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Abstract

Indoor localization is critical for many smart applications in built environments such as service
robot navigation and facility management. Building information models (BIM) provide new
streams of spatial and appearance information regarding building interiors that can be exploited
for robust indoor localization. However, previous localization methods using BIM were unable to
achieve high precision and accuracy, limiting their practical applications. To address this challenge,
anew approach, “align-to-locate (A2L)”, was proposed in this study to leverage BIM as a reference
to rectify and finetune coarse camera poses estimated photogrammetry. The camera pose
rectification is achieved by a new registration algorithm that aims to align a photogrammetric point
cloud with a BIM-referenced point cloud. The experiments demonstrated the effectiveness of the
proposed A2L approach, which outperformed the state of the art with the localization error of 1.07
m and the orientation deviation of 3.7°. It was also found that query point clouds generated from
photographs taken along the lateral or longitude directions are more conducive for registration.
Increasing the number of data collection locations and images from each location could lead to
higher accuracy, but may compromise the computational speed. This study contributes to the
challenging indoor localization problem by proposing the “align-to-locate” concept and evaluating
its feasibility for more robust camera pose estimation through point cloud-to-BIM registration. The
developed A2L approach can be integrated as a post-processing module in existing vision-based
localization methods to finetune their estimated camera poses.

Keywords: Smart building; Location-based services; Indoor localization; Building information
model (BIM); Point cloud; Registration.
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1. Introduction

Many industrial or daily activities in built environments relies on robust indoor positioning
services. An example is pedestrian navigation in large commercial buildings, where visitors need
to quickly access their destinations with the help of wayfinding smartphone programs [1, 2]. For
facility maintenance, precise position information is a prerequisite for augmented reality devices
to retrieve corresponding contents to assist decision-making. Robots are increasingly being used
for various scenarios such as construction progress inspection [3], cleaning and sterilizing [4], and
comfort monitoring [5] in buildings. To enable such advanced applications, localization is an
indispensable module for the robots to understand their positions in the environment. Because of
the occluded and bounded nature of built environments, indoor localization is challenging.
Traditional techniques based on Wi-Fi, Bluetooth, and radio frequency identification (RFID) are
not only subject to severe deviations, but also requires large investment on installing and
maintaining external signal emission infrastructure [6].

Compared with traditional techniques, vision-based approaches [7-10] stand out for its cost-
effectiveness, and being infrastructure-independent [6]. Given one or multiple photos of a scene,
such approaches can recover its or their corresponding camera poses when the photos were taken.
In the most common settings, however, these approaches require a pre-mapping of the environment
of interest so as to estimate the camera pose in a global reference system. The pre-mapping
operation is tedious and expensive to implement, hindering the wide adoption of such techniques.
In recent years, the wide adoption of building information model (BIM) [11] makes it possible to
fully deliver the strengths of visual localization without the need of the labor-intensive pre-
mapping. BIM serves as a readily available source of a wide spectrum of geospatial building
information [12-14], including not only visual appearance (i.e., images), but also geometry and
spatial layout (i.e., position) of indoor environments.

Therefore, instead of collecting real-life photos in the field, latest research [3, 15-18] sought to
exploit the information in BIM to enable visual indoor localization. To overcome the challenge of
a cross-domain gap between BIM and real photographs, Ha et al. [15] proposed an image retrieval
approach based on deep transfer learning features for the task of indoor localization. Chen et al.
[17] demonstrated the feasibility of generative adversarial networks (GAN) in bridging the cross-
domain gap, and proposed a photogrammetric approach to estimating six degrees of freedom
(6DoF) camera pose based on information retrieved from a style-transfer BIM. Asadi et al. [3]
inferred indoor positions of inspection robots by aligning perspective vanishing points of video
frames and BIM-rendered views. Inspired by [19], Acharya et al. [16, 20] and Zhao et al. [21]
performed a series of works to regress 6DoF camera pose via convolutional neural networks (CNN)
trained on BIM-rendered images. Despite the progress, the precision of existing BIM-enabled
visual localization is still not adequate. To accomplish demanding tasks such as service robot
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navigation in the built environment, a new solution with more robust localization performance is

necessary.
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Fig. 1. The conceptual diagram of the “align-to-locate” approach for robust indoor localization.

Existing BIM-enabled solutions mainly focused on matching visual features extracted from one or
serval BIM-rendered views with features obtained from corresponding camera poses. However,
other information or features that could have been extracted from BIM to rectify camera pose
estimation have not been fully exploited. One example is the three-dimensional (3D) geometry of
an indoor space formed by its surrounding walls, columns, and (or) floor and ceiling. As shown by
Fig. 1, it is straightforward to separate a reference geometric model from BIM for any indoor
spaces in a building. As for the as-is status of the space in real life, a photogrammetric point cloud
(PC) can be easily generated from image sequences or videos of a subject’s surrounding based on
the structure-from-motion (SfM) technique. By aligning the as-is PC with the reference model, the
initial camera poses estimated by any previous vision-based approach [3, 15-17] can be rectified,
and thus the subject’s position can be precisely located. Although this “align to locate” concept
seems promising, few studies have explored how a photogrammetric PC, representing only a part
of the entire environment with much data noise, can be registered to BIM for camera pose
rectification and robust indoor localization.

