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Figure 1. Applications presented in this work using the proposed propeller detection method for finding multi-rotors. (a) Tracking and following an unmarked
quadrotor, (b) Landing/Docking on a flying quadrotor. Red and green arrows indicates the movement of the larger and smaller quadrotors respectively. Time
progression is shown as quadrotor opacity. The insets show the event frames E from the smaller quadrotor used for detecting the propellers of the bigger
quadrotor using the proposed EVPropNet. Red and blue color in the event frames indicate positive and negative events respectively. Green color indicates the
network prediction. All the event images in this paper follow the same color scheme. Vicon estimates are shown in corresponding sub-figures of Fig. 8. All
the images in this paper are best viewed in color on a computer screen at a zoom of 200%.

Abstract—The rapid rise of accessibility of unmanned
aerial vehicles or drones pose a threat to general security
and confidentiality. Most of the commercially available or
custom-built drones are multi-rotors and are comprised of
multiple propellers. Since these propellers rotate at a high-speed,
they are generally the fastest moving parts of an image and
cannot be directly “seen” by a classical camera without severe
motion blur. We utilize a class of sensors that are particularly
suitable for such scenarios called event cameras, which have a
high temporal resolution, low-latency, and high dynamic range.

In this paper, we model the geometry of a propeller and use
it to generate simulated events which are used to train a deep
neural network called EVPropNet to detect propellers from the
data of an event camera. EVPropNet directly transfers to the
real world without any fine-tuning or retraining. We present
two applications of our network: (a) tracking and following an
unmarked drone and (b) landing on a near-hover drone. We
successfully evaluate and demonstrate the proposed approach in
many real-world experiments with different propeller shapes and
sizes. Our network can detect propellers at a rate of 85.1% even
when 60% of the propeller is occluded and can run at upto 35Hz
on a 2W power budget. To our knowledge, this is the first deep
learning-based solution for detecting propellers (to detect drones).
Finally, our applications also show an impressive success rate of
92% and 90% for the tracking and landing tasks respectively.

I. INTRODUCTION

Aerial robots or drones have become ubiquitous in the last
decade due to their utility in various fields such as exploration
[1, 2, 3, 4], inspection [5], mapping [6], search and rescue
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[7, 8], and transport [9]. The low-cost and wide availability of
commercial drones for photography, agriculture and hobbying
has skyrocketed drone sales [10]. This has also given rise to a
series of malicious drones which threaten the general security
and confidentiality. This necessitates the detection of drones.
To make this problem hard, drones come in various shapes
and sizes and generally do not carry any distinct visual on
them to make them easy for visual detection. To this end, we
propose to detect an unmarked drone by detecting the most
ubiquitous part of a drone – the propeller. It is serendipitous
that most of the common drones are multi-rotors and have
more than one propeller, making their detection using the
proposed approach easier. Detecting propellers is a daunting
task for classical imaging cameras since it would require an
extremely short shutter time and high sensitivity which make
such sensors expensive and bulky. A class of sensors designed
by drawing inspiration from nature that excel at the task of
low-latency and high-temporal resolution data are called event
cameras [11, 12]. Recent advances in sensor technologies have
increased the spatial resolution of these sensors by about 10×
in the last 5 years [13]. These event cameras output per-pixel
temporal intensity differences caused by relative motion with
microsecond latency instead of traditional images frames. We
utilize the fact that propellers are moving much faster than
any other part of the scene. The problem formulation and our
contributions are described next.

A. Problem Formulation and Contributions

An event camera (moving or stationary) is looking at a
flying drone with at-least one spinning propeller and our goal



is to locate the propeller’s center on the image plane. A
summary of our contributions are:
• We simplify the geometric model of a propeller for the

projection on the image plane which is used to generate
event data.

• A deep neural network called EVPropNet trained on
the simulated data which generalizes to the real-world
without any fine-tuning or re-training for different
propellers.

• Two specific applications of our EVPropNet: (a) Tracking
and following an unmarked moving quadrotor (Fig. 1a),
(b) Landing on a near-hover quadrotor (Fig. 1b) evaluated
with on-board computation and sensing.

• Finally, we make our network EdgeTPU optimized so
that it can run at 35Hz with a power budget of just 2W
enabling deployment on a small drone.

B. Related Work

We subdivide the related work into three parts: detection
of an unmarked drone based on appearance (on a classical
camera), detection of a marked collaborative drone and
detection of moving segments using event cameras.

1) Appearance based drone detection:
Classical RGB image based drone detection is an instance

of object detection and has been accomplished by methods
like Haar cascade detectors, with the newer deep learning
based detectors such as YoLo [14] topping the accuracy charts
[15, 16, 17]. One can clearly see that these methods work
well when the drone is large in the frame and against a
bright sky, thereby detecting the contour of the drone from
its silhouette. Pawełczyk et al. [15] show extensive results on
how the state-of-the-art appearance based drone detectors fail
when the drones are against a non-sky background (such as
trees which are very common).

