The Journal of Neuroscience, September 1, 2021 - 41(35):7449-7460 - 7449

Behavioral/Cognitive

The Music of Silence: Part II: Music Listening Induces
Imagery Responses

Giovanni M. Di Liberto,"?* Guilhem Marion,"* and Shihab A. Shamma'”
"Laboratoire des systémes perceptifs, Département d’études cognitives, Ecole normale supérieure, PSL University, CNRS, 75005 Paris, France,
*Trinity Centre for Biomedical Engineering, Trinity College Institute of Neuroscience, Department of Mechanical, Manufacturing, and Biomedical
Engineering, Trinity College, University of Dublin, Dublin 2, Ireland, *School of Electrical and Electronic Engineering and University College Dublin
Centre for Biomedical Engineering, University College Dublin, Dublin 4, Ireland, *Research Chair on Beauty Studies, Université Paris Sciences et
Lettres, 75006 Paris, France, and *Institute for Systems Research, Electrical and Computer Engineering, University of Maryland, College Park,
Maryland 20740

During music listening, humans routinely acquire the regularities of the acoustic sequences and use them to anticipate and
interpret the ongoing melody. Specifically, in line with this predictive framework, it is thought that brain responses during
such listening reflect a comparison between the bottom-up sensory responses and top-down prediction signals generated by
an internal model that embodies the music exposure and expectations of the listener. To attain a clear view of these predic-
tive responses, previous work has eliminated the sensory inputs by inserting artificial silences (or sound omissions) that leave
behind only the corresponding predictions of the thwarted expectations. Here, we demonstrate a new alternate approach in
which we decode the predictive electroencephalography (EEG) responses to the silent intervals that are naturally interspersed
within the music. We did this as participants (experiment 1, 20 participants, 10 female; experiment 2, 21 participants, 6
female) listened or imagined Bach piano melodies. Prediction signals were quantified and assessed via a computational model
of the melodic structure of the music and were shown to exhibit the same response characteristics when measured during lis-
tening or imagining. These include an inverted polarity for both silence and imagined responses relative to listening, as well
as response magnitude modulations that precisely reflect the expectations of notes and silences in both listening and imagery
conditions. These findings therefore provide a unifying view that links results from many previous paradigms, including
omission reactions and the expectation modulation of sensory responses, all in the context of naturalistic music listening.
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Music perception depends on our ability to learn and detect melodic structures. It has been suggested that our brain does so
by actively predicting upcoming music notes, a process inducing instantaneous neural responses as the music confronts these
expectations. Here, we studied this prediction process using EEGs recorded while participants listen to and imagine Bach mel-
odies. Specifically, we examined neural signals during the ubiquitous musical pauses (or silent intervals) in a music stream
and analyzed them in contrast to the imagery responses. We find that imagined predictive responses are routinely co-opted
during ongoing music listening. These conclusions are revealed by a new paradigm using listening and imagery of naturalistic

melodies.
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upcoming sensory inputs, comparing (subtract-
ing) them and hence deriving a prediction error
(8 sur) that is used to improve an internal (pre-
diction) model of the world. A large body of
research has found prediction effects to be in
line with several neurophysiological phenomena,
such as the magnitude modulation of sensory
responses with the expectation of these responses
(Kutas and Hillyard, 1980, 1984; Rabovsky et al.,
2018), where larger responses were measured for
more unexpected inputs. In auditory neuro-
physiology, this prediction phenomenon has
been extensively investigated using the responses
evoked by sound stimuli (Sutton et al, 1965;
Friederici et al., 1993; Mars et al., 2008; Kutas
and Federmeier, 2011; Strauf$ et al., 2013; Seer et
al., 2016). A less common approach involves
studying the predictions in the absence of the
acoustic input, that is, during silence, a strategy
that potentially unveils neural predictive proc-
essing and top-down mechanisms of this proc-
essing by decoupling it from the simultaneous
bottom-up sensory inputs (Heilbron and Chait,
2018; Walsh et al., 2020).

Vigorous responses to silences have been
observed across modalities when a sensory
stimulus was strongly expected, for example,
corresponding to an omission during the rapid
isochronous presentation of tones (Simson et
al., 1976; Joutsiniemi and Hari, 1989; Yabe et
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Figure 1.  Simplified predictive processing model demonstrating the predictive processing hypothesis for the per-
ception of melodies. The EEG signal recorded during monophonic music listening was hypothesized to reflect the lin-
ear combination of an S-evoked response and a neural P signal. In line with the predictive processing framework, we
modeled the EEG signal as a combination of the distinct components S and P; specifically as the subtraction S—P or equiv-
alently S + (—P). Having defined P as a signal reflecting the attempt of our brain to predict the sensory stimulus, we pos-
ited P to emulate S (with |S|>|P) and to have larger magnitude with stronger expectations (For simplicity, the
expectation strengths are not induded in this figure.). As such, the S—P signal would become —P when a prediction is
possible but no sensory stimulus is present (S = 0), producing an overall EEG signal with inverse polarity compared with
the response to a note. In other words, EEG responses with opposite polarities were expected for events with and without
an input sound. Black lines at the top and bottom of the figure indicate notes; green lines indicate silent-events. Neural sig-
nals for notes and silent-events were expected to exhibit inverted polarities. Polarities in the neural signals were high-
lighted in red (positive) and blue (negative) and dots were used for ease of visualisation. After selecting silent-events as
the instants where a note was plausible but did not occur (based on IDyOM, see below, Materials and Methods), the exis-
tence and precise dynamics of the prediction signal was assessed (1) by comparing the responses to silent-events during
melody listening, where P could be measured in isolation as S = 0, (2) by studying the neural processing of music during
imagery, where P could be isolated as S = 0 for both notes and silent-events, and (3) by separating S and P with a com-
ponent analysis method.

al., 1997; Chennu et al., 2016). This finding

demonstrated that unexpected silences can

elicit robust neural responses that do not require a concurrent
sensory input. However, silence has a much more pervasive
presence in our auditory experience than what can be cap-
tured in the stimulus omission scenario, which is limited to
silences occurring in place of highly expected stimuli. In fact,
silence is a fundamental component of the rhythmic structure
of music, which can correspond to a wide range of expectation
strengths. The regularities of music prompt our brain to build
such expectations, which are accurately estimated by compu-
tational models of musical structure (Pearce, 2005), allowing
us to assess the precise neural encoding of music expectations.
Although such expectations have been shown to be encoded
in the neural responses to notes in a melody during listening
(Di Liberto et al., 2020), little is known about the neural
encoding of internally generated music.

Here, we investigate the role of silence on the neural process-
ing of music with EEGs recorded as participants listened to or
performed mental imagery of excerpts from Bach chorales.
Endogenous and exogenous components of the neural signal are
discerned by studying the comparison between listening and im-
agery conditions. According to prediction theories, the brain
continuously builds predictions of upcoming music notes, with
the prediction (P) signal appropriately modulated by the uncer-
tainty of the prediction (Koelsch et al., 2019). When subtracted
from the sensory (S) response, it produces a surprise or predic-
tion error signal that is measurable with EEG (84, = S—P;
Heilbron and Chait, 2018; Grisoni et al., 2019). In this study, we
assumed S and —P to contribute to the EEG signal as two distinct
additive components, where P mimics S and, conversely, —P has
inverse polarity compared with S. Under that assumption,
encountering silence when a note is plausible would correspond

to a measurable EEG signal reflecting the neural prediction error
signal 6, = —P, which depends solely on the prediction signal
P as S = 0, thus presenting the inverse polarity of the otherwise
dominant sensory response (Fig. 1; Bendixen et al, 2009
Heilbron and Chait, 2018). For these reasons, we hypothesized
robust neural correlates to emerge in correspondence to the
silent-events of music, reflecting the prediction error &, = —P
and with magnitude changing with the expectation strengths.

