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ABSTRACT

Three-dimensional (3D) vegetation canopy structure plays an important role in the way radiation interacts with
the land surface. Accurately representing this process in Earth System models (ESMs) is crucial for the modeling
of the global carbon, energy, and water cycles and hence future climate projections. Despite the importance of
accounting for 3D canopy structure, the inability to represent such complexity at regional and global scales has
impeded a successful implementation into ESMs. An alternative approach is to use an implicit clumping index to
account for the horizontal heterogeneity in vegetation canopy representations in ESMs at global scale. This paper
evaluates how modeled hyperspectral shortwave radiation partitioning of the terrestrial biosphere, as well as
Sun-Induced Chlorophyll Fluorescence (SIF) are impacted when a clumping index parameterization is incorpo-
rated in the radiative transfer scheme of a new generation ESM, the Climate Model Alliance (CliMA). An accurate
hyperspectral radiative transfer representation within ESMs is critical for accurately using of satellite data to
confront, constrain, and improve land model processes. The newly implemented scheme is compared to Monte
Carlo calculations for idealized scenes from the Radiation transfer Model Intercomparison for the Project for
Intercomparison of Land-Surface Parameterizations (RAMI4PILPS), for open forest canopies both with and
without snow on the ground. Results indicate that it is critical to account for canopy structural heterogeneity
when calculating hyperspectral radiation transfer. The RMSE in shortwave radiation is reduced for reflectance
(25%), absorptance (66%), and transmittance (75%) compared to the scenario without considering clumping.
Calculated SIF is validated against satellite remote sensing data with the recently launched NASA Orbiting
Carbon Observatory (OCO) 3, showing that including vertical and horizontal canopy structure when deriving SIF
can improve model predictions in up to 51% in comparison to the scenario without clumping. By adding a
clumping index into the CliMA-Land model, the relationship between canopy structure and SIF, Gross Primary
Productivity (GPP), hyperspectral radiative transfer, and viewing geometry at the canopy scale can be explored
in detail.

1. Introduction

(Friedlingstein et al., 2020). However, the fate of the terrestrial carbon
sink in the future is unclear (Friedlingstein et al., 2014; Schimel et al.,

Terrestrial vegetation is the largest carbon sink globally, consistently 2015; Wieder et al., 2015; Arora et al., 2020) and addressing this
absorbing almost a third of all anthropogenic carbon emissions important uncertainty lies in improving Earth System models (ESMs)
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(Sellers, 1997; Prentice et al., 2015; Bonan and Doney, 2018).

Most state-of-the-art land surface models (LSMs) within ESMs are
confined to one-dimensional (vertical) radiation transfer, often
following a plane-parallel turbid media assumption based on pioneering
work from Sellers (1985) and Verhoef (1984). The radiative transfer
within vegetation canopies is rather complex because it involves mul-
tiple scattering and mutual shadowing of leaves, which are non-
infinitesimal elements arranging themselves in hundreds of thousands
of different angular configurations.

A number of studies have shown that neglecting 3D vegetation
canopy structural features may result in significant biases in estimating
the land surface energy and carbon balances. For example, Sprintsin
et al. (2012) showed that differences between sunlit and shaded leaves
can lead to a significant underestimation of the canopy gross primary
productivity (GPP), similar to other studies (Chen et al., 2012; Loew
et al.,, 2014; Braghiere et al., 2019, 2020). In alignment with these
previous results, Loew et al. (2014) found that in extreme cases GPP
might be underestimated by as much as 25% and surface albedo might
be overestimated by up to 36%, leading to a radiative forcing of the
order of —1.25 W.m 2.

Although highly accurate 3D canopy radiative transfer models have
been developed and validated against observations (Wang and Jarvis,
1990a, 1990b; Gastellu-Etchegorry, 2008; Duursma and Medlyn, 2012),
they often demand extreme computational power and cannot be
employed at large scales over long periods of time (Song et al., 2009).
Therefore, these highly parameterized 3D radiative transfer models are
unsuitable for direct implementation into ESMs. To account for the
structural effects of vegetation on radiation partitioning, different pa-
rameterizations were developed and applied in radiative transfer models
within LSMs, which often work by modulating the optical depth, or the
leaf area index (LAI), of the vegetation canopy through the addition of
an effective variable, the so-called clumping index (Nilson, 1971; Bal-
docchi and Harley, 1995; Kucharik et al., 1999; Pinty et al., 2006; Ni-
Meister et al., 2010; Braghiere et al., 2019, 2020).

The clumping index characterizes the horizontal spatial distribution
of trees and leaves, from small to whole-canopy scales (Nilson, 1971;
Norman and Jarvis, 1974), and it can be derived from gap size distri-
bution measured in-situ with ceptometers or digital hemispherical
photography (DHP) (Chen and Cihlar, 1995; Leblanc et al., 2002; Leb-
lanc et al., 2005; Ryu et al., 2010b; Fang et al., 2018; Yan et al., 2019), as
well as from space with multi-angular remote sensing data (Pisek et al.,
2015a, 2015b; He et al., 2016) and, more recently, from LiDAR data
(Wang and Kumar, 2019).

Although the clumping index has been commonly used to account for
the impacts of vegetation structure on radiative transfer modeling and
further impacts on land surface processes (Baldocchi et al., 2002; Ryu
et al., 2010a; Chen et al., 2012; Braghiere et al., 2019, 2020), previous
studies are often limited to broadband spectral analysis in the photo-
synthetically active radiation (PAR, 400-700 nm) and Near Infrared
(NIR, 700-2500 nm), mainly due to the direct applicability of these two
broadbands in current ESMs, as well as the limited information about
hyperspectral canopy optical properties. However, new generation
ESMs should be able to include hyperspectral canopy radiative transfer
schemes because high resolution spectral data is now available from
aircrafts and will soon be available from space, on the International
Space Station (ISS) and later, via the US Surface Biology and Geology
(SBG) concept (Schimel and Schneider, 2019; Cawse-Nicholson et al.,
2021).

Hyperspectral data can provide a wide range of unique constraints on
plant functional traits (Butler et al., 2017). For instance, imaging spec-
troscopy can map terrestrial vegetation properties, such as canopy water
content, leaf nitrogen and phosphorus compositions, as well as a wide
range of traits related to photosynthesis, respiration, and decomposition
of leaf material (Singh et al., 2015). However, current state-of-the-art
ESMs are not able to make use of all the extra information provided
by hyperspectral measurements of vegetation, nor are they able to
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calculate radiative transfer in such high spectral resolution.

The benefits of using a hyperspectral radiative transfer scheme
versus the general broadband spectral analysis used in current LSMs are
linked to: (i) the direct inversion of ecosystem related parameters from
remotely-sensed data (Dutta et al., 2019; Cheng et al., 2020), that has
been broadly used as predictors of ecology related variables, e.g.,
maximum photosynthetic capacity (Meacham-Hensold et al., 2019),
GPP (Dechant et al., 2019), leaf pigments (Féret et al., 2017a, 2017b),
plant traits (Féret et al., 2019), and other morphological and physio-
logical properties (Serbin et al., 2014); and, (ii) the reduction of un-
certainty in surface albedo (Majasalmi and Bright, 2019), and therefore
radiative partitioning and forcing, by moving away from the time-
invariant look-up tables of broadband (PAR and NIR) canopy optical
properties originally based on a study published more than 30 years ago
(Dorman and Sellers, 1989). In addition, biases associated with surface
reflectance derivation from remotely-sensed data products are often
found when converting hyperspectral radiation to multispectral radia-
tion through convolution across multiple sensors (Burggraaff, 2020).