2) Marked collaborative drone detection:
Marked drones are detected using a set of fiducial markers

either for leader-follower configurations [18], swarming
behaviors [19] or for docking [20]. Most commonly, a visual
fiducial marker based on April Tags [21] or CC-Tags [22] is
used for these tasks due to their robustness and near-invariance
to angles. Moreover, they also provide the ability to distinguish
between different tags which are particularly useful for
tracking multiple drones. Li et al. [20] designed a custom
tag similar to the CC-Tag and showed that it can be used
for precise control for docking. On the contrary, Walter et al.
[18] demonstrated the usage of Ultra-Violet (UV) spectrum
which is robust to changing environmental conditions such as
changing illumination and the presence of undesirable light
sources and their reflection.

3) Moving Object Segmentation Using Event Cameras:
Event cameras, as described earlier are tailor made for

detecting the parts of the image which have motion different
to that of the camera (this task is commonly called motion
segmentation). Mitrokhin et al. [23] developed one of the
first motion segmentation frameworks using event cameras
for challenging lighting scenes highlighting the efficacy of

event cameras to work at high-dynamic range scenes for
fast moving objects. Stoffregen et al. [24] introduced an
Expectation-Maximization scheme for segmenting the motion
of the scene into various parts which was further improved
in-terms of speed and accuracy by Parameshwara et al. [25]
by proposing a motion propagation method based on cluster
keyslices. The concept of motion segmentation has also been
deployed on quadrotors for detection of other moving objects
(including other unmarked drones) with a monocular [26] and
a stereo event camera [27].

C. Organization of the paper

We first describe a geometric model of the propeller and
then derive a simplified model of it’s image projection in
Sec. II. The geometric model is then used generate event
data to train the proposed EVPropNet as described in Sec.
III. We then present two applications of our network: (a)
Tracking and following an unmarked drone and (b) Landing
on a near-hover drone in Sec. IV. We then present extensive
quantitative evaluation of our network and applications along
with qualitative results on different real world propellers in
Sec V. Finally, we conclude the paper in Sec. VI with parting
thoughts on future work.

II. GEOMETRIC MODELLING OF A PROPELLER

We first discuss a geometric model of a propeller [28] and
then describe how it’s projection can be approximated with a
set of cubic basis splines. A propeller’s spine is constructed by
rotating a straight line on a helicoidal surface. The coordinates
of a point x on a surface formed by a straight line rotating
about the X axis and concurrently moving along this axis is
given by

x =

[
pφ

2π
r sinφ r cosφ

]T
(1)

Where p is the pitch of the propeller, r is the radius and φ
is the angle of rotation in Y Z plane of the radius arm relative
to the ZW axis (Fig. 2a, also see Table I for a tabulation of
the parameters used in this derivation). Note that, p here refers
to the nose-tail pitch as it is the most common definition used
by manufacturers. Now, the locus of the mid-chord points of
a rotating right handed propeller blade with φ = 0 initially is
given by

xc/2 =

[
−
(
iG +

pθS
2π

)
−r sin (φ− θS) r cos (φ− θS)

]T
(2)

Here, θS (Figs. 2b and 2c) denotes the skew angle and
is defined as the angle between the line normal to the shaft
axis (called directrix or propeller reference line) and the line
drawn through the shaft center line and the mid-chord point on
the projected image of the propeller looking normally along
the shaft center line and iG denotes the generator line rake
(distance that is parallel to the X-axis, from the directrix to
the point where the helix of the section at radius r cuts the



a                                                                      b                                                  c                           

X

Y

Z

W
X

W
YW

Z Z

φ
W

Y

Y

W
Z

Z

θS
c/�

φ

Leading Edge
(LE)

Trailing Edge 
(TE)

Projected Profile
when φ=0

p2,x

p2,y

X

Y

X

Y

Z

CX

C
Y

CZ

Y

Z

θS

Projected View

r

Blade reference
line

Propeller reference
and generator line

d                                                                  e

Figure 2. (a) Coordinate frames used for the geometric modelling of a propeller, (b) Blade coordinate definition, (c) Skew definition, (d) Coordinate axes
for propeller projection on camera, and (e) Simplified model of the projection of the propeller blade; Each color represents a single spline and points with
same color denote knots used to fit the cubic spline. Bi-color points are used as knots for both the splines of respective color. See Table I for a tabulation of
the variables used in this figure.

Table I
PARAMETERS USED IN GEOMETRIC MODEL OF THE PROPELLER.