The music imagery task allowed us to study the neural encoding
of music silence further by investigating endogenous neural compo-
nents in absence of sensory responses. In an accompanying study
(Marion et al., 2021), we have shown robust neural activation corre-
sponding to imagined notes, extending previous work on auditory
imagery (Halpern and Zatorre, 1999; Kraemer et al., 2005; Zhang et
al., 2017) by demonstrating that cortical signals encode melodic ex-
pectation during imagery. Here, in line with prediction theories,
we hypothesized that P is the main source of such neural activity as
S = 0. As such, we anticipated a prediction signal (64, = —P) to
emerge in the EEG responses to both imagined notes and silent-
events, with inverse polarity relative to a sensory response. Finally,
we anticipated the magnitude of the responses to silent-events to
reflect the precise expectation strengths of each music event, which
were estimated by means of a computational model of melodic
structure (Pearce, 2005) as it was demonstrated for music listening
(Di Liberto et al., 2020) and imagery (Marion et al., 2021).

Materials and Methods

EEG experiment 1

Data acquisition and experimental paradigm. Twenty healthy sub-
jects (10 female, between 23 and 42 years old, median = 29) participated
in the EEG experiment. Ten of them were highly trained musicians with
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a degree in music and at least 10 years of experience, whereas the other
participants had no musical background. Each subject reported no his-
tory of hearing impairment or neurologic disorder, provided written
informed consent, and was paid for participating. The study was undertaken
in accordance with the Declaration of Helsinki and was approved by the
Health Research Ethics Evaluation Board of Paris Descartes University
(CERES 2013-11). The experiment was conducted in a single session for
each participant. EEG data were recorded from 64 electrode positions, digi-
tized at 512 Hz using a BioSemi ActiveTwo system. Audio stimuli were pre-
sented at a sampling rate of 44,100Hz using Sennheiser HD 650
headphones and Presentation software (http://www.neurobs.com). Testing
was conducted at Ecole Normale Supérieure, in a dark room, and subjects
were instructed to maintain visual fixation on a crosshair centered on the
screen and to minimize motor activities while music was presented.

Stimuli and procedure. Monophonic musical instrument digital inter-
face (MIDI) versions of 10 music pieces from Bach’s monodic instrumental
corpus were partitioned into short snippets of ~150 s. The selected melo-
dies were originally extracted from violin [partita Bach Works Catalog
(BWYV) 1001, presto; BWV 1002, allemande; BWV 1004, allemande and
gigue; BWV 1006, loure and gavotte] and flute (partita BWV 1013 alle-
mande, corrente, sarabande, and bourrée angloise) scores and were synthe-
sized by using piano sounds with MuseScore 2 software, each played with a
fixed rate (between 47 and 140 bpm). This was done to reduce familiarity
for the expert pianist participants while enhancing their neural response by
using their preferred instrument timbre (Pantev et al., 2001). Each 150 s pi-
ece, corresponding to an EEG trial, was presented three times throughout
the experiment, adding up to 30 trials that were presented in a random
order. At the end of each trial, participants were asked to report on their fa-
miliarity with the piece (from 1 = unknown to 7 = know the piece very
well). This rating could take into account both their familiarity with the pi-
ece on first occurrence in the experiment as well as the buildup of familiar-
ity across repetitions. Participants reported repeated pieces as more
familiar (paired f test on the average familiarity ratings for all participants
across repetitions: rep2 > repl, p = 6.9 x 10-6; rep3 > rep2, p = 0.003,
Bonferroni correction). No significant difference emerged between musi-
cians and nonmusicians on this account (two-sample ¢ test, p = 0.07, 0.16,
0.19 for repetitions 1, 2, and 3, respectively; Di Liberto et al., 2020).

EEG experiment 2

Data acquisition and experimental paradigm. Twenty-one healthy
subjects (6 female between 17 and 35 year old, median = 25) participated
in the EEG experiment. All participants were highly trained musicians
with a degree in music. Each subject reported no history of hearing
impairment or neurologic disorder, provided written informed consent,
and was paid for their participation. The study was undertaken in ac-
cordance with the Declaration of Helsinki and was approved by the
Health Research Ethics Evaluation Board of Paris Descartes University
(CERES 2013-11). The experiment was conducted in a single session for
each participant. EEG data were recorded from 64 electrode positions
and digitized at 2048 Hz using a BioSemi ActiveTwo system. Three addi-
tional electrodes were placed on the upper midline of participants’ neck,
jaw, and right wrist to control for motor movements of the tongue,
masseter muscle, and forearm fingers extensors, respectively. Audio
stimuli were presented at a sampling rate of 44,100 Hz using a Genelec
8010 loudspeaker and custom Python code. Testing was conducted at
Ecole Normale Supérieure in a dimmed room. Participants were
instructed to minimize motor activities while performing the task.

The experiment consisted of 88 trials in which participants were asked
to either listen or perform mental imagery of ~35 s melodies from a corpus
of Bach chorales (see below, Stimuli and procedure). The entire stimulus set
consisted of four such melodies, with each melody being presented 11 times
per condition (listening and imagery) over the duration of the experiment.
The presentation order of the resulting 88 trials was randomized.
Participants were asked to read the music scores placed at the center of the
desk during both listening and imagery conditions. Participants were pro-
vided with the scores before the experiment and were asked to become fa-
miliar with the melodies. This pre-exposure to the music material was
planned to maximize the imagery performance. A tactile metronome
(Peterson Body Beat Vibe Clip) marking the start of 100 bpm bars (each 2.4
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s) was placed on the left ankle of all participants to allow them to perform
the mental imagery task with high temporal precision. A constant lag of
35ms was determined during the pilot experiments based on the subjective
report on the participants, who reported that the metronome with lag 0 ms
was not in sync with the music. That correction was applied for all partici-
pants with the same lag value. Neural data from 0 to 500 ms after each met-
ronome onset were excluded from the main analyses in Figures 2 and 3 to
ensure that the results do not reflect tactile responses. The metronome
responses were analyzed separately to assess the dynamics of the tactile
response (Fig. 3G). Note that the EEG response to the metronome reflects a
mixture of tactile and auditory responses in the listening condition.

Before the experiment, musical imagery skills (or audiation skills)
were assessed for every subject with the Advanced Measures of Music
Audiation test (https://giamusicassessment.com/).

