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A B S T R A C T   

Three-dimensional (3D) vegetation canopy structure plays an important role in the way radiation interacts with 
the land surface. Accurately representing this process in Earth System models (ESMs) is crucial for the modeling 
of the global carbon, energy, and water cycles and hence future climate projections. Despite the importance of 
accounting for 3D canopy structure, the inability to represent such complexity at regional and global scales has 
impeded a successful implementation into ESMs. An alternative approach is to use an implicit clumping index to 
account for the horizontal heterogeneity in vegetation canopy representations in ESMs at global scale. This paper 
evaluates how modeled hyperspectral shortwave radiation partitioning of the terrestrial biosphere, as well as 
Sun-Induced Chlorophyll Fluorescence (SIF) are impacted when a clumping index parameterization is incorpo
rated in the radiative transfer scheme of a new generation ESM, the Climate Model Alliance (CliMA). An accurate 
hyperspectral radiative transfer representation within ESMs is critical for accurately using of satellite data to 
confront, constrain, and improve land model processes. The newly implemented scheme is compared to Monte 
Carlo calculations for idealized scenes from the Radiation transfer Model Intercomparison for the Project for 
Intercomparison of Land-Surface Parameterizations (RAMI4PILPS), for open forest canopies both with and 
without snow on the ground. Results indicate that it is critical to account for canopy structural heterogeneity 
when calculating hyperspectral radiation transfer. The RMSE in shortwave radiation is reduced for reflectance 
(25%), absorptance (66%), and transmittance (75%) compared to the scenario without considering clumping. 
Calculated SIF is validated against satellite remote sensing data with the recently launched NASA Orbiting 
Carbon Observatory (OCO) 3, showing that including vertical and horizontal canopy structure when deriving SIF 
can improve model predictions in up to 51% in comparison to the scenario without clumping. By adding a 
clumping index into the CliMA-Land model, the relationship between canopy structure and SIF, Gross Primary 
Productivity (GPP), hyperspectral radiative transfer, and viewing geometry at the canopy scale can be explored 
in detail.   

1. Introduction 

Terrestrial vegetation is the largest carbon sink globally, consistently 
absorbing almost a third of all anthropogenic carbon emissions 

(Friedlingstein et al., 2020). However, the fate of the terrestrial carbon 
sink in the future is unclear (Friedlingstein et al., 2014; Schimel et al., 
2015; Wieder et al., 2015; Arora et al., 2020) and addressing this 
important uncertainty lies in improving Earth System models (ESMs) 
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(Sellers, 1997; Prentice et al., 2015; Bonan and Doney, 2018). 
Most state-of-the-art land surface models (LSMs) within ESMs are 

confined to one-dimensional (vertical) radiation transfer, often 
following a plane-parallel turbid media assumption based on pioneering 
work from Sellers (1985) and Verhoef (1984). The radiative transfer 
within vegetation canopies is rather complex because it involves mul
tiple scattering and mutual shadowing of leaves, which are non- 
infinitesimal elements arranging themselves in hundreds of thousands 
of different angular configurations. 

A number of studies have shown that neglecting 3D vegetation 
canopy structural features may result in significant biases in estimating 
the land surface energy and carbon balances. For example, Sprintsin 
et al. (2012) showed that differences between sunlit and shaded leaves 
can lead to a significant underestimation of the canopy gross primary 
productivity (GPP), similar to other studies (Chen et al., 2012; Loew 
et al., 2014; Braghiere et al., 2019, 2020). In alignment with these 
previous results, Loew et al. (2014) found that in extreme cases GPP 
might be underestimated by as much as 25% and surface albedo might 
be overestimated by up to 36%, leading to a radiative forcing of the 
order of −1.25 W.m−2. 

Although highly accurate 3D canopy radiative transfer models have 
been developed and validated against observations (Wang and Jarvis, 
1990a, 1990b; Gastellu-Etchegorry, 2008; Duursma and Medlyn, 2012), 
they often demand extreme computational power and cannot be 
employed at large scales over long periods of time (Song et al., 2009). 
Therefore, these highly parameterized 3D radiative transfer models are 
unsuitable for direct implementation into ESMs. To account for the 
structural effects of vegetation on radiation partitioning, different pa
rameterizations were developed and applied in radiative transfer models 
within LSMs, which often work by modulating the optical depth, or the 
leaf area index (LAI), of the vegetation canopy through the addition of 
an effective variable, the so-called clumping index (Nilson, 1971; Bal
docchi and Harley, 1995; Kucharik et al., 1999; Pinty et al., 2006; Ni- 
Meister et al., 2010; Braghiere et al., 2019, 2020). 

The clumping index characterizes the horizontal spatial distribution 
of trees and leaves, from small to whole-canopy scales (Nilson, 1971; 
Norman and Jarvis, 1974), and it can be derived from gap size distri
bution measured in-situ with ceptometers or digital hemispherical 
photography (DHP) (Chen and Cihlar, 1995; Leblanc et al., 2002; Leb
lanc et al., 2005; Ryu et al., 2010b; Fang et al., 2018; Yan et al., 2019), as 
well as from space with multi-angular remote sensing data (Pisek et al., 
2015a, 2015b; He et al., 2016) and, more recently, from LiDAR data 
(Wang and Kumar, 2019). 

Although the clumping index has been commonly used to account for 
the impacts of vegetation structure on radiative transfer modeling and 
further impacts on land surface processes (Baldocchi et al., 2002; Ryu 
et al., 2010a; Chen et al., 2012; Braghiere et al., 2019, 2020), previous 
studies are often limited to broadband spectral analysis in the photo
synthetically active radiation (PAR, 400–700 nm) and Near Infrared 
(NIR, 700–2500 nm), mainly due to the direct applicability of these two 
broadbands in current ESMs, as well as the limited information about 
hyperspectral canopy optical properties. However, new generation 
ESMs should be able to include hyperspectral canopy radiative transfer 
schemes because high resolution spectral data is now available from 
aircrafts and will soon be available from space, on the International 
Space Station (ISS) and later, via the US Surface Biology and Geology 
(SBG) concept (Schimel and Schneider, 2019; Cawse-Nicholson et al., 
2021). 

Hyperspectral data can provide a wide range of unique constraints on 
plant functional traits (Butler et al., 2017). For instance, imaging spec
troscopy can map terrestrial vegetation properties, such as canopy water 
content, leaf nitrogen and phosphorus compositions, as well as a wide 
range of traits related to photosynthesis, respiration, and decomposition 
of leaf material (Singh et al., 2015). However, current state-of-the-art 
ESMs are not able to make use of all the extra information provided 
by hyperspectral measurements of vegetation, nor are they able to 

calculate radiative transfer in such high spectral resolution. 
The benefits of using a hyperspectral radiative transfer scheme 

versus the general broadband spectral analysis used in current LSMs are 
linked to: (i) the direct inversion of ecosystem related parameters from 
remotely-sensed data (Dutta et al., 2019; Cheng et al., 2020), that has 
been broadly used as predictors of ecology related variables, e.g., 
maximum photosynthetic capacity (Meacham-Hensold et al., 2019), 
GPP (Dechant et al., 2019), leaf pigments (Féret et al., 2017a, 2017b), 
plant traits (Féret et al., 2019), and other morphological and physio
logical properties (Serbin et al., 2014); and, (ii) the reduction of un
certainty in surface albedo (Majasalmi and Bright, 2019), and therefore 
radiative partitioning and forcing, by moving away from the time- 
invariant look-up tables of broadband (PAR and NIR) canopy optical 
properties originally based on a study published more than 30 years ago 
(Dorman and Sellers, 1989). In addition, biases associated with surface 
reflectance derivation from remotely-sensed data products are often 
found when converting hyperspectral radiation to multispectral radia
tion through convolution across multiple sensors (Burggraaff, 2020). 

Previous studies have developed coupled LSMs to simulate Sun- 
Induced Chlorophyll Fluorescence (SIF) (e.g., the Community Land 
Model (CLM) 4 (Lee et al., 2015), the Biosphere Energy Transfer Hy
drology (BETHY) model (Norton et al., 2019), and the Boreal Ecosystem 
Productivity Simulator (BEPS) (Qiu et al., 2019)). In studies with CLM 
and BETHY, the authors coupled the original LSMs, capable of simu
lating carbon assimilation, ecosystem respiration, as well as the energy 
and water balances, with the SCOPE (Soil Canopy Observation, Photo
synthesis and Energy fluxes) model (van der Tol et al., 2009; Van Der Tol 
et al., 2014). The SCOPE model is a 1D (vertical) radiative transfer and 
energy balance model that calculates photosynthesis and chlorophyll 
fluorescence. SCOPE is based on the 4-stream radiative transfer theory 
from the SAIL (Scattering by Arbitrarily Inclined Leaves) model (Ver
hoef, 1984) and the leaf radiative transfer model of Fluspect (Vilfan 
et al., 2016), which is based upon leaf optical properties from the 
PROSPECT model (Jacquemoud and Baret, 1990). Apart from recent 
developments of the SCOPE model to include some representation of 
canopy vertical heterogeneity (mSCOPE; Yang et al., 2017), a limitation 
of mSCOPE is that it only accounts for vertical variation in canopy 
properties, and it has no information about horizontal canopy structure. 

