correspondences among sequential camera frames. The
109 incremental nature of such algorithms has decided that they can only yield a subject's position
110 relative to a local coordinate system [6, 16]. To locate the subject in a global reference frame,
111 research efforts have been made in visual indoor localization. One line of such efforts considered
112 the indoor localization task as a content-based image retrieval problem [15, 22, 23], in which a
113 database of geo-registered photographs of the built environment has been collected in prior, and a
114 camera pose of a newly image is determined by retrieving its most similar counterpart from the
115 database. Another stream of works first reconstruct a 3D PC model of the environment by applying
116 SfM. With the PC model as a reference, 6DoF camera pose corresponding to the query image can
117 then be estimated either by stereo triangulation [9, 24] or training a regression model based on
118 CNN [19].

119
120 A limitation of the above approaches is their requirement for pre-mapping the built environment,
121 either to obtain geo-registered photographs or point clouds. To avoid the tedious pre-mapping
122 operations, latest research sought to directly extract such reference information about the
123 environment from a building information model. While replacing real-life photographs with
124 synthetic ones rendered by BIM seems a straightforward solution, it has been proved very difficult
125 due to a perception gap between the two domains [15, 17]. To address the issue, Ha et al. [15]
126 investigated the feature maps extracted by various layers in VGG, a well-known CNN architecture.
127 They found that the deep features from pooling layer 4 performs best in bridging the cross-domain
128 gap, and can enable accurate retrieval of BIM-rendered images for indoor localization. In [16, 20,
129 21], the authors used edge maps of BIM-rendered images, instead of the original BIM views, as
130 training data to develop their camera pose regression model. When similar edge maps of input real
131 photographs were used for inference, a localization error of 1.6~2.0 m and an orientation deviation
132 of 7°~ 11° were obtained. Different from previous studies, Chen et al. [17] attempted to address
133 the perception gap by converting textureless BIM views to ones with photorealistic texture by style
134 transfer technique based on GAN. Their experiments demonstrate effectiveness of the style-
135 transfer BIM in facilitating the exploitation of the rich information in BIM by traditional image
136 features such as scale-invariant feature transform (SIFT) and edge histogram descriptor (EHD),
137 and achieved a localization error of 1.38 m.

138
139 Although great progress has been made in enabling visual localization with BIM, the performance

140 is still not sufficient for tasks having high requirements on localization precision. Such tasks
141 include robot navigation in occluded indoor environments [4, 5] and AR-based facility
142 maintenance [25]. To achieve higher precision, other information contained in BIM should be
143 better exploited, and one aspect that can potentially contribute is the 3D geometry of an indoor
144 space. By registering a photogrammetric point cloud into BIM, the coarse camera pose estimated
145 by previous methods can be further rectified.

146

147 **2.2. Point cloud to BIM registration**

148 Point cloud registration is a general problem encountered in many applications such as autonomous
149 driving, panorama stitching and robotics, and has been investigated for decades in the computer
150 science community. One classical solution for PC registration is the iterative closest point (ICP)
151 algorithm [26], which iteratively searches for an optimal rigid transformation that can minimize
152 the overall distance among closest points between two clouds. However, ICP performs best only
153 if the query PC is sufficiently close to the reference PC, or referred to as the problem of fine
154 registration in [27]. For the more challenging problem of global registration, research efforts have
155 been made, including a series of variants developed from ICP, e.g., Sparse ICP [28] and Go-ICP
156 [29], and methods based on matching the salient features in PC, e.g., the ‘4-point congruent sets’
157 (4-PCS) algorithm [30]. However, there is still no universally applicable robust solution for
158 automated PC registration.

159

160 In the architecture, engineering, construction, and operation (AECO) sector, the registration of PC
161 to BIM (PC2BIM) becomes an active research field with the proliferation of BIM. Essentially, the
162 PC2BIM registration problem can be transformed to a PC2PC problem after quantizing the BIM
163 meshes into points [27]. Leveraging the domain-specific characteristics (symmetry and regularities)
164 in architecture, numerous research efforts have been made to register as-built or as-is point cloud
165 to BIM for various applications. One such application that attracts most attentions is construction
166 progress control, which enables the detection of construction deviation by aligning an as-built PC
167 with an as-designed BIM. For the purpose of deviation measurement, Chen and Cho [31] proposed
168 a method to register a laser-scanned PC with the corresponding BIM by aligning the detected
169 columns from the two models. Kim et al. [32] proposed an algorithm pipeline, which involves pre-
170 processing, global registration based on principal component analysis (PCA) and local registration
171 based on ICP, to allows intuitive construction progress monitoring with the aligned PC and BIM.
172 Bueno et al. [27] took the uniqueness of construction buildings into account, and developed the
173 ‘4-Plane congruent Set’ (4-PlCS) algorithm for the global registration of laser scanning data with
174 BIM, which can be used for construction quality and progress control.

175

176 Other research endeavors aimed to facilitate AR-assisted facility maintenance [33, 34] and
177 semantic enrichment of digital models by PC to BIM registration [35, 36]. Kopsida and Brilakis

178 [34] presented a semiautomated markerless solution to alignment as-is context captured by RGB-
179 D cameras with BIM for AR-based inspection. To achieve similar AR applications, Mahmood et
180 al. [33] developed an automated registration approach based on geometric features, which was
181 validated with PC scanned by Microsoft HoloLens. Xue et al. [35, 36] conducted a series of
182 researches to register as-is point cloud with as-designed drawings or element models for semantic
183 enrichment of digital twin city. Despite the extensive research input, much remains unclear how
184 the PC2BIM registration can be used for robust indoor camera pose estimation.

185

186 **2.3. Knowledge gap**

187 The literature review revealed three aspects of knowledge gaps. First, existing BIM-enabled visual
188 indoor localization methods are not well-established, presenting much room for precision
189 improvement. Such improvement will enable demanding tasks that require high localization
190 performance such as navigating a service robot in the built environment.

191

192 Second, prior PC2BIM registration studies mainly focused on scenarios such as construction
193 deviation checking [27, 31, 32] that are implemented offline with dense PCs of the entire space
194 collected by laser scanners over a certain period. These methods are not readily extendable to
195 indoor localization because of 1) the shorter processing time required, 2) the sparse point cloud
196 generated, and 3) the partial space represented by the point cloud. Existing methods fall short of
197 registering such partial PCs to BIM models, nor have they investigated how to use the registration
198 to rectify a coarse camera pose to improve localization precision.

199

200 Third, dense PCs are usually generated by laser scanning [27, 31] or RGB-D cameras [34] in prior
201 studies. However, for a photogrammetric point cloud, its quality (e.g., data noise and point density)
202 may be compromised as the SfM reconstruction results can be impacted by the way raw
203 photographs are taken, which subsequently affects the precision of registration and localization
204 performance. Little research has been done to investigate effects of different data collection
205 schemes on the camera pose estimation precision.

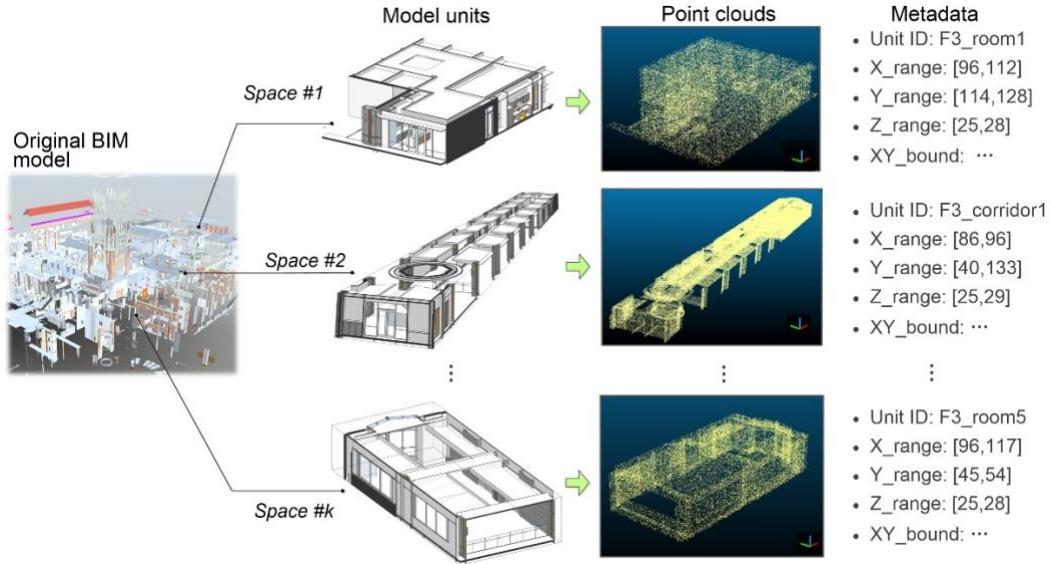
206

207 **3. Methods**

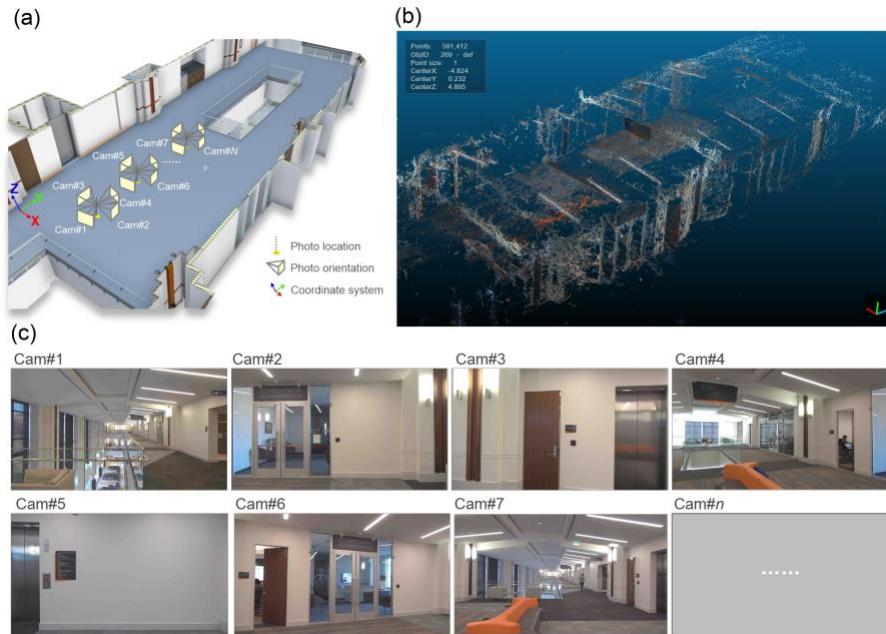
208 **3.1. Preparing a referenced database for registration**