Stimuli and procedure. Four melodies were selected from a mono-
phonic MIDI corpus of Bach chorales (BWYV 349, BWV 291, BWV 354,
BWYV 271). All chorales use similar compositional principles. The com-
poser takes a melody from a Lutheran hymn (cantus firmus) and harmo-
nizes three lower parts (alto, tenor, and bass) accompanying the initial
melody on soprano. The monophonic version of those melodies consist
of the canti firmi. Original keys were used. The four melodies are based
on a common grammatical structure and show very similar melodic and
rhythmic patterns. The audio stimuli were synthesized using Fender
Rhodes simulation software (Neo-Soul Keys) with 100 bpm, each corre-
sponding to the start of a bar (every 2.4 s).

EEG data preprocessing

Neural data from both experiments were analyzed offline using
MATLAB software (MathWorks). EEG signals were digitally filtered
between 1 and 30Hz using a Butterworth zero-phase filter (low- and
high-pass filters both with order 2 and implemented with the function
filtfilt), and down sampled to 64Hz. EEG channels with a variance
exceeding three times that of the surrounding ones were replaced by an
estimate calculated using spherical spline interpolation. Channels were
then rereferenced to the average of the 64 channels. The temporal
response function (TRF) weights did not qualitatively change when
using high-pass filters down to 0.1 Hz. Low-frequencies below 1 Hz were
crucial for the melodic expectations analysis (see Fig. 5), which was
based on EEG data filtered between 0.1 and 30 Hz [Marion et al. (2021)
has a more extensive analysis on the EEG frequency band.].

Information dynamics of music model
The information dynamics of music (IDyOM; Pearce, 2005) model is a
framework based on variable-order, hidden Markov models. Given a
note sequence of a melody, the probability distribution over every possi-
ble note continuation is estimated for every n-gram context up to a given
length k (model order). The distributions for the various orders were
combined according to an entropy-based weighting function (IDyOM;
Pearce, 2005, Section 6.2). Here, we used an unbounded implementation
of IDyOM that builds n-grams using contexts up to the size of each
music piece. In addition, predictions were the result of a combination of
long-term models (LTM) and short-term models (STM), which yields
better estimates than either model alone. The LTM was the result of a
pretraining on a large corpus of Western music that did not include the
stimuli presented during the EEG experiment, thus simulating the statis-
tical knowledge of a listener that was implicitly acquired after a lifetime
of exposure to music. The STM, on the other hand, is constructed online
for each individual music piece that was used in the EEG experiment.
Our choice of IDyOM was motivated by the empirical support that
Markov-model-based frameworks received as a model of human me-
lodic expectation (Pearce and Wiggins, 2006; Pearce et al., 2010; Omigie
et al, 2013; Quiroga-Martinez et al, 2019). Furthermore, a previous
study from our laboratory demonstrated robust coupling between the
melodic expectations calculated with this configuration of IDyOM and
cortical responses to music (Di Liberto et al., 2020).

Music features
In the present study, we have assessed the coupling between the EEG
data and various features of the music stimuli. The note onset time
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Figure 2.  Robust cortical response to silence during music listening. 4, Experiment 1 setup. The EEG signal was recorded as participants listened to monophonic piano music. Univariate vec-

tors were defined that mark with value 1 the onset of either notes (NT) or silent-events (SIL). A system identification procedure based on lagged linear regression was performed between each
vector and the neural signal that minimizes the EEG prediction error. B, The regression weights represent the TRF describing the coupling of the EEG signal TRFy; and silent-events TRFg; . TRFs
at the representative channel F(z are shown (top), revealing significant differences (FDR corrected Wilcoxon test, *g << 0.001) between the neural signature of note and silent-event because
of inverted polarities, as clarified by the topographies of the TRF components (bottom). , D, Overall distribution of time intervals between notes and between silent-events and the immedi-
ately preceding note. The y-axis indicates the number of occurrences for a given bin of time intervals when considering all trials. The data show that a large number of silent-events occurred
<C200 ms after a note, implying that in experiment 1, TRFg,_could have potentially been affected by the late response to the previous note. E, The analysis from B was rerun by using multivar-
iate TRF models, i.e., considering note and silent-event vectors simultaneously with multivariate lagged regression to account for possible interaction between the two. The figure shows the
regression weights corresponding to the two regressors at the selected channel F(z, and the topographies show the regression weights. As for the univariate TRF result, significant differences
were found between note and silent-event TRFs (FDR corrected Wilcoxon test, *q << 0.001). TRFy; showed qualitatively more pronounced early TRF components.

information was extracted from the MIDI files and encoded into time-
series marking with an impulsemarking all note onsets (NT) with an
impulse with value one. The time-series had length matching that of the
corresponding music piece and had the same sampling frequency as the
EEG data (Fig. 2A). We then used IDyOM to identify silent-events, that is,
time instants without a note but where a note could have plausibly
occurred. IDyOM does not encode silent-events explicitly, so we applied
custom changes to the original Lisp programming language to extract the
information of interest on the silent-events without changing the way
IDyOM operates. Specifically, for each note, with a quantization of 1/16th
of a bar, IDyOM was used to search for the time for the next most likely
event. The search continued for progressively longer latencies until the
model predicted a note with high likelihood (>0.3). We called those
instants silent-events. The procedure was repeated on the silent-event
instants to predict where the next note would occur by knowing that there
was no note where the model had predicted one. This information was
then encoded into time-series marking with an unit impulse each silent-
event onset (SIL). Experiment 1 had a total of 23,514 notes and 5202
silent-events. In experiment 2, 1548 notes and 271 silent-events were used
to fit the TRF in each condition (listening and imagery). Note that such
events co-occurring with the tactile metronome were excluded. Figure 2,
Cand D, and Figure 3, E and F, report additional information on the dis-
tribution of notes and silent-events in the two experiments.

To investigate the cortical processing of note and silence expecta-
tions, we estimated the surprise and entropy values for each individual

note of a given music piece by using IDyOM. Given a note e; a note
sequence e; ,, which immediately precedes that note, and an alphabet E
describing the possible onset time values for the note, surprise
S(eiler.i — 1) refers to the inverse probability of occurrence of a particu-
lar note at a given position in the melody (MacKay, 2003; Pearce et al.,
2010) as follows:

S(ejleri 1) = log, ————.
( |1 l) gzp(ei|e”71)

The entropy in a given melodic context was defined as the Shannon
(1948) entropy computed by averaging the surprise over all possible con-
tinuations of the note sequence, as described by E in the following:

H(eli) = Zp(e|el.i—l)s(e|el.i—l)~

ecE

In other words, the entropy provides an indication on the uncer-
tainty on the upcoming music event given the preceding context.

IDyOM simulates implicit melodic learning by estimating the proba-
bility distribution of each upcoming note. This model can operate on
multiple viewpoints, meaning that it can capture the distributions of var-
ious properties of music. Here, we focused on the onset time viewpoint.
IDyOM generates predictions of upcoming music events based on what
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Figure 3.  Comparable cortical encoding of music silence and note during imagery. A, B, EEG signals were recorded as participants listened to and imagined piano melodies (experiment 2).