To fill the knowledge gap, this study aims to investigate a new mechanism for registering
photogrammetric PCs to BIM for camera pose estimation, and analyze the influences of various
data collection strategies on localization performance. This study contributes to the body of
knowledge for indoor localization by proposing a novel “algin-to-locate (A2L)” approach to
precisely estimating 6DoF camera poses based on a collection of photographs. The feasibility of
the A2L approach was experimentally tested and evaluated, which achieved a 1.07 m localization
error and a 3.7° orientation deviation. The proposed approach can be integrated with existing visual
localization methods as a post-processing module to finetune the estimated camera poses to a
precision level applicable in demanding tasks such as service robot navigation and AR-assisted
inspection.
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2. Related work

2.1. Vision-based indoor localization

The potential of machine vision in indoor localization has long been acknowledged for its cost-
effectiveness and independence from external infrastructure. The classical simultaneous
localization and mapping (SLAM) based on a single camera [7] and visual odometry (VO)
algorithm [8] were proposed to estimate robots’ ego-motion and their positions in unknown scenes
by continuously triangulating feature correspondences among sequential camera frames. The
incremental nature of such algorithms has decided that they can only yield a subject’s position
relative to a local coordinate system [6, 16]. To locate the subject in a global reference frame,
research efforts have been made in visual indoor localization. One line of such efforts considered
the indoor localization task as a content-based image retrieval problem [15, 22, 23], in which a
database of geo-registered photographs of the built environment has been collected in prior, and a
camera pose of a newly image is determined by retrieving its most similar counterpart from the
database. Another stream of works first reconstruct a 3D PC model of the environment by applying
SfM. With the PC model as a reference, 6DoF camera pose corresponding to the query image can
then be estimated either by stereo triangulation [9, 24] or training a regression model based on
CNN [19].

A limitation of the above approaches is their requirement for pre-mapping the built environment,
either to obtain geo-registered photographs or point clouds. To avoid the tedious pre-mapping
operations, latest research sought to directly extract such reference information about the
environment from a building information model. While replacing real-life photographs with
synthetic ones rendered by BIM seems a straightforward solution, it has been proved very difficult
due to a perception gap between the two domains [15, 17]. To address the issue, Ha et al. [15]
investigated the feature maps extracted by various layers in VGG, a well-known CNN architecture.
They found that the deep features from pooling layer 4 performs best in bridging the cross-domain
gap, and can enable accurate retrieval of BIM-rendered images for indoor localization. In [16, 20,
21], the authors used edge maps of BIM-rendered images, instead of the original BIM views, as
training data to develop their camera pose regression model. When similar edge maps of input real
photographs were used for inference, a localization error of 1.6~2.0 m and an orientation deviation
of 7°~ 11° were obtained. Different from previous studies, Chen et al. [17] attempted to address
the perception gap by converting textureless BIM views to ones with photorealistic texture by style
transfer technique based on GAN. Their experiments demonstrate effectiveness of the style-
transfer BIM in facilitating the exploitation of the rich information in BIM by traditional image
features such as scale-invariant feature transform (SIFT) and edge histogram descriptor (EHD),
and achieved a localization error of 1.38 m.

Although great progress has been made in enabling visual localization with BIM, the performance
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is still not sufficient for tasks having high requirements on localization precision. Such tasks
include robot navigation in occluded indoor environments [4, 5] and AR-based facility
maintenance [25]. To achieve higher precision, other information contained in BIM should be
better exploited, and one aspect that can potentially contribute is the 3D geometry of an indoor
space. By registering a photogrammetric point cloud into BIM, the coarse camera pose estimated
by previous methods can be further rectified.

2.2. Point cloud to BIM registration

Point cloud registration is a general problem encountered in many applications such as autonomous
driving, panorama stitching and robotics, and has been investigated for decades in the computer
science community. One classical solution for PC registration is the iterative closest point (ICP)
algorithm [26], which iteratively searches for an optimal rigid transformation that can minimize
the overall distance among closest points between two clouds. However, ICP performs best only
if the query PC is sufficiently close to the reference PC, or referred to as the problem of fine
registration in [27]. For the more challenging problem of global registration, research efforts have
been made, including a series of variants developed from ICP, e.g., Sparse ICP [28] and Go-ICP
[29], and methods based on matching the salient features in PC, e.g., the ‘4-point congruent sets’
(4-PCS) algorithm [30]. However, there is still no universally applicable robust solution for
automated PC registration.

In the architecture, engineering, construction, and operation (AECO) sector, the registration of PC
to BIM (PC2BIM) becomes an active research field with the proliferation of BIM. Essentially, the
PC2BIM registration problem can be transformed to a PC2PC problem after quantizing the BIM
meshes into points [27]. Leveraging the domain-specific characteristics (symmetry and regularities)
in architecture, numerous research efforts have been made to register as-built or as-is point cloud
to BIM for various applications. One such application that attracts most attentions is construction
progress control, which enables the detection of construction deviation by aligning an as-built PC
with an as-designed BIM. For the purpose of deviation measurement, Chen and Cho [31] proposed
a method to register a laser-scanned PC with the corresponding BIM by aligning the detected
columns from the two models. Kim et al. [32] proposed an algorithm pipeline, which involves pre-
processing, global registration based on principal component analysis (PCA) and local registration
based on ICP, to allows intuitive construction progress monitoring with the aligned PC and BIM.
Bueno et al. [27] took the uniqueness of construction buildings into account, and developed the
‘4-Plane congruent Set’ (4-PICS) algorithm for the global registration of laser scanning data with
BIM, which can be used for construction quality and progress control.

Other research endeavors aimed to facilitate AR-assisted facility maintenance [33, 34] and
semantic enrichment of digital models by PC to BIM registration [35, 36]. Kopsida and Brilakis
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[34] presented a semiautomated markerless solution to alignment as-is context captured by RGB-
D cameras with BIM for AR-based inspection. To achieve similar AR applications, Mahmood et
al. [33] developed an automated registration approach based on geometric features, which was
validated with PC scanned by Microsoft HoloLens. Xue et al. [35, 36] conducted a series of
researches to register as-is point cloud with as-designed drawings or element models for semantic
enrichment of digital twin city. Despite the extensive research input, much remains unclear how
the PC2BIM registration can be used for robust indoor camera pose estimation.