Parameter Parameter
Notation Description

p Propeller Pitch (nose-tail)
r Radius

φ
Angle of rotation of radius arm

relative to ZW in Y Z plane
iG Generator line rake
θS Skew angle
c Chord length
ψ Chamber line slope at xc

Subscripts T and B Top and Bottom surfaces of blade
Subscripts LE and TE Top and Bottom edges of blade

K Camera intrinsic matrix
f Camera focal length

cx and cy Camera principal points
pi Spline control points

Ni,k(t) Spline basis function

X − Z plane). Extending Eq. 2 for the leading and trailing
edges of the blade (Fig. 2b) gives us

xLE/TE =


−
(
iG +

pθS
2π

+
c

2
sin θ

)
−r sin

(
φ− θS ±

90c cos θ

πr

)
r cos

(
φ− θS ±

90c cos θ

πr

)

 (3)

Here θ = tan−1
(
p

2πr

)
is the pitch angle, c is the chord

length at a certain radius and π and θS are in ◦.
The above set of equations define how the propeller’s

nose-tail line can be generated in 3D. However, the blade
section geometry is an aerofoil with a top and a bottom
surface. A point on the top and bottom surfaces are given
by

xT/B =
[
xc ∓ yt sinψ yc ± yt cosψ

]T
(4)

where yc is the y offset from the chord line, yt is the
ordinate of the point in question and ψ is the slope of the
chamber line at the non-dimensional chordal position xc. Now,
if we consider the chord’s mid point as the local origin, then
a point’s coordinates x are given by

x =


−
(
iG +

pθS
2π

)
(0.5c− xc) sin θ + yu,B cos θ

r sin

(
θS −

180 ((0.5c− xc) cos θ − yu,B sin θ)

πr

)
r cos

(
θS −

180 ((0.5c− xc) cos θ − yu,B sin θ)

πr

)


(5)

Where yu = yc± yt cosψ (Eq. 4). To convert x into global
coordinates xW ,

xW =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

x (6)

where φ is the angle between two adjacent blades. Although
the propeller thickness varies along its chord line, we can
neglect this value since we are concerned with the projection of
the propeller on the image plane assuming that distance from
the camera is � propeller thickness. We want to simulate
how a propeller would “look” when imaged from a camera
(which would be later converted into an event stream). We
assume that the image is captured from a calibrated camera
formulated using the pinhole model given by

x = K
[
R, T

]
X; K =

f 0 cx
0 f cy
0 0 1

 (7)



where K is the camera calibration matrix, f is the focal
length and cx, cy denotes the principle point,

[
R, T

]
denotes

the pose of the camera, X is the world point being imaged
and x is the location of the point on the image plane (with
reuse of variables). X in Eq. 7 (see Fig. 2d for definition of
coordinate frames) is given by xW from Eq. 6. Although, this
method is the most generative way to model a propeller, i.e.,
generate 3D points of the propeller and then project onto the
image plane, it would be computationally very expensive for
a high fidelity image, hence we approximate the projection
of a propeller blade with a set of cubic basis splines [29, 30]
described next. Let the n+1 control points be p0, · · · ,pn and
m+ 1 knot vectors be {t0, · · · , tm}, the spline curve s (t) of
degree k is given by

s (t) =
n∑
i=0

piNi,k(t) (8)

Here, Ni,k(t) is the basis function of degree k and is
computed recursively as

Ni,0 (t) =

{
1 if ti ≤ t ≤ ti+1

0 otherwise
(9)

Ni,k (t) =
t− ti

ti+k − ti
Ni,k−1 (t) +

ti+k+1 − t
ti+k+1 − ti+1

Ni+1,k−1 (t)

(10)
In particular, m = n + k + 1 and we utilize the uniform

B-spline, i.e., all the knots are uniformly distributed and are
evaluated using the procedure described in [31]. We model
each propeller blade using 4 cubic B-splines: one for the hub,
one for the top part of the blade, one for the bottom part of the
blade and one for the tip of the blade (Fig. 2e). Each blade
is replicated at a uniform angular spacing for the required
number of blades (i.e., for a 3 bladed propeller, the blades
would have an angle of 120◦ between them).

III. EVPROPNET

We will now discuss how the geometric model of the
propeller is used to generate event data. Then we describe
the network architecture and loss function used to train
EVPropNet.

A. Event Generation

As explained earlier, we now have a single image of a
propeller with the required number of blades at the required
high resolution. We overlay this propeller image on top of a
random real image background from the MS-COCO dataset
[32] at a random starting angle θHB (angle the propeller
reference line makes with the propeller Y axis), we denote
this as image It. We then perform the same procedure for
a θHB + δθ angle (with the same background) to generate
the image It+δt. Here, δθ = ωδt is the angle the blade would
rotate depending on the rotational speed of the propeller ω and
the event frame integration time δt. We use a simple model

t

X

Y

Integration time δt

Event cloud 
ε(t, t+δt)

Event Frame E

Figure 3. Spatio-temporal event cloud E and Event frame E . The cloud
shows that the propeller creates a helix in the spatio-temporal domain. The
zoomed in view shows the propeller with positive events colored red and
negative events colored blue along with network prediction as green with the
color saturation indicating confidence.