Previous studies have developed coupled LSMs to simulate Sun-
Induced Chlorophyll Fluorescence (SIF) (e.g., the Community Land
Model (CLM) 4 (Lee et al., 2015), the Biosphere Energy Transfer Hy-
drology (BETHY) model (Norton et al., 2019), and the Boreal Ecosystem
Productivity Simulator (BEPS) (Qiu et al., 2019)). In studies with CLM
and BETHY, the authors coupled the original LSMs, capable of simu-
lating carbon assimilation, ecosystem respiration, as well as the energy
and water balances, with the SCOPE (Soil Canopy Observation, Photo-
synthesis and Energy fluxes) model (van der Tol et al., 2009; Van Der Tol
et al., 2014). The SCOPE model is a 1D (vertical) radiative transfer and
energy balance model that calculates photosynthesis and chlorophyll
fluorescence. SCOPE is based on the 4-stream radiative transfer theory
from the SAIL (Scattering by Arbitrarily Inclined Leaves) model (Ver-
hoef, 1984) and the leaf radiative transfer model of Fluspect (Vilfan
et al., 2016), which is based upon leaf optical properties from the
PROSPECT model (Jacquemoud and Baret, 1990). Apart from recent
developments of the SCOPE model to include some representation of
canopy vertical heterogeneity (mSCOPE; Yang et al., 2017), a limitation
of mSCOPE is that it only accounts for vertical variation in canopy
properties, and it has no information about horizontal canopy structure.

While the study with BEPS-SIF (Qiu et al., 2019) has explored the
impacts of canopy clumping on SIF emission, the ‘two-leaf’ radiation
regime in BEPS (i.e., one vertical vegetation layer with sunlit and shaded
leaves) is different from a vertical multi-layered radiative transfer
scheme (e.g., two-stream scheme (Sellers, 1985) and 4-stream (Verhoef,
1984)), which had led to divergent impacts of clumping on GPP (Bra-
ghiere et al., 2019) and other aspects of the land surface (Bonan et al.,
2021).

The main goal of this study is to introduce and evaluate a clumping
index parameterization scheme used to represent horizontal vegetation
canopy structure within a vertically resolved 1D canopy model, the
Climate Model Alliance (CliMA)-Land, within a new generation ESM, the
CliMA model. Here, we aim to investigate the impacts of horizontal
vegetation canopy structure on hyperspectral shortwave radiation par-
titioning, as well as to determine if by using a parameterization scheme
of vegetation canopy structure through the clumping index, it is possible
to make the commonly used SAIL 4-stream theory (Verhoef, 1984)
match the shortwave radiation partitioning of a more complex 3D
radiative transfer model, raytran (Govaerts and Verstraete, 1995, 1998;
Widlowski et al., 2011; Hogan et al., 2018).

Part of the SCOPE model has been incorporated into BETHY but
without the inclusion of horizontal canopy heterogeneity. Whereas for
the clumping index, several LSMs have used this parameterization
scheme in the past (Ni-Meister et al., 2010; Yang et al., 2010; Chen et al.,
2012), but without the fully resolved hyperspectral shortwave radiation.
Therefore, the main advantage of the clumping index implementation in
CliMA-Land is bridging the hyperspectral radiative transfer with explicit
consideration of the horizontal canopy heterogeneity. First, the



R.K. Braghiere et al.

shortwave radiation partitioning calculated with CliMA-Land is
compared with reference values generated in the Radiation transfer
Model Intercomparison for the Project for Intercomparison of Land-
Surface Parameterizations (RAMI4PILPS) experiment (Widlowski
et al, 2011), a radiative transfer model intercomparison exercise.
Within the RAMI4PILPS framework, models can be evaluated under
perfectly controlled experimental conditions, i.e., all structural, spectral,
illumination, and observation related characteristics are known without
ambiguity. Therefore, possible deviations between model simulations
can thus be directly attributed to the assumptions and shortcuts entering
model-specific implementations of the radiative transfer equations. The
parameters of a structural parameterization scheme of clumping index
(Pinty et al., 2006) are tested in the CliMA-Land hyperspectral radiative
transfer model under different scenarios with and without snow.

Second, we use the updated hyperspectral radiative transfer scheme
with clumping index to explore the impact of vegetation structure on the
estimation of SIF emission (He et al., 2017; Magney et al., 2017; Yang
et al., 2019; Zeng et al., 2019; Dechant et al., 2020) and related vege-
tation indices, commonly used as GPP predictors, such as the fraction of
absorbed PAR (fAPAR), absorbed PAR (APAR), and the near-infrared
reflectance of vegetation (NIRv) (Badgley et al., 2017; Zeng et al.,
2019). We validate the estimation of SIF emission using SIF retrievals
from the NASA Orbiting Carbon Observatory 3 (OCO-3) (Eldering et al.,
2019) over a subalpine evergreen needleleaf forest in Niwot Ridge,
Colorado, and a deciduous broadleaf forest at the University of Michigan
Biological (UMB) Station, Michigan, USA. OCO-3’s new ‘“snapshot
mode” feature enabled by the instrument’s ability to swivel and point
rapidly, produces measurements over an area of about 80 by 80 km,
which allows scanning across a range of view zenith angles over a single
overpass within about 2 min. OCO-3 is also unique as far as spaceborne
SIF instruments because it samples over the day following the ISS orbit,
which also allows a broad coverage of different sun zenith angles.

The rationale behind the SIF evaluation with and without clumping
index lies in a number of recent studies suggesting that APAR is among
the dominant factors explaining the variability of SIF, and the strong
relationship between SIF and GPP (Miao et al., 2018; Wieneke et al.,
2018; Yang and van der Tol, 2018; Li et al., 2020; Magney et al., 2020).
More recently, a growing number of studies have suggested that APAR
alone cannot explain observed SIF variability, and that other factors,
such as the physiological SIF emission yield (®r) and the fluorescence
escape ratio (fesc) would also play a significant role in determining SIF
(Du et al., 2017; Migliavacca et al., 2017; Yang et al., 2018; Zeng et al.,
2019; Dechant et al., 2020). fesc has been linked to canopy structure,
commonly described in terms of LAI and leaf angular distribution, and
more recently to the clumping index (Zeng et al., 2019). In this study we
also explore some of the impacts of clumping index on the variability of
SIF and its linkage to canopy structural heterogeneity.

2. Materials and methods

In this section, firstly, a description of the CliMA-Land radiative
transfer model is presented, followed by a description of independent
methods of derivation of SIF relationship with other vegetation indices,
as well as how canopy structure can impact these relationships. Sec-
ondly, a description of the experimental setup and its elements are
presented following: (i) a 1D-3D model validation exercise against the
RAMI4PILPS dataset (Widlowski et al., 2011), as well as the method-
ology used to allow a direct intercomparison between broadband and
hyperspectral radiative transfer; and (ii) an independent validation
against SIF estimates via satellite remote sensed observations over areas
of evergreen needleleaf forest and deciduous broadleaf forest with het-
erogeneous canopy architecture.

2.1. CliMA-Land radiative transfer scheme

In this study, we present and evaluate a new important feature of the
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canopy radiative transfer model in the land component of a new gen-
eration ESM developed by CliMA. The CliMA-Land model addresses soil
water movement, plant water transport, stomatal regulation, canopy
radiation, and the fluxes of water, carbon, and energy in a highly
modular manner. Code and documentation of the in-progress CliMA-
Land model are freely and publicly available at https://github.com/Cli
MA/Land.

The CliMA-Land radiative transfer model is based on the vertically
heterogeneous mSCOPE (Yang et al., 2017), which uses Fluspect (Vilfan
etal., 2016) to simulate leaf reflectance, transmittance, and fluorescence
at the leaf level, and SAIL based models to compute spectrally resolved
radiative transfer, as well as emitted fluorescence (van der Tol et al.,
2016).

The CliMA-Land radiative transfer model was adapted to overcome
the assumption of horizontal vegetation homogeneity following a
parameterization scheme proposed by Pinty et al. (2006), which ac-
counts for horizontal structural heterogeneity with the addition of an
extra parameter, referred to as the clumping index (Nilson, 1971). Nil-
son (1971) first introduced the clumping index () into the Beer-Lam-
bert’s law, to describe plant canopy direct transmittance, or the gap
fraction probability (Pg,p(0)) as:

®

Peap(6) = exp (M)

cos0

where 0 is the sun zenith angle, LAI is the leaf area index, and G(0) is the
projection coefficient of unit foliage area on a plane perpendicular to the
view direction (Ross, 1981).