A vibrotactile metronome placed on the left ankle allowed for the precise execution of the auditory imagery task. ¢, TRFs at the channel F(z (left) and topographies of the TRF at selected time
latendies (right) are reported for the listening condition. Thick lines indicate TRF weights that are larger than the baseline at latency zero (FDR corrected Wilcoxon signed rank test, ¢ << 0.01).
Black asterisks indicate significant differences between NT and SIL (FDR corrected Wilcoxon signed-rank test, ¢ << 0.01). D, The TRF results are reported for the imagery condition, showing a
significant component centered at ~300 ms for both note and silent-events with, as hypothesized, no significant difference between NT and SIL, which had the same polarity in this case. E, F,
Overall distribution of time intervals between notes and between silent events and the immediately preceding note in experiment 2. The y-axis indicates the number of occurrences for a given
bin of time intervals when considering all trials. G, TRFs were fit for the listening and imagery conditions using a univariate stimulus regressor marking the metronome with unit impulses (and
zero at all other time points). TRFs are shown at the EEG channel FCz. Topographies depicting the TRF weights at all channels are also shown at the peak of the dominant TRF component.

is learned, allowing the estimation of entropy values for the properties of
interest. Each of these features was encoded into time series by using the
values of the features to modulate the amplitude of a note onset vector.
This resulted in four time series: surprise and entropy of the onset time
for notes (Syand Hyp) and silences (Ss; and Hgpp ).

TRF analysis

A system identification technique was used to compute the channel-spe-
cific music-EEG mapping for analyzing the EEG signals from both
experiments. This method, here referred to as the TRF (Lalor et al., 2009;
Ding et al,, 2014), uses a regularized linear regression (Crosse et al.,
2016) to estimate a filter that optimally describes how the brain trans-
forms a set of stimulus features into the corresponding neural response
(Fig. 2A, forward model). Leave-one-out cross-validation (across trials)
was used to assess how well the TRF models could predict unseen data
while controlling for overfitting. Specifically, we implemented a nested-
loop cross-validation, with the inner-loop consisting of a leave-one-out
cross-validation where TRF models were fit on the training fold and
used to predict the EEG signal of the left-out trial. The purpose of the
inner loop was to determine the optimal regularization parameter (A €
[107°, 10%]) by selecting the one maximizing the EEG prediction correla-
tion (averaged across all electrodes and validation trials). The outer loop
iterated over each left-out test trial, where the TRF model was fit on all
other trials (using the optimal regularization parameter identified with
the inner loop), and the quality of the model was quantified by calculat-
ing the Pearson’s correlation between the preprocessed recorded signal
and the prediction of the signal at each scalp electrode.

The interaction between stimulus and recorded brain responses is
not instantaneous; in fact, a sound stimulus at time ¢, affects the brain
signals for a certain time window [¢;, t;+t,:,], with £; > 0 and t,,;,, > 0.
The TREF takes this into account by including multiple time lags between

the stimulus and neural signal, providing us with model weights that can
be interpreted in both space (scalp topographies) and time (music-EEG
latencies). The relative long interonset interval (IOI) between music
events (e.g., the most common note duration was 300 ms in experiment
2) could constitute a challenge for the TRF analysis, which may errone-
ously associate a neural response to a note # to the previous note n-1
because of the intrinsic regularity of music. To overcome this limitation,
a broad time lag window of —300 to 900 ms was selected to fit the TRF
models, which enabled the regression model to more reliably distinguish
the response to the current and neighboring events.

A univariate forward TRF analysis was used to assess the neural
response to music notes and silent-events. TRF models were fit for relat-
ing NT and SIL with the EEG signal from experiments 1 and 2. Note
that note and silent-event TRFs were fit separately. The temporal dy-
namics of the neural response to music were then inferred from the TRF
model weights for latencies that were considered physiologically plausi-
ble according to previous work (Freitas et al., 2018; Jagiello et al., 2019;
Di Liberto et al., 2020), as shown in Figures 2B, 3C, and 3D. A multivari-
ate TRF analysis was also conducted for experiment 1 by combining NT
and SIL, which allowed to assess the neural signature corresponding to
silent-events while regressing out the possible impact of the evoked
responses to the preceding notes (Fig. 2E).

In experiment 2 a multivariate TRF analysis was also used to assess
the cortical encoding of melodic surprise for note and silence events sep-
arately. Specifically, given either note or silence events, forward TRF
models were fit by representing the stimulus as the concatenation of the
corresponding (1) onset time vector, (2) entropy time vector, (3) and
surprise time vector. Then, the TRF analysis was repeated after shuffling
the expectation values (entropy and surprise) in the multivariate regres-
sor. Specifically, a random permutation was applied to shuffle the en-
tropy and surprise values of the events while preserving the onset time.
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This allowed for the comparison of the TRF models with shuffled modes
with the same dimensionality but with meaningless melodic expectation
value sequences (see below, Statistical analyses for additional details on
the permutation analysis). The rationale was that the inclusion of me-
lodic expectation information improves the EEG prediction correlations
only if the EEG responses to music are modulated by such expectations,
a phenomenon that was already shown for notes (Di Liberto et al., 2020;
Marion et al., 2021) but not for silences.

Multiway canonical correlation analysis

The TRF analysis has some limitations, such as working under the
assumption of time invariance of the neural responses to notes and
silent-events. That could be an issue because it is possible that the
responses to silence change depending on the position (e.g., two consec-
utive silences). However, ERP analysis make the same assumption, and
the high level of noise in the EEG hampers our ability to study questions
on the raw data. We tackled this issue in experiment 2 with multiway
canonical correlation analysis (MCCA), a tool that merges EEG
data across subjects to improve the signal-to-noise ratio (SNR).
MCCA is an extension of canonical correlation analysis (Hotelling,
1936) to the case of multiple (> 2) datasets. Given N multichannel
datasets Y; with size T X J;, 1 <i< N (time x channels), MCCA finds a lin-
ear transform W (sizes J; X Jo, where Jo < min(J}); < i < ), which, when
applied to the corresponding data matrices, aligns them to common coordi-
nates and reveals shared patterns (de Cheveigné et al., 2019). These patterns
can be derived by summing the transformed data matrices as follows:

N
Y = > Y;W,;. The columns of the matrix Y, which are mutually orthogo-
i1
nal, are referred to as summary components (SC; de Cheveigné et al., 2019).
The first components are signals that most strongly reflect the shared infor-
mation across the several input datasets, thus minimizing subject-specific
and channel-specific noise. Here, these datasets are EEG responses to the
same task for 21 subjects. Note that EEG data were averaged across the 11
repetitions of each musical piece to improve the SNR before running the
MCCA analysis.

This technique allows extraction of a consensus EEG signal,
which is more reliable than that of any subject. This methodology
is a better solution than averaging data across subjects, which in
the absence of appropriate coregistration leads to loss of informa-
tion because of topographical discrepancies. MCCA accommo-
dates such discrepancies without the need for coregistration.
Under the assumption that the EEG responses to music and music
imagery share a similar time course within a homogeneous group
of young adults, the MCCA procedure allows us to extract such
common cortical signals from other more variable aspects of the
EEG signals, such as subject-specific noise. For this reason, our
analysis focuses on the first Ngc summary components, which we
can consider as spanning the most reliable EEG response to music
and music imagery. Ngc was set to the number of components with
the largest (fifth percentile) correlation with the original EEG data
(Nsc = 10 and Ngc = 8 for the listening and imagery conditions, respec-
tively). Denoised EEG data were then calculated by inverting the MCCA
mapping and projecting the Ngc summary components back to the subject-
specific EEG channel space. The latter procedure allowed us to study the
MCCA results in the same space of the TRF results (EEG channels) and to
assess the robustness of the result across participants.