Figure 4. Sample event images E from the generated synthetic dataset used
to train EVPropNet. Here red and blue colors show positive and negative
events respectively. Green color indicates our ground truth label with the
color saturation indicating confidence as defined by Eq. 14.

for the event camera and events are triggered at a location x
when

‖log (It (x))− log (It+δt (x)) ‖1≥ τ (11)

The event stream/cloud E is represented by
E = {

[
x t sgn (log (It (x))− log (It+δt (x)))

]T } (12)
Where τ is a user defined threshold and x is the pixel

location. E is called the event cloud which is used to create
the so-called Event-frame E (Fig. 3 shows how E and E look)
which is used as the input to the network.

E = sgn (Et (Pol (E (t, t+ δt)))) (13)
Here, Et denotes the averaging operator only in time axis, Pol
denotes the polarity values are extracted per pixel (last row of
each element of E).

B. Data Generation

We generate 10K event frames E for training our network
(See Fig. 4 for sample images with labels overlaid). Each
event frame contains upto N propellers (set to 12 in our
case) with number of blades per propeller randomized from
2 to 6. The events for each propeller are obtained by
varying τ as a gaussian random variable to provide some
randomness in data generation along with randomization of
the color of the propeller in It (same color is used for
It+δt) along with varying ω (rotational speed of the propeller,
this is equivalent to varying the integration time δt). We
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Figure 5. Network architecture for EVPropNet (χ is a hyperparameter along with expansion rate – rate at which the number of neurons grow after each
block). If no down/up-sampling rate is shown, it is taken to be 1. This image is best viewed on the computer screen at a zoom of 200%.

also vary the background image for every propeller from the
MS-COCO dataset. Each propeller is also warped using a
random homography matrix to account for different camera
angles along with scaling them (setting the pixel size of the
propeller in the event image) to account for distance variation
from the camera. Finally, we also vary the shape of each
propeller by varying the basis spline parameters (to include
bullnose and normal type propellers as well). See Fig. 4 for
some sample images from the dataset used to train EVPropNet.
Note that, we do not use an event simulator like ESIM[33] to
generate events since we only require It and It+δt which are
directly constructed, hence this process is multiple orders of
magnitude faster than real-time and parallelized.

C. Network Architecture and Loss Function

We choose an encoder-decoder architecture based on the
ResNet [34] backbone (Fig. 5) as it has the best accuracy
and speed tradeoff [35, 36] with 2.7M parameters and 10MB
model size. We train our network using simple mean square
loss L = E

(
(p̂− p̃)2

)
between the ground truth p̂ and

prediction p̃. p̂ is obtained by Gaussian smoothing the perfect
label p̂0 (binary mask) as given by Eq. 14 (σ is the variance)
to account for small distortion introduced by approximation of
propeller shape. This approach is similar to the one introduced
in [37].

p̂ =
1

2πσ2
e−(‖p̂0‖2/2σ

2) (14)

We choose the number of residual and transposed residual
blocks χ as 2 and expansion factor as 2 (factor with which
number of neurons grow after every block in Fig. 5).

Finally, EVPropNet was trained with a learning rate of 1e-4
using ADAM optimizer with a batch size of 32 for 50 epochs.

IV. APPLICATIONS

We describe two applications of our propeller detection, i.e.,
following an unmarked moving quadrotor and landing on a
near-hover quadrotor.

A. Following

In this application, the goal is to track and follow a
quadrotor (or a multirotor in general) either for swarming
or reconnaissance purposes. We detect the quadrotor as the

a
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d

Figure 6. (a) Smaller quadrotor on the bigger quadrotor used for landing
experiments (Sec. IV-A), (b) Gutted Coral USB Accelerator with custom heat
sink used to run the neural networks, (c) Samsung Gen 3 DVS sensor used
for experiments, (d) Bigger quadrotor used in the following experiments (Sec.
IV-B).

centroid of filtered propeller detections as described in Sec.
IV-C. The control policy for altitude is to maintain the area of
the quadrilateral joining the propeller points constant and the
control policy for roll and pitch is to maintain the centroid of
the quadrilateral in the center of the image and are given by:

uφ(t) = Kp,φex(t) +Ki,φ

∫ τ

0

ex(τ)dτ +Kd,φ
dex(t)

dt
(15)

uθ(t) = Kp,θey(t) +Ki,θ

∫ τ

0

ey(τ)dτ +Kd,θ
dey(t)

dt
(16)

uT (t) = Kp,T eA(t) +Ki,T

∫ τ

0

eA(τ)dτ +Kd,T
deA(t)

dt
(17)

Where ex and ey denote the difference between detected
quadrilateral center on the image plane and the center of the
image and eA denotes the difference between area to maintain
and current area.

B. Landing

For the second application, the goal is to land on a
near-hover quadrotor either for in-air battery switching or
infiltration of a hostile drone. We utilize the following key
observations from [38]:

• The quadrotor flying above experiences negligible
aerodynamic disturbances from mutual interaction.