Analogously to the clumping index, Pinty (2004) developed a
parameterization scheme that modulates the canopy optical depth in
order to replicate the behavior of more complex 3D radiative transfer
schemes but accounting for zenith angular variations of canopy struc-
ture. The hypothesis behind this scheme suggests that throughout the
day and year, solar radiation crosses different pathways associated with
different structures. Therefore, the clumping index also varies with sun
zenith angle following:

2
Q0) =¢(0) = 7ln(17FL,)m+b-(lchSG) 2)
where 0 is the sun zenith angle, LAI is the leaf area index, and F. is the
vegetation cover corresponding to the ground fractional cover by all
vegetation elements including canopy gaps.

The parameter ‘b’ has no empirical formulation but it can be derived
from observations (Braghiere et al., 2020). Here ‘b’ is set to zero
throughout all the experiments because of its lack of an empirical
formulation that would further limit the applicability of CliMA-Land to
other sites on Earth where information about clumping zenithal varia-
tion is not directly available from remotely-sensed datasets. Therefore,
the zenith variation of clumping index is not considered. The clumping
index varies with the radiation pathway, which is linked to the viewing
zenith angle, but also to the sun zenith angle. The clumping index
varying with sun zenith angle can be interpreted as the radiation path-
length varying with sun zenith angle (Kucharik et al., 1999; Pinty et al.,
2006; Ryu et al., 2010b). This parameterization scheme was previously
implemented, validated, and tested with the land surface model of the
UKESM, JULES, following Braghiere (2018), Braghiere et al. (2019,
2020).

The parameterization scheme can be directly implemented into the
classical SAIL 4-stream model by assuming that the canopy optical depth
is equal to an ‘effective LA’ (LAI -Q) instead of the ‘true LAT’ (LAI).
Hence, the SAIL 4-stream theory can be recast as:

dE;

——  _—kE .

Q-LAIdx KE; (3.)
dE~ . "

AL =~ SE, +aE~ —oE (3.b)
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dE* , .

OIAld = sE,+0E” —aE (3.0)
dE, '
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where E; is the direct solar flux, E™ is the downward diffuse flux, E" is
the upward diffuse flux, and E, is the flux in the viewing direction. x is
the so-called relative optical height, which runs from —1 at the bottom
to zero at the canopy top, and LAI k and K are the extinction coefficients
dependent on canopy geometrical characteristics, such as the leaf
angular distribution, the angular positioning of the sun for K, and the
sun-observer geometry for k. The remaining scattering coefficients (s, a,
o, s', w, 1, V') depend on canopy and sun-observer geometry, as well as
the canopy optical properties (i.e., leaf reflectance and transmittance).
These coefficients were first described in Verhoef (1984) and revisited in
Yang et al. (2017).

2.2. Determining SIF, f,s., and NIR,

CliMA-Land calculates SIF emission following the mSCOPE model
approach (Yang et al., 2017), where the incident radiation is converted
into emitted chlorophyll fluorescence on each side of the leaf across all
canopy layers and leaf angular orientations. The mSCOPE model
framework was used to simulate light scattering within the canopy but
using the ‘effective LA’ (LAI- Q(6)) as the canopy optical depth, instead
of ‘true LAI’ (LAI), in order to consider the effects of horizontal canopy
heterogeneity on SIF determination via the addition of a clumping index
((0)).

The emitted SIF at the top of the canopy in the viewing direction, as
well as the hemispherical integration are calculated following the same
radiative transfer equations, but also accounting for the emitted radia-
tion. Therefore, SIF estimates depend on the radiative transfer
throughout the canopy, the conversion of incident radiation into chlo-
rophyll emission, and finally, the propagation of re-emitted chlorophyll
fluorescence through the canopy (van der Tol et al., 2009; Yang et al.,
2017).

The far-red part of SIF (>740 nm) is an optical signal in the NIR
spectrum in which radiation is highly scattered by leaves allowing only a
part of it to escape the vegetation canopy (Knyazikhin et al., 2013; Yang
and van der Tol, 2018; Zeng et al., 2019; Dechant et al., 2020). Studies
found that reflectance can be used to explain part of the SIF scattering
signal (Liu et al., 2016; van der Tol et al., 2016; Badgley et al., 2017;
Yang and van der Tol, 2018), but the observed SIF from a tower or from
space cannot be totally explained by the cumulative signal of SIF emitted
by leaves due to variabilities in canopy structure (Guanter et al., 2014;
Zeng et al., 2019; Dechant et al., 2020). Therefore, observed SIF (SIFps)
can be described as:

SIF,5s = APAR X @ X foy 4

where & is the physiological SIF emission quantum yield of the whole
canopy and feg. is the fluorescence escape ratio, which is a fraction of SIF
emitted from leaves that actually escape from the vegetation canopy.
Determining feg is rather a difficult task because it requires infor-
mation about: i) canopy structural properties, such as LAI (Fournier
et al., 2012; Yang and van der Tol, 2018), leaf angular distribution (Du
et al., 2017; Migliavacca et al., 2017), and the clumping index (Zeng
et al., 2019; Dechant et al., 2020); ii) leaf spectral properties; and iii)
observation-illumination geometry (Zeng et al., 2019). While a number
of studies have explored the influence of ®p x fe5. together on SIFpg
(Yang et al., 2015; Miao et al., 2018; Wieneke et al., 2018; Li et al.,
2020), the potentially strong impact of leaf angular orientation and
canopy clumping on fesc has often been neglected, or overly simplified
by treating fes. as a constant (Guanter et al., 2014). Recently, the whole
canopy far-red SIF emission fesc was approximated by a relationship of
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NIR, and fAPAR following Zeng et al. (2019):

NIR,

~ FAPAR )

Jese

where NIRy is the product of NIR reflectance at 792 nm and NDVI
(R792nm — Reg7nm/R792nm + Regynm; Tucker, 1979), a variable that has
been shown to be strongly correlated with SIF at large spatiotemporal
scales (Badgley et al., 2017). In order to test the impact of clumping
index on the validity of Eq. (5), an independent study (Yang and van der
Tol, 2018) showed that fe. can be estimated over a black soil condition
as:

o= R ©)

i X

where R is the NIR reflectance (740 nm), i is the canopy interceptance,
which represents the probability of a photon interacting with the canopy
and it is defined as one minus the directional gap fraction (Smolander
and Stenberg, 2005), wj is the leaf single scattering albedo and it cor-
responds to the fraction of photons at a specific wavelength that escape
the canopy (Knyazikhin et al., 2013).

Re-writing Eq. (6) in terms of the escape probability theory (Huang
et al., 2007), the recollision probability theory (Smolander and Sten-
berg, 2005), and the fraction of diffuse radiation, fes. can be written as:

fue = (1=2) 7 P4y Pa @)

X
—Ps X 0 L—pasx

where f4 is the fraction of diffuse solar radiation, ps/q is the escape
probability of sunlit/shaded leaves, p;/q is the recollision probability of
sunlit/shaded leaves, and j is the leaf single scattering albedo. More
details on the derivation of Eq. (7) and the equations for p,,q and p;/q can
be found in Appendix A. The impact of clumping index on the rela-
tionship described in Eq. (5) is independently tested following the
derivation of fes through Eq. (7), and fAPAR and NIR, directly calcu-
lated from CliMA-Land.

In order to verify that the version of CliMA-Land radiative transfer
with clumping index is indeed a better approximation of the relationship
proposed by Zeng et al. (2019), two popular measures of model parsi-
mony (Aho et al., 2014) were also calculated : the Akaike information
criterion (AIC; Akaike, 1973) and the Bayesian information criterion
(BIC; Schwarz, 1978). The AIC and BIC are statistical variables used to
represent how accurately a determined model fits the data. A better
model presents smaller values of AIC and BIC.