209 In order to implement the proposed approach, a referenced database needs to be constructed from
210 the original BIM model. The referenced database will serve as the target of registration in later
211 steps. As shown in Fig. 2, the preparation of the database involves the following steps. First, the
212 entire BIM is divided into many model units. This division is necessary because of the partial
213 nature of the as-is point cloud reconstructed by SfM. Without it, the partial point cloud will be
214 directly aligned with the entire BIM model, potentially impairing the registration performance due
215 to the interference of building elements that are not captured in the partial cloud. Each individual

216 room with closed space is divided as a separate model unit. As for other open areas with relatively
 217 large floor space, e.g., corridors, they are also divided to obtain separate parts with relatively
 218 regular shapes. Second, the mesh model of each unit is downsampled into a point cloud for the
 219 convenience of registration. This “mesh-to-point” operation is a widely adopted practice in
 220 existing studies [27, 32, 33]. Finally, the boundary coordinates and the range of elevation are
 221 extracted for each model unit as its corresponding metadata. The metadata can ensure that
 222 corresponding reference point cloud will be quickly indexed and retrieved with initial camera pose.



223
 224 **Fig. 2.** Preparing a database of reference point clouds from original BIM.



225
 226 **Fig. 3.** (a) An example photo-taken strategy which collect data along a longitude direction; (b) The
 227 generated as-is query point cloud; (c) The collected Photos from locations marked in (a).

228

229 **3.2. Generating as-is query point cloud**

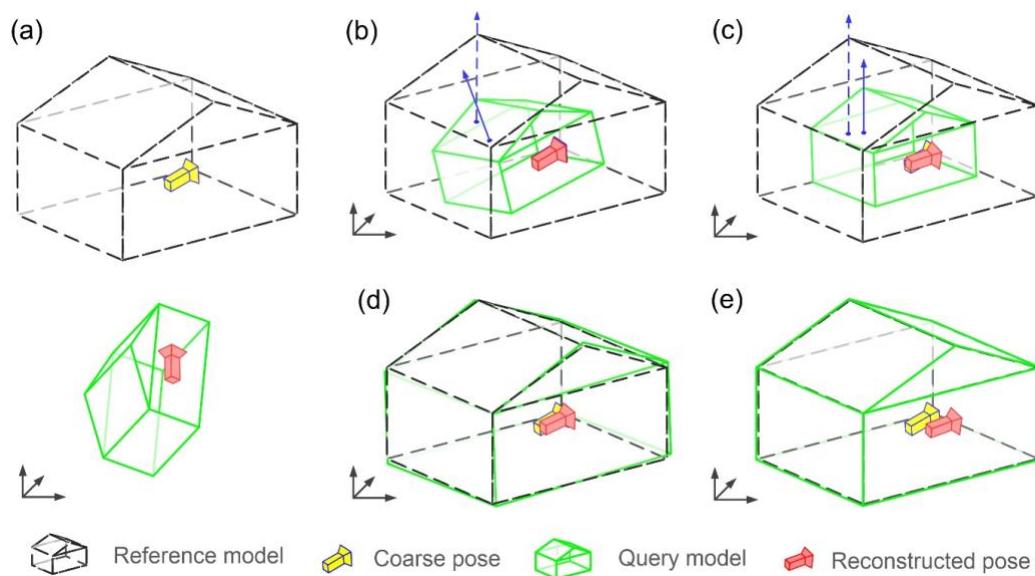
230 A point cloud of the as-is built environment is generated with the SfM technique. The point cloud,
 231 referred to as a “query” point cloud, will be used to match and align with the reference model. The
 232 query point cloud might have undesired noise and outliers, which can potentially impair the
 233 registration in later steps. Therefore, the sparse outlier removal (SOR) algorithm introduced in [37]
 234 is applied to denoise the raw point cloud. In addition, various strategies can be used to collect photos
 235 for generating the query point cloud, and Fig. 3 shows one example of such strategies. Different
 236 strategies can result in point clouds of different quality, which will then lead to different
 237 registration performance, and ultimately affect camera pose estimation accuracy. In later part of
 238 this study, a sensitivity analysis will be performed to find the best data collection practice. For each
 239 collected photo, a corresponding initial camera pose can be coarsely estimated with previous
 240 vision-based approaches such as [15], [16], and [17]. The initial camera pose will be used for
 241 coarse registration in next step.

242

243 **3.3. Coarse registration based on initial camera pose information**

244 A photogrammetric point cloud based SfM rationale is one with undetermined scale and has a
 245 coordinate system inconsistent with the global system used by the reference model, as
 246 demonstrated by Fig. 4 (a). However, it preserves the spatial relativity between the point cloud and
 247 the photo capture locations. With the initial camera pose estimated by previous approaches, it is
 248 viable to coarsely align the query point cloud with the reference counterpart, as depicted by the
 249 process from Fig. 4 (a) to (b).

250



251

252 **Fig. 4.** (a) The inconsistent scale and coordinate system between reference and query point clouds;
 253 (b) Results of coarse registration; (c) Results of orientation alignment; (d) Results of scale

254 normalization; (e) Results of finetuning alignment.

255
256 Suppose there are totally N_P photos that have been used to generate the query point cloud, from
257 which we can randomly select N_C subsamples for coarse registration. Let $\{\mathbf{C}_Q^i\}(i=1,2,\dots,N_C)$
258 and $\{\mathbf{C}_{\text{coar}}^i\}(i=1,2,\dots,N_C)$ denote the transformation matrices of camera poses reconstructed in
259 the query point cloud and estimated by coarse localization approaches, respectively. The
260 transformation matrices are in a homogeneous form as illustrated by Eq. (1):

261

$$\mathbf{C}_{\text{coar}}^i = \begin{bmatrix} rc_{11}^i & rc_{12}^i & rc_{13}^i & 0 \\ rc_{21}^i & rc_{22}^i & rc_{23}^i & 0 \\ rc_{31}^i & rc_{32}^i & rc_{33}^i & 0 \\ tc_x^i & tc_y^i & tc_z^i & 1 \end{bmatrix} \quad (1)$$

262 Where $\begin{bmatrix} rc_{11}^i & rc_{12}^i & rc_{13}^i \\ rc_{21}^i & rc_{22}^i & rc_{23}^i \\ rc_{31}^i & rc_{32}^i & rc_{33}^i \end{bmatrix}$ and $\begin{bmatrix} tc_x^i & tc_y^i & tc_z^i \end{bmatrix}$ are respectively rotation matrix and translation
263 vector.

264
265 Suppose the database of reference point clouds is represented as $\{PC_R^k\}(k=1,2,\dots,N_{\text{RPC}})$, where
266 N_{RPC} is the total number of reference point clouds in the database. Then, the point cloud which has
267 covered $\begin{bmatrix} tc_x^i & tc_y^i & tc_z^i \end{bmatrix}$ within its boundaries will be selected as the target registration reference
268 $PC_R^{k_0}$. Note that the selection results of different photos might not coincide with each other; such
269 case can be resolved with a majority vote mechanism—selecting the reference point cloud with
270 the most $\begin{bmatrix} tc_x^i & tc_y^i & tc_z^i \end{bmatrix}$ ($i=1,2,\dots,N_C$) falling inside.

271
272 With the registration target ready, the initial transformation matrix \mathbf{T}_{init} for coarse registration can
273 be determined as follows:

274

$$\begin{cases} \mathbf{T}_{\text{init}}^i = (\mathbf{C}_Q^i)^{-1} \mathbf{C}_{\text{coar}}^i, & (i=1,2,\dots,N_C) \\ \text{s.t. } \min_{\mathbf{T}_{\text{init}}} \text{rmse}(PC_{\text{init}}^i, PC_R^{k_0}) \end{cases} \quad (2)$$

275 Where $\text{rmse}(PC_1, PC_2)$ is the root mean square error (RMSE) between two point clouds; PC_{init}^i is

276 the resulting point cloud after applying the initial transformation matrix $\mathbf{T}_{\text{init}}^i$ to the original query
 277 point cloud PC_Q . Let i_0 denote the final selected camera pose for coarse alignment, then the adopted
 278 initial transformation matrix is $\mathbf{T}_{\text{init}}^{i_0}$, and the query point cloud after transformation is $PC_{\text{init}}^{i_0}$.

279

280 3.4. Precise registration

281 The coarsely aligned point cloud PC_Q is further processed for precise alignment with reference
 282 point cloud $PC_R^{k_0}$. The procedure includes three steps, i.e., orientation alignment, scale
 283 normalization, and alignment finetune.

284

285 3.4.1. Orientation alignment based on principal component analysis

286 The first step of precise registration is to align the point cloud pairs along the elevation direction
 287 (i.e., the Z axis), as depicted by the process from Fig. 4 (b) to (c). The rationale of using Z axis as
 288 the direction for alignment is twofold. First, in indoor localization scenarios, the collected query
 289 point cloud tends to incomplete, representing only a part of the reference space. Because of the
 290 characteristics, the building elements along z axis (i.e., ceiling and floor) have the highest chance
 291 to be captured in the point cloud. Second, compared with other axis, architecture design follows a
 292 certain regularity along the z axis, with a relatively stable floor height among different stories. This
 293 can be made used of to normalize the point cloud scale in later section.