This last step was executed twice. First, denoised EEG data were cal-
culated by using only the first summary component, which intuitively
represent the strongest and most correlated response across subjects—
the sensory response. A second denoised EEG dataset was calculated
based on the remaining Ngc-1 components, which were expected to
include the residual sensory response but, importantly, to encode the
neural prediction signal. A time-locked average analysis was conducted
on the two resulting signals, allowing us to derive an average response
for notes and silent-events for each of the signals (first component and
the combination of the remaining Ngc-1 components) and for each con-
dition (listening and imagery). Baseline correction was not applied for
the time-locked average as the MCCA procedure should have substan-
tially reduced subject-specific noise (e.g., temporal drifts). Thus, we were
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interested in assessing the exact average signals corresponding with
notes and silent-events, including possible nonzero activity before the
event. This also allowed us to more clearly visualize the potential impact
of previous notes to the average signal corresponding with notes or
silent-events. Different from the TRF analysis, the time intervals corre-
sponding to the metronome response were included in the MCCA pro-
cedure, allowing us to extract components related to the corresponding
sensory response.

This analysis was conducted on EEG data that was filtered between 1
and 30 Hz. We also ran the procedure by including frequencies down to
0.1 Hz. However, the separation between sensory and prediction compo-
nents was not as clear cut as in the 1-30 Hz case as the sensory response
contributed to the first several components.

Statistical analyses
Consistent statistical procedures were applied to the datasets from the
two experiments.

Linear mixed-model analyses were performed when testing for sig-
nificant effects in case of multiple factors over multiple groups. This sta-
tistical test was conducted when studying the TRF results in Figure 3
and the MCCA results in Figure 4 to assess effects of event type (notes
and silent-events) and condition (listening and imagery).

Pairwise comparisons were assessed via the (nonparametric) Wilcoxon
signed-rank test. Correction for multiple comparisons was applied where
necessary via the false discovery rate (FDR) approach. In that case, the g
value is reported, that is, FDR-adjusted p value. This FDR-corrected
Wilcoxon analysis was used when testing the TRF weights for significance
in experiment 1 by comparing each data point of the TRF global field power
with a baseline at latency zero. The same FDR-corrected analysis was also
run when conducting a post hoc analysis on the TRF weights in experiment
2 (Fig. 3), again with a baseline at latency zero, and in the lateralization anal-
ysis in Figure 5.

A permutation procedure was used to test for a significant neural
encoding of melodic expectations in experiment 2 (Fig. 5). That proce-
dure consisted of rerunning 100 times per participant the forward TRF
procedure, each time after random shuffling of the expectation values,
while preserving the timing information (see above, TRF analysis for fur-
ther details on the shuffling procedure). A null distribution of the mean
EEG prediction correlation across participants was estimated with boot-
strap resampling to assess whether melodic expectations improved the
EEG prediction correlations. The null distribution was composed of N =
10,000 data points, each derived by selecting a random data point per
subject among the 100 shuffles, averaging the corresponding EEG pre-
diction correlations across participants, and repeating the procedure
10,000 times. The uncorrected p values are reported in this case as sev-
eral p values were smaller than the sensitivity of the test (p < 10™*). The
100 data points per participants were also used to estimate a null distri-
bution to assess significance for individual participants. Note that the
analyses for both the group subject level and individual subject level
were conducted after averaging the EEG prediction correlations across
all electrodes.

Data Availability

The music listening Bach dataset is available to download via Dryad at
(https://doi.org/10.5061/dryad.dbrv15£0j). The music listening and im-
agery dataset will be available to download via Dryad. The TRF analysis
was conducted using the freely available mTRF-toolbox version 2.0,
which can be downloaded from https://sourceforge.net/projects/aespa/.
The MCCA analysis was conducted using the freely available MATLAB
toolbox NoiseTools, which can be downloaded from http://audition.ens.
fr/adc/NoiseTools/. Melodic expectation information was calculated
with the Lisp implementation of the IDyOM, which is freely available for
download at https://code.soundsoftware.ac.uk/projects/idyom-project.

Results

Neural data were recorded from participants as they alternately
performed a music listening (experiments 1 and 2) and a music
imagery task (experiment 2) based on monophonic piano


https://doi.org/10.5061/dryad.dbrv15f0j
https://sourceforge.net/projects/aespa/
http://audition.ens.fr/adc/NoiseTools/
http://audition.ens.fr/adc/NoiseTools/
https://code.soundsoftware.ac.uk/projects/idyom-project

DiLiberto etal.  Musical Listening Induces Imagery Responses

J. Neurosci., September 1, 2021 - 41(35):7449-7460 - 7455

A C
Listening Listening
5 200
[ 1 [ 1 [ 100
= Ok et i o : Component 1 = Component 1
© ‘ L S ! 13 ¢ (sensory signal) © 0 (sensory signal)
‘0’_5 1 1 1 1 I | ;‘:_100
B E 0 200 400 600
€ 5 S 20
j=2] {2
o ( | C ‘ - g o0
0 iy al b ; A Residual 20 w Residual
‘ i ¢ i ! i (prediction signal) 40 (prediction signal)
_5 1 1 Il 1 1 1 1 1 ]
4 6 8 10 12 14 16 18 20 22 0 200 400 600
Time (s) j\ Time latency (ms)
B == D
Imagery B Imagery
5
(_ 0
5 0 My b ; W Component 1 = 10 /\//\\//\%WV\ Component 1
© ‘ : ! Lo ! v (sensory signal) © -20 (sensory signal)
v_5 L L I L I L 1 I Il b
3 ] 0 200 400 600
2 2
: { g W
Y \ [ \ [ [0}
= ; T ) AN Residual = 220 Residual
‘ g 5= L 15 (prediction signal) (prediction signal)
-5 1 I I 1 | I I I | -40
4 6 8 10 12 14 16 18 20 22 0 200 400 600
Time (s) Time latency (ms)
Figure 4.  Disentangling sensory and prediction neural signals with unsupervised correlation analysis. MCCA was used on all EEG data to identify components of the EEG signal that were con-

sistent across subjects. Ngc SCs with the largest intersubject correlation were preserved. The first SC represents the EEG response that is the most correlated signal across subjects. Here, we
hypothesized the first SC and the residual Nsc-1 SCs to capture sensory and prediction cortical signals, respectively. A, B, The first SC (top) and the residual Ngc-1 SCs (bottom) were back pro-
jected onto each participant’s EEG channel space for each condition. The average signals at the EEG channel F(z were shown for a selected portion of Melody 4 (olive green lines). Vertical lines
mark music events, notes (black dotted lines), silent-events (green dashed lines), and vibrotactile metronome onset (purple dotted lines). Note that sensory responses could exist only for note
and metronome in the listening condition and for metronome only in the imagery condition. €, D, First SC (top) and the residual Nsc-1 SCs (bottom) at the EEG channel F(z after time-locked
averaging to note and silent-event onsets. Shaded areas indicate the 95% confidence interval calculated across participants.

melodies from Bach. A computational model of melodic struc-
ture based on Markov chains (Pearce, 2005) was used to identify
silent-events, that is, silent instants where a note could have plau-
sibly occurred (see above, Materials and Methods). Our analyses
aimed at testing the hypothesis that an endogenous prediction
signal emerges in correspondence to silent-events. We parame-
trized the onset times of notes and silent-events in univariate
vectors (NT and SIL, respectively) and related them with the
neural data by means of three distinct analysis procedures. In the
listening task, the S response, which was present in N'T but not
SIL, was anticipated to account for most of the variance of the
EEG responses to melodies. The residual nonsensory response
was instead hypothesized to reflect top-down neural P signals.
According to the predictive processing framework, P was
expected to be measured in combination with the sensory
response in correspondence of notes in the listening condition
(8 sur = S—P) and in isolation in correspondence to notes in the
imagery condition and silent-events in both conditions (S = 0,
Osur=—P).