2.3. RAMIAPILPS benchmarking

Evaluating models can be challenging, especially when it focuses on
highly accurate details, such as 3D architectural features of a scene
(Kobayashi et al., 2012). There are different ways to evaluate the per-
formance of a specific radiative transfer model including comparisons
against different sources of observed data, such as bidirectional reflec-
tance (North, 1996; Malenovsky et al., 2008), transmittance (Wang and
Jarvis, 1990a, 1990b; Norman and Welles, 1983; Tournebize and
Sinoquet, 1995; Law et al., 2001; Sinoquet et al., 2001), and gap fraction
measurements (Cescatti, 1997; Kucharik et al., 1999; Yang et al., 2010).
The use of these observed datasets is often limited by a restricted
spatiotemporal coverage, as well as by a restricted number of suitable
instruments. To eliminate uncertainties arising from an incomplete or
erroneous knowledge of the structural, spectral, and illumination con-
ditions related to canopy characteristics, typical of model validations
with in-situ observations, the RAdiative transfer Model Intercomparison
(RAMI) (Pinty et al., 2001; Pinty, 2004; Widlowski et al., 2007, 2011,
2013, 2015) has been used to evaluate models against the extensively
verified 3D reference Monte Carlo model, raytran (Govaerts and Ver-
straete, 1995, 1998) under perfectly controlled conditions. In particular,
the RAMI4PILPS suite of experiments (Widlowski et al., 2011) was
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designed to evaluate the accuracy and consistency of shortwave radia-
tive transfer formulations as commonly used in ESMs. Here we use the
RAMI4PILPS heterogeneous canopy scenario where tree crowns were
approximated by woodless spheres in an open forest canopy scene (see
Fig. 1). Details of the RAMI4PILPS experiments used in here are sum-
marized in Table 1. For each scenario, simulations for different LAI
values and varying soil albedos are performed, assuming direct radiation
for three different sun zenith angles.

We simulate all three components of the radiative partitioning: (i)
canopy reflectance, which is defined as the ratio of reflected to incident
radiation at the top-of-canopy, (ii) canopy absorption, which is defined
as the fraction of radiation entering the canopy through a reference
plane at the top-of-canopy, and absorbed by the elements in the scene,
and (iii) canopy transmittance, which is defined as the amount of
spectral energy transmitted through the vegetation.

2.4. Moving the reference values from two broadbands to hyperspectral
resolution

The RAMI4PILPS experiment focused on two separate broadbands
(PAR and NIR) to be directly comparable to ESMs, which often make use
of the two-stream radiative transfer scheme in these only two broad-
bands, separately. Therefore, the canopy spectral properties, i.e., leaf
reflectance and leaf transmittance, are given as an average value rep-
resenting the entire broadbands PAR and NIR. In order to move from a
broadband radiative transfer scheme to a hyperspectral one, the

open forest canopy

LAI=0.50

LAI=1.50

LAI=2.50

Remote Sensing of Environment 261 (2021) 112497

Table 1

Summary of variables defining structurally heterogeneous scenes (see Widlow-
ski et al. (2011) for details). Different soil albedos are defined as BLK = black,
MED = medium, SNW = snow.

Variable Identification Values (Units)

0.50%, 1.50™ and 2.50° (m%m~2)
5.0%, 5.0M and 5.0 (m2.m %)

Leaf Area Index / whole canopy
Leaf Area Index / each tree
1-Pgap (0=0%) 0.09%, 0.26™ and 0.43°

Tree density 12.80°, 38.24M and 63.68P (trees/ha)
Maximum canopy height 16 m

Minimum sphere center height 7 m

Maximum sphere center height 11m

Osoil, PAR / Osoil, NIR BLK: 0.00/0.00; MED: 0.12/0.21; SNW: 0.96/

0.56
Soil scattering law Lambertian
Pleaf, PAR / P leaf, NIR 0.0735/0.3912
Tleaf, PAR / T leaf, NIR 0.0566/0.4146

Bi-Lambertian
27.0°/60.0°/83.0°
spherical

0.0 (m*>m~2)

Leaf scattering law

Sun zenith angle

Scatterer Normal Distribution
Woody area index

S Sparse vegetation condition.
M Medium vegetation condition.
D Dense vegetation condition.

reference spectral properties were fitted using the Fluspect model
(Table 2).
The average broadband values of leaf reflectance PAR (pjeaf,par), leaf

winipaw 3oe|q

MOUS

Fig. 1. Graphical representation of the open forest canopy environments used in the RAMI4PILPS experiment. Three different leaf area index (LAI) values and three

different background soil albedos (adapted from Widlowski et al. (2011)).
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Table 2
Leaf spectral variables and parameters in leaf biochemical model. See (Féret
et al., 2017a; Jacquemoud et al., 2009; Jacquemoud and Baret, 1990) for further
details.

Variable  Description Units Value
N Leaf structure parameter - 1.6
Cab Chlorophyll a + b content pgem 2 30.0
Car Carotenoid content ug em™2 5.0
Ant Anthocyanin content ug em™2 2.75
Cs Senescent material (brown pigments) fraction 0.0
Cyw Equivalent water thickness cm 5.0E-
03
Cm Dry matter content pgem™2 0.0
Cx Fraction between Zeaxanthin and Violaxanthin in  fraction 0.0
Car (1 = all Zeaxanthin)
fqe Leaf fluorescence efficiency - 0.01

reflectance NIR (piearNir), leaf transmittance PAR (Tiear,par), and leaf
transmittance NIR (Tieaf,nir) Were prescribed as piear,par = 0.0735, pieaf,
NIR = 0.3912, Tleaf, PAR = 0.0566, and Tleaf NIR = 0.4146 (Table 1), as
previously defined in the RAMI4PILPS experiment. To find the optimal
combination of leaf parameters described in Table 2 that approximate
the prescribed values of leaf optical properties, each one of the 9 pa-
rameters (N, Cap, Car, Ant, Cs, Cw, Cm, Cy, and fge) in its range of plau-
sible values were minimized independently, following the sum of
squared difference between modeled and prescribed average pieat,par,
Pleaf,NIR> Tleaf,PAR, aNd Tleaf,NIR-

A publicly available customized multiple dimensional optimization
algorithm was used to fit leaf spectral parameters (see Data availability).
In this method: (i) each parameter in Table 2 is initialized with an initial
guess value; (ii) The first parameter (i.e., N) is calculated to minimize the
sum of squared error, while holding all the other parameters constant;
(iii) this method is repeated for the other variables; (iv) when the set of
leaf spectral parameters reaches equilibrium, the increment step de-
creases in 10%; and (v) steps ii-iv are repeated until all steps were below
their solution tolerances (10~°).

Nine parameters (Table 2) were fitted to minimize the sum of square
difference between modeled and prescribed average pieat,pAr, Pleaf,NIR>
Tleaf,PAR, and TieafNir- TO best represent leaf biological properties, we
constrained the parameters to their physiological ranges: N in [1,3], Cyp

a
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in [0,100], Cq4 in [0,30], Ay in [0,40], Cs in [0,1], Cy in [0,0.05], Cy, in
[0,0.5], Cx in [0,1], and fqe in [0,1].

Fig. 2a shows the hyperspectral canopy reflectance and trans-
mittance minimized against the RAMI4PILPS reference values using
Fluspect. The average values for two broadbands separately are shown
as circles in Fig. 2b.

2.5. Study sites

2.5.1. Niwot Ridge, Colorado, USA

The validation study for CliMA-Land radiative transfer simulated SIF
was conducted at the subalpine forest of the Niwot Ridge AmeriFlux
Core site (US-NR1) in the Rocky Mountains in Colorado, USA (40.03°N,
105.55°W, 3050 m elevation). The forest is composed of three dominant
evergreen needleleaf species: lodgepole pine (P. contorta Douglas ex
Loudon), Engelmann spruce (Picea engelmannii Parry ex Engelm.), and
subalpine fir (Abis lasiocarpa (Hook.) Nutt). The vegetation canopy
structure consists of an average stem density of 4000 stems.ha™,
average tree height of 12.5 m, and LAI of 3.8 m2m~2 (Bowling et al.,
2018; Magney et al., 2019). Due to its high elevation, this forest is
exposed to cold winters with persistent snowpacks from October to May
(Blanken et al., 2009; Burns et al., 2015).

The clumping index at Niwot Ridge was reported as 0.740 + 0.057 by
Sprintsin et al. (2012) after the remote sensing work of Chen et al.
(2005) using POLDER (POLarization and Directionality of the Earth’s
Reflectances; 6 km). However, a more recent algorithm based on MODIS
BRDFs (He et al., 2012) reports a clumping index of 0.48 for the 500 m
pixel that includes the US-NR1 flux tower. The main difference from the
MODIS clumping index and the one from POLDER is the spatial
resolution.