294

295 Principal component analysis (PCA) is a widely used dimension reduction technique, which can
 296 find the most representative components with high degree of variance from the original features.
 297 It does so by producing linear combinations of the original variables to generate the components,
 298 and ordering them by their eigenvalues. The area of architecture follows the general Manhattan-
 299 world assumption for built environment, which states that there exist three dominant axes
 300 orthogonal to each other in manmade structure. PCA is an ideal technique to find such dominant
 301 axes (or components) from a cloud of points representing their spatial layout. Let \mathbf{v}_{init} and \mathbf{v}_R

302 denote principal components along the elevation direction for $PC_{\text{init}}^{i_0}$ and $PC_R^{k_0}$, respectively.

303 Then we have:

304

$$\mathbf{Rz}_{\text{init}} = \text{rotmat}([0 \ 0 \ 1], \mathbf{v}_{\text{init}}) = \begin{bmatrix} rz_{11}^{\text{init}} & rz_{12}^{\text{init}} & rz_{13}^{\text{init}} \\ rz_{21}^{\text{init}} & rz_{22}^{\text{init}} & rz_{23}^{\text{init}} \\ rz_{31}^{\text{init}} & rz_{32}^{\text{init}} & rz_{33}^{\text{init}} \end{bmatrix} \quad (3)$$

$$\mathbf{Rz}_R = \text{rotmat}([0 \ 0 \ 1], \mathbf{v}_R) = \begin{bmatrix} rz_{11}^R & rz_{12}^R & rz_{13}^R \\ rz_{21}^R & rz_{22}^R & rz_{23}^R \\ rz_{31}^R & rz_{32}^R & rz_{33}^R \end{bmatrix} \quad (4)$$

306 Where $rotmat(\mathbf{a}, \mathbf{b})$ is a function calculates the rotation matrix from \mathbf{a} to \mathbf{b} ; hence, $\mathbf{Rz}_{\text{init}}$ and \mathbf{Rz}_R
 307 represent rotation matrices from the unit vector along Z axis to \mathbf{v}_{init} and \mathbf{v}_R , respectively. Then
 308 the corresponding homogeneous transformation matrices can be obtained by incorporating
 309 coarsely estimated camera location $\begin{bmatrix} tc_x^{i_0} & tc_y^{i_0} & tc_z^{i_0} \end{bmatrix}$:

$$\mathbf{Tz}_{\text{init}} = \begin{bmatrix} rz_{11}^{\text{init}} & rz_{12}^{\text{init}} & rz_{13}^{\text{init}} & 0 \\ rz_{21}^{\text{init}} & rz_{22}^{\text{init}} & rz_{23}^{\text{init}} & 0 \\ rz_{31}^{\text{init}} & rz_{32}^{\text{init}} & rz_{33}^{\text{init}} & 0 \\ tc_x^{i_0} & tc_y^{i_0} & tc_z^{i_0} & 1 \end{bmatrix} \quad (5)$$

$$\mathbf{Tz}_R = \begin{bmatrix} rz_{11}^R & rz_{12}^R & rz_{13}^R & 0 \\ rz_{21}^R & rz_{22}^R & rz_{23}^R & 0 \\ rz_{31}^R & rz_{32}^R & rz_{33}^R & 0 \\ tc_x^{i_0} & tc_y^{i_0} & tc_z^{i_0} & 1 \end{bmatrix} \quad (6)$$

312 With $\mathbf{Tz}_{\text{init}}$ and \mathbf{Tz}_R , the transformation matrix for orientation alignment can be obtained
 313 according to Eq. (7).

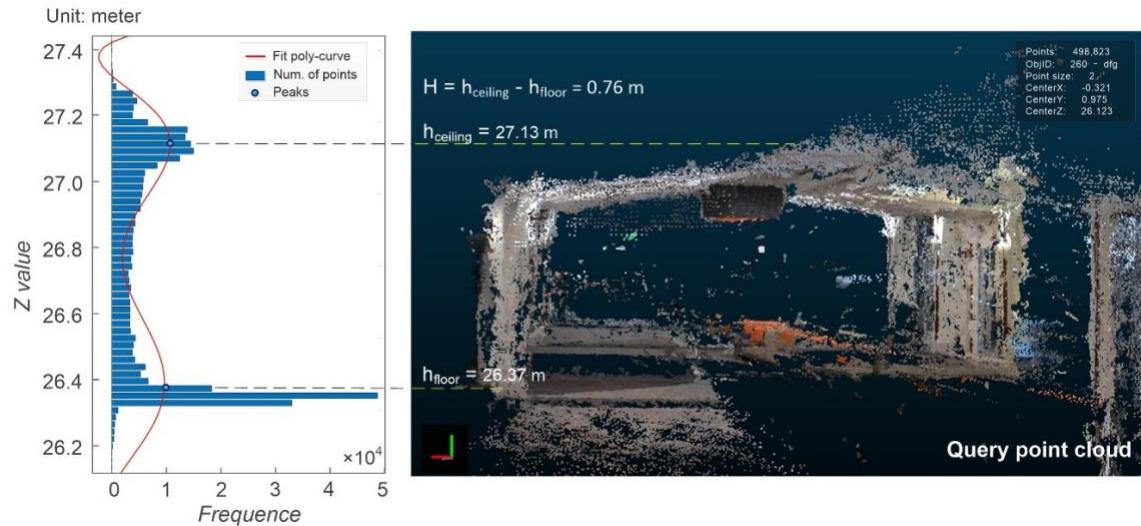
$$\mathbf{T}_{PCA} = (\mathbf{Tz}_{\text{init}})^{-1} \mathbf{Tz}_{\mathbb{R}} \quad (7)$$

315 Applying T_{PCA} to $PC_{init}^{i_0}$, we can obtain a Z direction aligned query point cloud denoted by
 316 PC_{PCA} .

3.4.3. Scale normalization

319 After aligning the pair of point clouds along Z axis, the scale of the query point cloud is normalized
 320 to the same level as its reference counterpart, as depicted by the process from Fig. 4 (c) to (d). The
 321 scale normalization is conducted to equalize story height of the two point clouds. To obtain story
 322 height, searching for the highest and lowest points along the Z axis and subtracting the two sounds
 323 like a straightforward method, but is not viable due to the existence of noise. Inspired by [36, 38],
 324 a histogram-fit approach is proposed to determine story height of a point cloud, as shown in Fig.
 325 5. The distribution histogram of the Z component of all points is generated. In most common
 326 settings, the distribution will concentrate on the ceiling and floor regions, corresponding to the two

327 most important elements for height calculation. Next, the histogram is fitted by a polynomial curve
 328 with degree d (e.g., $d=8$), which should not be too small so as to find sufficient peaks. After fitting,
 329 the peaks (i.e., local maxima) of the curve are detected and sorted in a descending order. The z
 330 values of the top two peaks correspond to the elevation of the ceiling and floor, respectively, and
 331 the story height can be obtained by subtracting them.



332
 333 **Fig. 5.** The proposed histogram-fit approach to determining story height.
 334
 335 Let h_R and h_{PCA} respectively denote the story height of $PC_R^{k_0}$ and PC_{PCA} derived from the
 336 aforementioned approach. Then, the scaling factor θ_s and corresponding transformation matrix
 337 \mathbf{T}_{scale} can be calculated as follows:

$$338 \quad \theta_s = \frac{h_R}{h_{PCA}} \quad (8)$$

$$339 \quad \mathbf{T}_{scale} = \begin{bmatrix} \theta_s & 0 & 0 & 0 \\ 0 & \theta_s & 0 & 0 \\ 0 & 0 & \theta_s & 0 \\ (1-\theta_s)tc_x^{i_0} & (1-\theta_s)tc_y^{i_0} & (1-\theta_s)tc_z^{i_0} & 1 \end{bmatrix} \quad (9)$$

340 Applying \mathbf{T}_{scale} to PC_{PCA} , a new point cloud denoted by PC_{scale} will be obtained, which has the
 341 same scale with $PC_R^{k_0}$, as shown in Fig. 4 (d).

342
 343 *3.4.3. Finetune the alignment by ICP*

344 After the above steps, we shall obtain a point cloud (i.e., PC_{scale}) with quite decent alignment with
 345 the reference model, i.e., one at roughly the same location and with the same Z direction and
 346 identical scale. However, because of the coarse nature of the estimated initial camera pose, the
 347 PC_{scale} might still have deviation from $PC_{\text{R}}^{k_0}$ in terms of translation and orientation along X and
 348 Y axis.

349
 350 Thus, iterative closest point is used to finetune the alignment, as demonstrated by the process from
 351 Fig. 4 (d) to (e). The ICP technique is an optimization algorithm that aims to minimize the error
 352 metric between two clouds of points by iteratively trying out different transformations. Suppose
 353 $\mathbf{T}_{\text{ICP}}^j$ is an arbitrary transformation matrix, then the process of ICP is mathematically described as
 354 follows:

355

$$\begin{cases} PC_{\text{ICP}}^j = \text{Trans}(PC_{\text{scale}}, \mathbf{T}_{\text{ICP}}^j) \\ \text{s.t. } \min_{\mathbf{T}_{\text{ICP}}^j} \text{rmse}(PC_{\text{ICP}}^j, PC_{\text{R}}^{k_0}) \end{cases} \quad (10)$$

356 Where $\text{Trans}(PC, \mathbf{T})$ represents the resulting point cloud after applying transformation matrix \mathbf{T}
 357 to PC . The meaning of $\text{rmse}(PC_1, PC_2)$ is the same as mentioned in section 3.3. In practice, it is
 358 computational inefficient to find the global minimum of $\text{rmse}(PC_{\text{ICP}}^j, PC_{\text{R}}^{k_0})$. Therefore, the
 359 iteration is terminated when certain criteria are met, e.g., maximum number of iterations or
 360 tolerance of RMSE. Suppose the optimal transformation matrix given by ICP is $\mathbf{T}_{\text{ICP}}^{j_0}$, then the
 361 final precisely aligned query point cloud can be obtained and denoted by $PC_{\text{ICP}}^{j_0}$.