2.3. Knowledge gap

The literature review revealed three aspects of knowledge gaps. First, existing BIM-enabled visual
indoor localization methods are not well-established, presenting much room for precision
improvement. Such improvement will enable demanding tasks that require high localization
performance such as navigating a service robot in the built environment.

Second, prior PC2BIM registration studies mainly focused on scenarios such as construction
deviation checking [27, 31, 32] that are implemented offline with dense PCs of the entire space
collected by laser scanners over a certain period. These methods are not readily extendable to
indoor localization because of 1) the shorter processing time required, 2) the sparse point cloud
generated, and 3) the partial space represented by the point cloud. Existing methods fall short of
registering such partial PCs to BIM models, nor have they investigated how to use the registration
to rectify a coarse camera pose to improve localization precision.

Third, dense PCs are usually generated by laser scanning [27, 31] or RGB-D cameras [34] in prior
studies. However, for a photogrammetric point cloud, its quality (e.g., data noise and point density)
may be compromised as the SfM reconstruction results can be impacted by the way raw
photographs are taken, which subsequently affects the precision of registration and localization
performance. Little research has been done to investigate effects of different data collection
schemes on the camera pose estimation precision.

3. Methods

3.1. Preparing a referenced database for registration

In order to implement the proposed approach, a referenced database needs to be constructed from
the original BIM model. The referenced database will serve as the target of registration in later
steps. As shown in Fig. 2, the preparation of the database involves the following steps. First, the
entire BIM i1s divided into many model units. This division is necessary because of the partial
nature of the as-is point cloud reconstructed by SfM. Without it, the partial point cloud will be
directly aligned with the entire BIM model, potentially impairing the registration performance due
to the interference of building elements that are not captured in the partial cloud. Each individual
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216  room with closed space is divided as a separate model unit. As for other open areas with relatively
217  large floor space, e.g., corridors, they are also divided to obtain separate parts with relatively
218  regular shapes. Second, the mesh model of each unit is downsampled into a point cloud for the
219  convenience of registration. This “mesh-to-point” operation is a widely adopted practice in
220  existing studies [27, 32, 33]. Finally, the boundary coordinates and the range of elevation are
221  extracted for each model unit as its corresponding metadata. The metadata can ensure that

222  corresponding reference point cloud will be quickly indexed and retrieved with initial camera pose.

Metadata
« Unit ID: F3_room1

« X_range: [96,112]

Model units

Point clouds

Space #1 =) - Y_range: [114,128]
- « Z_range: [25,28]
Original BIM
model « XY_bound: -

« Unit ID: F3_corridor1
« X_range: [86,96]

« Y_range: [40,133]

« Z_range: [25,29]

« XY_bound: -

« Unit ID: F3_room5
« X_range: [96,117]
S ] « Y_range: [45,54)

Space #k L ¥ : i « Z_range: [25,28]
« XY_bound: :-

223
224  Fig. 2. Preparing a database of reference point clouds from original BIM.

225

226  Fig. 3. (a) An example photo-taken strategy which collect data along a longitude direction; (b) The
227  generated as-is query point cloud; (c¢) The collected Photos from locations marked in (a).
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3.2. Generating as-is query point cloud

A point cloud of the as-is built environment is generated with the SfM technique. The point cloud,
referred to as a “query” point cloud, will be used to match and align with the reference model. The
query point cloud might have undesired noise and outliers, which can potentially impair the
registration in later steps. Therefore, the sparse outlier removal (SOR) algorithm introduced in [37]
is applied to denoise the raw point cloud. In addition, various strategies can be used to collect photos
for generating the query point cloud, and Fig. 3 shows one example of such strategies. Different
strategies can result in point clouds of different quality, which will then lead to different
registration performance, and ultimately affect camera pose estimation accuracy. In later part of
this study, a sensitivity analysis will be performed to find the best data collection practice. For each
collected photo, a corresponding initial camera pose can be coarsely estimated with previous
vision-based approaches such as [15], [16], and [17]. The initial camera pose will be used for
coarse registration in next step.

3.3. Coarse registration based on initial camera pose information

A photogrammetric point cloud based SfM rationale is one with undetermined scale and has a
coordinate system inconsistent with the global system used by the reference model, as
demonstrated by Fig. 4 (a). However, it preserves the spatial relativity between the point cloud and
the photo capture locations. With the initial camera pose estimated by previous approaches, it is
viable to coarsely align the query point cloud with the reference counterpart, as depicted by the
process from Fig. 4 (a) to (b).

% Reference model R Coarse pose Query model @R Reconstructed pose

Fig. 4. (a) The inconsistent scale and coordinate system between reference and query point clouds;
(b) Results of coarse registration; (c) Results of orientation alignment; (d) Results of scale
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normalization; (¢) Results of finetuning alignment.

Suppose there are totally Ne photos that have been used to generate the query point cloud, from

which we can randomly select Nc subsamples for coarse registration. Let {Cg}(i =1,2,..,N.)

and {C!

coar

}(i=1,2,...,N.) denote the transformation matrices of camera poses reconstructed in

the query point cloud and estimated by coarse localization approaches, respectively. The

transformation matrices are in a homogeneous form as illustrated by Eq. (1):
re), re, rc, 0

| ey res,  rey

Ci

coar

(1)

1 1

0

i i i
re;, rey, rey 0
1

e tc

X ¥y z

fc

i i
re,, rc, rc;

i

Where |rc), rc,, rcy, | and [tc; tc, tc;':l are respectively rotation matrix and translation

i i
rey, réy, rcéy,

vector.