2.5.2. UMB Station, Michigan, USA

The validation study for CliMA-Land radiative transfer simulated SIF
was conducted at a maturing aspen-dominated forest AmeriFlux Core
site (US-UMB) in the upper Great Lakes region in Michigan, USA
(45.58°N, 84.72°W, 234 m elevation). The forest is composed of domi-
nant deciduous broadleaf species: bigtooth aspen (Populus grandidentata)
and trembling aspen (Populus tremuloides), but with significant presence
of maple (Acer rubra, A. saccharum), red oak (Quercus rubra), birch
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Fig. 2. a. Hyperspectral leaf reflectance (blue) and leaf transmittance (red) obtained from Fluspect using values given in Table 2; b. The average values of these
curves are represented by circles for two broadbands and single scattering albedo term, separately, i.e., PAR (400-700 nm) and NIR (700-2500 nm); reflectance (p)
and transmittance (t).
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(Betula papyrifera), and beech (Fagus gran-difolia) as well. The vegetation
canopy structure consists of an average stem density of 700-800 stems.
ha™!, average tree height of ~22 m, and LAI of 3.5 m%m~2 (Schmid,
2003; Gough et al., 2013). The clumping index at UMB was reported as
0.700 + 0.047 by Sprintsin et al. (2012) after the remote sensing work of
Chen et al. (2005) and 0.52 from MODIS BRDFs for the 500 m pixel that
includes the US-UMB flux tower.

2.6. OCO-3 SIF retrievals

To assess the effect of the clumping index on CliMA-Land radiative
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transfer model estimates of SIF, we compared simulated SIF computed
with and without the clumping index to spaceborne SIF retrievals from
the NASA’s Orbiting Carbon Observatory 3 (OCO-3). We ran the model
for each OCO-3 sounding in three snapshot area maps (SAMs) taken by
0OCO-3 at Niwot Ridge, Colorado, USA, two of which were obtained on
June 12th and June 16th, 2020, and two SAMs at UMB Station, Michi-
gan, USA, taken on August 6th and August 11th, 2020.

OCO-3 is a spectrometer that is similar to OCO-2 and is on the ISS.
OCO-3 has the unique ability to obtain SAMs by scanning a target
several times in a single overpass with scans being offset to obtain a
wider sampling of the Earth’s surface, which yield large contiguous

MODIS Clumping Index - US-NR1, CO, USA
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Fig. 3. OCO-3 retrieved SIF at 757 nm over a. Niwot Ridge, Colorado, USA on June, 12th, 2020, and c¢. UMB Station, Michigan, USA on August 11th, 2020. MODIS
derived clumping index map from He et al. (2012) over b. Niwot Ridge, Colorado, USA and d. UMB Station, Michigan, USA, for the year of 2006 matching the OCO-3
scan. The white circle with a black dot in the middle represents the position of the flux towers for reference.
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scans of ~100 km by 100 km (Eldering et al., 2019). The spatial reso-
lution of each OCO-3 sounding footprint is <4 km, with the size varying
due to viewing geometry. The ISS orbit is precessing rather than sun-
synchronous and it orbits the Earth about 16 times a day, thus over-
passes do not occur at the same local time for any latitude and the
amount of time between overpasses for any given target location is
highly variable and unpredictable in the long term.

For each sounding footprint, the OCO-3 data provides, among other
variables, solar and viewing zenith and azimuth angles, instantaneous
SIF retrieved at 757 nm (SIF7s7), landcover classification, cloud flags,
and quality control flags (Frankenberg et al., 2014; Taylor et al., 2020).
From these sun and sensor geometries, we calculated relative azimuth
and phase angles for each sounding. Prior to analysis, we removed
soundings classified as barren or urban and also those soundings not
classified as ‘best’ by the quality control flag and ‘clear’ by the cloud
flag.

We also calculated area weighted mean LAI, Cyp,, and clumping index
for each sounding. We have illustrated SIF7s5; and the clumping index for
one of the June 12th, 2020 overpasses in Fig. 3. The LAl map, PROBA-V
LAI V2, was produced by Copernicus at 1 km resolution (Fuster et al.,
2020) without consideration of any canopy, understory, or foliage
clumping effects, as stated in their Algorithm Theoretical Basis Docu-
ments (ATBD) (Verger et al., 2019). The temporal resolution is variable,
but the file we used had a start date of January 3rd, 2020 and an end
date of June 30th, 2020. The C,p, map had a spatial resolution of 0.5
degrees and a weekly temporal resolution for the years 2003-2011
(Croft et al., 2020). To approximate differences in C,p between pixels
during the OCO-3 overpass, we computed weekly means using all years
and used C,p concentrations from the week in which the overpasses
occurred (weeks 24 and 25).

The global MODIS-derived clumping index map produced by He
et al. (2012) was used to provide a clumping index estimate for the
CliMA-Land radiative transfer model. The global clumping index map
has a spatial resolution of 500 m and was produced for the year of 2006.
We assume that the global clumping index map derived for 2006 data is
reliable for usage in 2020 since the interannual variability of clumping
index is generally small (He et al., 2016). The data were derived from the
NASA-MODIS BRDF/albedo product (MCD43) by considering the dif-
ference in forward and backward scattering from the surface, which is
primarily controlled by the structure of the vegetation (Braghiere et al.,
2019). The MODIS clumping index (He et al., 2012) is an average for all
view zenith angles, not specific to nadir or other angles. It can be derived
from different combinations of hotspot and dark spot values, but the
authors used nadir for hotspot and 47.7° for dark spot in order to pro-
duce a map that correlates well with observed in-situ measurements.

After simulating instantaneous SIF7s5; for each OCO-3 sounding using
the CliMA-Land radiative transfer model and input data from OCO-3
sun-sensor geometries and area weighted mean LAI, C,p, and clumping
index, we grouped soundings by phase angle and computed the mean for
each group. Individual SIF retrievals are noisy and differences in sun-
sensor geometry between soundings can contribute to differences in
the retrieved SIF values. Thus, it is advised not to use individual
soundings for analysis, but retrievals can be averaged across space and/
or time to reduce their standard errors and offset potential differences in
viewing geometry (Frankenberg et al., 2014; Kohler et al., 2018;
Doughty et al., 2019). Thus, the points in Fig. 3 are mean SIF;s5; values of
soundings from a single orbit with nearly identical viewing geometries
and the error bars represent the standard error of the mean for that
group of soundings. Groups with fewer than 10 soundings (n < 10) were
excluded from the analysis. We ran the model for each OCO-3 sounding
footprint, not only for the sounding including the flux tower (repre-
sented by a white circle with a black dot in the middle in Fig. 3 for
reference). To reduce the error, we take their means where sun-sensor
geometry is nearly identical.

Topographic effects can be observed on OCO-3 CO; retrievals due to
air mass dependencies, but no effect on retrieved SIF. It appears the main
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effect is physiological in a direct comparison of OCO-2 targets and CFIS
(airborne) overpasses to tower SIF at Niwot Ridge (Parazoo et al., 2019).

3. Results
3.1. Validating canopy radiative partitioning: broadbands PAR and NIR

Fig. 4a shows the three components of the radiation partitioning
(lines) using the default case (no clumping) and the respective RAM-
I4PILPS reference values (circles) for the sparse canopy case with LAl =
0.5 m%m 2 and ~10% vegetation cover over a black soil (a0 = 0.0).
Fig. 4b shows the same example but including clumping derived from
Eq. (2), with Q = 0.37 and b = 0.0. For similar figures for all the other
canopy structures and soil albedos, see Supplemental material.

Fig. 5 shows a total of 27 cases (3 canopy densities, 3 soil albedos,
and 3 sun zenith angles) for two separate wavebands (PAR and NIR)
evaluated separately for reflectance, absorptance, and transmittance.
For the PAR and NIR wavebands, the addition of canopy clumping
improved the agreement between CliMA-Land and the RAMI4PILPS
reference values for all terms of the radiation partitioning.