362
 363 **3.5. Rectify camera pose with the point cloud transformation matrix**

364 With a series of transformation matrices to register the query PC to the reference BIM, the initial
 365 camera poses can be rectified for robust indoor localization. The precise camera pose of i ($i =$
 366 $1, 2, \dots, N_c$) photo is calculated according to the following equation:

367

$$\mathbf{C}_{\text{prec}}^i = \mathbf{C}_Q^i \mathbf{T}_{\text{init}}^{i_0} \mathbf{T}_{\text{PCA}} \mathbf{T}_{\text{scale}} \mathbf{T}_{\text{ICP}}^{j_0}, \quad (i = 1, 2, \dots, N_c) \quad (11)$$

368 Where the camera pose $\mathbf{C}_{\text{prec}}^i$ is presented by a form of homogeneous transformation matrix,
 369 including both description of orientation and location of the camera. Suppose $\mathbf{C}_{\text{prec}}^i$ is represented
 370 as follows:

371

$$\mathbf{C}_{\text{prec}}^i = \begin{bmatrix} rp_{11}^i & rp_{12}^i & rp_{13}^i & 0 \\ rp_{21}^i & rp_{22}^i & rp_{23}^i & 0 \\ rp_{31}^i & rp_{32}^i & rp_{33}^i & 0 \\ tp_x^i & tp_y^i & tp_z^i & 1 \end{bmatrix} \quad (12)$$

372 Then the estimated camera position is $[tp_x^i \quad tp_y^i \quad tp_z^i]$. The camera posture/orientation can be
 373 characterized by a vector along the camera line of sight, which is computed as follows:

374

$$\mathbf{v}_{\text{prec}} = [0 \quad 0 \quad 1] \times \begin{bmatrix} rp_{11}^i & rp_{12}^i & rp_{13}^i \\ rp_{21}^i & rp_{22}^i & rp_{23}^i \\ rp_{31}^i & rp_{32}^i & rp_{33}^i \end{bmatrix} \quad (13)$$

375 Therefore, the camera direction vector $\mathbf{v}_{\text{prec}} = [rp_{31}^i \quad rp_{32}^i \quad rp_{33}^i]$.

376

377 4. Experimental study

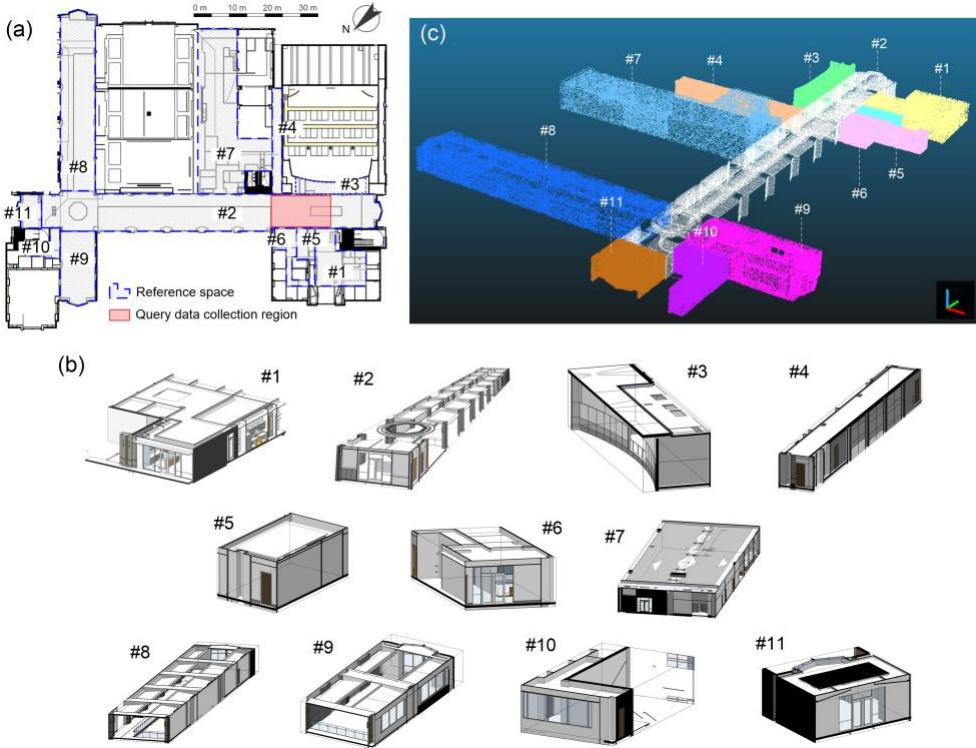
378 In order to validate the efficacy of the proposed approach, experimental studies were implemented
 379 in a campus building at the University of Tennessee, Knoxville (UTK). The BIM model of the
 380 building is a .rvt file with level of development (LOD) 350. The initial camera pose was estimated
 381 with the approach proposed by [17]. Both the coarse and precise registration algorithms were
 382 instantiated in MatLab. The used computing hardware is an OptiPlex 7080 computer with Intel(R)
 383 Core (TM) i7-10700 CPU and NVIDIA GeForce RTX 2070 SUPER GPU.

384

385 4.1. The constructed reference database

386 Our experiment zone was set up at the third floor of the UTK campus building. Fig. 6 (a) shows
 387 the floor plan of the experiment zone, wherein we selected 11 spaces to construct the reference
 388 database. The “Section Box” function of Autodesk Revit was used to segment a separate model
 389 unit for each space, which was then exported as an individual .fbx file. Fig. 6 (b) shows snapshots
 390 of the 11 separated BIM model units. The model units of FBX format were imported to Blender
 391 for further processing, e.g., removing redundant elements. Finally, the mesh models were loaded
 392 into CloudCompare for “Mesh-to-Point” conversion, and metadata (e.g., XYZ range and
 393 boundaries) extraction.

394



395

396 **Fig. 6.** (a) Floor plan and spaces used for constructing the reference database; (b) Separated models
397 units of the referenced space; (c) The generated point clouds in the reference database.

398

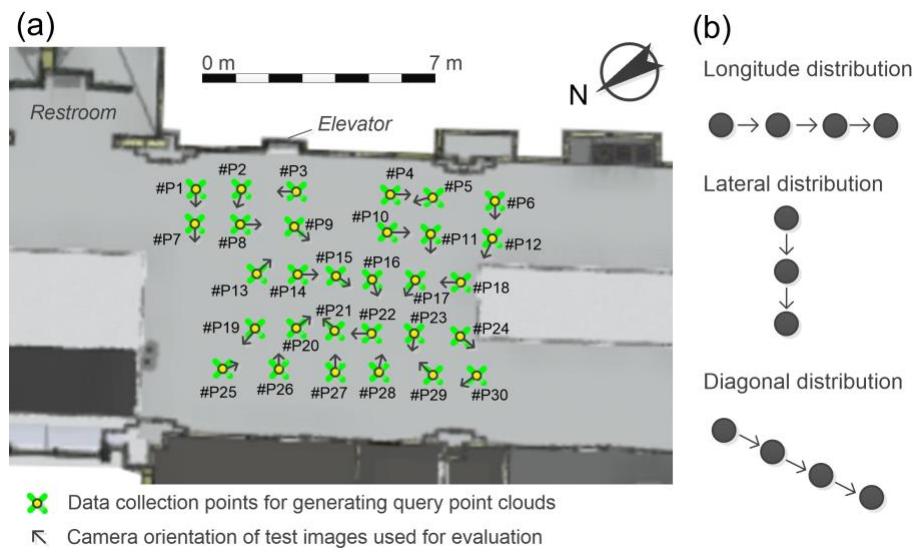
399 Fig. 6 (c) shows the obtained reference point clouds, where points corresponding to different
400 spaces have been highlighted by different colors. Metadata corresponding to all the 11 reference
401 point clouds is listed in Table S1 in the Supplementary Material.

402

403 **4.2. Query data collection schemes**

404 As highlighted by the red rectangle in Fig. 6 (a), the query data was collected on a platform at the
405 west end of space #2, covering an area of 112.8 m². We designated 30 data collection points on the
406 platform, locations of which are presented in Fig. 7 (a). At each location, a video of its surrounding
407 environment was recorded with a digital video (DV) camera (SONY HDR-CX760V). The DV
408 camera was attached to a tripod to maintain its stability, and was designated to spin 360° around
409 the central vertical axis of the tripod during the recording. Each video lasts for around 2~3 minutes,
410 from which static image frames can be extracted for the production of photogrammetric PCs. There
411 are many off-the-shelf commercial solutions (e.g., Agisoft Metashape, Pix4D) or open-source
412 packages (e.g., WebODM) for photogrammetry applications. As a preliminary study aiming to
413 testify the effectiveness of the proposed A2L approach, we select one of the most mature products
414 in the market, Agisoft Metashape, for point cloud reconstruction from a bunch of images. For

415 practical deployment in future applications, Web application programming interface (API) of
 416 commercial or open-source photogrammetry software [39, 40] can be integrated as a service
 417 implemented on the cloud. For performance evaluation, the camera pose corresponding to a
 418 selected photograph from each data collection point was measured to serve as the ground-truth
 419 value. The camera orientations of the selected photographs are indicated by the arrow directions
 420 in Fig. 7 (a). In addition, the coarse camera poses of the selected photographs were estimated with
 421 the approach proposed by [17].