Experiment 1: Robust cortical response to silence during
music listening

In the first EEG experiment, 20 healthy participants were
instructed to listen to 10 monophonic piano excerpts from Bach
sonatas and partitas, each repeated three times and played in ran-
dom order. The cortical responses to music were assessed by
means of a multivariate linear regression framework known as
the TRF, which takes into account the interactions and overlap
between a succession of notes. Given a property of interest of a
sensory stimulus encoded in a time vector, the TRF estimates an

optimal linear transformation of those vectors that minimizes
the EEG prediction error (Fig. 2A). The TRF weights can then be
interpreted to assess the spatiotemporal dynamics of the underly-
ing neural system.

First, the cortical response to music notes was assessed by cal-
culating the TRF between a time vector marking note onsets
with value 1 (NT) and the corresponding EEG signal (1-30 Hz).
Then, the same procedure was repeated when considering the
onset time of silent-events (Fig. 2A). The global field power of
TRFyr indicated that three components centered at ~80, 200,
and 400 ms were significantly larger that the baseline at lag 0 ms
of sound EEG latency (FDR-corrected Wilcoxon tests, g < 0.001;
NT, significant effects for the time-latencies in the windows of
62.5-250 and 297-516 ms). Instead, only two significant compo-
nents emerged for TRFgy, at 200 and 400 ms. The regression
weights for TRFyr and TRFgy; are shown in Figure 2B for a rep-
resentative electrode (FCz), with the corresponding topographies
for all electrodes. Interestingly, note and silent-event responses
showed inverse polarity, showing a large negative correlation
between the two curves (r = —0.946, p = 4.0 * 10 °°) and leading
to significant differences for the three components at 80, 200,
and 400 ms (FDR-corrected Wilcoxon tests, g < 0.001; SIL, sig-
nificant effects for time latencies in the windows of 125-282 and
359-484 ms).

The large difference between the neural responses to notes
and silent-events is likely because of the absence of auditory
stimulation for music silence. As such, TRFg; was expected to
reflect the effect of top-down predictions, which could include
the prediction signal itself as well as the update of internal priors
on the upcoming music event after detecting a silence. Indeed,
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the present design comes with a potential confound: A
TRFgy, could be capturing an average late response to

ducted a multivariate forward TRF analysis where both

the NT and SIL regressors were used to predict the

EEG signal simultaneously. In this context, the NT
vector could be seen as a nuisance regressor when
studying TRFgy;. and vice versa. The result of this anal- B
ysis (Fig. 2E) indicates that the inclusion of NT as a
nuisance regressor does not change the main TRF
result (polarity inversion between TRFyr and TRFgy,
with a large negative correlation between the two
curves: r = —0.616, p = 1.6 * 10”7). Furthermore, the
dynamics of TRFgy;, did not change compared with the
univariate analysis (Pearson’s r = 0.95, p = 3.3 * 10>
between the TRFgy; curves in the univariate and multi-
variate TRF analyses), despite a reduction in power
over time latencies (Wilcoxon tests, p = 3.3 * 1071,
which reflects the expected smaller magnitude silent-
event neural signals compared with evoked responses
to notes, an effect that is magnified in the multivariate
model as the two neural responses are assessed
simultaneously.

We designed a second experiment aiming at over-
coming the limitations with experiment 1. The follow-
ing section describes that experiment 2, whose novel
design based on musical imagery enables the isolation
of endogenous neural signatures of both notes and silent-events.

a previous note. Although this risk is minimized by =
. . . . . . (=

our choice of 10 music stimuli with various tempo, the S
. . . ©
majority of silent-events occurred <300ms after a ©
note (Fig. 2C,D). To assess the likely interaction 3
between silent-events and the preceding notes, we con- é
i

o

o

Experiment 2: Cortical encoding of music silences during
listening and imagery tasks

A second EEG experiment was conducted on 21 expert musi-
cians. In the listening condition (Fig. 3A), participants were pre-
sented with four ~35 s piano melodies from Bach chorales. In
the imagery condition (Fig. 3B), participants were instructed to
imagine hearing the same melodies. Each piece was presented
and imagined 11 times, for a total of 88 trials with random order.
A vibrotactile metronome placed on participants’ left ankle
marked the beginning of 100 bpm measures (every 2.4 s) in both
conditions, allowing participants to perform the auditory im-
agery task with high temporal precision. Therefore, the neural
signal was expected to reflect sensory responses to auditory and
tactile sensory inputs for the listening condition and to the tactile
input only for imagery. Neural data within 500 ms from the met-
ronome input were excluded from the TRF analyses that follow
to ensure that the results do not reflect tactile responses.

First, we replicated the result from experiment 1 by running a
forward TRF analysis on the EEG data (1-30 Hz) for the listening
condition. The TRF weights showed spatiotemporal dynamics
consistent with the previous result, with inverse polarities for NT
and SIL (Fig. 3C). Then, we ran the same TRF procedure on the
auditory imagery condition. Although the investigation was con-
ducted in a manner consistent with the previous experiment, the
analyses largely focused on the EEG channel FCz, where the
main effect (a polarity inversion in the listening condition) was
expected based on the results from experiment 1. A linear
mixed-model analysis indicated significant effects of condition
(listening vs imagery) and regressor (notes vs silent-events) on
the TRF weights, with a significant interaction effect between
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Notes and silence expectation encoding in low-frequency EEG. A multivariate TRF analysis was
conducted to identify the linear transformation that best predicts low-frequency EEG data (0.1-30 Hz) based
on a three-dimensional stimulus representation indicating for either note or silent-events the event onset
time, entropy at that position, and surprise of that event. A, EEG prediction correlations (r) of the TRF using
the note or silence expectation values estimated with IDyOM are compared with a null model, where the
EEG prediction correlations were obtained with a TRF that was fit after a random shuffling of the expecta-
tion values (event onset times were preserved). Results averaged across all electrodes are reported for both
listening and imagery conditions. Each dot indicates the result for a single subject. Significant differences
were measured for notes and silent-events in both conditions (permutation test, ***p < 107%. B,
Topographical maps indicating the EEG prediction correlation increase (expectation minus null model) at
each EEG channels.