While the study with BEPS-SIF (Qiu et al., 2019) has explored the 
impacts of canopy clumping on SIF emission, the ‘two-leaf’ radiation 
regime in BEPS (i.e., one vertical vegetation layer with sunlit and shaded 
leaves) is different from a vertical multi-layered radiative transfer 
scheme (e.g., two-stream scheme (Sellers, 1985) and 4-stream (Verhoef, 
1984)), which had led to divergent impacts of clumping on GPP (Bra
ghiere et al., 2019) and other aspects of the land surface (Bonan et al., 
2021). 

The main goal of this study is to introduce and evaluate a clumping 
index parameterization scheme used to represent horizontal vegetation 
canopy structure within a vertically resolved 1D canopy model, the 
Climate Model Alliance (CliMA)-Land, within a new generation ESM, the 
CliMA model. Here, we aim to investigate the impacts of horizontal 
vegetation canopy structure on hyperspectral shortwave radiation par
titioning, as well as to determine if by using a parameterization scheme 
of vegetation canopy structure through the clumping index, it is possible 
to make the commonly used SAIL 4-stream theory (Verhoef, 1984) 
match the shortwave radiation partitioning of a more complex 3D 
radiative transfer model, raytran (Govaerts and Verstraete, 1995, 1998; 
Widlowski et al., 2011; Hogan et al., 2018). 

Part of the SCOPE model has been incorporated into BETHY but 
without the inclusion of horizontal canopy heterogeneity. Whereas for 
the clumping index, several LSMs have used this parameterization 
scheme in the past (Ni-Meister et al., 2010; Yang et al., 2010; Chen et al., 
2012), but without the fully resolved hyperspectral shortwave radiation. 
Therefore, the main advantage of the clumping index implementation in 
CliMA-Land is bridging the hyperspectral radiative transfer with explicit 
consideration of the horizontal canopy heterogeneity. First, the 
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shortwave radiation partitioning calculated with CliMA-Land is 
compared with reference values generated in the Radiation transfer 
Model Intercomparison for the Project for Intercomparison of Land- 
Surface Parameterizations (RAMI4PILPS) experiment (Widlowski 
et al., 2011), a radiative transfer model intercomparison exercise. 
Within the RAMI4PILPS framework, models can be evaluated under 
perfectly controlled experimental conditions, i.e., all structural, spectral, 
illumination, and observation related characteristics are known without 
ambiguity. Therefore, possible deviations between model simulations 
can thus be directly attributed to the assumptions and shortcuts entering 
model-specific implementations of the radiative transfer equations. The 
parameters of a structural parameterization scheme of clumping index 
(Pinty et al., 2006) are tested in the CliMA-Land hyperspectral radiative 
transfer model under different scenarios with and without snow. 

Second, we use the updated hyperspectral radiative transfer scheme 
with clumping index to explore the impact of vegetation structure on the 
estimation of SIF emission (He et al., 2017; Magney et al., 2017; Yang 
et al., 2019; Zeng et al., 2019; Dechant et al., 2020) and related vege
tation indices, commonly used as GPP predictors, such as the fraction of 
absorbed PAR (fAPAR), absorbed PAR (APAR), and the near-infrared 
reflectance of vegetation (NIRv) (Badgley et al., 2017; Zeng et al., 
2019). We validate the estimation of SIF emission using SIF retrievals 
from the NASA Orbiting Carbon Observatory 3 (OCO-3) (Eldering et al., 
2019) over a subalpine evergreen needleleaf forest in Niwot Ridge, 
Colorado, and a deciduous broadleaf forest at the University of Michigan 
Biological (UMB) Station, Michigan, USA. OCO-3’s new “snapshot 
mode” feature enabled by the instrument’s ability to swivel and point 
rapidly, produces measurements over an area of about 80 by 80 km, 
which allows scanning across a range of view zenith angles over a single 
overpass within about 2 min. OCO-3 is also unique as far as spaceborne 
SIF instruments because it samples over the day following the ISS orbit, 
which also allows a broad coverage of different sun zenith angles. 

The rationale behind the SIF evaluation with and without clumping 
index lies in a number of recent studies suggesting that APAR is among 
the dominant factors explaining the variability of SIF, and the strong 
relationship between SIF and GPP (Miao et al., 2018; Wieneke et al., 
2018; Yang and van der Tol, 2018; Li et al., 2020; Magney et al., 2020). 
More recently, a growing number of studies have suggested that APAR 
alone cannot explain observed SIF variability, and that other factors, 
such as the physiological SIF emission yield (ΦF) and the fluorescence 
escape ratio (fesc) would also play a significant role in determining SIF 
(Du et al., 2017; Migliavacca et al., 2017; Yang et al., 2018; Zeng et al., 
2019; Dechant et al., 2020). fesc has been linked to canopy structure, 
commonly described in terms of LAI and leaf angular distribution, and 
more recently to the clumping index (Zeng et al., 2019). In this study we 
also explore some of the impacts of clumping index on the variability of 
SIF and its linkage to canopy structural heterogeneity. 

2. Materials and methods 

In this section, firstly, a description of the CliMA-Land radiative 
transfer model is presented, followed by a description of independent 
methods of derivation of SIF relationship with other vegetation indices, 
as well as how canopy structure can impact these relationships. Sec
ondly, a description of the experimental setup and its elements are 
presented following: (i) a 1D–3D model validation exercise against the 
RAMI4PILPS dataset (Widlowski et al., 2011), as well as the method
ology used to allow a direct intercomparison between broadband and 
hyperspectral radiative transfer; and (ii) an independent validation 
against SIF estimates via satellite remote sensed observations over areas 
of evergreen needleleaf forest and deciduous broadleaf forest with het
erogeneous canopy architecture. 

2.1. CliMA-Land radiative transfer scheme 

In this study, we present and evaluate a new important feature of the 

canopy radiative transfer model in the land component of a new gen
eration ESM developed by CliMA. The CliMA-Land model addresses soil 
water movement, plant water transport, stomatal regulation, canopy 
radiation, and the fluxes of water, carbon, and energy in a highly 
modular manner. Code and documentation of the in-progress CliMA- 
Land model are freely and publicly available at https://github.com/Cli 
MA/Land. 

The CliMA-Land radiative transfer model is based on the vertically 
heterogeneous mSCOPE (Yang et al., 2017), which uses Fluspect (Vilfan 
et al., 2016) to simulate leaf reflectance, transmittance, and fluorescence 
at the leaf level, and SAIL based models to compute spectrally resolved 
radiative transfer, as well as emitted fluorescence (van der Tol et al., 
2016). 

The CliMA-Land radiative transfer model was adapted to overcome 
the assumption of horizontal vegetation homogeneity following a 
parameterization scheme proposed by Pinty et al. (2006), which ac
counts for horizontal structural heterogeneity with the addition of an 
extra parameter, referred to as the clumping index (Nilson, 1971). Nil
son (1971) first introduced the clumping index (Ω) into the Beer-Lam
bert’s law, to describe plant canopy direct transmittance, or the gap 
fraction probability (Pgap(θ)) as: 

Pgap(θ) = exp
(

−G(θ)∙LAI∙Ω
cosθ

)

(1)  

where θ is the sun zenith angle, LAI is the leaf area index, and G(θ) is the 
projection coefficient of unit foliage area on a plane perpendicular to the 
view direction (Ross, 1981). 

Analogously to the clumping index, Pinty (2004) developed a 
parameterization scheme that modulates the canopy optical depth in 
order to replicate the behavior of more complex 3D radiative transfer 
schemes but accounting for zenith angular variations of canopy struc
ture. The hypothesis behind this scheme suggests that throughout the 
day and year, solar radiation crosses different pathways associated with 
different structures. Therefore, the clumping index also varies with sun 
zenith angle following: 

Ω(θ) = ζ(θ) = − ln(1 − Fc)
2

LAI
+ b∙(1 − cosθ) (2)  

where θ is the sun zenith angle, LAI is the leaf area index, and Fc is the 
vegetation cover corresponding to the ground fractional cover by all 
vegetation elements including canopy gaps. 