• Forces in direction normal to the downwash are negligible
and those in the downwash direction are significant.

• The aerodynamic torques disturb the bottom quadrotor so
that it aligns vertically with the top quadrotor.



The smaller quadrotor (which will land) explores the area for
any other quadrotor (or any multirotor in general), once it
detects a multirotor, it switches to the align maneuver, where
we perform the following control policy for roll φ and pitch
θ axes (X and Y respectively) for aligning the center of the
detected quadrotor (centroid of filtered propeller detections as
described in Sec. IV-C) with the center of the image:

uφ(t) = Kp,φex(t) +Ki,φ

∫ τ

0

ex(τ)dτ +Kd,φ
dex(t)

dt
(18)

uθ(t) = Kp,θey(t) +Ki,θ

∫ τ

0

ey(τ)dτ +Kd,θ
dey(t)

dt
(19)

Where ex and ey denote the difference distance between
detected quadrotor center on the image plane and the center
of the image. Once the errors ex and ey are lower than a
threshold, we decrease altitude at a constant rate, checking
for x and y alignment at every control loop and re-aligning as
necessary. Once we are close to the big quadrotor (on which
the smaller quadrotor will land), we initiate the land command.

C. Quadrotor Location from Detected Propellers and Filtering

We filter each propeller location on the image plane
using a linear Kalman filter [39]. The motion model is a
constant optical flow model. Once we obtain detections with
a confidence above a certain threshold, the filtered propeller
locations are used to compute the centroid of the quadrilateral
(for the quadrotor case, polygon in general) which is used for
control (to compute ex and ey), along with the area for altitude
control.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Quadrotor Setup

All our experiments are performed with quadrotors for their
minimal hardware complexity and cost-effectiveness but they
can directly be adapted to any multirotor vehicle. Our smaller
quadrotor is a custom built platform on a QAV-X 210mm
sized (motor center to motor center diagonal distance) racing
frame. The motors used are T-Motor F40III KV2400 mated
to 5040×3 propellers (Fig. 6a). The lower level controller
and position hold is handled by ArduCopter 4.0.6 firmware
running on the Holybro Kakute F7 flight controller mated to
an optical flow sensor and TFMini LIDAR as altimeter source.
All the higher level navigational commands are sent by the
companion computer (NVIDIA Jetson TX2 running Linux for
Tegra®) using RC-Override to the flight controller running in
Loiter mode using MAVROS. The event camera used is a
Samsung Gen-3 Dynamic Vision Sensor [13] with a resolution
of 640×480 px. (Fig. 6c). and is mounted facing forward tilted
down by 45◦ for the following experiment and facing down
for the landing experiment. All the computations and sensing
are done on-board with no use of an external motion capture
system. Our neural network runs on a gutted Google Coral
USB Accelerator with a custom heatsink attached to the TX2.
The quadrotor take-off weight including the battery is 680 g
and has a thrust to weight ratio of 5:1. Our network runs at
35Hz on the Coral accelerator (See Fig. 6b. Implementation

details are given in Sec. V-D) and our planning and control
algorithms run at 15 Hz on the TX2.

The larger quadrotor used in the following experiment is
built on a S500 frame with DJI F2312 960KV motors mated
to white colored 9450×2 propellers (Fig. 6d). Same avionics
components are used as the smaller quadrotor.

The larger quadrotor used in the landing experiment is built
on a S500 frame with T-Motor F80 Pro KV2500 motors mated
to black colored 6040×3 propellers (Fig. 6a). Same avionics
components are used as the smaller quadrotor and ArduCopter
firmware holds the position in Loiter mode during experiments
with all the sensor fusion, control and planning handled by
the flight controller. The area where the smaller quadrotor
can land is of radius 135mm, which gives a tolerance of just
30mm on each side.

B. Experimental Results And Observations

1) Quantitative Evaluation of EVPropNet
In the first case study we discuss quantitative evaluation

results of our propeller detection results for varying resolution
of propeller blade rpx (the bounding box size of the propeller
would be 2rpx and is directly correlated with real-world
propeller size r), number of blades Nblades, noise probability
pn, data miss probability pb, different camera roll and pitch
angles (φ and θ respectively). Formally, pn denotes the
probability with which a pixel can have error (equally likely
to be either a positive or negative event) and pb denotes the
probability with which the pixel where the propeller data exists
did not fire either due to a dead-pixel or camouflage with
the background. We use the following metric to denote a
successful detection of a propeller.

Success := G∩D/G∪D ≥ 0.5;G : Ground Truth, D : Detection
(20)

Detection Rate DR is given by DR = E (Success),
where E is the expectation/averaging operator. The
results are presented in Table II. When not specified,
the values for the parameters are given as follows:
rpx = {20, 30, 40, 50, 60}, Npx = {2, 3, 4, 5, 6},RPM =
{5K,10K,20K,30K,40K}, pn = {0, 0.01, 0.02}, pb =
{0, 0.15, 0.3, 0.45, 0.6}, φ = {0◦, 10◦, 20◦, 30◦, 60◦} and
θ = {0◦, 10◦, 20◦, 30◦, 60◦}.