Suppose the database of reference point clouds is represented as {PCp }(k =1,2,..., Ny ) , Where

Nrec 1s the total number of reference point clouds in the database. Then, the point cloud which has

i

covered [tci tc, tci] within its boundaries will be selected as the target registration reference

PC . Note that the selection results of different photos might not coincide with each other; such

case can be resolved with a majority vote mechanism—selecting the reference point cloud with

the most [tci tc! tci] (i=12,..,N.) falling inside.

y

With the registration target ready, the initial transformation matrix Tinit for coarse registration can
be determined as follows:

T (i=12,..,N.)
s.t. min(rmse(PC,, PCy))

T

init

=(C,)'C!

coar ?

2)

PC! . is

init

Where rmse(PC1,PC2) is the root mean square error (RMSE) between two point clouds;
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the resulting point cloud after applying the initial transformation matrix T, to the original query

point cloud PCq. Let io denote the final selected camera pose for coarse alignment, then the adopted

and the query point cloud after transformation is PCP

init *

initial transformation matrix is T/

init 2

3.4. Precise registration
The coarsely aligned point cloud PCq is further processed for precise alignment with reference

point cloud PCJ . The procedure includes three steps, i.e., orientation alignment, scale

normalization, and alignment finetune.

3.4.1. Orientation alignment based on principal component analysis

The first step of precise registration is to align the point cloud pairs along the elevation direction
(i.e., the Z axis), as depicted by the process from Fig. 4 (b) to (c). The rationale of using Z axis as
the direction for alignment is twofold. First, in indoor localization scenarios, the collected query
point cloud tends to incomplete, representing only a part of the reference space. Because of the
characteristics, the building elements along z axis (i.e., ceiling and floor) have the highest chance
to be captured in the point cloud. Second, compared with other axis, architecture design follows a
certain regularity along the z axis, with a relatively stable floor height among different stories. This
can be made used of to normalize the point cloud scale in later section.

Principal component analysis (PCA) is a widely used dimension reduction technique, which can
find the most representative components with high degree of variance from the original features.
It does so by producing linear combinations of the original variables to generate the components,
and ordering them by their eigenvalues. The area of architecture follows the general Manhattan-
world assumption for built environment, which states that there exist three dominant axes
orthogonal to each other in manmade structure. PCA is an ideal technique to find such dominant

axes (or components) from a cloud of points representing their spatial layout. Let v, . and v,

init

denote principal components along the elevation direction for PCP and PCJ , respectively.

Then we have:

init init init
rz\ o rzy rzs
_ _ init init init
Rz, . =rotmat([0 0 1],v,.)=|rzy, 7zy 7zy 3)

init init init

rzy, rzy, Yz,
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rzy o orzy rzl
Rz, =rotmat([0 0 1],vy)=|rzy, rzy, 7z 4)

R R R
rzy, rZy, TZjg

Where rotmat(a,b) is a function calculates the rotation matrix from a to b; hence, Rz, . and Rz,

init

represent rotation matrices from the unit vector along Z axis to v, , and v, respectively. Then

t
the corresponding homogeneous transformation matrices can be obtained by incorporating

coarsely estimated camera location [tcff tc” tcj’}:

init init init

rzy rz, rzy 0
init init init
T |z rzyy 1z 0 (5)
Ziie = | init init mit ()
rZy Tz, VZy
iy iy iy
tey ey e 1
R R R
rzy, vz, rz; 0
R R R 0
Tz — FZy ¥Zy FZy (6)
Zy =| R R R
rZy  ¥Zy ¥z
e ot e 1

X y z

With Tz,

init

and Tz, , the transformation matrix for orientation alignment can be obtained
according to Eq. (7).

Tpes = (Tz,,) Tz, (7)
Applying T,., to PC , we can obtain a Z direction aligned query point cloud denoted by

PCy..

3.4.2. Scale normalization

After aligning the pair of point clouds along Z axis, the scale of the query point cloud is normalized
to the same level as its reference counterpart, as depicted by the process from Fig. 4 (¢) to (d). The
scale normalization is conducted to equalize story height of the two point clouds. To obtain story
height, searching for the highest and lowest points along the Z axis and subtracting the two sounds
like a straightforward method, but is not viable due to the existence of noise. Inspired by [36, 38],
a histogram-fit approach is proposed to determine story height of a point cloud, as shown in Fig.
5. The distribution histogram of the Z component of all points is generated. In most common
settings, the distribution will concentrate on the ceiling and floor regions, corresponding to the two
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most important elements for height calculation. Next, the histogram is fitted by a polynomial curve
with degree d (e.g., d = 8), which should not be too small so as to find sufficient peaks. After fitting,
the peaks (i.e., local maxima) of the curve are detected and sorted in a descending order. The z

values of the top two peaks correspond to the elevation of the ceiling and floor, respectively, and

the story height can be obtained by subtracting them.
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Fig. 5. The proposed histogram-fit approach to determining story height.

Let ir and hpca respectively denote the story height of PCl and PC,., derived from the

aforementioned approach. Then, the scaling factor 6, and corresponding transformation matrix

T,

scale

Applying

can be calculated as follows:

scale

T

scale

to PC,,,anew point cloud denoted by PC

g, =— (8)
hPCA
6, 0 0 0
0 6, 0 0 9
0 0 A 0 ©)
(1-6)c (1-6, )tci) (1-0)ec 1

will be obtained, which has the

scale

same scale with PCy , as shown in Fig. 4 (d).

3.4.3. Finetune the alignment by ICP
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After the above steps, we shall obtain a point cloud (i.e., PC

scale

) with quite decent alignment with

the reference model, i.e., one at roughly the same location and with the same Z direction and
identical scale. However, because of the coarse nature of the estimated initial camera pose, the

PC

scale

might still have deviation from PCy in terms of translation and orientation along X and

Y axis.