condition and regressor (The dependent variable was the average
magnitude of the TRF component at FCz for the latencies 250 =
100 ms, condition and regressor were the independent variables,
and subjects a random intercept; effect of regressor: estimate =
—2538, tStat = —12.4,p =24 * 1029 effect of condition: esti-
mate = —2746, t = —11.4, p = 1.7 * 10~ '%; interaction effect: esti-
mate = 1307, t = 10.1, p = 6.3 * 10 '°.). A post hoc analysis on the
individual TRFs indicated components larger than the baseline
at latency zero for all conditions (FDR-corrected Wilcoxon tests,
q < 0.01; see above, Materials and Methods). Figure 3C shows
significant TRF components at FCz in the listening condition.
TREF traces for notes and silent-events were negatively correlated
(rNT_LIST,SIL_LIST = —0.60, P =70% 1075), thus replicating the
result from experiment 1. As we showed in part 1 of this study,
the result in Figure 3D indicates (Marion et al., 2021) robust neu-
ral correlates of auditory imagery in correspondence to notes.
Crucially, the EEG dynamics of auditory imagery corresponding
to silent-events showed shape and latencies comparable to those
measured for imagery of notes (rnr magsm _mac = 0.89, p < 1.2
* 10~ "%), with the same polarity measured for silent-events in the
listening condition (rSIL_LIST,SIL_IMAG = 0.57, p = 2.1 * 1074,
VSIL_LIST,NT_IMAG = 0.52, p= 74 % 10_4). COI’IVCI‘SGIY, TRFNT in
the listening condition had inverse polarity, which was consistent
with the polarity of tactile responses, that is, the only other sen-
sory response in the EEG data (Fig. 3G, TREF result for the metro-
nome-only vector).

The result in Figure 3D indicates that the inverted cortical po-
larity measured for TRFyt and TRFgy during music listening
(Figs. 2B, 3C) depends on the presence or absence of a sensory
stimulus, respectively, rather than a different encoding of notes
and silent-events per se. In fact, that difference was not present
in the imagery condition, where there was no auditory stimula-
tion. This result is in line with a predictive processing account of
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auditory perception whereby the brain constantly attempts to
predict sensory signals (Fig. 1). The analyses that follow aim to
provide further support to this result by (1) disentangling sen-
sory and prediction signals in both the listening and imagery
conditions with a methodology that different from the TRF does
not use explicit knowledge on the position of notes and silent-
events and (2) assessing whether the prediction signal encodes
the precise melodic expectation values as estimated by a compu-
tational model of musical structure.

Disentangling neural sensory responses and neural prediction
signal

The TRF analysis showed robust note and silent-event encoding
in both listening and imagery conditions. However, the TRF
analysis did not account for differences between responses to
individual events. For example, neural responses change with
the listener’s expectation of a note based on the proximal music
context (Omigie et al., 2013; Di Liberto et al., 2020). The follow-
ing investigates the neural signature of individual music events
across the time domain of a musical piece.

Investigating the cortical processing of individual music notes
requires an approach that is effective despite the low SNR of
EEG recordings. The TRF procedure described previously sum-
marizes information across the time domain, providing a sum-
mary neural trace for each participant representing the typical
response to a note or a silent-event. However, that approach
does not provide us with a view at the level of individual events
(notes and silences). To do so, we used MCCA, an approach that
denoises the EEG data by preserving components of the signal
that are consistent across participants.

An MCCA analysis was run on EEG data from all participants
simultaneously, preserving the first Ngc SCs with largest inter-
subject correlation (see above, Materials and Methods). This
approach enables the investigation of neural data in the original
EEG channel with a remarkably high SNR, allowing us to assess
the neural signature of each individual event in a melody. SC;
was expected to capture the sensory response, which is likely the
strongest and most consistent signal across participants. As we
had hypothesized, SC; showed strong neural activation corre-
sponding to sensory events, that is, notes and metronome in the
listening condition and metronome only in the imagery condi-
tion (Fig. 1, hypothesis; Fig. 4, result). That result was visible
both at the level of individual music events (Fig. 44,B) and on
the time-locked average signals (Fig. 4C,D). Next, the first sen-
sory component (SC;) was removed from the EEG data to study
the residual Ngc—-1 components, which were expected to capture
neural predictions and, therefore, to be active in correspondence
of both notes and silent-events, as depicted in Figure 1. The
result in Figure 4 confirms that hypothesis by showing neural
activation for all music events, with negative components corre-
sponding to both notes and silent-events between ~200 and
400 ms in the imagery conditions. A linear mixed-model analysis
confirmed such observations. Significant effects of condition (lis-
tening vs imagery) and event-type (notes vs silent-events) were
measured on the time-locked averages for SC;, with a significant
interaction effect between condition and event-type (The de-
pendent variable was the average magnitude of the time-locked
average component at FCz for the latencies 250 * 100 ms, condi-
tion and event type were the independent variables, and subjects
a random intercept; effect of event type: estimate = —6.1, tStat =
—6.6, p = 45 * 10°%; effect of condition: estimate = —4.3,
t=—47,p=95%10"C interaction effect: estimate = 3.0, t = 5.1,
p =2.1*10°). This result is in line with the interpretation of
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the first component as a sensory response signal, which is present
only for notes in the listening condition. Significant effects were
also measured on the residual Ngc-1 components for condition but
not event type nor the interaction between the two (effect of event
type: estimate = 3.6, tStat = 1.9, p = 0.058; effect of condition: esti-
mate = 4.6, t = 2.5, p = 0.016; interaction effect: estimate = —1.9, t =
—1.6, p = 0.11), which is in line with the interpretation of the resid-
ual Ngc—-1 components as a prediction signal. Overall, this result is
consistent with our initial hypothesis in Figure 1.

Cortical encoding of silence expectations during music listening
and imagery
Recent studies indicated that low-frequency neural signals
encode melodic expectations when participants listen to mono-
phonic music (Omigie et al, 2013; Di Liberto et al, 2020).
Specifically, melodic expectations modulate the magnitude of the
auditory responses, with larger neural responses for less expected
events. In line with those results and with the hypothesis that
cortical responses to music reflect a combination of sensory and
prediction signals (Fig. 1), we anticipated EEG responses to notes
and silent-events to be modulated by melodic expectations dur-
ing both listening and imagery conditions. To test that, we first
estimated the expectation of a note with IDyOM (Pearce, 2005),
the model of melodic structure based on variable-order Markov
chains, which was also used to identify the silent-events.
Expectation values were calculated from the music score based
on both a long-term model of Western music and short-term
proximal information on the current piece. As a result, IDyOM
provided us with measures of surprise and the Shannon entropy
of the onset time of each upcoming note and silent-event.
Surprise informs us how unexpected a note (or a silent-event)
was at a given time point, whereas the entropy indicates the
uncertainty at a particular position in a melody before the music
note is observed. Each of these features was encoded into time se-
ries by using the values of the features to modulate the amplitude
of note and silent-event onset vectors. This resulted in four time
series: surprise for notes (Syr) and silent-events (Sg;;), and en-
tropy for notes (Hyy) and silent-events (Hgy ). We then called
EXPyr and EXPgp the concatenation of the surprise, entropy,
and onset vectors for notes and silent-events, respectively. Note
that EXPyy and EXPgj; were calculated by using timing but not
pitch information as silent-events do not have a pitch value.
Forward TRF models were fit to assess the coupling between
low-frequency EEG (0.1-30 Hz) and the onset time expectation
vectors. Shuffled versions of the expectation vectors (N = 100 per
subject), with surprise and entropy values randomly permuted
while preserving the temporal information of the event onsets,
were used as a baseline for the assessment of the expectation
EEG encoding. Both EXPyr and EXPgy; could predict the EEG
better than the shuffled versions in both the listening and im-
agery conditions [EEG prediction correlation was averaged
across all EEG channels; the mean across subjects was compared
with a bootstrap resampling distribution of the mean across sub-
jects derived from the shuffled data; N = 10,000; p < 10~* for
notes and silent-events in both conditions (see above, Materials
and Methods; Fig. 5A).]. A significant EEG encoding of expecta-
tions was also measured at the individual subject level, with 12/
21 and 10/21 subjects above chance level in the listening condi-
tion for note and silent-event TRFs, respectively, and 10/21 and
17/21 subjects above chance level in the imagery condition (one-
tailed permutation test, N = 100 permutations per subject per
condition, g < 0.05, FDR correction). Although this effect of ex-
pectation was assessed on the average of all EEG channels,
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Figure 5B shows the topographical distribution of that effect
(contrast between EEG prediction accuracies for expectation and
the 95th percentile of the shuffles). Similar but weaker effects
were measured for EEGs filtered between 1 and 30 Hz for all con-
ditions but silent-events in the imagined condition (EEG predic-
tion correlation values were averaged across all channels; the
mean value across subjects was compared with a bootstrap
resampling distribution of the mean across subjects derived from
the shuffled data; N = 10,000; NT listening, p < 10~ % SIL listen-
ing, p = 0.021; NT imagery, p = 0.009; SIL imagery, p = 0.541.).