The parameter ‘b’ has no empirical formulation but it can be derived 
from observations (Braghiere et al., 2020). Here ‘b’ is set to zero 
throughout all the experiments because of its lack of an empirical 
formulation that would further limit the applicability of CliMA-Land to 
other sites on Earth where information about clumping zenithal varia
tion is not directly available from remotely-sensed datasets. Therefore, 
the zenith variation of clumping index is not considered. The clumping 
index varies with the radiation pathway, which is linked to the viewing 
zenith angle, but also to the sun zenith angle. The clumping index 
varying with sun zenith angle can be interpreted as the radiation path
length varying with sun zenith angle (Kucharik et al., 1999; Pinty et al., 
2006; Ryu et al., 2010b). This parameterization scheme was previously 
implemented, validated, and tested with the land surface model of the 
UKESM, JULES, following Braghiere (2018), Braghiere et al. (2019, 
2020). 

The parameterization scheme can be directly implemented into the 
classical SAIL 4-stream model by assuming that the canopy optical depth 
is equal to an ‘effective LAI’ (LAI ⋅Ω) instead of the ‘true LAI’ (LAI). 
Hence, the SAIL 4-stream theory can be recast as: 

dEs

Ω⋅LAIdx
= kEs (3.a)  

dE−

Ω⋅LAIdx
= − sEs + aE− − σE+ (3.b) 
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dE+

Ω⋅LAIdx
= s

′

Es + σE− − aE+ (3.c)  

dEo

Ω⋅LAIdx
= wEs + νE− + υ′ E+ − KEo (3.d)  

where Es is the direct solar flux, E− is the downward diffuse flux, E+ is 
the upward diffuse flux, and Eo is the flux in the viewing direction. x is 
the so-called relative optical height, which runs from −1 at the bottom 
to zero at the canopy top, and LAI. k and K are the extinction coefficients 
dependent on canopy geometrical characteristics, such as the leaf 
angular distribution, the angular positioning of the sun for K, and the 
sun-observer geometry for k. The remaining scattering coefficients (s, a, 
σ, s′, w, ν, v′) depend on canopy and sun-observer geometry, as well as 
the canopy optical properties (i.e., leaf reflectance and transmittance). 
These coefficients were first described in Verhoef (1984) and revisited in 
Yang et al. (2017). 

2.2. Determining SIF, fesc, and NIRv 

CliMA-Land calculates SIF emission following the mSCOPE model 
approach (Yang et al., 2017), where the incident radiation is converted 
into emitted chlorophyll fluorescence on each side of the leaf across all 
canopy layers and leaf angular orientations. The mSCOPE model 
framework was used to simulate light scattering within the canopy but 
using the ‘effective LAI’ (LAI⋅ Ω(θ)) as the canopy optical depth, instead 
of ‘true LAI’ (LAI), in order to consider the effects of horizontal canopy 
heterogeneity on SIF determination via the addition of a clumping index 
(Ω(θ)). 

The emitted SIF at the top of the canopy in the viewing direction, as 
well as the hemispherical integration are calculated following the same 
radiative transfer equations, but also accounting for the emitted radia
tion. Therefore, SIF estimates depend on the radiative transfer 
throughout the canopy, the conversion of incident radiation into chlo
rophyll emission, and finally, the propagation of re-emitted chlorophyll 
fluorescence through the canopy (van der Tol et al., 2009; Yang et al., 
2017). 

The far-red part of SIF (>740 nm) is an optical signal in the NIR 
spectrum in which radiation is highly scattered by leaves allowing only a 
part of it to escape the vegetation canopy (Knyazikhin et al., 2013; Yang 
and van der Tol, 2018; Zeng et al., 2019; Dechant et al., 2020). Studies 
found that reflectance can be used to explain part of the SIF scattering 
signal (Liu et al., 2016; van der Tol et al., 2016; Badgley et al., 2017; 
Yang and van der Tol, 2018), but the observed SIF from a tower or from 
space cannot be totally explained by the cumulative signal of SIF emitted 
by leaves due to variabilities in canopy structure (Guanter et al., 2014; 
Zeng et al., 2019; Dechant et al., 2020). Therefore, observed SIF (SIFobs) 
can be described as: 

SIFobs = APAR × ΦF × fesc (4)  

where ΦF is the physiological SIF emission quantum yield of the whole 
canopy and fesc is the fluorescence escape ratio, which is a fraction of SIF 
emitted from leaves that actually escape from the vegetation canopy. 

Determining fesc is rather a difficult task because it requires infor
mation about: i) canopy structural properties, such as LAI (Fournier 
et al., 2012; Yang and van der Tol, 2018), leaf angular distribution (Du 
et al., 2017; Migliavacca et al., 2017), and the clumping index (Zeng 
et al., 2019; Dechant et al., 2020); ii) leaf spectral properties; and iii) 
observation-illumination geometry (Zeng et al., 2019). While a number 
of studies have explored the influence of ΦF × fesc together on SIFobs 
(Yang et al., 2015; Miao et al., 2018; Wieneke et al., 2018; Li et al., 
2020), the potentially strong impact of leaf angular orientation and 
canopy clumping on fesc has often been neglected, or overly simplified 
by treating fesc as a constant (Guanter et al., 2014). Recently, the whole 
canopy far-red SIF emission fesc was approximated by a relationship of 

NIRv and fAPAR following Zeng et al. (2019): 

fesc ≈
NIRv

fAPAR
(5)  

where NIRV is the product of NIR reflectance at 792 nm and NDVI 
(R792nm − R687nm/R792nm + R687nm; Tucker, 1979), a variable that has 
been shown to be strongly correlated with SIFobs at large spatiotemporal 
scales (Badgley et al., 2017). In order to test the impact of clumping 
index on the validity of Eq. (5), an independent study (Yang and van der 
Tol, 2018) showed that fesc can be estimated over a black soil condition 
as: 

fesc =
R

i × ωl
(6)  

where R is the NIR reflectance (740 nm), i is the canopy interceptance, 
which represents the probability of a photon interacting with the canopy 
and it is defined as one minus the directional gap fraction (Smolander 
and Stenberg, 2005), ωl is the leaf single scattering albedo and it cor
responds to the fraction of photons at a specific wavelength that escape 
the canopy (Knyazikhin et al., 2013). 

Re-writing Eq. (6) in terms of the escape probability theory (Huang 
et al., 2007), the recollision probability theory (Smolander and Sten
berg, 2005), and the fraction of diffuse radiation, fesc can be written as: 

fesc = (1 − fd) ×
ρs

1 − ps × ωl
+ fd ×

ρd

1 − pd × ωl
(7)  

where fd is the fraction of diffuse solar radiation, ρs/d is the escape 
probability of sunlit/shaded leaves, ps/d is the recollision probability of 
sunlit/shaded leaves, and ωl is the leaf single scattering albedo. More 
details on the derivation of Eq. (7) and the equations for ρs/d and ps/d can 
be found in Appendix A. The impact of clumping index on the rela
tionship described in Eq. (5) is independently tested following the 
derivation of fesc through Eq. (7), and fAPAR and NIRv directly calcu
lated from CliMA-Land. 

In order to verify that the version of CliMA-Land radiative transfer 
with clumping index is indeed a better approximation of the relationship 
proposed by Zeng et al. (2019), two popular measures of model parsi
mony (Aho et al., 2014) were also calculated : the Akaike information 
criterion (AIC; Akaike, 1973) and the Bayesian information criterion 
(BIC; Schwarz, 1978). The AIC and BIC are statistical variables used to 
represent how accurately a determined model fits the data. A better 
model presents smaller values of AIC and BIC. 