Thus, iterative closest point is used to finetune the alignment, as demonstrated by the process from
Fig. 4 (d) to (e). The ICP technique is an optimization algorithm that aims to minimize the error
metric between two clouds of points by iteratively trying out different transformations. Suppose

TJ

/., 1s an arbitrary transformation matrix, then the process of ICP is mathematically described as

follows:

PC[JCP = Tl"al’lS(P Cscale’TléP)
s.t. min(rmse(PCigy, PCy"))

TICP

(10)

Where Trans(PC, T) represents the resulting point cloud after applying transformation matrix T
to PC. The meaning of rmse(PC1,PC2) is the same as mentioned in section 3.3. In practice, it is

computational inefficient to find the global minimum of rmse(PCl,, PCy) . Therefore, the

iteration is terminated when certain criteria are met, e.g., maximum number of iterations or

tolerance of RMSE. Suppose the optimal transformation matrix given by ICP is Tp,, then the

ICP >

final precisely aligned query point cloud can be obtained and denoted by PCp, .

3.5. Rectify camera pose with the point cloud transformation matrix

With a series of transformation matrices to register the query PC to the reference BIM, the initial
camera poses can be rectified for robust indoor localization. The precise camera pose of i (i =
1,2,...,Nc) photo is calculated according to the following equation:

Ci :Ci T[U TPCATscaleTIjé)Pa (i:1°2"“’NC) (11)

prec Q Tinit

i
prec

Where the camera pose C, _ is presented by a form of homogeneous transformation matrix,

i

including both description of orientation and location of the camera. Suppose C, .

is represented

as follows:
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prec

— o O O

Then the estimated camera position is [tp; 7 tp;] . The camera posture/orientation can be

characterized by a vector along the camera line of sight, which is computed as follows:

rplil ’"pliz ’”pliz
Vprec=[0 O I]X rp;l l’p;2 rp;3 (13)
Dy TPy, D3

Therefore, the camera direction vector v . = [rp§1 rp;, rng .

4. Experimental study

In order to validate the efficacy of the proposed approach, experimental studies were implemented
in a campus building at the University of Tennessee, Knoxville (UTK). The BIM model of the
building is a .rvt file with level of development (LOD) 350. The initial camera pose was estimated
with the approach proposed by [17]. Both the coarse and precise registration algorithms were
instantiated in MatLab. The used computing hardware is an OptiPlex 7080 computer with Intel(R)
Core (TM) i7-10700 CPU and NVIDIA GeoForce RTX 2070 SUPER GPU.

4.1. The constructed reference database

Our experiment zone was set up at the third floor of the UTK campus building. Fig. 6 (a) shows
the floor plan of the experiment zone, wherein we selected 11 spaces to construct the reference
database. The “Section Box” function of Autodesk Revit was used to segment a separate model
unit for each space, which was then exported as an individual .fbx file. Fig. 6 (b) shows snapshots
of the 11 separated BIM model units. The model units of FBX format were imported to Blender
for further processing, e.g., removing redundant elements. Finally, the mesh models were loaded
into CloudCompare for “Mesh-to-Point” conversion, and metadata (e.g., XYZ range and
boundaries) extraction.
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Fig. 6. (a) Floor plan and spaces used for constructing the reference database; (b) Separated models
units of the referenced space; (c) The generated point clouds in the reference database.

Fig. 6 (c¢) shows the obtained reference point clouds, where points corresponding to different
spaces have been highlighted by different colors. Metadata corresponding to all the 11 reference
point clouds is listed in Table S1 in the Supplementary Material.

4.2. Query data collection schemes

As highlighted by the red rectangle in Fig. 6 (a), the query data was collected on a platform at the
west end of space #2, covering an area of 112.8 m?. We designated 30 data collection points on the
platform, locations of which are presented in Fig. 7 (a). At each location, a video of its surrounding
environment was recorded with a digital video (DV) camera (SONY HDR-CX760V). The DV
camera was attached to a tripod to maintain its stability, and was designated to spin 360° around
the central vertical axis of the tripod during the recording. Each video lasts for around 2~3 minutes,
from which static image frames can be extracted for the production of photogrammetric PCs. There
are many off-the-shelf commercial solutions (e.g., Agisoft Metashape, Pix4D) or open-source
packages (e.g, WebODM) for photogrammetry applications. As a preliminary study aiming to
testify the effectiveness of the proposed A2L approach, we select one of the most mature products

in the market, Agisoft Metashape, for point cloud reconstruction from a bunch of images. For
15



415
416
417
418
419
420
421

422

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

practical deployment in future applications, Web application programming interface (API) of
commercial or open-source photogrammetry software [39, 40] can be integrated as a service
implemented on the cloud. For performance evaluation, the camera pose corresponding to a
selected photograph from each data collection point was measured to serve as the ground-truth
value. The camera orientations of the selected photographs are indicated by the arrow directions
in Fig. 7 (a). In addition, the coarse camera poses of the selected photographs were estimated with

the approach proposed by [17].
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Fig. 7. (a) Distribution of the 30 designated data collection points; (b) Schematic diagram of the
point distribution types when using different strategies.

Different strategies can be used to combine the images taken from different data points for
generating the query PC. Three aspects of factors are considered, which are the number of locations
(NoL), number of images per location (Nol), and distribution of locations (DoL). The NoL (e.g.,
NoL =3, 4, 5, 6) reflects the quantity of data points from which the corresponding photographs
are used to generate the point cloud, while Nol (e.g., Nol =5, 10, 15, 20) is the number of used
photographs from each selected data point. As shown in Fig. 7 (b), DoL indicates how the selected
locations distribute, which includes three main types, i.e., longitude, lateral, and diagonal
distribution. To determine the best strategy, different combinations of the three factors will be used
to generate query PCs, and their registration and final localization performance will be investigated
and compared. Table 1 lists all the combinations investigated in this study. For example, the
“#1#2#3” means that photographs from data collection points #P1, #P2, and #P3, as indicated in
Fig. 7, are used to generate corresponding PCs. Note that for each combination, different numbers
of photographs can be used, i.e., Nol =5, 10, 15, 20. The total number of locations is the 30 data

collection points presented in Fig. 7, which, however, will not be fully made use of in certain
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strategies due to insufficient number of points meeting the required distribution. For example,
when the “DoL=Longitude” and “NoL=4" are used, the number of points in each row will not be
divided evenly by four, leaving some points excluded, e.g., the #P5 and #P6 in the first row.