We see from Table IIa that DR increases with propeller
size and then decreases, this is because as the amount of data
increases, the results improve and but when the propeller is
large (rpx = 60), we observe an increase in false detections
near the edges of the propeller blades, dropping the DR
slightly (Table IIa). A similar trend is observed with Nblades
and RPM with DR peaking for a 4 bladed propeller and at
10K RPM (Tables IIb and IIc). We also observe that with
increase in pn (Table IId), the detection results are not affected
significantly highlighting the robustness of our network. Even
when 60% of the propeller is camouflaged with the busy
background, we obtain a DR of above 79% (Table IIe) with
the DR decreasing with increase in camouflage amount as
expected. From Tables IIf and IIg, we also observe that even



Table II
DETECTION RATE (%) ↑ OF EVPropNet FOR VARIATION IN PARAMETERS.

(a) rpx (px.) for φ = θ = 0◦ (b) Nblades for φ = θ = 0◦

20 30 40 50 60 2 3 4 5 6
78.9 90.4 94.4 97.6 93.9 77.9 94.1 96.3 92.8 94.1

(c) RPM (min−1) for φ = θ = 0◦ (d) pn for φ = θ = 0◦

5K 10K 20K 30K 40K 0 0.01 0.02
71.5 91.7 97.1 98.1 96.8 92.6 91.4 89.1

(e) pb for φ = θ = 0◦ (f) φ (◦) for pn = pb = 0
0 0.15 0.3 0.45 0.6 0 10 20 30 60

97.3 94.1 95.5 88.8 79.5 97.6 94.7 94.1 94.1 89.1

(g) θ (◦) for pn = pb = 0
0 10 20 30 60

97.6 96.5 93.4 93.6 86.7

Table III
DETECTION RATE (%) ↑ OF APRILTAGS 3 FOR AMOUNT OF TAG BLOCKED.

pb
0 0.15 0.3 0.45 0.6

100 91.5 73.3 40.5 4.0

with camera angles (φ and θ) = 60◦, we obtain a DR of above
85%. Finally, we obtain an overall DR of 85.1% for variations
in all parameters and 90.9% when no data is corrupted.

Also, if we define success for drone detection as detecting
atleast η propellers of the drone, we obtain the drone detection
rate DRD as follows DRD = (1− (1− DR)η), where DR is
the detection rate of a single propeller. For example, we would
obtain a drone detection rate DRD of 97.7%, 99.6% and 99.9%
for a quadrotor, hexacopter and octocopter respectively even
when only 50% of the propellers are detected.

2) Quantitative Evaluation of April Tags 3
In the second case study, we evaluate how a custom

designed passive fiducial marker would perform the task of
detecting a drone (note that this is only applicable to a
collaborative drone). In particular, we evaluate one of the most
ubiquitous and robust passive fiducial markers April Tag 3
[21] (36h11 family) inspired from [40]. The parameters are
the same as the first case study. From Table III, we observe
that when the data is not missing (occluded or not correctly
exposed), the April Tag detects the tags with an impressive
DR (tag ID correctness is not considered) of 100%, but the
accuracy falls significantly to 61.9% when data is missing
(which is common in real-world due to high dynamic range
scenarios and motion blur). It is also important to note the
following reasons when a drone detection based on event
camera based propeller detection will be better than a passive
fiducial marker based detection.
• Detection of a non-collaborative drone for reconnaissance

purposes
• High dynamic range and adverse lighting scenarios

including fast movement
• Area occupied by non-occluded propellers is generally�

area occupied by the fiducial marker in the center (Refer
to Sec. V-C for a detailed analysis)

• When a major part of the fiducial marker would be

generally occluded
3) Quantitative Evaluation of Appearance based drone

detectors
In the third case study, we compare drone detection using

classical appearance based detectors from [15]. We see that
the Haar Cascade detectors have a DR of 55.2% and the
MobileNet deep learning based detector has a detection rate of
69.4% which are far lower than those of the fiducial detector
and our propeller detection method.

4) Performance Measure on different compute platforms
In the fourth case study, we present speed and timing results

for EVPropNet on various commonly used computational
platforms. We refer the readers to [36] for a detailed
description of the compute modules used in this case study.
EVPropNet has 2.7M parameters, a model size of ∼10MB
and utilizes 17GOPs for a single forward pass. We can see
from Table IV that running EVPropNet to detect a drone by
detecting propellers on the Google Coral Accelerator attached
to the NVIDIA Jetson TX2 has the best speed and detection
performance per unit power.