2.3. RAMI4PILPS benchmarking 

Evaluating models can be challenging, especially when it focuses on 
highly accurate details, such as 3D architectural features of a scene 
(Kobayashi et al., 2012). There are different ways to evaluate the per
formance of a specific radiative transfer model including comparisons 
against different sources of observed data, such as bidirectional reflec
tance (North, 1996; Malenovský et al., 2008), transmittance (Wang and 
Jarvis, 1990a, 1990b; Norman and Welles, 1983; Tournebize and 
Sinoquet, 1995; Law et al., 2001; Sinoquet et al., 2001), and gap fraction 
measurements (Cescatti, 1997; Kucharik et al., 1999; Yang et al., 2010). 
The use of these observed datasets is often limited by a restricted 
spatiotemporal coverage, as well as by a restricted number of suitable 
instruments. To eliminate uncertainties arising from an incomplete or 
erroneous knowledge of the structural, spectral, and illumination con
ditions related to canopy characteristics, typical of model validations 
with in-situ observations, the RAdiative transfer Model Intercomparison 
(RAMI) (Pinty et al., 2001; Pinty, 2004; Widlowski et al., 2007, 2011, 
2013, 2015) has been used to evaluate models against the extensively 
verified 3D reference Monte Carlo model, raytran (Govaerts and Ver
straete, 1995, 1998) under perfectly controlled conditions. In particular, 
the RAMI4PILPS suite of experiments (Widlowski et al., 2011) was 
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designed to evaluate the accuracy and consistency of shortwave radia
tive transfer formulations as commonly used in ESMs. Here we use the 
RAMI4PILPS heterogeneous canopy scenario where tree crowns were 
approximated by woodless spheres in an open forest canopy scene (see 
Fig. 1). Details of the RAMI4PILPS experiments used in here are sum
marized in Table 1. For each scenario, simulations for different LAI 
values and varying soil albedos are performed, assuming direct radiation 
for three different sun zenith angles. 

We simulate all three components of the radiative partitioning: (i) 
canopy reflectance, which is defined as the ratio of reflected to incident 
radiation at the top-of-canopy, (ii) canopy absorption, which is defined 
as the fraction of radiation entering the canopy through a reference 
plane at the top-of-canopy, and absorbed by the elements in the scene, 
and (iii) canopy transmittance, which is defined as the amount of 
spectral energy transmitted through the vegetation. 

2.4. Moving the reference values from two broadbands to hyperspectral 
resolution 

The RAMI4PILPS experiment focused on two separate broadbands 
(PAR and NIR) to be directly comparable to ESMs, which often make use 
of the two-stream radiative transfer scheme in these only two broad
bands, separately. Therefore, the canopy spectral properties, i.e., leaf 
reflectance and leaf transmittance, are given as an average value rep
resenting the entire broadbands PAR and NIR. In order to move from a 
broadband radiative transfer scheme to a hyperspectral one, the 

reference spectral properties were fitted using the Fluspect model 
(Table 2). 

The average broadband values of leaf reflectance PAR (ρleaf,PAR), leaf 

Fig. 1. Graphical representation of the open forest canopy environments used in the RAMI4PILPS experiment. Three different leaf area index (LAI) values and three 
different background soil albedos (adapted from Widlowski et al. (2011)). 

Table 1 
Summary of variables defining structurally heterogeneous scenes (see Widlow
ski et al. (2011) for details). Different soil albedos are defined as BLK = black, 
MED = medium, SNW = snow.  

Variable Identification Values (Units) 

Leaf Area Index / whole canopy 0.50S, 1.50M and 2.50D (m2.m−2) 
Leaf Area Index / each tree 5.0S, 5.0M and 5.0D (m2.m−2) 
1 – Pgap (θ = 0◦) 0.09S, 0.26M and 0.43D 

Tree density 12.80S, 38.24M and 63.68D (trees/ha) 
Maximum canopy height 16 m 
Minimum sphere center height 7 m 
Maximum sphere center height 11 m 
αsoil, PAR / αsoil, NIR BLK: 0.00/0.00; MED: 0.12/0.21; SNW: 0.96/ 

0.56 
Soil scattering law Lambertian 
ρleaf, PAR / ρ leaf, NIR 0.0735/0.3912 
τleaf, PAR / τ leaf, NIR 0.0566/0.4146 
Leaf scattering law Bi-Lambertian 
Sun zenith angle 27.0◦/60.0◦/83.0◦

Scatterer Normal Distribution spherical 
Woody area index 0.0 (m2.m−2) 

S Sparse vegetation condition. 
M Medium vegetation condition. 
D Dense vegetation condition. 
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reflectance NIR (ρleaf,NIR), leaf transmittance PAR (τleaf,PAR), and leaf 
transmittance NIR (τleaf,NIR) were prescribed as ρleaf,PAR = 0.0735, ρleaf, 

NIR = 0.3912, τleaf,PAR = 0.0566, and τleaf,NIR = 0.4146 (Table 1), as 
previously defined in the RAMI4PILPS experiment. To find the optimal 
combination of leaf parameters described in Table 2 that approximate 
the prescribed values of leaf optical properties, each one of the 9 pa
rameters (N, Cab, Car, Ant, Cs, Cw, Cm, Cx, and fqe) in its range of plau
sible values were minimized independently, following the sum of 
squared difference between modeled and prescribed average ρleaf,PAR, 
ρleaf,NIR, τleaf,PAR, and τleaf,NIR. 

A publicly available customized multiple dimensional optimization 
algorithm was used to fit leaf spectral parameters (see Data availability). 
In this method: (i) each parameter in Table 2 is initialized with an initial 
guess value; (ii) The first parameter (i.e., N) is calculated to minimize the 
sum of squared error, while holding all the other parameters constant; 
(iii) this method is repeated for the other variables; (iv) when the set of 
leaf spectral parameters reaches equilibrium, the increment step de
creases in 10%; and (v) steps ii-iv are repeated until all steps were below 
their solution tolerances (10−9). 

Nine parameters (Table 2) were fitted to minimize the sum of square 
difference between modeled and prescribed average ρleaf,PAR, ρleaf,NIR, 
τleaf,PAR, and τleaf,NIR. To best represent leaf biological properties, we 
constrained the parameters to their physiological ranges: N in [1,3], Cab 

in [0,100], Car in [0,30], Ant in [0,40], Cs in [0,1], Cw in [0,0.05], Cm in 
[0,0.5], Cx in [0,1], and fqe in [0,1]. 

Fig. 2a shows the hyperspectral canopy reflectance and trans
mittance minimized against the RAMI4PILPS reference values using 
Fluspect. The average values for two broadbands separately are shown 
as circles in Fig. 2b. 

2.5. Study sites 

2.5.1. Niwot Ridge, Colorado, USA 
The validation study for CliMA-Land radiative transfer simulated SIF 

was conducted at the subalpine forest of the Niwot Ridge AmeriFlux 
Core site (US-NR1) in the Rocky Mountains in Colorado, USA (40.03◦N, 
105.55◦W, 3050 m elevation). The forest is composed of three dominant 
evergreen needleleaf species: lodgepole pine (P. contorta Douglas ex 
Loudon), Engelmann spruce (Picea engelmannii Parry ex Engelm.), and 
subalpine fir (Abis lasiocarpa (Hook.) Nutt). The vegetation canopy 
structure consists of an average stem density of 4000 stems.ha−1, 
average tree height of 12.5 m, and LAI of 3.8 m2.m−2 (Bowling et al., 
2018; Magney et al., 2019). Due to its high elevation, this forest is 
exposed to cold winters with persistent snowpacks from October to May 
(Blanken et al., 2009; Burns et al., 2015). 

The clumping index at Niwot Ridge was reported as 0.740 ± 0.057 by 
Sprintsin et al. (2012) after the remote sensing work of Chen et al. 
(2005) using POLDER (POLarization and Directionality of the Earth’s 
Reflectances; 6 km). However, a more recent algorithm based on MODIS 
BRDFs (He et al., 2012) reports a clumping index of 0.48 for the 500 m 
pixel that includes the US-NR1 flux tower. The main difference from the 
MODIS clumping index and the one from POLDER is the spatial 
resolution. 

2.5.2. UMB Station, Michigan, USA 
The validation study for CliMA-Land radiative transfer simulated SIF 

was conducted at a maturing aspen-dominated forest AmeriFlux Core 
site (US-UMB) in the upper Great Lakes region in Michigan, USA 
(45.58◦N, 84.72◦W, 234 m elevation). The forest is composed of domi
nant deciduous broadleaf species: bigtooth aspen (Populus grandidentata) 
and trembling aspen (Populus tremuloides), but with significant presence 
of maple (Acer rubra, A. saccharum), red oak (Quercus rubra), birch 

Table 2 
Leaf spectral variables and parameters in leaf biochemical model. See (Féret 
et al., 2017a; Jacquemoud et al., 2009; Jacquemoud and Baret, 1990) for further 
details.  