Table 1. Details of the investigated data collection strategies.
Nol
5 10 15 20
H1~#3, #A~H#O, #T~#9, #10~#12, #13~#15, #16~#18, #19~#21, #22~#24,
#P25~#27, #28~#30

DoL NoL

Longitude 3

4 H1~H#4, #O~#12, #14~#17, #20~#23, #25~#28
5 H1~#5, #8~#12, #13~#17, #20~#24, #25~#29
6 #1~#6, #1~#12, #13~#18, #19~#24, #25~#30
Diagonal 3 #1#8#14, #2HO#1S5, #AH#11#18, #T#19#26, #10#17#24, #13#20#27,
#16#23#29
4 H1HTHI3H20, #2H3#14#21, #3HO#15#22, #10#17#24#30, #12#18#23#28
5 HI1HTHIZH20827T, #2HO#15#16#23, #3#10#17#24#30, #8H#14#21#22#28
Lateral 3 HIHBH13, #3HO#14, #A#10#16, #5H11#17, #O#12#18, #15#21#27
4 H2HZH13#19, #3H0#14#20, #4#10#16#22, #5#11#1T#23, #6#12#18#24
5 HIHZHIZH1OH#2S5, #3HOH14#204#26, HAH10H#16#22#28, #5#H11#1TH#23#29,
#HOH12#18#24#30

*Note: 1. The “DoL”, “NoL” and “Nol” stands for distribution of locations, number of locations, and number
of images per location, respectively;

2. The “#xx#xx#xx” stands for the combination of data collection points as depicted in Fig. 7 (a).

4.3. Performance evaluation

Four metrics were used to comprehensively evaluate the performance of the proposed approach,
including localization error, orientation error, computation time, and pose recovery rate. The
localization error is reflected by the Euclidean distance (m) between the predictive and the
observed camera locations, and the orientation error, on the other hand, is measured by the angle
deviation (°) between the predictive and the observed camera line of sight. The computation time
includes both the time used to generate the query PC and the time of registration. When generating
a point cloud, camera pose of some photos relative to the cloud may not be reconstructed due to
unsuccessful alignment. In such case, the subsequent registration will not be able to recover their
camera pose in the global reference system. To measure performance in this aspect, the pose
recovery rate (PRR) was proposed and defined as the proportion of successfully recovered camera
poses accounting for the total number of investigated poses.
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459 A prerequisite for robust localization by PC2BIM registration is the correct selection of the
460 reference PC. Among all the investigated test data, 26 out of 30 initial coarse camera poses
461  estimated by [17] were correctly located within the range of reference space #2 (see Fig. 6 for the
462  layout of the reference spaces). After majority voting, a correct reference model (i.e., space #2)
463  has been selected for all the query point clouds generated from the strategies listed in Table 1. By
464  trying out all the listed strategies (see Section 4.4), the combination of “NoL =5, “Nol = 15, and
465  “DoL = Lateral” is observed to perform best in trading of precision against time performance.
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=157, and “DoL = Lateral” strategy, where the query and reference point clouds are highlighted
by magenta and green, respectively.

Fig. 8 shows a step-by-step breakdown of the registration process for three example PCs generated
under the “NoL = 57, “Nol = 157, and “DoL = Lateral” strategy. Despite the incompleteness and
uncertainties in terms of scale, location and orientation, the query PCs have been successfully
aligned with their reference counterpart after registration. To be more specific, the coarse
registration puts the query PC into the right place; then, the orientation alignment rectified its
direction so as to be in line with the reference PC; the scale normalization makes scale of the point
cloud pairs consistent with each other; and finally, the transformation of the query point cloud is
finetuned by ICP for precise and robust alignment. The success of the registration lays the
foundation for subsequent camera pose estimation. Fig. 9 shows the camera poses estimated by our
approach, where in Fig. 9 (a) the deviation with the ground-truth locations is visualized with dash lines,
and in Fig. 9 (b) the localization and orientation errors for all the investigated camera poses are
presented. It is observed that errors of the estimated camera poses for batch #3 are higher than those of
others, which is mainly because of its relatively poor registration performance. As depicted in the last
row of Fig. 8, observable deviation can be found for batch #3 (2™ column, consisted of point
#4#10#16#22#28) as compared to the well aligned PC for batch #1 (1% column, consisted of point
#2#8#13#19#25), which holds the highest localization precision among the five batches. For batch #5,
two camera poses have not been successfully recovered by SfM, as also presented in the 3™ column of
Fig. 8.

Fig. 9 indicates that 23 out of the 25 camera poses have been successfully recovered, with an
average localization and orientation error of 1.07 m and 3.7°, respectively. As listed in Table 2,
performance of the proposed A2L approach was compared with that of three BIM-enabled visual
localization methods [16, 17, 20] proposed in recent years. BIM-PoseNet [16] was a deep neural
network trained on synthetic images rendered by BIM and their corresponding rendering camera
poses, which was later improved by [20] via exploiting the spatio-temporal BIM-rendered view
sequences. In [17], a style transfer generative network was employed to further improve the
localization precision, which, however, resulted in relatively large camera orientation errors. It was
observed that the A2L approach significantly improved the precision of vision-based indoor
localization enabled by BIM. However, as the proposed approach requires generating query point
clouds from photographs, it takes more time for computation compared with other approaches.
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Fig. 9. Camera poses estimated by the proposed “align to locate” approach.