In the PAR waveband, accounting for clumping index significantly
improves the model predictive skill, as RMSE dropped from 0.12 to 0.03
for reflectance, from 0.21 to 0.06 for absorptance, and from 0.22 to 0.06
for transmittance. The addition of clumping improved the r? for all terms
of the radiative partitioning to r* > 0.97. The 1D case underestimates
reflectance and transmittance, while overestimates absorptance over all
the evaluated cases.

In the NIR spectral region, the addition of clumping significantly
improves the r? for all terms of the radiative partitioning: from r? = 0.87
to r? = 0.98 for reflectance; from r? = 0.73 to r> = 0.97 for absorptance,
and for transmittance from r? = 0.90 to r? = 0.99. The clumping index
parameterization scheme has decreased the RMSE for reflectance (from
RMSE = 0.05 to RMSE = 0.02), for absorptance (from RMSE = 0.13 to
RMSE = 0.04), and for transmittance (from RMSE = 0.17 to RMSE =
0.08).

These results indicate that the addition of clumping improves the
agreement between the 1D and the 3D cases for all terms of the radiation
partitioning for both spectral regions.

3.2. Validating canopy radiative partitioning: hyperspectral shortwave
radiation

The three hyperspectral components of the radiation partitioning
were compared to the RAMI4PILPS reference values. Fig. 6 shows one
example of the three components of the hyperspectral radiation parti-
tioning (lines) using the default case (no clumping) and the modified
version with clumping. The average values for PAR and NIR are shown
as circles and the respective RAMI4PILPS reference values are shown as
crosses. Fig. 6 shows the sparse canopy case with LAI = 0.5 m%.m 2 and
~10% vegetation cover over a black soil (0 = 0.0) for a sun zenith
angle of 27°. For similar figures for all the other canopy structures and
zenith angles, see Supplemental material. The hyperspectral cases were
only evaluated over a black soil albedo due to complexities involved in
scaling up soil albedos in the presence of snow. Polar plots showing the
difference in far-red SIF, NDVI, and NIRv between the clumped and non-
clumped cases can be found in Supplemental material.

Fig. 7 shows a total of 18 cases (3 canopy densities, 3 sun zenith
angles, and two spectral regions) for reflectance, absorptance, and
transmittance. The addition of canopy clumping improved the agree-
ment between CliMA-Land and the RAMI4PILPS reference values for all
terms of the radiation partitioning.

For reflectance, the RMSE between CliMA-Land and the RAMI4PILPS
reference values dropped from 0.04 to 0.03 when clumping was
considered. For absorptance, the RMSE between CliMA-Land and the
RAMIA4PILPS reference values dropped from 0.17 to 0.05 when clumping
was considered. For transmittance, the RMSE between CliMA-Land and
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Fig. 4. Intercomparison of zenith profile of the fraction of direct absorbed (red), reflected (blue), and transmitted (green) (a-b) PAR (400-700 nm) and (c-d) NIR
(700-2500 nm) calculated with 2 different model setups with (clumping) and without clumping (no clumping), and the RAMI4PILPS reference values obtained with a

3D Monte Carlo ray-tracing model, raytran.

the RAMI4PILPS reference values dropped from 0.20 to 0.06 when
clumping was considered. The 1D case overestimates reflectance and
absorptance, while underestimates transmittance over all the evaluated
cases. The addition of clumping has also improved the r? for all terms of
the radiative partitioning (from r? = 0.98 to r*> = 0.99 for reflectance;
from r? = 0.86 to r> = 0.98 for absorptance; and from r* = 0.89 to r* =
0.97 for transmittance). These results indicate that clumping has
improved the agreement between the 1D and the 3D cases throughout
all wavelengths in the shortwave radiation spectrum from 400 to 2500
nm.

3.3. Validating SIF emission with OCO-3 observations

In order to estimate the effect of the clumping index on model esti-
mates of SIF from CliMA-Land radiative transfer, we also compared
simulated SIF computed with and without the clumping index to
canopy-scale remote sensing SIF retrievals from OCO-3 on board of the

ISS, at Niwot Ridge, Colorado and UMB Station, Michigan, USA.

Fig. 8 shows a scatter plot of far-red SIF (at 757 nm) from CliMA-
Land radiative transfer (with clumping in yellow and without clump-
ing in blue) versus far-red SIF derived from OCO-3 for both sites in 2020.
The individual points in the linear fit represent the whole scan area
shown in Fig. 3. For each OCO-3 overpass, there are several scans for the
SAMs. Basically, each scan has very similar sun-sensor geometry and the
soundings can be grouped based on phase angle. Each point in Fig. 8
represents the mean of all the soundings with approximately the same
phase angle in order to reduce the error associated with sensor
geometry.

The estimates of far-red SIF from CliMA-Land radiative transfer with
clumping index indicate an improvement with observations. The linear
fit between model and observations shows a higher % (0.58 for Niwot
Ridge and 0.85 for UMB Station) and a lower RMSE (0.20 for Niwot
Ridge and 0.18 for UMB Station) when considering canopy structure
with a clumping index, versus the original version of the model without
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clumping index. The reduction of 51.2% in RMSE over Niwot Ridge and
21.7% over UMB Station when considering canopy structure through
clumping index highlights the importance of considering canopy struc-
ture when deriving SIF products from remote sensing.

3.4. The impact of canopy clumping on vertical APAR, fAPAR, and NIRy

The radiation partitioning from the CliMA-Land radiative transfer

10

Fig. 6. Intercomparison of reflected, absorbed, and
transmitted hyperspectral shortwave radiation
(400-2500 nm) for a sparse case (LAI = 0.50 mZm—?
and ~10% vegetation cover), over black soil, with
sun zenith angle = 27° calculated with 2 different
model setups with clumping (orange) and without
clumping (blue) (1D). The RAMI4PILPS reference
values (3D) obtained with a 3D Monte Carlo ray-
tracing model, raytran (black crosses represent the
average PAR and NIR, separately). The average
values for PAR and NIR are shown as points and
horizontal dashed lines for clumping (orange) and no
clumping (blue). The values of NDVI and NIRv, with
and without clumping, are also indicated.

model has been validated against a detailed model benchmarking, as
well as the SIF estimates from the model have been tested against SIF
observation from remote sensing data. In both cases, results indicate that
whenever the clumping index parameterization scheme is considered,
the agreement between both, model and highly accurate 3D radiative
transfer models, as well as model and satellite observations is higher
(RMSE ~50% smaller).

To further evaluate the impacts of canopy structure on the energy,
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Fig. 8. Intercomparison of SIF (757 nm) between CliMA-Land radiative transfer (with clumping in yellow and without clumping in blue) and two SAMs that were
taken by OCO-3 at a. Niwot Ridge, Colorado, USA obtained on June 12th and June 16th, 2020, and b. UMB Station, Michigan, USA obtained on August 06th and
August 11th, 2020. The r*> and RMSE of the linear fits are also shown. Each point represents the mean of all the soundings with approximately the same phase angle in
order to reduce the error associated with sensor geometry, represented by the error bars.

carbon, and water cycles, the impacts of clumping on vertical fAPAR and
APAR should be tested because these variables drive the light limiting
regime of photosynthesis in ESMs. Fig. 9 shows the vertical zenith profile
of the difference in APAR between the modified CliMA-Land radiative
transfer with clumping index minus the default version (without
clumping) for 3 canopy densities (0.5, 1.5, and 2.5 m2.m™2) over 3 soil
albedos (BLK, MED, SNW). The CliMA-Land version without clumping is
equivalent to the mSCOPE with horizontal canopy structure, and so, the
validation with the mSCOPE model is indirectly present in all
evaluations.