Variable Description Units Value 

N Leaf structure parameter – 1.6 
Cab Chlorophyll a + b content μg cm−2 30.0 
Car Carotenoid content μg cm−2 5.0 
Ant Anthocyanin content μg cm−2 2.75 
Cs Senescent material (brown pigments) fraction 0.0 
Cw Equivalent water thickness cm 5.0E- 

03 
Cm Dry matter content μg cm−2 0.0 
Cx Fraction between Zeaxanthin and Violaxanthin in 

Car (1 = all Zeaxanthin) 
fraction 0.0 

fqe Leaf fluorescence efficiency – 0.01  

Fig. 2. a. Hyperspectral leaf reflectance (blue) and leaf transmittance (red) obtained from Fluspect using values given in Table 2; b. The average values of these 
curves are represented by circles for two broadbands and single scattering albedo term, separately, i.e., PAR (400–700 nm) and NIR (700–2500 nm); reflectance (ρ) 
and transmittance (τ). 
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(Betula papyrifera), and beech (Fagus gran-difolia) as well. The vegetation 
canopy structure consists of an average stem density of 700–800 stems. 
ha−1, average tree height of ~22 m, and LAI of 3.5 m2.m−2 (Schmid, 
2003; Gough et al., 2013). The clumping index at UMB was reported as 
0.700 ± 0.047 by Sprintsin et al. (2012) after the remote sensing work of 
Chen et al. (2005) and 0.52 from MODIS BRDFs for the 500 m pixel that 
includes the US-UMB flux tower. 

2.6. OCO-3 SIF retrievals 

To assess the effect of the clumping index on CliMA-Land radiative 

transfer model estimates of SIF, we compared simulated SIF computed 
with and without the clumping index to spaceborne SIF retrievals from 
the NASA’s Orbiting Carbon Observatory 3 (OCO-3). We ran the model 
for each OCO-3 sounding in three snapshot area maps (SAMs) taken by 
OCO-3 at Niwot Ridge, Colorado, USA, two of which were obtained on 
June 12th and June 16th, 2020, and two SAMs at UMB Station, Michi
gan, USA, taken on August 6th and August 11th, 2020. 

OCO-3 is a spectrometer that is similar to OCO-2 and is on the ISS. 
OCO-3 has the unique ability to obtain SAMs by scanning a target 
several times in a single overpass with scans being offset to obtain a 
wider sampling of the Earth’s surface, which yield large contiguous 

Fig. 3. OCO-3 retrieved SIF at 757 nm over a. Niwot Ridge, Colorado, USA on June, 12th, 2020, and c. UMB Station, Michigan, USA on August 11th, 2020. MODIS 
derived clumping index map from He et al. (2012) over b. Niwot Ridge, Colorado, USA and d. UMB Station, Michigan, USA, for the year of 2006 matching the OCO-3 
scan. The white circle with a black dot in the middle represents the position of the flux towers for reference. 
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scans of ~100 km by 100 km (Eldering et al., 2019). The spatial reso
lution of each OCO-3 sounding footprint is ≤4 km, with the size varying 
due to viewing geometry. The ISS orbit is precessing rather than sun- 
synchronous and it orbits the Earth about 16 times a day, thus over
passes do not occur at the same local time for any latitude and the 
amount of time between overpasses for any given target location is 
highly variable and unpredictable in the long term. 

For each sounding footprint, the OCO-3 data provides, among other 
variables, solar and viewing zenith and azimuth angles, instantaneous 
SIF retrieved at 757 nm (SIF757), landcover classification, cloud flags, 
and quality control flags (Frankenberg et al., 2014; Taylor et al., 2020). 
From these sun and sensor geometries, we calculated relative azimuth 
and phase angles for each sounding. Prior to analysis, we removed 
soundings classified as barren or urban and also those soundings not 
classified as ‘best’ by the quality control flag and ‘clear’ by the cloud 
flag. 

We also calculated area weighted mean LAI, Cab, and clumping index 
for each sounding. We have illustrated SIF757 and the clumping index for 
one of the June 12th, 2020 overpasses in Fig. 3. The LAI map, PROBA-V 
LAI V2, was produced by Copernicus at 1 km resolution (Fuster et al., 
2020) without consideration of any canopy, understory, or foliage 
clumping effects, as stated in their Algorithm Theoretical Basis Docu
ments (ATBD) (Verger et al., 2019). The temporal resolution is variable, 
but the file we used had a start date of January 3rd, 2020 and an end 
date of June 30th, 2020. The Cab map had a spatial resolution of 0.5 
degrees and a weekly temporal resolution for the years 2003–2011 
(Croft et al., 2020). To approximate differences in Cab between pixels 
during the OCO-3 overpass, we computed weekly means using all years 
and used Cab concentrations from the week in which the overpasses 
occurred (weeks 24 and 25). 

The global MODIS-derived clumping index map produced by He 
et al. (2012) was used to provide a clumping index estimate for the 
CliMA-Land radiative transfer model. The global clumping index map 
has a spatial resolution of 500 m and was produced for the year of 2006. 
We assume that the global clumping index map derived for 2006 data is 
reliable for usage in 2020 since the interannual variability of clumping 
index is generally small (He et al., 2016). The data were derived from the 
NASA-MODIS BRDF/albedo product (MCD43) by considering the dif
ference in forward and backward scattering from the surface, which is 
primarily controlled by the structure of the vegetation (Braghiere et al., 
2019). The MODIS clumping index (He et al., 2012) is an average for all 
view zenith angles, not specific to nadir or other angles. It can be derived 
from different combinations of hotspot and dark spot values, but the 
authors used nadir for hotspot and 47.7◦ for dark spot in order to pro
duce a map that correlates well with observed in-situ measurements. 

After simulating instantaneous SIF757 for each OCO-3 sounding using 
the CliMA-Land radiative transfer model and input data from OCO-3 
sun-sensor geometries and area weighted mean LAI, Cab, and clumping 
index, we grouped soundings by phase angle and computed the mean for 
each group. Individual SIF retrievals are noisy and differences in sun- 
sensor geometry between soundings can contribute to differences in 
the retrieved SIF values. Thus, it is advised not to use individual 
soundings for analysis, but retrievals can be averaged across space and/ 
or time to reduce their standard errors and offset potential differences in 
viewing geometry (Frankenberg et al., 2014; Köhler et al., 2018; 
Doughty et al., 2019). Thus, the points in Fig. 3 are mean SIF757 values of 
soundings from a single orbit with nearly identical viewing geometries 
and the error bars represent the standard error of the mean for that 
group of soundings. Groups with fewer than 10 soundings (n < 10) were 
excluded from the analysis. We ran the model for each OCO-3 sounding 
footprint, not only for the sounding including the flux tower (repre
sented by a white circle with a black dot in the middle in Fig. 3 for 
reference). To reduce the error, we take their means where sun-sensor 
geometry is nearly identical. 

Topographic effects can be observed on OCO-3 CO2 retrievals due to 
air mass dependencies, but no effect on retrieved SIF. It appears the main 

effect is physiological in a direct comparison of OCO-2 targets and CFIS 
(airborne) overpasses to tower SIF at Niwot Ridge (Parazoo et al., 2019). 

3. Results 

3.1. Validating canopy radiative partitioning: broadbands PAR and NIR 

Fig. 4a shows the three components of the radiation partitioning 
(lines) using the default case (no clumping) and the respective RAM
I4PILPS reference values (circles) for the sparse canopy case with LAI =
0.5 m2.m−2 and ~10% vegetation cover over a black soil (αsoil = 0.0). 
Fig. 4b shows the same example but including clumping derived from 
Eq. (2), with Ω = 0.37 and b = 0.0. For similar figures for all the other 
canopy structures and soil albedos, see Supplemental material. 

Fig. 5 shows a total of 27 cases (3 canopy densities, 3 soil albedos, 
and 3 sun zenith angles) for two separate wavebands (PAR and NIR) 
evaluated separately for reflectance, absorptance, and transmittance. 
For the PAR and NIR wavebands, the addition of canopy clumping 
improved the agreement between CliMA-Land and the RAMI4PILPS 
reference values for all terms of the radiation partitioning. 

In the PAR waveband, accounting for clumping index significantly 
improves the model predictive skill, as RMSE dropped from 0.12 to 0.03 
for reflectance, from 0.21 to 0.06 for absorptance, and from 0.22 to 0.06 
for transmittance. The addition of clumping improved the r2 for all terms 
of the radiative partitioning to r2 > 0.97. The 1D case underestimates 
reflectance and transmittance, while overestimates absorptance over all 
the evaluated cases. 

In the NIR spectral region, the addition of clumping significantly 
improves the r2 for all terms of the radiative partitioning: from r2 = 0.87 
to r2 = 0.98 for reflectance; from r2 = 0.73 to r2 = 0.97 for absorptance, 
and for transmittance from r2 = 0.90 to r2 = 0.99. The clumping index 
parameterization scheme has decreased the RMSE for reflectance (from 
RMSE = 0.05 to RMSE = 0.02), for absorptance (from RMSE = 0.13 to 
RMSE = 0.04), and for transmittance (from RMSE = 0.17 to RMSE =
0.08). 