5) Qualitative Evaluation on different real-world propellers
In the final case study, we present qualitative results of

EVPropNet on different lighting scenarios, propeller sizes,
propeller and background colors, Nblades, r and angles. Fig.
7 shows the qualitative results where the description of the
scene is given in Table V. Notice how EVPropNet can handle
different real-world variations along with high dynamic range
(Fig. 7c, even a high-end DSLR cannot capture both shadows
and highlights with it’s 32dB of dynamic range but the event
camera with it’s 80dB can handle such a scene with ease), low
contrast (Fig. 7d) and low light with average intensity of 24lx
(Fig. 7g).

6) Quantitative Evaluation of applications
We now present the results for both our applications and

we call them experiment 1 for tracking and following and
experiment 2 for landing. We define success as being able
detect the quadrotor and to not completely loosing track for
experiment 1, and for the quadrotor to be able to detect the
other quadrotor and land on it successfully without collision
for experiment 2. We average our results over 50 trails for each



a                                       b                                        c                                        d  

e                                         f                                         g                                       h

Figure 7. Top rows: Input event frame E where red and blue colors show positive and negative events respectively. Green color indicates EVPropNet
prediction with the color saturation indicating confidence. Bottom rows: reference images of the propeller taken with a Nikon D850 DSLR (32dB dynamic
range). Scenarios (a) to (h) are explained in Table V.

Table IV
PERFORMANCE METRICS ON DIFFERENT COMPUTE MODULES.

Method (Ours) AprilTags 3 AprilTags 3
EVPropNet (Ours) (36h11) (16h5)

Computing PC PC
TX2† NCS2∗ Coral∗ TX2 TX2Platform (i9) (TitanXp)

Speed ↑ 8.6 133.4 10.5 4.5 35.2 7.0 41.3(Frames per second)
Weight (g) ↓ – – 130 138 136 130 130

Peak Power (W) ↓ 250 250 15 17 17 15 15
Speed/Unit ↑ 0.03 0.53 0.7 0.27 2.07 0.47 2.75Power (FPS/W)

Detection Rate (%) ↑ 85.1 85.1 85.1 83.4 81.9 61.9 53.4
Speed×DR/Unit ↑ 2.55 45.10 59.57 22.52 169.53 29.09 146.85Power (FPS%/W)

†Active heatsink removed. ∗Attached to TX2, outer casing removed and custom heatsink.

Table V
DIFFERENT PROPELLER CONFIGURATIONS USED FOR QUALITATIVE

EVALUATION IN FIG. 7.

Scenario Ref. Prop. Background Prop. Background Light Propeller Area
Motor AreaFig. Color Color Radius (mm) Intensity (lx)

(a) 7a Black White 50.8 240 2.3
(b) 7b Red White 50.8 240 2.3

(c)∗ 7c Red White and 63.5 564 and 3.6Black 2
(d) 7d Black Black 76.2 240 5.2
(e) 7e Green Black 88.9 240 7.1
(f) 7f Green White 88.9 240 7.1
(g) 7g White Black 119.4 24 12.8
∗Case (c)’s light intensity shows High Dynamic Range scenario with illumination of the light part being 564lx and dark

part being 2lx (See Fig. 7c).

experiment and obtain a success rate of 92% for experiment 1
and 90% for experiment 2 (Vicon estimates for the trial shown
in Fig. 1 are shown in corresponding sub-figures of Fig. 8).
Commonly, the failure cases in experiment 1 happen when
the larger quadrotor has a huge jerk that it moves outside the

field of view of the camera. The failure cases in experiment 2
happen due to the aerodynamic interference between the two
quadrotors which makes the bottom quadrotor drift at the last
moment.

C. Analysis

We present analysis of three questions: 1. What is the
ratio of visible area of the propellers to that of the largest
square fiducial marker in the center? (Fig. 9) 2. How does DR
vary with focal length f , real-world propeller radius r and
camera angle φ (angle around X axis)? (Fig. 2d). 3. What
makes EVPropNet generalize to the real-world without any
fine-tuning or re-training?

To analyse the answer to the first question, we present a
simplified geometric model of a multirotor (quadrotor shown
in Fig. 9a) where we are given a constraint on the drone’s size



-2000

-1000

Y

0

1000200

0

X

600

2000
-400

1000Z

1400

1800

-300

Y

1000

-1100

X

1200

-500-1000

Z

1400

-900

1600

a                                                                                                                       b

Figure 8. Vicon estimates for the trajectories of the smaller and larger
quadrotor in the application experiments shown in Fig. 1. (a) Tracking and
following, (b) Mid-air landing. Time progression is shown from yellow to red
for the smaller quadrotor and and green to blue for the bigger quadrotor. The
black dots in (b) show the moment in time where the touchdown occured.
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Figure 9. (a) Simplified model of a quadrotor used to calculate area ratios
of the propellers to that of the biggest square fiducial marker that can be fit
in the center without obstruction, (b) Simplified arm and motor projection
to compute amount of propeller occluded from generating events – gray
areas show where the propeller is visible and generates events, green area
is occluded by the motor and blue area is occluded by the arm.