Throughout all the evaluated scenarios, APAR increases when
clumping is considered, with a stronger difference towards the bottom of
the evaluated canopy. This result is not straightforward, because the
vertical fAPAR does not follow the same behavior as the vertical APAR
(see Supplemental material). While the clumping index acts to decrease
the total optical depth of the vegetation canopy, fAPAR decreases at the
top of the canopy and increases at the bottom. The effect of soil albedo is
mostly noted when the value of soil albedo is high (i.e., over SNW with
soil,pAR = 0.96), and the zenith angle of incident radiation is small (SZA
= 27°), because at nadir the optical pathlength is the shortest. For the
sparse canopy, the clumping index reduces the total fAPAR in approxi-
mately half of the one obtained by the default CliMA-Land radiative
transfer, and the distribution of fAPAR throughout the vertical canopy is
homogenous. Over a bright soil, the fAPAR at the bottom of the canopy
is relatively larger than at the top because of the scattering effects from
the background soil underneath the canopy. This effect has also been
shown by Pinty et al. (2006) and Braghiere (2018), whose work reaf-
firms that for low vegetation densities, fAPAR is rather small and so the
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differences between the 1D canopy and the 3D canopy remain limited
over a darker soil. For the medium and dense canopies, the clumping
index affects the vertical profile of fAPAR in two primary ways: i) it
reduces the total amount of PAR absorption at the top layers, and; ii) it
increases fAPAR at the bottom of the canopy, especially over brighter
soils. Over a bright soil, fAPAR at the bottom of the canopy is more than
twice as large as the one calculated by the default version of the model
for the dense canopy, and about one and a half times larger than for the
medium canopy. This effect is observed throughout all sun zenith angles,
with an increase towards larger sun zenith angles.

However, it is expected that although fAPAR decreases in most cases,
APAR increases throughout all the evaluated scenes and sun zenith an-
gles because more light penetrates the canopy and, therefore, there is
more available energy to be absorbed. For this reason, it is important to
evaluate the impacts on fAPAR together with a change in the incident
radiation in the top layers of the canopy. In order to keep consistency
with reality for the evaluations of vertical APAR, the value of incident
PAR at the top of the canopy was modulated following the cosine of the
sun zenith angle.

To evaluate the impacts of canopy clumping on the relationships
between NIRy, and SIF740,m described in Badgley et al. (2017), as well as
on the relationship between fes. and NIRv.fAPAR ! as described in Zeng
etal. (2019), Eq. (2) was used to recreate multiple canopy densities with
different cover fractions, representing a structurally diverse vegetation
canopy with LAI varying from 0.01 m%.m™2 to LAI = 4.50 m%.m™2, and
vegetation cover fraction calculated as LAI over 5. All scenes were
simulated over all possible sun zenith angles with background soil al-
bedo set to black (BLK; 0.0).
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tom to zero at the top of the canopy.

Fig. 10a. shows the linear fit between calculated SIF74on, versus
NIR, for the modified CliMA-Land radiative transfer with clumping
index (in yellow) and the default version (in blue) for multiple canopy
densities. The consideration of canopy clumping improves the rela-
tionship between estimated SIF and NIR, from the CliMA-Land radiative
transfer model, with an increase in r? from 0.89 to 0.94, and a decrease
in RMSE from 2.21 mWm?nm ™! sr™! to 1.75 mWm?nm ™! sr™!. While
Fig. 10b. shows the linear fit between fesc and the NIRV.fAPAR_1 for the
modified CliMA-Land radiative transfer with clumping index and the
default version for multiple canopy densities (from LAI = 0.01 m%.m 2
to LAI = 4.50 m%m %) over a black soil albedo (BLK) with clumping
calculated through Eq. (2) for sun zenith angles from 0° to 30°. For

Q
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similar figures over medium (MED) and snow (SNW) soil albedos, see
Supplemental material. The linear fit improves when canopy clumping is
considered with an increased r? values from 0.78 to 0.83. While the
RMSE value decreased for the linear relationship when the clumping
index was considered, the relationship described in Zeng et al. (2019)
does not refer to an absolute equal equation, but rather to an approxi-
mation of fus and NIR,.fAPAR !, and so, the absolute values should not
be strictly considered.

In Fig. 10b., the linear fit of the CliMA-Land radiative transfer
without clumping index has AIC = — 4923.44 and BIC = — 4907.90,
while the version with clumping index has AIC = — 5291.47 and the BIC
= — 5275.94. The AIC and BIC values indicate a stronger relationship
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Fig. 10. a. Linear fit between SIF740nm and NIR, for the modified CliMA-Land radiative transfer with clumping index (yellow) and the default version (blue) for

multiple canopy densities (from LAI = 0.01 m%m~2 to LAI =

4.50 m%m~?) over a black soil albedo (BLK) with clumping calculated through Eq. (2) for sun zenith

angles from 0° to 89°, and; b. linear fit between the fluorescence escape ratio (fesc) and the NIR,/fAPAR for the modified CliMA-Land radiative transfer with clumping
index and the default version for multiple canopy densities and over a black soil albedo (BLK) as in Fig. 10a. with clumping calculated through Eq. (2) for sun zenith
angles from 0° to 30°. For CliMA-Land radiative transfer without clumping index the AIC = — 4923.44 and the BIC = — 4907.90, while for CliMA-Land radiative

transfer with clumping index the AIC = — 5291.47 and the BIC = — 5275.94.
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between fegc and NIR,.fAPAR !, as proposed by Zeng et al. (2019), when
canopy structure is considered.

4. Discussion

In this study, we implemented and evaluated a parameterization of
horizontal vegetation structure on the radiative transfer scheme of a new
generation ESM, the CliMA model. We benchmarked the radiation
partitioning of CliMA-Land radiative transfer with results from a 3D
Monte-Carlo ray tracer previously presented in Widlowski et al. (2011).
In each of the evaluated scenarios, all terms of the radiation partitioning
(reflectance, absorptance, and transmittance) from the model version
that included the effects of canopy structure showed a better agreement
with the accurate 3D modeling, indicating the importance of considering
not only the vertical heterogeneity of vegetation canopies, but also the
horizontal effects of canopy structure. The improvement for reflectance
was smaller than the ones for absorptance and transmittance partly due
to the fact that reflectance values are the smallest terms of the radiation
partitioning for the evaluated cases.

The main difference between the present study and previous ones is
the hyperspectral nature of the radiative transfer model combined with
horizontal canopy structural heterogeneity in CliMA-Land. By using a
single value of clumping index following the work of Pinty et al. (2006),
we were able to account for the effects of vegetation structure on the
transfer of radiation across all wavelengths of the shortwave radiation
spectrum with 10 nm spectral resolution. The results presented here
highlight the capability of the new CliMA-Land model to be directly
compared with observed canopy spectroscopy from high resolution
spectral data currently available from aircrafts, preparing Earth System
modelers for a suite of global hyperspectral measurements that soon will
be available from the US SBG mission (Cawse-Nicholson et al., 2021;
Schimel and Schneider, 2019).

We also presented a validation exercise with observations of SIF
emission over an evergreen needleleaf site and a deciduous broadleaf
site in the USA from remote sensing with the recently launched OCO-3
sensor on board of the ISS at spatial resolution of not more than 4 km,
including the footprint of two flux tower sites (US-NR1 and US-UMB), in
order to facilitate further evaluation and comparison to FLUXNET data
(Baldocchi et al., 2001). Combining SIF from OCO-3 with a suite of
remote sensing products, including Copernicus LAI (Fuster et al., 2020)
at 300 m spatial resolution, a chlorophyll product from ENVISAT MERIS
(Croft et al., 2020), and clumping index from MODIS (He et al., 2012),
we were able to determine a substantial improvement on modeled SIF
when vegetation canopy structure was considered. The importance of
directly modeling SIF with an ESM is related to the SIF-GPP relationships
required for remote large-scale estimations of GPP (Ryu et al., 2019;
Dechant et al., 2020), as well as the direct assimilation of SIF data to
improve GPP predictions (Norton et al., 2019; Parazoo et al., 2020),
which are currently highly uncertain globally (Braghiere et al., 2019)
(see Supplemental material for a model intercomparison with other SIF-
enabled LSMs). SIF74¢ nm estimates from CliMA-Land are comparable to
those of BETHY, while the impact of clumping decreases the total SIF
signal. In the comparison with SCOPE, CliMA-Land slightly un-
derestimates the SIF peak.