Table 2. Comparison with previous visual localization approaches based on BIM.

Approach Localization error (m) Orientation error (°)
BIM-PoseNet [16] 2.00 7.73

Recurrent BIM-PoseNet [20] 1.60 9.29

Chen et al. [17] 1.38 10.1

A2L (Our approach) 1.07 3.7

4.4. Sensitivity analysis

Sensitivity analysis is performed to determine how different data collection strategies will affect
the camera pose estimation performance. The sensitivity analysis is based on the combinations of
data collection points listed in Table 1. The average localization error, orientation error,
computation time, and the pose recovery rate of all the investigated locations in a strategy are used
to represent its corresponding performance. The first, middle and last column of Fig. 10 show
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results of the four performance metrics for the lateral, longitude, and diagonal distribution,
respectively. In each graph, the horizontal axis is the number of images (Nol) per location, and the
number of locations (NoL) used in different strategies is depicted by different scattered curves.

Fig. 10 demonstrates a clear trend of improving pose estimation performance along with the
increase of Nol. Both the localization and orientation errors, the two primary metrics to describe
pose estimation precision, decrease as the Nol grows, although the decreasing level varies with the
change of distribution directions (e.g., lateral, longitude, or diagonal). For the success rate of pose
recovery, a larger Nol results in a higher PRR. The observed pattern can be explained by the basic
rationale of point cloud generation based on SfM. A low Nol usually means less likelihood of
overlap among the photographs, undermining the quality of the generated point cloud for effective
registration or even making it difficult to reconstruct the corresponding camera poses (as indicated
by the low PRR in Fig. 10 (g)~(i) when Nol=5, or the extreme cases in Fig. 10 (c¢) and (f)). With
the growth of Nol, the improving query point clouds lead to better registration performance, and
consequently higher precision is obtained. However, the positive effects of increasing Nol
becomes marginal when it exceeds 15. In addition, a higher Nol also means more images to process,
making the required computation time longer.

As for the number of locations for data collection, a higher NoL should presumably contribute to
higher pose estimation precision. This has been well reflected in the metrics of localization error
and PRR. In Fig. 10 (a) and (b), for example, if we neglect the condition of “Nol = 5 when the
PRR is too low to allow objective evaluation, the scatter curves for higher NoL tend to distribute
in lower position along the vertical axis, indicating smaller localization error. Fig. 10 (g) and (h)
demonstrate an opposite pattern, with scatter curves representing greater NoL distributing at higher
positions which indicate better chances of successful pose recovery. Comparatively, the effects of
NoL on orientation errors are relatively difficult to identify, as the metrics for different NoL values
all distribute closely at a low level (see Fig. 10 (d) and (e)).
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Fig. 10. Results of sensitivity analysis: (a)(d)(g)(j) performance for lateral distribution of locations;
(b)(e)(h)(k) performance for longitude distribution of locations; (c)(f)(i)(1) performance for
diagonal distribution of locations.

The last notable factor is DoL, the influence of which can be evaluated by horizontally comparing
the average performance metrics across each row in Fig. 10. The overall performance, concerning
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localization error, orientation error and pose recovery rate, gradually deteriorates as the DoL is
changed from “lateral”, to “longitude”, and to “diagonal” distribution. As shown by Fig. 10 (g),
(h) and (i), for example, the average PRR has already reached 80% when Nol equals 10 with the
“lateral” distribution applied, while the highest average PRR for the “diagonal” distribution never
exceeds 70%, whichever Nol is considered. The same trend can be clearly observed in the
orientation error as well from Fig. 10 (d), (e) and (f), and is reaffirmed by a similar pattern revealed
by the localization errors in Fig. 10 (a), (b) and (c).

To summarize, when using the proposed A2L approach for robust indoor camera pose estimation,
it is recommended to collect data from laterally distributed locations, with around 15 photographs
from each location. Although more data collection locations can lead to higher precision, it also
requires longer computation time; thus, the NoL should be set in a reasonable range (e.g., NoL =
5) to balance between precision and efficiency.

S. Discussion

5.1. Advantages of the proposed approach

To tackle the challenge of indoor localization, this study proposes an “align-to-locate” approach
for robust estimation of camera poses in built environments. The proposed approach outperformed
the precision of previous methods, improving BIM-enabled visual localization to 1.07 m for
localization error and 3.7° for orientation deviation. The high precision of the approach makes it
suitable to various application scenarios such as facility inspection with robots and pedestrian
navigation. Sensitivity analysis has been conducted to investigate the effects of different data
collection strategies on pose estimation performance, indicating an evident trend of precision
improvement with the increasing number of images from per locations.

Other than precision, another strength of the proposed approach lies in its compatibility with
existing methods. Rather than replacing them, it leverages camera poses estimated by existing
methods as initial parameters for coarse registration with the reference BIM model. In our
experiments, the validation was implemented with the initial camera pose provided by [17].
However, other methods such as [16, 20] can also be applicable, as long as their estimated camera
poses are corresponding to a selection of the photographs used to generate the query PC. Therefore,
our approach serves as a general post-processing module, which can be seamlessly added to
existing methods to rectify and finetune the initial camera poses for better reliability and robustness
in practical applications.

5.2. Processing time and optimization
The proposed approach took about 25 s to process a batch of photographs when the “1.07 m and
3.7°” performance was achieved under the strategy of “NoL =5, “Nol= 15", and “DoL = Lateral”.
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Alarge portion of the processing time (i.e., ~17 s) was used to generate the PC in an offline manner,
which is relatively long. Therefore, optimization of the time performance is explored in this sub-
section.