Table VI
Aratio FOR SOME COMMON COMMERCIAL DRONES.

Name S (mm) Nprop r (mm) rm (mm) Aratio

DJI Phantom 4 350 4 119.4 12 109.8
QAV 210 X 210 4 63.5 14.0 51.2
DJI Inspire 2 603 4 190 18.5 69.2

S (diagonal motor to motor length) and number of propellers
on the drone Nprop. Let us say that the largest fiducial marker
that can fit in the center of the drone is inscribed in the circle
of radius rc. Also, we assume that the propeller does not
generate events in the area in which is occluded by the arm
and the motor. The motor radius is given by rm and the arm
width is given by 2rm (Fig. 9b). The area of one non-occluded
propeller Aprop (gray highlighted area in Fig. 9b) is given by

Aprop = r2
(
π − γ

2

)
−πr

2
m

2
−rmr cos

(γ
2

)
; γ = 2 sin−1

(rm
r

)
(21)

Hence, the ratio for the area of the largest visible fiducial
marker to that of a Nprop propeller drone will be

Aratio =
4Nprop

(
r2 (2π − γ)− πr2m − 2rmr cos

(
γ
2

))
(S − 2r)

2 (22)

The value of Aratio for some common commercially
available drones are given in Table VI (Recall, Nprop is the

number of propellers on the drone, r is the propeller radius, rm
is the motor radius, γ is defined in Eq. 21 and S is the drone’s
diagonal motor to motor length). We clearly see that the
probability of observing at-least one propeller (directly related
to Aratio) is much higher than that of observing a fiducial
marker in the middle, thereby reinforcing the motivation of
our approach.

For the analysis of the second question, refer to Fig. 10. We
see that the DR of the propeller increases with an increase in
real world propeller radius r until it reaches a maximum and
then decreases (Fig. 10a). This trend is observed since smaller
propellers (small r) generate a small number of events leading
to a low DR and increases with increase in number of events
(directly correlated with r). However, with larger propellers the
DR decreases as the number of false detections increase near
the tip of the propeller. With a larger focal length (larger f ),
the curvature of the curve is larger since the relative projection
area change (on the image plane) is more drastic. We can also
observe a similar trend in Fig. 10b with change in angle φ
(angle around XC axis in Fig. 2d). Notice that the change in
focal length affects the accuracy more significantly than the
change in angle. Note that pitch θ has the similar effect to that
of the roll φ.

Finally, we speculate why our EVPropNet generalizes to the
real-world without any fine-tuning or re-training for different
propellers.
• The data’s visual quality from simulation is similar to

those obtained from recently developed event cameras
both in-terms of noise and data-rate. (This is not simple
with data from classical cameras due to the lack of
photo-realism.)

• The errors in simulation (as compared to the real-world)
are lower when the integration time for creation of
event frames are smaller (around 20ms maximum) as
demonstrated by [26].

D. Implementation Considerations

To speed-up the computation of our network when deployed
on an aerial robot, we quantize our network to Int8
and compile our network using EdgeTPU optimizations for
deployment on the Google Coral USB Accelerator. To enable
smooth compilation and high accuracy retention, we make our
inputs take only valid Int8 values as given below

EEdgeTPU = clamp (E × 255 + 127|0, 255) (23)
clamp (x|a, b) := max (b,min (x, a)) (24)

The labels p̂ are modified as p̂EdgeTPU = bp̂ × 255 − 0.5c
and take integer values in [0, 255].

Finally, when using an event camera with a high resolution
at a high temporal sampling rate, the bottleneck of the system
is the transfer speed between the event sensor and the compute
module which are dictated by the combined throughput of
processor, cache, transfer speeds of the primary and secondary
memory. Such a bottleneck can cause data loss and data lag in
the buffer. We mitigate this issue by using the NVIDIA TX2
which has a throughput of ∼440MBs−1.
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Figure 10. Variation of Detection Rate with variation in real-world propeller
radius r for different (a) Focal lengths f with φ = 0◦, and (b) Camera Roll
φ with f = 2.5mm.

VI. CONCLUSIONS

We presented a method to detect unmarked drones
(multi-rotors) by detecting a ubiquitous part of their design
– the propellers. To enable detection of the propellers, we
utilize the following fact: propellers rotate at high-speed
and hence are generally the fastest moving parts on an
image. We model the geometry of the propeller and use it
to simulate the data from an event camera whose qualities
of high temporal resolution, low latency and high dynamic
range make it perfectly suited for detecting propellers. We
then train our EVPropNet deep network on this simulated
data which generalizes directly to the real-world without any
fine-tuning or re-training. We present two applications of
detecting propellers on an unmarked drone: (a) tracking and
following an unmarked drone and (b) landing on a near-hover
drone. As a parting thought, an active zoom camera would
increase the distance range from where the drones could be
detected and would make our method a viable for deployment
in the wild.
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