422
 423 **Fig. 7.** (a) Distribution of the 30 designated data collection points; (b) Schematic diagram of the
 424 point distribution types when using different strategies.
 425

426 Different strategies can be used to combine the images taken from different data points for
 427 generating the query PC. Three aspects of factors are considered, which are the number of locations
 428 (NoL), number of images per location (NoI), and distribution of locations (DoL). The NoL (e.g.,
 429 NoL = 3, 4, 5, 6) reflects the quantity of data points from which the corresponding photographs
 430 are used to generate the point cloud, while NoI (e.g., NoI = 5, 10, 15, 20) is the number of used
 431 photographs from each selected data point. As shown in Fig. 7 (b), DoL indicates how the selected
 432 locations distribute, which includes three main types, i.e., longitude, lateral, and diagonal
 433 distribution. To determine the best strategy, different combinations of the three factors will be used
 434 to generate query PCs, and their registration and final localization performance will be investigated
 435 and compared. Table 1 lists all the combinations investigated in this study. For example, the
 436 “#1#2#3” means that photographs from data collection points #P1, #P2, and #P3, as indicated in
 437 Fig. 7, are used to generate corresponding PCs. Note that for each combination, different numbers
 438 of photographs can be used, i.e., NoI = 5, 10, 15, 20. The total number of locations is the 30 data
 439 collection points presented in Fig. 7, which, however, will not be fully made use of in certain

440 strategies due to insufficient number of points meeting the required distribution. For example,
 441 when the “DoL=Longitude” and “NoL=4” are used, the number of points in each row will not be
 442 divided evenly by four, leaving some points excluded, e.g., the #P5 and #P6 in the first row.

443

444 **Table 1.** Details of the investigated data collection strategies.

DoL	NoL	NoI			
		5	10	15	20
Longitude	3	#1~#3, #4~#6, #7~#9, #10~#12, #13~#15, #16~#18, #19~#21, #22~#24, #P25~#27, #28~#30			
	4	#1~#4, #9~#12, #14~#17, #20~#23, #25~#28			
	5	#1~#5, #8~#12, #13~#17, #20~#24, #25~#29			
	6	#1~#6, #7~#12, #13~#18, #19~#24, #25~#30			
Diagonal	3	#1#8#14, #2#9#15, #4#11#18, #7#19#26, #10#17#24, #13#20#27, #16#23#29			
	4	#1#7#13#20, #2#8#14#21, #3#9#15#22, #10#17#24#30, #12#18#23#28			
	5	#1#7#13#20#27, #2#9#15#16#23, #3#10#17#24#30, #8#14#21#22#28			
Lateral	3	#2#8#13, #3#9#14, #4#10#16, #5#11#17, #6#12#18, #15#21#27			
	4	#2#8#13#19, #3#9#14#20, #4#10#16#22, #5#11#17#23, #6#12#18#24			
	5	#2#8#13#19#25, #3#9#14#20#26, #4#10#16#22#28, #5#11#17#23#29, #6#12#18#24#30			

* Note: 1. The “DoL”, “NoL” and “NoI” stands for distribution of locations, number of locations, and number of images per location, respectively;

2. The “#xx#xx#xx” stands for the combination of data collection points as depicted in Fig. 7 (a).

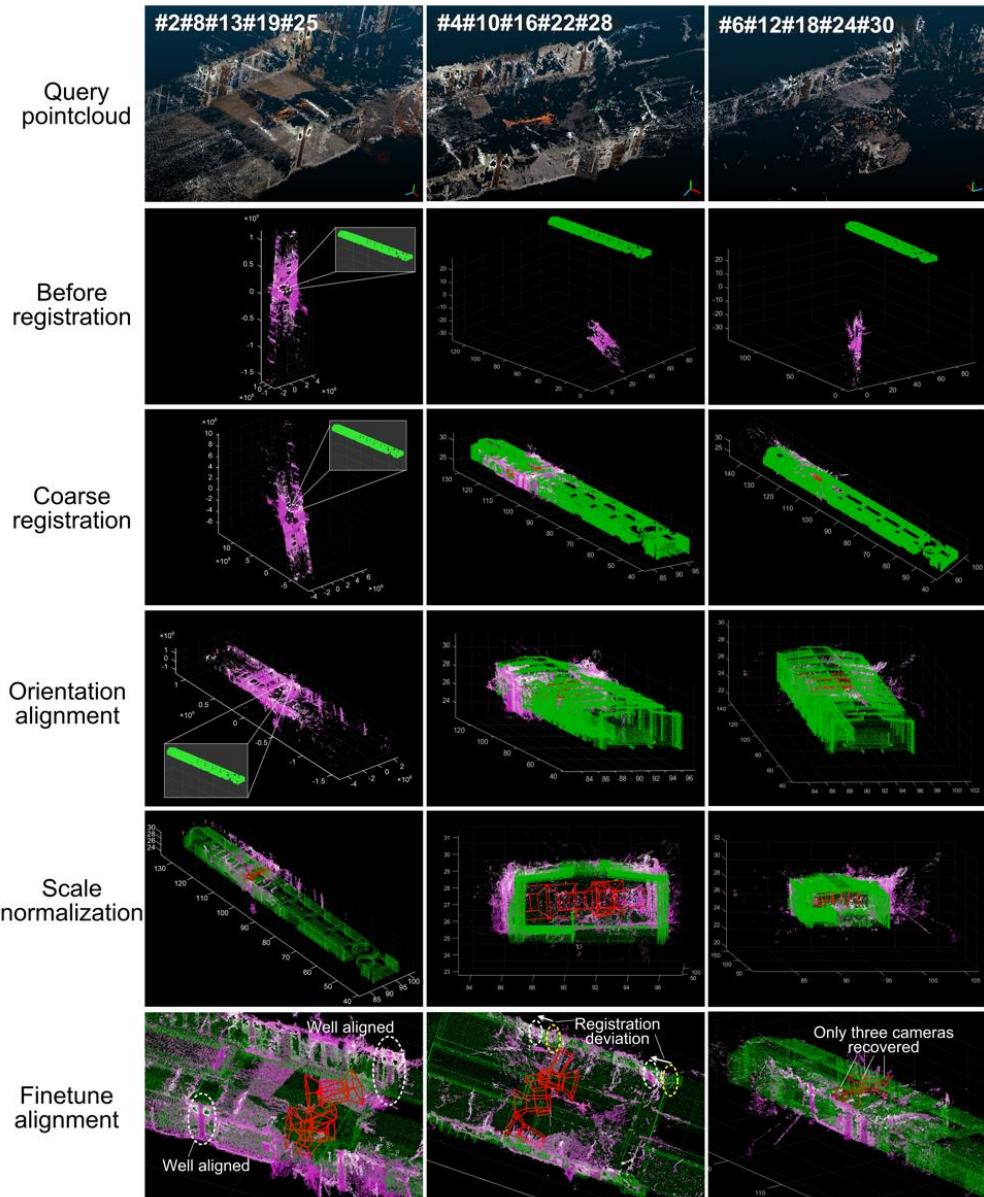
445

446 4.3. Performance evaluation

447 Four metrics were used to comprehensively evaluate the performance of the proposed approach,
 448 including localization error, orientation error, computation time, and pose recovery rate. The
 449 localization error is reflected by the Euclidean distance (m) between the predictive and the
 450 observed camera locations, and the orientation error, on the other hand, is measured by the angle
 451 deviation (°) between the predictive and the observed camera line of sight. The computation time
 452 includes both the time used to generate the query PC and the time of registration. When generating
 453 a point cloud, camera pose of some photos relative to the cloud may not be reconstructed due to
 454 unsuccessful alignment. In such case, the subsequent registration will not be able to recover their
 455 camera pose in the global reference system. To measure performance in this aspect, the pose
 456 recovery rate (PRR) was proposed and defined as the proportion of successfully recovered camera
 457 poses accounting for the total number of investigated poses.

458

459 A prerequisite for robust localization by PC2BIM registration is the correct selection of the
 460 reference PC. Among all the investigated test data, 26 out of 30 initial coarse camera poses
 461 estimated by [17] were correctly located within the range of reference space #2 (see Fig. 6 for the
 462 layout of the reference spaces). After majority voting, a correct reference model (i.e., space #2)
 463 has been selected for all the query point clouds generated from the strategies listed in Table 1. By
 464 trying out all the listed strategies (see Section 4.4), the combination of “NoL = 5”, “NoI = 15”, and
 465 “DoL = Lateral” is observed to perform best in trading of precision against time performance.



* Note: RMSE stands for root mean square error between the two point clouds

466 Query point cloud Referenced point cloud Reconstructed Camera

467 **Fig. 8.** Results of each registration step for query point clouds generated based on “NoL = 5”, “NoI

468 = 15”, and “DoL = Lateral” strategy, where the query and reference point clouds are highlighted
469 by magenta and green, respectively.

470
471 Fig. 8 shows a step-by-step breakdown of the registration process for three example PCs generated
472 under the “NoL = 5”, “NoI = 15”, and “DoL = Lateral” strategy. Despite the incompleteness and
473 uncertainties in terms of scale, location and orientation, the query PCs have been successfully
474 aligned with their reference counterpart after registration. To be more specific, the coarse
475 registration puts the query PC into the right place; then, the orientation alignment rectified its
476 direction so as to be in line with the reference PC; the scale normalization makes scale of the point
477 cloud pairs consistent with each other; and finally, the transformation of the query point cloud is
478 finetuned by ICP for precise and robust alignment. The success of the registration lays the
479 foundation for subsequent camera pose estimation. Fig. 9 shows the camera poses estimated by our
480 approach, where in Fig. 9 (a) the deviation with the ground-truth locations is visualized with dash lines,
481 and in Fig. 9 (b) the localization and orientation errors for all the investigated camera poses are
482 presented. It is observed that errors of the estimated camera poses for batch #3 are higher than those of
483 others, which is mainly because of its relatively poor registration performance. As depicted in the last
484 row of Fig. 8, observable deviation can be found for batch #3 (2nd column, consisted of point
485 #4#10#16#22#28) as compared to the well aligned PC for batch #1 (1st column, consisted of point
486 #2#8#13#19#25), which holds the highest localization precision among the five batches. For batch #5,
487 two camera poses have not been successfully recovered by SfM, as also presented in the 3rd column of
488 Fig. 8.