As SfM is based on the processing of the provided image batch (e.g., feature extraction, and
correspondence detection), reducing image resolution might be able to shorten the required
processing time. Experiments have been implemented with the “NoL = 5, Nol = 15, and DoL =
Lateral” strategy to validate the hypothesis. Resolution of the original images is 1920x1080, which
was downscaled successively to 1440x810, 960%540, and 480x270 for comparison. It was found
that downsizing the original images by 0.25 to a resolution of 1440810 reduced the required
processing time for nearly a half, while can still maintain a decent quality of the generated PC. The
computation time can be further reduced by continuing to downsize the images, which, however,
would provide too few pixels to allow successful reconstruction, as have been discussed in [41].
Fig. 11 shows the trends with the PC generated from the “#2#8#13#19#25” batch as an example.
Considering all five batches with the resolution of 1440x810, the SfM time performance is
significantly improved to 7.84 s per batch, while the average localization and orientation errors
remain at the original level of around 1.13 m and 4.03°. For batches of 960x540 and 480%270
resolution, because of the extremely low SfM reconstruction quality, no camera pose has been
properly recovered.

The above results indicate that reasonably reducing the image size can contribute to the
improvement of efficiency without impairing precision of the recovered camera poses. However,
the level of downsizing should never exceed a certain range; otherwise, the SfM reconstruction
would be jeopardized or even fail.

Resolution: 1920x1080 Resolution: 1440%810 Resolution: 960x540
Number of points: 996,345 Number of points: 367,790 Number of points: 51,540
Time (s): 17.14 Time (s): 8.59 Time (s): 3.81

Fig. 11. Comparison of point clouds generated from images of different resolution (taking the
“H2#H8H#13#19#25” batch as an example). Note that SfM reconstruction from images of 480x270
failed, and thus the corresponding point cloud does not exist.

5.3. Consideration for practical applications
As a proof of concept, the query PC in this study is generated offline by standalone SfM software
24
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(i.e., Metashape), the integration of which into practical applications is an issue to consider. To
address the concern, following use cases are proposed:

On the one hand, the query point clouds can still be generated offline by SfM, but on a cloud server.
In this case, the Web API provided by commercial software (e.g., Agisoft Metashape [39], Pix4D)
or open-source packages (e.g., WebODM [40]) can be seamlessly integrated with robots or any
other devices requiring positioning services. As processing a batch of images for SfM can take up
to a few seconds (see section 5.2), real-time implementation is not realistic. In most cases, such
real-time localization is not necessary as well. Instead, a “stop-and-localize” solution can be used.
To be more specific, the robots can take a bunch of indoor photos according to the recommended
data collection strategy, and then upload them to the cloud for SfM, registration, and camera pose
estimation. The A2L only needs to be implemented at the beginning for providing initial global
coordinates, or be executed periodically for drift rectification. Thereafter or for the time windows
in-between, tracking algorithms such as visual odometry and dead reckoning can be used to
provide continuous information of the device’ position.

On the other hand, the point cloud can also be generated continuously “on the go”, which can
either be done by visual SLAM [7] or newly introducing incremental SfM algorithms [8, 42] that
allow real-time implementation. In this “on-the-go” solution, since the query point cloud is
incrementally updated as the robots navigate through its surrounding environment, separate
computation time for SfM is not required, making the algorithm more efficient. However, even
though recent studies [43, 44] have demonstrated the sufficient accuracy of point clouds generated
by such incremental approaches, their quality might still be different from those produced by
offline tools, which consequently can lead to uncertainty in the registration with BIM. How the
online generated photogrammetric point clouds might impact the camera pose estimation would
be an interesting research topic worth investigation. As a preliminary study aiming primarily at
developing and validating the A2L approach, we leave the topic for future research.

6. Conclusions

Visual indoor localization enabled by BIM is an active research field in recent years, owning to its
merits of being infrastructure independent and free from pre-mapping. However, applicability of
existing approaches in demanding scenarios is hindered by their relatively low precision. This
study proposes an ‘“align-to-locate (A2L)” approach that can rectify the coarse camera poses
provided by existing approaches for robust indoor localization. The method achieved camera pose
estimation by registering an as-is photogrammetric point cloud to a repository of reference BIM
models via a series of operations such as coarse registration, orientation alignment, scale
normalization, and alignment finetuning. Effectiveness of the A2L approach was demonstrated by
an experimental study implemented at a campus building of the University of Tennessee, Knoxville.
It achieved a precision of 1.07 m and 3.7° for localization and orientation error, respectively,
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refreshing the state of the art of its kind. A sensitivity analysis was performed to understand the
influence of different data collection strategies on localization performance, implying the
superiority of the “lateral” strategy than the “diagonal” strategy. While more photographs from
more data collection points may potentially lead to higher precision, it requires additional
processing time. The A2L approach is compatible with existing methods to finetune their estimated
camera poses for advanced applications such as robot navigation.

Future research is suggested to address the following limitations. The most notable one is the
efficiency issue. Although for robotic applications, the time for data collection and point cloud
reconstruction can be neglected, there is room to further optimize the required computation time
for PC2BIM registration (~ 6 s). In this research, an off-the-shelf commercial solution, Agisoft
Metashape, was used to produce the query point clouds offline. As different software/algorithms
can generate point clouds of various quality, it would be interesting for future research to compare
the performance of different SfM and SLAM solutions, and identify the best-performed one.
Another limitation is one universally observed in vision-based localization, i.e., the adverse effect
of uniform design and self-similarity in built environments. Such effects could impair the
performance mainly by providing incorrect initial camera pose in the coarse registration stage. As
a countermeasure, extra information (e.g., user input, data collected by other sensors) can be
integrated to reduce ambiguities.
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