After thorough validation with accurate 3D modeling and observa-
tions, we evaluated the impact of the clumping index parameterization
scheme on proxies of GPP, i.e., vertical APAR, in order to characterize
further impacts on GPP from CliMA-Land when absorbed radiation will
be used to derived photosynthesis through the Farquhar-von Caem-
merer-Berry model (Farquhar et al., 1980). Contrary to expectation,
considering horizontal canopy structure through the addition of
clumping on the radiative transfer scheme of CliMA-Land caused fAPAR
to vary largely across different canopy densities, illumination angles,
and soil background albedos, but with one single impact on the total
APAR across the vertical canopy. Throughout all the evaluated scenes,
APAR increased when canopy structure is considered, especially in the
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bottom layers of the vegetation canopy. This can be thought of as a
reduction on the total optical depth of the canopy and, therefore, less
plant material for the radiation to interact with along its pathway to the
ground and back up after interacting with the surface underneath. These
results are in alignment with previous studies that evaluated the impact
of the clumping index on radiative transfer schemes in land surface
models (Braghiere et al., 2020; Braghiere et al., 2019; Loew et al., 2014).

The CliMA-Land model can simulate photosynthesis. However,
photosynthesis is a process that includes many more different sub-
models, e.g., the Farquhar ecophysiology model (Farquhar et al,
1980), model of root development, model of water distribution in soils
and plants. Therefore, the current study is limited to the evaluation of
the radiative transfer scheme in CliMA-Land, in order to keep consis-
tency and conciseness without completely leaving photosynthesis
behind through the evaluation of the impact of clumping on vegetation
indices. Nevertheless, further evaluation on CliMA-Land photosynthesis
is required.

Finally, we tested two relationships that were described in the
literature as strongly influenced by canopy structure and that our new
model allowed us to explore. The first one is the relationship between
observed SIF and NIRy proposed by Badgley et al. (2017) and further
evaluated in a number of studies (Badgley et al., 2019; Dechant et al.,
2020). Here we showed an improved linear fit between NIR, and SIF
when considering canopy structure to calculate the transfer of radiation
with a reduction of 20% on RMSE. This result reinforces previous evi-
dence relating the effect of canopy structure, represented by fes, on SIF
emission, APAR, and GPP using modeling and observations (Dechant
et al., 2020; Du et al., 2017; Migliavacca et al., 2017).

The impacts of canopy clumping were also evaluated on the rela-
tionship demonstrated by Zeng et al. (2019) and described in Eq. (5)
where fe;. can be approximated by NIR,.fAPAR . Zeng et al. (2019)
showed that fes. can be derived from NIRy properly even over sparsely
vegetated areas with minimal effects from background soil albedo. In
here, we showed an improved linear fit in Fig. 10b when considering
clumping index in CliMA-Land radiative transfer, which highlights the
important effect that horizontal canopy heterogeneity can have on the
appropriate usage of Eq. (5).

4.1. Data uncertainties and model limitations

The non-linearity of clumping index spatial scaling at the landscape
level has been previously explored using LAI-2000 and digital hemi-
spherical photography datasets (Ryu et al., 2010a). In our study, the
clumping index and LAI values were linearly scaled up as area weighted
averages for the OCO-3 SIF validation experiment (<4 km vs. 500 m),
which may introduce biases in our results, mainly due to changes in
vegetation heterogeneity with spatial scale. The linear averaging
method in this particular case was preferred due to: (i) the absence of
high-resolution gap fraction and clumping index measurements; and, (ii)
the fairly homogeneous clumping index values in the evaluated areas
(see Supplemental material). In addition, the MODIS clumping index
was retrieved using the Normalized Difference between Hotspot and
Darkspot (NDHD) algorithm (Chen et al., 2005) and validated with in-
situ measurements over a set of 63 globally distributed LPV (Land
Product Validation) and VALERI (VAlidation of Land European Remote
sensing Instruments) sites (Baret et al., 2006; Garrigues et al., 2008;
Nightingale et al., 2011; Pisek et al., 2015b), as well as intercompared
with higher resolution (275 m) data from the Multi-angle Imaging
SpectroRadiometer (MISR) satellite (Pisek et al., 2013), showing a
particularly good agreement over needleleaf forests, with MODIS
showing a wider range of clumping index values (0.47-0.72) compared
to MISR (0.52-0.59) (Pisek et al., 2015b).

Further intercomparison between MISR, MODIS, and POLDER
clumping index datasets (Pisek et al., 2010) highlighted the importance
of appropriately scaling up the clumping index values in order to match
the scale of the application. For instance, if POLDER clumping index
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(~6 km resolution) was to be used with our model, an alternative scaling
methodology would be preferred in order to avoid the addition of sig-
nificant biases due to the usage of coarser resolution data. Likewise, if an
evaluation was to be performed using OCO-3 SIF grouped into larger
areas (e.g., 0.5 degree as current ESMs), a non-linear averaging method
would be indicated in order to limit uncertainty (Ryu et al., 2010a). In
future validation studies of CliMA-Land at site level with scanning
spectrometers, e.g., PhotoSpec (Grossmann et al., 2018), clumping index
values should be derived at much finer spatial scales (<1 m), taking into
account clumping index variations with canopy height and view zenith/
azimuth angles accordingly.

5. Conclusion

Our work suggests that considering vertical and horizontal vegeta-
tion canopy structure through the addition of a clumping index
parameterization scheme may significantly improve the hyperspectral
shortwave radiation partitioning of an ESM without losing efficiency,
with a RMSE reduction on the order of 25% for reflectance, 66% for
absorptance, and 75% for transmittance in comparison to a highly ac-
curate Monte Carlo 3D radiative transfer model. The dominant effect
that introducing clumping has in our study is to allow more shortwave
radiation to propagate further into lower canopy layers increasing APAR
values throughout the vertical canopy and across sun zenith angles.

We also compared SIF emissions against observed data with a sat-
ellite spectrometer, NASA’s OCO-3. The results presented here strongly
support previous evidence that horizontal canopy structural features are
crucial for an accurate estimation of SIF, as do further extrapolations
that might come out from this variable, such as global photosynthesis.
The improvement of SIF estimates with a clumping index indicates that
the clumping index can capture the horizontal canopy structural fea-
tures at remote sensing scales (<4 km).

Finally, we showed how the clumping index parameterization
scheme improved the SIF correlation to NIR,, as well the correlation of
fesc with fAPAR, which provides further evidence for the role of vertical
and horizontal canopy structure on SIF emission and the appropriate
determination of other vegetation indices.

Data availability
The CliMA project, code, simulation configurations, model output,

and tools to work with the output are described at https://github.
com/CliMA. The CliMA-land model and examples are available at
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https://github.com/CliMA/Land. The minimization of hyperspectral
leaf reflectance and transmittance was performed using a Julia package
available at https://github.com/Yujie-W/ConstrainedRootSolvers.jl.
The LAI map, PROBA-V LAI V2, was produced by Copernicus at 1 km
resolution and it is available at https://land.copernicus.eu/global/pro
ducts/lai. National Ecological Observatory Network, 2020. Data Prod-
uct DP3.30011.001, Albedo - spectrometer - mosaic. Provisional data
downloaded from https://data.neonscience.org on November 30, 2020.
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This Appendix has additional information on the calculation of the escape and recollision probabilities. For the complete set of equations, see
Huang et al. (2007) and Smolander and Stenberg (2005). First, the canopy interceptance (i) refers to the probability of an incoming photon interacting
with the vegetation canopy, and it can be approximated by 1 — Pgap,, where Pgap, is the direct transmittance. Second, the recollision probability (p) refers
to the probability that a photon recollides with elements of the canopy at an n-th plus one time, on its n-th interaction with the canopy, and it can be
obtained by rearranging Eq. (2) presented in Smolander and Stenberg (2005) as:
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(A1)

@
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where fAPAR is the fraction of absorbed PAR, Py, is the direct transmittance, and w is the single scattering albedo. Finally, the escape probability (p)
refers to the probability of a photon escaping the vegetation canopy after interacting with elements of vegetation, and it can be obtained by rear-
ranging Eq. (9) presented in Huang et al. (2007) as:
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where R is the canopy albedo, Py, is the direct transmittance, w is the single scattering albedo, and p is the recollision probability.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2021.112497.
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