489
490 Fig. 9 indicates that 23 out of the 25 camera poses have been successfully recovered, with an
491 average localization and orientation error of 1.07 m and 3.7°, respectively. As listed in Table 2,
492 performance of the proposed A2L approach was compared with that of three BIM-enabled visual
493 localization methods [16, 17, 20] proposed in recent years. BIM-PoseNet [16] was a deep neural
494 network trained on synthetic images rendered by BIM and their corresponding rendering camera
495 poses, which was later improved by [20] via exploiting the spatio-temporal BIM-rendered view
496 sequences. In [17], a style transfer generative network was employed to further improve the
497 localization precision, which, however, resulted in relatively large camera orientation errors. It was
498 observed that the A2L approach significantly improved the precision of vision-based indoor
499 localization enabled by BIM. However, as the proposed approach requires generating query point
500 clouds from photographs, it takes more time for computation compared with other approaches.

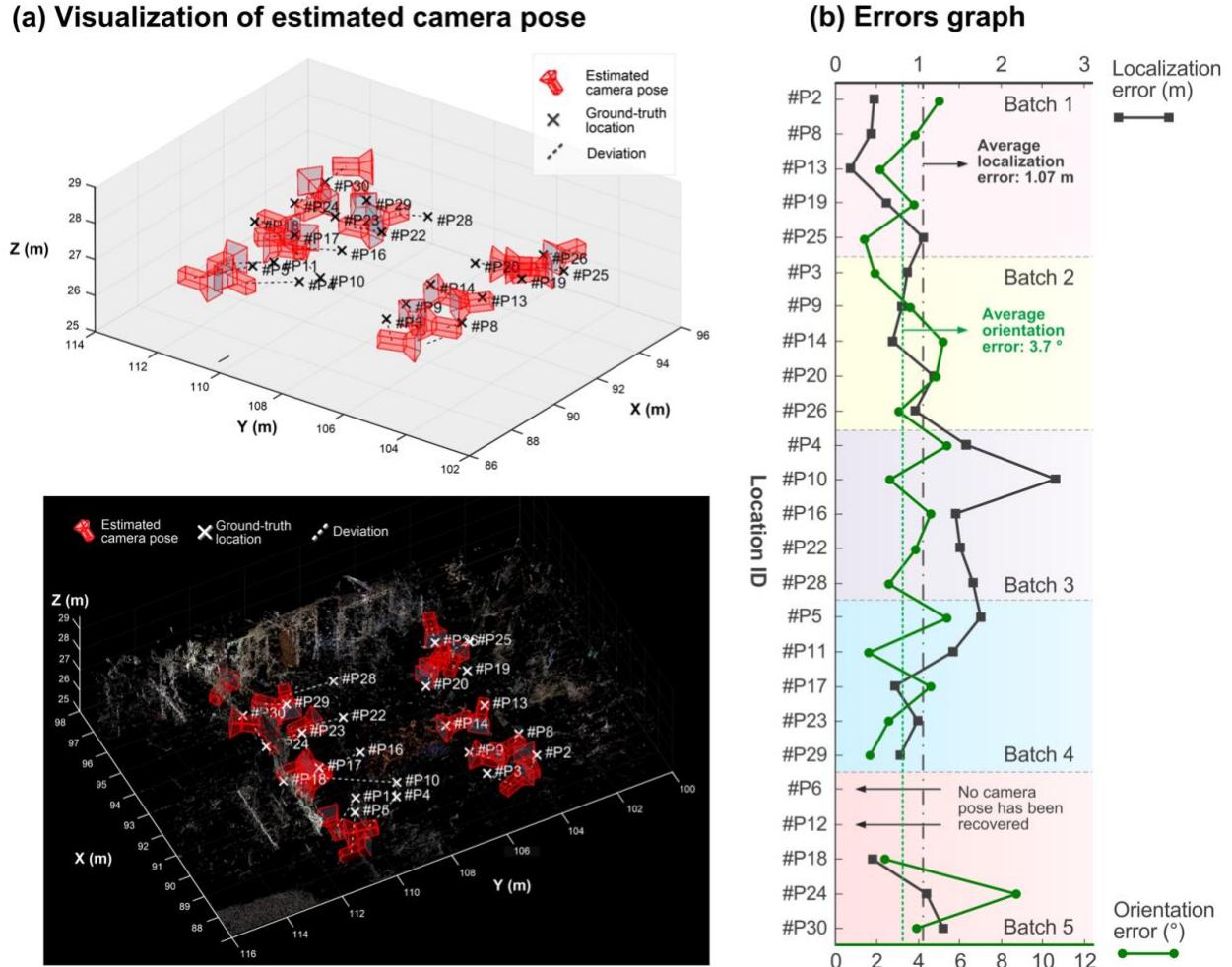


Fig. 9. Camera poses estimated by the proposed “align to locate” approach.

Table 2. Comparison with previous visual localization approaches based on BIM.

Approach	Localization error (m)	Orientation error (°)
BIM-PoseNet [16]	2.00	7.73
Recurrent BIM-PoseNet [20]	1.60	9.29
Chen et al. [17]	1.38	10.1
A2L (Our approach)	1.07	3.7

4.4. Sensitivity analysis

Sensitivity analysis is performed to determine how different data collection strategies will affect the camera pose estimation performance. The sensitivity analysis is based on the combinations of data collection points listed in Table 1. The average localization error, orientation error, computation time, and the pose recovery rate of all the investigated locations in a strategy are used to represent its corresponding performance. The first, middle and last column of Fig. 10 show

512 results of the four performance metrics for the lateral, longitude, and diagonal distribution,
513 respectively. In each graph, the horizontal axis is the number of images (NoI) per location, and the
514 number of locations (NoL) used in different strategies is depicted by different scattered curves.

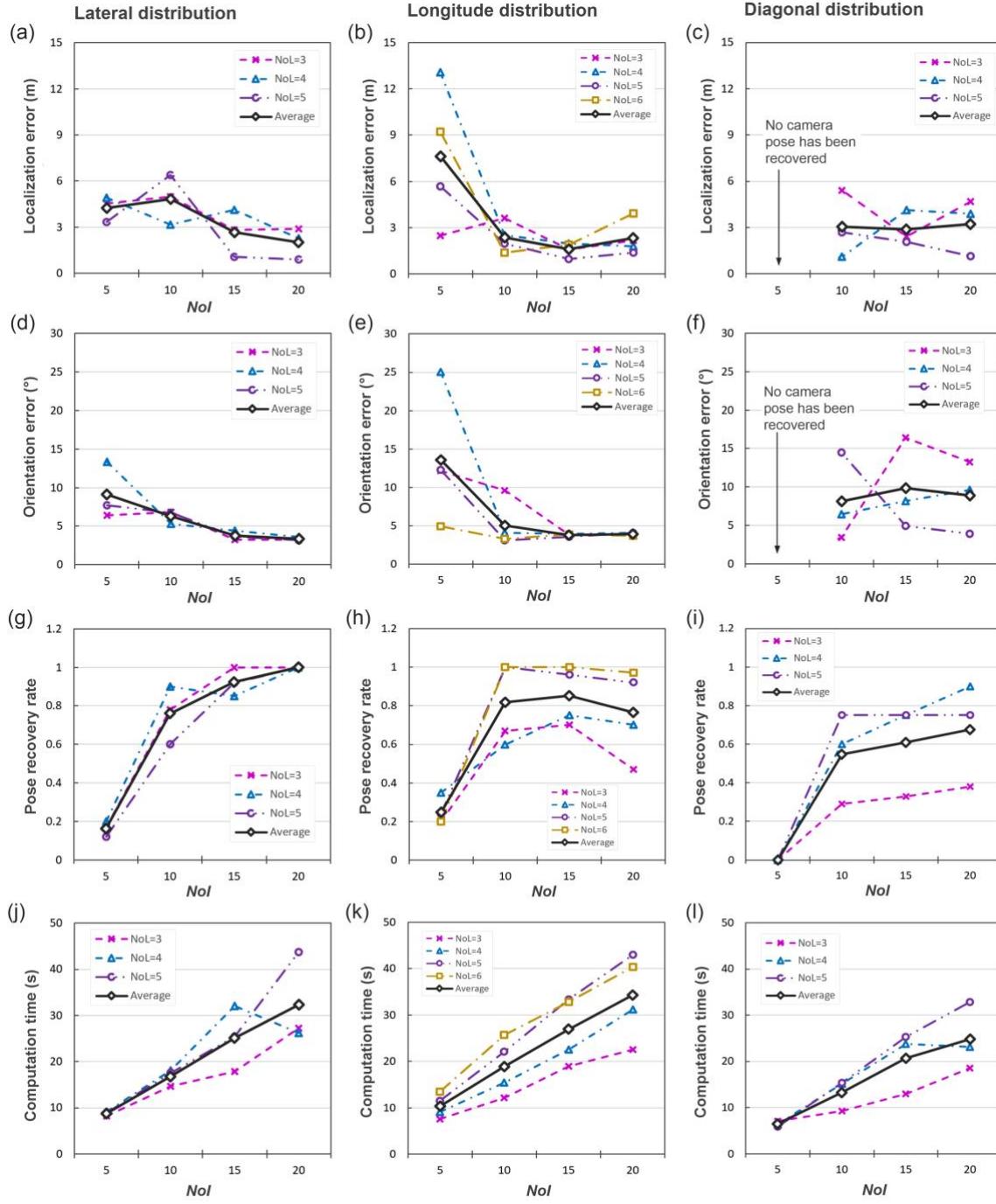
515

516 Fig. 10 demonstrates a clear trend of improving pose estimation performance along with the
517 increase of NoI. Both the localization and orientation errors, the two primary metrics to describe
518 pose estimation precision, decrease as the NoI grows, although the decreasing level varies with the
519 change of distribution directions (e.g., lateral, longitude, or diagonal). For the success rate of pose
520 recovery, a larger NoI results in a higher PRR. The observed pattern can be explained by the basic
521 rationale of point cloud generation based on SfM. A low NoI usually means less likelihood of
522 overlap among the photographs, undermining the quality of the generated point cloud for effective
523 registration or even making it difficult to reconstruct the corresponding camera poses (as indicated
524 by the low PRR in Fig. 10 (g)~(i) when NoI=5, or the extreme cases in Fig. 10 (c) and (f)). With
525 the growth of NoI, the improving query point clouds lead to better registration performance, and
526 consequently higher precision is obtained. However, the positive effects of increasing NoI
527 becomes marginal when it exceeds 15. In addition, a higher NoI also means more images to process,
528 making the required computation time longer.