These results indicate that the addition of clumping improves the 
agreement between the 1D and the 3D cases for all terms of the radiation 
partitioning for both spectral regions. 

3.2. Validating canopy radiative partitioning: hyperspectral shortwave 
radiation 

The three hyperspectral components of the radiation partitioning 
were compared to the RAMI4PILPS reference values. Fig. 6 shows one 
example of the three components of the hyperspectral radiation parti
tioning (lines) using the default case (no clumping) and the modified 
version with clumping. The average values for PAR and NIR are shown 
as circles and the respective RAMI4PILPS reference values are shown as 
crosses. Fig. 6 shows the sparse canopy case with LAI = 0.5 m2.m−2 and 
~10% vegetation cover over a black soil (αsoil = 0.0) for a sun zenith 
angle of 27◦. For similar figures for all the other canopy structures and 
zenith angles, see Supplemental material. The hyperspectral cases were 
only evaluated over a black soil albedo due to complexities involved in 
scaling up soil albedos in the presence of snow. Polar plots showing the 
difference in far-red SIF, NDVI, and NIRv between the clumped and non- 
clumped cases can be found in Supplemental material. 

Fig. 7 shows a total of 18 cases (3 canopy densities, 3 sun zenith 
angles, and two spectral regions) for reflectance, absorptance, and 
transmittance. The addition of canopy clumping improved the agree
ment between CliMA-Land and the RAMI4PILPS reference values for all 
terms of the radiation partitioning. 

For reflectance, the RMSE between CliMA-Land and the RAMI4PILPS 
reference values dropped from 0.04 to 0.03 when clumping was 
considered. For absorptance, the RMSE between CliMA-Land and the 
RAMI4PILPS reference values dropped from 0.17 to 0.05 when clumping 
was considered. For transmittance, the RMSE between CliMA-Land and 
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the RAMI4PILPS reference values dropped from 0.20 to 0.06 when 
clumping was considered. The 1D case overestimates reflectance and 
absorptance, while underestimates transmittance over all the evaluated 
cases. The addition of clumping has also improved the r2 for all terms of 
the radiative partitioning (from r2 = 0.98 to r2 = 0.99 for reflectance; 
from r2 = 0.86 to r2 = 0.98 for absorptance; and from r2 = 0.89 to r2 =

0.97 for transmittance). These results indicate that clumping has 
improved the agreement between the 1D and the 3D cases throughout 
all wavelengths in the shortwave radiation spectrum from 400 to 2500 
nm. 

3.3. Validating SIF emission with OCO-3 observations 

In order to estimate the effect of the clumping index on model esti
mates of SIF from CliMA-Land radiative transfer, we also compared 
simulated SIF computed with and without the clumping index to 
canopy-scale remote sensing SIF retrievals from OCO-3 on board of the 

ISS, at Niwot Ridge, Colorado and UMB Station, Michigan, USA. 
Fig. 8 shows a scatter plot of far-red SIF (at 757 nm) from CliMA- 

Land radiative transfer (with clumping in yellow and without clump
ing in blue) versus far-red SIF derived from OCO-3 for both sites in 2020. 
The individual points in the linear fit represent the whole scan area 
shown in Fig. 3. For each OCO-3 overpass, there are several scans for the 
SAMs. Basically, each scan has very similar sun-sensor geometry and the 
soundings can be grouped based on phase angle. Each point in Fig. 8 
represents the mean of all the soundings with approximately the same 
phase angle in order to reduce the error associated with sensor 
geometry. 

The estimates of far-red SIF from CliMA-Land radiative transfer with 
clumping index indicate an improvement with observations. The linear 
fit between model and observations shows a higher r2 (0.58 for Niwot 
Ridge and 0.85 for UMB Station) and a lower RMSE (0.20 for Niwot 
Ridge and 0.18 for UMB Station) when considering canopy structure 
with a clumping index, versus the original version of the model without 

Fig. 4. Intercomparison of zenith profile of the fraction of direct absorbed (red), reflected (blue), and transmitted (green) (a–b) PAR (400–700 nm) and (c–d) NIR 
(700–2500 nm) calculated with 2 different model setups with (clumping) and without clumping (no clumping), and the RAMI4PILPS reference values obtained with a 
3D Monte Carlo ray-tracing model, raytran. 
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clumping index. The reduction of 51.2% in RMSE over Niwot Ridge and 
21.7% over UMB Station when considering canopy structure through 
clumping index highlights the importance of considering canopy struc
ture when deriving SIF products from remote sensing. 

3.4. The impact of canopy clumping on vertical APAR, fAPAR, and NIRv 

The radiation partitioning from the CliMA-Land radiative transfer 

model has been validated against a detailed model benchmarking, as 
well as the SIF estimates from the model have been tested against SIF 
observation from remote sensing data. In both cases, results indicate that 
whenever the clumping index parameterization scheme is considered, 
the agreement between both, model and highly accurate 3D radiative 
transfer models, as well as model and satellite observations is higher 
(RMSE ~50% smaller). 

To further evaluate the impacts of canopy structure on the energy, 

Fig. 5. Intercomparison of reflected, absorbed, and transmitted PAR (400–700 nm) and NIR (700–2500 nm) for 3 canopy densities, 3 soil albedos, and 3 sun zenith 
angles calculated with 2 different model setups with clumping (orange) and without clumping (blue) (1D) and the RAMI4PILPS reference values (3D) obtained with a 
3D Monte Carlo ray-tracing model, raytran. 

Fig. 6. Intercomparison of reflected, absorbed, and 
transmitted hyperspectral shortwave radiation 
(400–2500 nm) for a sparse case (LAI = 0.50 m2.m−2 

and ~10% vegetation cover), over black soil, with 
sun zenith angle = 27◦ calculated with 2 different 
model setups with clumping (orange) and without 
clumping (blue) (1D). The RAMI4PILPS reference 
values (3D) obtained with a 3D Monte Carlo ray- 
tracing model, raytran (black crosses represent the 
average PAR and NIR, separately). The average 
values for PAR and NIR are shown as points and 
horizontal dashed lines for clumping (orange) and no 
clumping (blue). The values of NDVI and NIRv, with 
and without clumping, are also indicated.   
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carbon, and water cycles, the impacts of clumping on vertical fAPAR and 
APAR should be tested because these variables drive the light limiting 
regime of photosynthesis in ESMs. Fig. 9 shows the vertical zenith profile 
of the difference in APAR between the modified CliMA-Land radiative 
transfer with clumping index minus the default version (without 
clumping) for 3 canopy densities (0.5, 1.5, and 2.5 m2.m−2) over 3 soil 
albedos (BLK, MED, SNW). The CliMA-Land version without clumping is 
equivalent to the mSCOPE with horizontal canopy structure, and so, the 
validation with the mSCOPE model is indirectly present in all 
evaluations. 

Throughout all the evaluated scenarios, APAR increases when 
clumping is considered, with a stronger difference towards the bottom of 
the evaluated canopy. This result is not straightforward, because the 
vertical fAPAR does not follow the same behavior as the vertical APAR 
(see Supplemental material). While the clumping index acts to decrease 
the total optical depth of the vegetation canopy, fAPAR decreases at the 
top of the canopy and increases at the bottom. The effect of soil albedo is 
mostly noted when the value of soil albedo is high (i.e., over SNW with 
αsoil,PAR = 0.96), and the zenith angle of incident radiation is small (SZA 
= 27◦), because at nadir the optical pathlength is the shortest. For the 
sparse canopy, the clumping index reduces the total fAPAR in approxi
mately half of the one obtained by the default CliMA-Land radiative 
transfer, and the distribution of fAPAR throughout the vertical canopy is 
homogenous. Over a bright soil, the fAPAR at the bottom of the canopy 
is relatively larger than at the top because of the scattering effects from 
the background soil underneath the canopy. This effect has also been 
shown by Pinty et al. (2006) and Braghiere (2018), whose work reaf
firms that for low vegetation densities, fAPAR is rather small and so the 

differences between the 1D canopy and the 3D canopy remain limited 
over a darker soil. For the medium and dense canopies, the clumping 
index affects the vertical profile of fAPAR in two primary ways: i) it 
reduces the total amount of PAR absorption at the top layers, and; ii) it 
increases fAPAR at the bottom of the canopy, especially over brighter 
soils. Over a bright soil, fAPAR at the bottom of the canopy is more than 
twice as large as the one calculated by the default version of the model 
for the dense canopy, and about one and a half times larger than for the 
medium canopy. This effect is observed throughout all sun zenith angles, 
with an increase towards larger sun zenith angles. 

However, it is expected that although fAPAR decreases in most cases, 
APAR increases throughout all the evaluated scenes and sun zenith an
gles because more light penetrates the canopy and, therefore, there is 
more available energy to be absorbed. For this reason, it is important to 
evaluate the impacts on fAPAR together with a change in the incident 
radiation in the top layers of the canopy. In order to keep consistency 
with reality for the evaluations of vertical APAR, the value of incident 
PAR at the top of the canopy was modulated following the cosine of the 
sun zenith angle. 

To evaluate the impacts of canopy clumping on the relationships 
between NIRv and SIF740nm described in Badgley et al. (2017), as well as 
on the relationship between fesc and NIRv.fAPAR−1 as described in Zeng 
et al. (2019), Eq. (2) was used to recreate multiple canopy densities with 
different cover fractions, representing a structurally diverse vegetation 
canopy with LAI varying from 0.01 m2.m−2 to LAI = 4.50 m2.m−2, and 
vegetation cover fraction calculated as LAI over 5. All scenes were 
simulated over all possible sun zenith angles with background soil al
bedo set to black (BLK; 0.0). 

Fig. 7. Intercomparison of reflected, absorbed, and transmitted averaged in the PAR (400–700 nm) and NIR (700–2500 nm) wavebands for 3 canopy densities, 3 sun 
zenith angles, and a black soil albedo calculated with 2 different model setups with clumping (orange) and without clumping (blue) (1D). The RAMI4PILPS reference 
values (3D) were obtained with a 3D Monte Carlo ray-tracing model, raytran. The vertical black bars indicate the standard deviation of the mean values for each 
waveband considered in 10 nm spectral resolution. 

Fig. 8. Intercomparison of SIF (757 nm) between CliMA-Land radiative transfer (with clumping in yellow and without clumping in blue) and two SAMs that were 
taken by OCO-3 at a. Niwot Ridge, Colorado, USA obtained on June 12th and June 16th, 2020, and b. UMB Station, Michigan, USA obtained on August 06th and 
August 11th, 2020. The r2 and RMSE of the linear fits are also shown. Each point represents the mean of all the soundings with approximately the same phase angle in 
order to reduce the error associated with sensor geometry, represented by the error bars. 
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Fig. 10a. shows the linear fit between calculated SIF740nm versus 
NIRv for the modified CliMA-Land radiative transfer with clumping 
index (in yellow) and the default version (in blue) for multiple canopy 
densities. The consideration of canopy clumping improves the rela
tionship between estimated SIF and NIRv from the CliMA-Land radiative 
transfer model, with an increase in r2 from 0.89 to 0.94, and a decrease 
in RMSE from 2.21 mWm2nm−1 sr−1 to 1.75 mWm2nm−1 sr−1. While 
Fig. 10b. shows the linear fit between fesc and the NIRv.fAPAR−1 for the 
modified CliMA-Land radiative transfer with clumping index and the 
default version for multiple canopy densities (from LAI = 0.01 m2.m−2 

to LAI = 4.50 m2.m−2) over a black soil albedo (BLK) with clumping 
calculated through Eq. (2) for sun zenith angles from 0◦ to 30◦. For 

similar figures over medium (MED) and snow (SNW) soil albedos, see 
Supplemental material. The linear fit improves when canopy clumping is 
considered with an increased r2 values from 0.78 to 0.83. While the 
RMSE value decreased for the linear relationship when the clumping 
index was considered, the relationship described in Zeng et al. (2019) 
does not refer to an absolute equal equation, but rather to an approxi
mation of fesc and NIRv.fAPAR−1, and so, the absolute values should not 
be strictly considered. 

In Fig. 10b., the linear fit of the CliMA-Land radiative transfer 
without clumping index has AIC = − 4923.44 and BIC = − 4907.90, 
while the version with clumping index has AIC = − 5291.47 and the BIC 
= − 5275.94. The AIC and BIC values indicate a stronger relationship 

Fig. 9. Vertical zenith profile of normalized APAR difference between the modified CliMA-Land radiative transfer with clumping index minus the non-clumping 
version for 3 canopy densities (0.5, 1.5, and 2.5 m2.m−2) over 3 soil albedos (BLK, MED, SNW). x is the relative optical height, which runs from −1 at the bot
tom to zero at the top of the canopy. 

Fig. 10. a. Linear fit between SIF740nm and NIRv for the modified CliMA-Land radiative transfer with clumping index (yellow) and the default version (blue) for 
multiple canopy densities (from LAI = 0.01 m2.m−2 to LAI = 4.50 m2.m−2) over a black soil albedo (BLK) with clumping calculated through Eq. (2) for sun zenith 
angles from 0◦ to 89◦, and; b. linear fit between the fluorescence escape ratio (fesc) and the NIRv/fAPAR for the modified CliMA-Land radiative transfer with clumping 
index and the default version for multiple canopy densities and over a black soil albedo (BLK) as in Fig. 10a. with clumping calculated through Eq. (2) for sun zenith 
angles from 0◦ to 30◦. For CliMA-Land radiative transfer without clumping index the AIC = − 4923.44 and the BIC = − 4907.90, while for CliMA-Land radiative 
transfer with clumping index the AIC = − 5291.47 and the BIC = − 5275.94. 
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between fesc and NIRv.fAPAR−1, as proposed by Zeng et al. (2019), when 
canopy structure is considered. 

4. Discussion 

In this study, we implemented and evaluated a parameterization of 
horizontal vegetation structure on the radiative transfer scheme of a new 
generation ESM, the CliMA model. We benchmarked the radiation 
partitioning of CliMA-Land radiative transfer with results from a 3D 
Monte-Carlo ray tracer previously presented in Widlowski et al. (2011). 
In each of the evaluated scenarios, all terms of the radiation partitioning 
(reflectance, absorptance, and transmittance) from the model version 
that included the effects of canopy structure showed a better agreement 
with the accurate 3D modeling, indicating the importance of considering 
not only the vertical heterogeneity of vegetation canopies, but also the 
horizontal effects of canopy structure. The improvement for reflectance 
was smaller than the ones for absorptance and transmittance partly due 
to the fact that reflectance values are the smallest terms of the radiation 
partitioning for the evaluated cases. 

The main difference between the present study and previous ones is 
the hyperspectral nature of the radiative transfer model combined with 
horizontal canopy structural heterogeneity in CliMA-Land. By using a 
single value of clumping index following the work of Pinty et al. (2006), 
we were able to account for the effects of vegetation structure on the 
transfer of radiation across all wavelengths of the shortwave radiation 
spectrum with 10 nm spectral resolution. The results presented here 
highlight the capability of the new CliMA-Land model to be directly 
compared with observed canopy spectroscopy from high resolution 
spectral data currently available from aircrafts, preparing Earth System 
modelers for a suite of global hyperspectral measurements that soon will 
be available from the US SBG mission (Cawse-Nicholson et al., 2021; 
Schimel and Schneider, 2019). 

We also presented a validation exercise with observations of SIF 
emission over an evergreen needleleaf site and a deciduous broadleaf 
site in the USA from remote sensing with the recently launched OCO-3 
sensor on board of the ISS at spatial resolution of not more than 4 km, 
including the footprint of two flux tower sites (US-NR1 and US-UMB), in 
order to facilitate further evaluation and comparison to FLUXNET data 
(Baldocchi et al., 2001). Combining SIF from OCO-3 with a suite of 
remote sensing products, including Copernicus LAI (Fuster et al., 2020) 
at 300 m spatial resolution, a chlorophyll product from ENVISAT MERIS 
(Croft et al., 2020), and clumping index from MODIS (He et al., 2012), 
we were able to determine a substantial improvement on modeled SIF 
when vegetation canopy structure was considered. The importance of 
directly modeling SIF with an ESM is related to the SIF-GPP relationships 
required for remote large-scale estimations of GPP (Ryu et al., 2019; 
Dechant et al., 2020), as well as the direct assimilation of SIF data to 
improve GPP predictions (Norton et al., 2019; Parazoo et al., 2020), 
which are currently highly uncertain globally (Braghiere et al., 2019) 
(see Supplemental material for a model intercomparison with other SIF- 
enabled LSMs). SIF740 nm estimates from CliMA-Land are comparable to 
those of BETHY, while the impact of clumping decreases the total SIF 
signal. In the comparison with SCOPE, CliMA-Land slightly un
derestimates the SIF peak. 