529

530 As for the number of locations for data collection, a higher NoL should presumably contribute to
531 higher pose estimation precision. This has been well reflected in the metrics of localization error
532 and PRR. In Fig. 10 (a) and (b), for example, if we neglect the condition of “NoI = 5” when the
533 PRR is too low to allow objective evaluation, the scatter curves for higher NoL tend to distribute
534 in lower position along the vertical axis, indicating smaller localization error. Fig. 10 (g) and (h)
535 demonstrate an opposite pattern, with scatter curves representing greater NoL distributing at higher
536 positions which indicate better chances of successful pose recovery. Comparatively, the effects of
537 NoL on orientation errors are relatively difficult to identify, as the metrics for different NoL values
538 all distribute closely at a low level (see Fig. 10 (d) and (e)).

539



540

541 **Fig. 10.** Results of sensitivity analysis: (a)(d)(g)(j) performance for lateral distribution of locations;
542 (b)(e)(h)(k) performance for longitude distribution of locations; (c)(f)(i)(l) performance for
543 diagonal distribution of locations.

544

545 The last notable factor is DoL, the influence of which can be evaluated by horizontally comparing
546 the average performance metrics across each row in Fig. 10. The overall performance, concerning

547 localization error, orientation error and pose recovery rate, gradually deteriorates as the DoL is
548 changed from “lateral”, to “longitude”, and to “diagonal” distribution. As shown by Fig. 10 (g),
549 (h) and (i), for example, the average PRR has already reached 80% when NoI equals 10 with the
550 “lateral” distribution applied, while the highest average PRR for the “diagonal” distribution never
551 exceeds 70%, whichever NoI is considered. The same trend can be clearly observed in the
552 orientation error as well from Fig. 10 (d), (e) and (f), and is reaffirmed by a similar pattern revealed
553 by the localization errors in Fig. 10 (a), (b) and (c).

554

555 To summarize, when using the proposed A2L approach for robust indoor camera pose estimation,
556 it is recommended to collect data from laterally distributed locations, with around 15 photographs
557 from each location. Although more data collection locations can lead to higher precision, it also
558 requires longer computation time; thus, the NoL should be set in a reasonable range (e.g., NoL =
559 5) to balance between precision and efficiency.

560

561 **5. Discussion**

562 **5.1. Advantages of the proposed approach**

563 To tackle the challenge of indoor localization, this study proposes an “align-to-locate” approach
564 for robust estimation of camera poses in built environments. The proposed approach outperformed
565 the precision of previous methods, improving BIM-enabled visual localization to 1.07 m for
566 localization error and 3.7° for orientation deviation. The high precision of the approach makes it
567 suitable to various application scenarios such as facility inspection with robots and pedestrian
568 navigation. Sensitivity analysis has been conducted to investigate the effects of different data
569 collection strategies on pose estimation performance, indicating an evident trend of precision
570 improvement with the increasing number of images from per locations.

571

572 Other than precision, another strength of the proposed approach lies in its compatibility with
573 existing methods. Rather than replacing them, it leverages camera poses estimated by existing
574 methods as initial parameters for coarse registration with the reference BIM model. In our
575 experiments, the validation was implemented with the initial camera pose provided by [17].
576 However, other methods such as [16, 20] can also be applicable, as long as their estimated camera
577 poses are corresponding to a selection of the photographs used to generate the query PC. Therefore,
578 our approach serves as a general post-processing module, which can be seamlessly added to
579 existing methods to rectify and finetune the initial camera poses for better reliability and robustness
580 in practical applications.

581

582 **5.2. Processing time and optimization**

583 The proposed approach took about 25 s to process a batch of photographs when the “1.07 m and
584 3.7°” performance was achieved under the strategy of “NoL = 5”, “NoI = 15”, and “DoL = Lateral”.

585 A large portion of the processing time (i.e., ~ 17 s) was used to generate the PC in an offline manner,
586 which is relatively long. Therefore, optimization of the time performance is explored in this sub-
587 section.

588
589 As SfM is based on the processing of the provided image batch (e.g., feature extraction, and
590 correspondence detection), reducing image resolution might be able to shorten the required
591 processing time. Experiments have been implemented with the “NoL = 5, NoI = 15, and DoL =
592 Lateral” strategy to validate the hypothesis. Resolution of the original images is 1920×1080 , which
593 was downscaled successively to 1440×810 , 960×540 , and 480×270 for comparison. It was found
594 that downsizing the original images by 0.25 to a resolution of 1440×810 reduced the required
595 processing time for nearly a half, while can still maintain a decent quality of the generated PC. The
596 computation time can be further reduced by continuing to downsize the images, which, however,
597 would provide too few pixels to allow successful reconstruction, as have been discussed in [41].
598 Fig. 11 shows the trends with the PC generated from the “#2#8#13#19#25” batch as an example.
599 Considering all five batches with the resolution of 1440×810 , the SfM time performance is
600 significantly improved to 7.84 s per batch, while the average localization and orientation errors
601 remain at the original level of around 1.13 m and 4.03° . For batches of 960×540 and 480×270
602 resolution, because of the extremely low SfM reconstruction quality, no camera pose has been
603 properly recovered.

604
605 The above results indicate that reasonably reducing the image size can contribute to the
606 improvement of efficiency without impairing precision of the recovered camera poses. However,
607 the level of downsizing should never exceed a certain range; otherwise, the SfM reconstruction
608 would be jeopardized or even fail.

611 **Fig. 11.** Comparison of point clouds generated from images of different resolution (taking the
612 “#2#8#13#19#25” batch as an example). Note that SfM reconstruction from images of 480×270
613 failed, and thus the corresponding point cloud does not exist.

614

5.3. Consideration for practical applications

615 As a proof of concept, the query PC in this study is generated offline by standalone SfM software

616 (i.e., Metashape), the integration of which into practical applications is an issue to consider. To
617 address the concern, following use cases are proposed:

618

619 On the one hand, the query point clouds can still be generated offline by SfM, but on a cloud server.
620 In this case, the Web API provided by commercial software (e.g., Agisoft Metashape [39], Pix4D)
621 or open-source packages (e.g., WebODM [40]) can be seamlessly integrated with robots or any
622 other devices requiring positioning services. As processing a batch of images for SfM can take up
623 to a few seconds (see section 5.2), real-time implementation is not realistic. In most cases, such
624 real-time localization is not necessary as well. Instead, a “stop-and-localize” solution can be used.
625 To be more specific, the robots can take a bunch of indoor photos according to the recommended
626 data collection strategy, and then upload them to the cloud for SfM, registration, and camera pose
627 estimation. The A2L only needs to be implemented at the beginning for providing initial global
628 coordinates, or be executed periodically for drift rectification. Thereafter or for the time windows
629 in-between, tracking algorithms such as visual odometry and dead reckoning can be used to
630 provide continuous information of the device’ position.

631

632 On the other hand, the point cloud can also be generated continuously “on the go”, which can
633 either be done by visual SLAM [7] or newly introducing incremental SfM algorithms [8, 42] that
634 allow real-time implementation. In this “on-the-go” solution, since the query point cloud is
635 incrementally updated as the robots navigate through its surrounding environment, separate
636 computation time for SfM is not required, making the algorithm more efficient. However, even
637 though recent studies [43, 44] have demonstrated the sufficient accuracy of point clouds generated
638 by such incremental approaches, their quality might still be different from those produced by
639 offline tools, which consequently can lead to uncertainty in the registration with BIM. How the
640 online generated photogrammetric point clouds might impact the camera pose estimation would
641 be an interesting research topic worth investigation. As a preliminary study aiming primarily at
642 developing and validating the A2L approach, we leave the topic for future research.

643

644 **6. Conclusions**

645 Visual indoor localization enabled by BIM is an active research field in recent years, owing to its
646 merits of being infrastructure independent and free from pre-mapping. However, applicability of
647 existing approaches in demanding scenarios is hindered by their relatively low precision. This
648 study proposes an “align-to-locate (A2L)” approach that can rectify the coarse camera poses
649 provided by existing approaches for robust indoor localization. The method achieved camera pose
650 estimation by registering an as-is photogrammetric point cloud to a repository of reference BIM
651 models via a series of operations such as coarse registration, orientation alignment, scale
652 normalization, and alignment finetuning. Effectiveness of the A2L approach was demonstrated by
653 an experimental study implemented at a campus building of the University of Tennessee, Knoxville.
654 It achieved a precision of 1.07 m and 3.7° for localization and orientation error, respectively,

refreshing the state of the art of its kind. A sensitivity analysis was performed to understand the influence of different data collection strategies on localization performance, implying the superiority of the “lateral” strategy than the “diagonal” strategy. While more photographs from more data collection points may potentially lead to higher precision, it requires additional processing time. The A2L approach is compatible with existing methods to finetune their estimated camera poses for advanced applications such as robot navigation.

Future research is suggested to address the following limitations. The most notable one is the efficiency issue. Although for robotic applications, the time for data collection and point cloud reconstruction can be neglected, there is room to further optimize the required computation time for PC2BIM registration (~ 6 s). In this research, an off-the-shelf commercial solution, Agisoft Metashape, was used to produce the query point clouds offline. As different software/algorithms can generate point clouds of various quality, it would be interesting for future research to compare the performance of different SfM and SLAM solutions, and identify the best-performed one. Another limitation is one universally observed in vision-based localization, i.e., the adverse effect of uniform design and self-similarity in built environments. Such effects could impair the performance mainly by providing incorrect initial camera pose in the coarse registration stage. As a countermeasure, extra information (e.g., user input, data collected by other sensors) can be integrated to reduce ambiguities.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This research was supported by the U.S. National Science Foundation (NSF) through grant #1850008 and #2038967.

References

- [1] ViewAR GmbH, Augmented Reality Indoor Navigation: Overview of Available Tracking Systems and Solutions, 2020. <https://www.viewar.com/blog/augmented-reality-indoor-navigation-positioning/>. (Accessed August 29 2021).
- [2] Q. Zhu, Y. Shi, J. Du, Wayfinding Information Cognitive Load Classification Based on Functional Near-Infrared Spectroscopy, Journal of Computing in Civil Engineering 35(5) (2021) 04021016.
- [3] K. Asadi, H. Ramshankar, M. Noghabaei, K. Han, Real-Time Image Localization and Registration with BIM Using Perspective Alignment for Indoor Monitoring of Construction, Journal of Computing in Civil Engineering 33(5) (2019) 04019031.
- [4] D. Hu, H. Zhong, S. Li, J. Tan, Q. He, Segmenting areas of potential contamination for adaptive robotic disinfection in built environments, BUILD ENVIRON 184 (2020) 107226.
- [5] B. Quintana, K. Vikhorev, A. Adán, Workplace occupant comfort monitoring with a multi-sensory and portable autonomous robot, BUILD ENVIRON 205 (2021) 108194.

696 [6] S. Winter, M. Tomko, M. Vasardani, K.F. Richter, K. Khoshelham, M. Kalantari, Infrastructure-Independent
697 Indoor Localization and Navigation, ACM COMPUT SURV 52(3) (2019).

698 [7] Davison, Real-time simultaneous localisation and mapping with a single camera, Proceedings Ninth IEEE
699 International Conference on Computer Vision, 2003, pp. 1403-1410.

700 [8] D. Nister, O. Naroditsky, J. Bergen, Visual odometry, Proceedings of the 2004 IEEE Computer Society
701 Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., 2004, pp. I-I.

702 [9] G. Lu, C. Kambhamettu, Image-based indoor localization system based on 3D SfM model, IS&T/SPIE
703 Electronic Imaging, SPIE, 2014, p. 90250H.

704 [10] A. Rituerto, L. Puig, J.J. Guerrero, Visual slam with an omnidirectional camera, 2010 20th International
705 Conference on Pattern Recognition, IEEE, 2010, pp. 348-351.

706 [11] C.M. Eastman, The use of computers instead of drawings in building design, AIA journal, 1975, pp. 46-
707 50.

708 [12] J. Du, D. Zhao, R.R.A. Issa, N. Singh, BIM for Improved Project Communication Networks: Empirical
709 Evidence from Email Logs, Journal of Computing in Civil Engineering 34(5) (2020) 04020027.

710 [13] R. Sacks, M. Girolami, I. Brilakis, Building Information Modelling, Artificial Intelligence and Construction
711 Tech, Developments in the Built Environment (2020) 100011.

712 [14] J. Wang, X.Y. Wang, W.C. Shou, H.Y. Chong, J. Guo, Building information modeling-based integration of
713 MEP layout designs and constructability, AUTOMAT CONSTR 61 (2016) 134-146.

714 [15] I. Ha, H. Kim, S. Park, H. Kim, Image retrieval using BIM and features from pretrained VGG network for
715 indoor localization, BUILD ENVIRON 140 (2018) 23-31.

716 [16] D. Acharya, K. Khoshelham, S. Winter, BIM-PoseNet: Indoor camera localisation using a 3D indoor model
717 and deep learning from synthetic images, ISPRS Journal of Photogrammetry and Remote Sensing 150 (2019)
718 245-258.

719 [17] J. Chen, S. Li, D. Liu, W. Lu, Indoor camera pose estimation via style-transfer 3D models, Computer-
720 Aided Civil and Infrastructure Engineering (2021).

721 [18] Y. Feng, J. Wang, H. Fan, C. Gao, BIMIL: Automatic Generation of BIM-Based Indoor Localization User
722 Interface for Emergency Response, in: C. Stephanidis, M. Antona, S. Ntoa (Eds.) HCI International 2020 – Late
723 Breaking Posters, Springer International Publishing, Cham, 2020, pp. 184-192.

724 [19] A. Kendall, M. Grimes, R. Cipolla, PoseNet: A Convolutional Network for Real-Time 6-DOF Camera
725 Relocalization, 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 2938-2946.

726 [20] D. Acharya, S. Singha Roy, K. Khoshelham, S. Winter, A Recurrent Deep Network for Estimating the Pose
727 of Real Indoor Images from Synthetic Image Sequences, Sensors 20(19) (2020) 5492.

728 [21] H. Zhao, D. Acharya, M. Tomko, K. Khoshelham, Indoor LIDAR Relocalization Based on Deep Learning
729 Using a 3D Model, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLIII-B1-2020 (2020) 541-547.

730 [22] R. Li, Y. Yuan, W. Zhang, Y. Yuan, Unified Vision-Based Methodology for Simultaneous Concrete Defect
731 Detection and Geolocalization, Computer-Aided Civil and Infrastructure Engineering 33(7) (2018) 527-544.

732 [23] N. Ravi, P. Shankar, A. Frankel, A. Elgammal, L. Iftode, Indoor Localization Using Camera Phones, Seventh
733 IEEE Workshop on Mobile Computing Systems & Applications (WMCSA'06 Supplement), 2006, p. 49.

734 [24] J.Z. Liang, N. Corso, E. Turner, A. Zakhori, Image-Based Positioning of Mobile Devices in Indoor
735 Environments, in: J. Choi, G. Friedland (Eds.), Multimodal Location Estimation of Videos and Images, Springer
736 International Publishing, Cham, 2015, pp. 85-99.

737 [25] F. Baek, I. Ha, H. Kim, Augmented reality system for facility management using image-based indoor
738 localization, AUTOMAT CONSTR 99 (2019) 18-26.

739 [26] P.J. Besl, N.D. McKay, A method for registration of 3-D shapes, IEEE Transactions on Pattern Analysis and
740 Machine Intelligence 14(2) (1992) 239-256.

741 [27] M. Bueno, F. Bosché, H. González-Jorge, J. Martínez-Sánchez, P. Arias, 4-Plane congruent sets for
742 automatic registration of as-is 3D point clouds with 3D BIM models, AUTOMAT CONSTR 89 (2018) 120-134.

743 [28] S. Bouaziz, A. Tagliasacchi, M. Pauly, Sparse Iterative Closest Point, Computer Graphics Forum 32(5)
744 (2013) 113-123.

745 [29] J. Yang, H. Li, Y. Jia, Go-ICP: Solving 3D Registration Efficiently and Globally Optimally, 2013 IEEE
746 International Conference on Computer Vision, 2013, pp. 1457-1464.

747 [30] D. Aiger, N.J. Mitra, D. Cohen-Or, 4-points congruent sets for robust pairwise surface registration, ACM
748 Trans. Graph. 27(3) (2008) 1-10.

749 [31] J. Chen, Y. Cho, Point-to-point Comparison Method for Automated Scan-vs-BIM Deviation Detection,
750 International Conference on Computing in Civil and Building Engineering, Tampere, Finland, 2018.

751 [32] C. Kim, H. Son, C. Kim, Fully automated registration of 3D data to a 3D CAD model for project progress
752 monitoring, AUTOMAT CONSTR 35 (2013) 587-594.

753 [33] B. Mahmood, S. Han, D.-E. Lee, BIM-Based Registration and Localization of 3D Point Clouds of Indoor
754 Scenes Using Geometric Features for Augmented Reality, Remote Sensing 12(14) (2020) 2302.

755 [34] M. Kopsida, I. Brilakis, Markerless BIM Registration for Mobile Augmented Reality Based Inspection, 2016,
756 pp. 1-6.

757 [35] F. Xue, W. Lu, Z. Chen, C.J. Webster, From LiDAR point cloud towards digital twin city: Clustering city
758 objects based on Gestalt principles, ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 418-
759 431.

760 [36] Y. Wu, J. Shang, F. Xue, RegARD: Symmetry-Based Coarse Registration of Smartphone's Colorful Point
761 Clouds with CAD Drawings for Low-Cost Digital Twin Buildings, Remote Sensing 13(10) (2021) 1882.

762 [37] R.B. Rusu, Z.C. Marton, N. Blodow, M. Dolha, M. Beetz, Towards 3D Point cloud based object maps for
763 household environments, Robotics and Autonomous Systems 56(11) (2008) 927-941.

764 [38] E. Turner, A. Zakhor, Watertight As-Built Architectural Floor Plans Generated from Laser Range Data,
765 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission,
766 2012, pp. 316-323.

767 [39] Agisoft LLC., Online Processing Services, 2021. <https://www.agisoft.com/buy/saas/>. (Accessed Nov. 8
768 2021).

769 [40] OpenDroneMap, WebODM: Drone Mapping Software, 2021. <https://www.opendronemap.org/webodm/>.
770 (Accessed Nov. 8 2021).

771 [41] J. O'Connor, Impact of image quality on SfM Photogrammetry: colour, compression and noise, Kingston
772 University, 2018.

773 [42] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, P. Sayd, Generic and real-time structure from
774 motion, British Machine Vision Conference 2007 (BMVC 2007), 2007.

775 [43] M.R.U. Saputra, A. Markham, N. Trigoni, Visual SLAM and structure from motion in dynamic
776 environments: A survey, ACM Computing Surveys (CSUR) 51(2) (2018) 1-36.

777 [44] H. Strasdat, J.M. Montiel, A.J. Davison, Visual SLAM: why filter?, Image and Vision Computing 30(2)
778 (2012) 65-77.

779