After thorough validation with accurate 3D modeling and observa
tions, we evaluated the impact of the clumping index parameterization 
scheme on proxies of GPP, i.e., vertical APAR, in order to characterize 
further impacts on GPP from CliMA-Land when absorbed radiation will 
be used to derived photosynthesis through the Farquhar-von Caem
merer-Berry model (Farquhar et al., 1980). Contrary to expectation, 
considering horizontal canopy structure through the addition of 
clumping on the radiative transfer scheme of CliMA-Land caused fAPAR 
to vary largely across different canopy densities, illumination angles, 
and soil background albedos, but with one single impact on the total 
APAR across the vertical canopy. Throughout all the evaluated scenes, 
APAR increased when canopy structure is considered, especially in the 

bottom layers of the vegetation canopy. This can be thought of as a 
reduction on the total optical depth of the canopy and, therefore, less 
plant material for the radiation to interact with along its pathway to the 
ground and back up after interacting with the surface underneath. These 
results are in alignment with previous studies that evaluated the impact 
of the clumping index on radiative transfer schemes in land surface 
models (Braghiere et al., 2020; Braghiere et al., 2019; Loew et al., 2014). 

The CliMA-Land model can simulate photosynthesis. However, 
photosynthesis is a process that includes many more different sub- 
models, e.g., the Farquhar ecophysiology model (Farquhar et al., 
1980), model of root development, model of water distribution in soils 
and plants. Therefore, the current study is limited to the evaluation of 
the radiative transfer scheme in CliMA-Land, in order to keep consis
tency and conciseness without completely leaving photosynthesis 
behind through the evaluation of the impact of clumping on vegetation 
indices. Nevertheless, further evaluation on CliMA-Land photosynthesis 
is required. 

Finally, we tested two relationships that were described in the 
literature as strongly influenced by canopy structure and that our new 
model allowed us to explore. The first one is the relationship between 
observed SIF and NIRv proposed by Badgley et al. (2017) and further 
evaluated in a number of studies (Badgley et al., 2019; Dechant et al., 
2020). Here we showed an improved linear fit between NIRv and SIF 
when considering canopy structure to calculate the transfer of radiation 
with a reduction of 20% on RMSE. This result reinforces previous evi
dence relating the effect of canopy structure, represented by fesc, on SIF 
emission, APAR, and GPP using modeling and observations (Dechant 
et al., 2020; Du et al., 2017; Migliavacca et al., 2017). 

The impacts of canopy clumping were also evaluated on the rela
tionship demonstrated by Zeng et al. (2019) and described in Eq. (5) 
where fesc can be approximated by NIRv.fAPAR−1. Zeng et al. (2019) 
showed that fesc can be derived from NIRV properly even over sparsely 
vegetated areas with minimal effects from background soil albedo. In 
here, we showed an improved linear fit in Fig. 10b when considering 
clumping index in CliMA-Land radiative transfer, which highlights the 
important effect that horizontal canopy heterogeneity can have on the 
appropriate usage of Eq. (5). 

4.1. Data uncertainties and model limitations 

The non-linearity of clumping index spatial scaling at the landscape 
level has been previously explored using LAI-2000 and digital hemi
spherical photography datasets (Ryu et al., 2010a). In our study, the 
clumping index and LAI values were linearly scaled up as area weighted 
averages for the OCO-3 SIF validation experiment (<4 km vs. 500 m), 
which may introduce biases in our results, mainly due to changes in 
vegetation heterogeneity with spatial scale. The linear averaging 
method in this particular case was preferred due to: (i) the absence of 
high-resolution gap fraction and clumping index measurements; and, (ii) 
the fairly homogeneous clumping index values in the evaluated areas 
(see Supplemental material). In addition, the MODIS clumping index 
was retrieved using the Normalized Difference between Hotspot and 
Darkspot (NDHD) algorithm (Chen et al., 2005) and validated with in- 
situ measurements over a set of 63 globally distributed LPV (Land 
Product Validation) and VALERI (VAlidation of Land European Remote 
sensing Instruments) sites (Baret et al., 2006; Garrigues et al., 2008; 
Nightingale et al., 2011; Pisek et al., 2015b), as well as intercompared 
with higher resolution (275 m) data from the Multi-angle Imaging 
SpectroRadiometer (MISR) satellite (Pisek et al., 2013), showing a 
particularly good agreement over needleleaf forests, with MODIS 
showing a wider range of clumping index values (0.47–0.72) compared 
to MISR (0.52–0.59) (Pisek et al., 2015b). 

Further intercomparison between MISR, MODIS, and POLDER 
clumping index datasets (Pisek et al., 2010) highlighted the importance 
of appropriately scaling up the clumping index values in order to match 
the scale of the application. For instance, if POLDER clumping index 
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(~6 km resolution) was to be used with our model, an alternative scaling 
methodology would be preferred in order to avoid the addition of sig
nificant biases due to the usage of coarser resolution data. Likewise, if an 
evaluation was to be performed using OCO-3 SIF grouped into larger 
areas (e.g., 0.5 degree as current ESMs), a non-linear averaging method 
would be indicated in order to limit uncertainty (Ryu et al., 2010a). In 
future validation studies of CliMA-Land at site level with scanning 
spectrometers, e.g., PhotoSpec (Grossmann et al., 2018), clumping index 
values should be derived at much finer spatial scales (<1 m), taking into 
account clumping index variations with canopy height and view zenith/ 
azimuth angles accordingly. 

5. Conclusion 

Our work suggests that considering vertical and horizontal vegeta
tion canopy structure through the addition of a clumping index 
parameterization scheme may significantly improve the hyperspectral 
shortwave radiation partitioning of an ESM without losing efficiency, 
with a RMSE reduction on the order of 25% for reflectance, 66% for 
absorptance, and 75% for transmittance in comparison to a highly ac
curate Monte Carlo 3D radiative transfer model. The dominant effect 
that introducing clumping has in our study is to allow more shortwave 
radiation to propagate further into lower canopy layers increasing APAR 
values throughout the vertical canopy and across sun zenith angles. 

We also compared SIF emissions against observed data with a sat
ellite spectrometer, NASA’s OCO-3. The results presented here strongly 
support previous evidence that horizontal canopy structural features are 
crucial for an accurate estimation of SIF, as do further extrapolations 
that might come out from this variable, such as global photosynthesis. 
The improvement of SIF estimates with a clumping index indicates that 
the clumping index can capture the horizontal canopy structural fea
tures at remote sensing scales (<4 km). 

Finally, we showed how the clumping index parameterization 
scheme improved the SIF correlation to NIRv, as well the correlation of 
fesc with fAPAR, which provides further evidence for the role of vertical 
and horizontal canopy structure on SIF emission and the appropriate 
determination of other vegetation indices. 

Data availability 

The CliMA project, code, simulation configurations, model output, 
and tools to work with the output are described at https://github. 
com/CliMA. The CliMA-land model and examples are available at 

https://github.com/CliMA/Land. The minimization of hyperspectral 
leaf reflectance and transmittance was performed using a Julia package 
available at https://github.com/Yujie-W/ConstrainedRootSolvers.jl. 
The LAI map, PROBA-V LAI V2, was produced by Copernicus at 1 km 
resolution and it is available at https://land.copernicus.eu/global/pro 
ducts/lai. National Ecological Observatory Network, 2020. Data Prod
uct DP3.30011.001, Albedo - spectrometer - mosaic. Provisional data 
downloaded from https://data.neonscience.org on November 30, 2020. 
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Appendix A. Appendix 

A.1. Calculating escape and recollision probabilities 

This Appendix has additional information on the calculation of the escape and recollision probabilities. For the complete set of equations, see 
Huang et al. (2007) and Smolander and Stenberg (2005). First, the canopy interceptance (i) refers to the probability of an incoming photon interacting 
with the vegetation canopy, and it can be approximated by 1 – Pgap, where Pgap is the direct transmittance. Second, the recollision probability (p) refers 
to the probability that a photon recollides with elements of the canopy at an n-th plus one time, on its n-th interaction with the canopy, and it can be 
obtained by rearranging Eq. (2) presented in Smolander and Stenberg (2005) as: 

ps/d =

1 −

(

1−ωl
fAPARs/d

)

×
(
1 − Pgap

)

ωl
(A1)  

where fAPAR is the fraction of absorbed PAR, Pgap is the direct transmittance, and ωl is the single scattering albedo. Finally, the escape probability (ρ) 
refers to the probability of a photon escaping the vegetation canopy after interacting with elements of vegetation, and it can be obtained by rear
ranging Eq. (9) presented in Huang et al. (2007) as: 

ρs/d =
Rs/d

ωl ×
(
1 − Pgap

)
+

ωl 2×ps/d ×(1−Pgap)
1−ps/d ×ωl

(A2) 
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where R is the canopy albedo, Pgap is the direct transmittance, ωl is the single scattering albedo, and p is the recollision probability. 
Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2021.112497. 
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