These results indicate a fine-grained encoding of melodic
expectations in the cortical signals corresponding to music listen-
ing and imagery. We also tested whether the effect of onset time
expectations on the EEG prediction increase showed significant
lateralization. We found a weak left-lateralization effect for notes
in the listening condition, which, however, did not survive cor-
rection for multiple comparisons (FDR-corrected Wilcoxon test,
q = 0.100).

Discussion

Predictive processing explains rhythmic and melodic perception
as a continuous attempt of our brain to anticipate the timing and
identity of upcoming music events. Although previous research
investigated such predictive mechanisms indirectly by measuring
how expectation modulates sensory responses, this study used
neural measurements of music processing in the absence of a
sensory input. In particular, we combined for the first time low-
frequency EEG measurements corresponding to silent music
events during music listening with EEG signals recorded during
musical imagery, both in the context of natural melodies. In
doing so, we could demonstrate that robust neural activity con-
sistent with prediction error signals emerge during the meaning-
ful silence of music and that such neural activity is modulated by
the strength of the music expectations. We propose a unifying
perspective on auditory predictions, where endogenous auditory
predictions have a central role in music perception both during
listening and imagery.

EEG encoding of music-silence reveals neural auditory
predictions

Existing computational models of music structure, such as
IDyOM, generally consider silences as time intervals without
notes [stimulus onset asynchronies (SOA) or IOL; Pearce, 2005].
However, melodies contain silent instants where a note could
have plausibly occurred. The present study demonstrates that the
human brain encodes these music silent-events, suggesting that
the physiological validity of those models can be augmented via
an explicit account of silent-events, rather than just an implicit
encoding of that same information as in IDyOM. The finding
that musical imagery elicits robust neural activity (Tibo et al,,
2020; Marion et al., 2021) laid the foundations of the present
study, providing us with an experiment that allows us to discern
endogenous neural processes from exogenous auditory percep-
tion mechanisms. Our results are summarized by the model in
Figure 6, in line with the predictive processing framework. The
neural encoding of sound and silence corresponds to S—P and,
as such, to —P when there is no stimulus (S = 0), that is, silent-
events during listening and imagery and notes during imagery.
This result emerged both when using forward TRFs (Crosse et
al,, 2016) and MCCA (de Cheveigné et al., 2019), two methods
with different assumptions and rationale. One crucial difference
between the two is that TRFs describe the neural responses for
an individual subject with an impulse response, one for each
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Figure 6. Computational model for how predictions influence neural signals corresponding
to auditory listening and imagery. Auditory inputs elicit bottom-up S responses through the
auditory cortex (ACX). A prediction model generates a top-down P signal that is more similar
to S for more predictable sensory events. That prediction is compared with S, producing an
error signal &5, = S—P. The EEG response is hypothesized to capture a combination of &,
and S, meaning that some level of EEG activation is expected even when S is fully predictable
(Margulis, 2014). When a sound is imagined, S = 0, and therefore &, = —P, as for our hy-
pothesis in Figure 1.

stimulus feature set (notes vs silence). Instead, MCCA does not
require any explicit knowledge of the timing and identity of
notes and silent-events. This unsupervised approach combined
the data from multiple subjects to extract neural components
that were sensitive to individual events (note or silence) within a
continuous music piece, with a remarkable signal-to-noise ratio.
Crucially, the two methods converged to consistent results,
revealing that silent-events correspond to robust neural
responses and that similar neural signals emerge for imagined
notes and silent-events. This internally generated music of
silence is in line with a continuous attempt of the brain to predict
upcoming plausible notes. Altogether, this study provides direct
evidence for the duality of sensory and prediction signals sug-
gested by the predictive processing framework.

Our results suggest that both listening and auditory imagery
entail the transformation of external or imagined sounds by an
internal predictive model that encodes our conceptions and
expectations of the sound, which is then compared with the sen-
sory stimulus, if present. The finding, which is captured by the
model in Figure 6, is in line with previous fMRI and PET results
on auditory imagery (Halpern and Zatorre, 1999; Meister et al.,
2004; Kraemer et al., 2005; Zhang et al., 2017). In fact, such stud-
ies showed robust neural activation in correspondence with audi-
tory imagery as we measured here with EEG. Crucially, our
results linked the neural activation for auditory imagery to a gen-
eral predictive mechanism that applies to both listening and im-
agery. Specifically, the model in Figure 6 explains both imagery
and silence activations as the result of the subtraction of sensory
responses and prediction signals, leading to a change in response
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polarity when the sensory input is absent. Indeed, further work
with multiple technologies (e.g., fMRI, EEG, electrocorticogra-
phy) is needed to conclusively link our finding with studies based
on hemodynamic measurements and test our model. One chal-
lenge is to clarify what exactly each neural measurement can cap-
ture within that model. EEG recordings provide us with
macroscopic measurements that are likely to include a variety of
neural components. Although the evidence points to a strong
sensitivity to prediction errors (or surprise), there may be addi-
tional components that encode S and P separately.

Although the music of silence allows to clearly separate the
neural prediction signal from sensory responses, technologies
with higher spatial resolution may be able to uncover more pre-
cise details on the neural implementation of this predictive
mechanism. One unsolved question regards the possibility that
prediction processes could be at the core of the ability to perform
auditory imagery. Based on our finding that prediction processes
explain a significant portion of EEG variance during auditory
imagery and that imagined notes and silent-events corresponded
to similar neural activation, one possibility is that auditory im-
agery may rely on the same endogenous prediction mechanisms
that are engaged during auditory listening rather than involving
a separate imagery process. Finally, additional research should be
conducted to investigate possible links between our model and
beat perception. In fact, the present design was optimized for the
imagery task, thus working with relatively simple melodies.
Experiments with a broader set of music stimuli are needed to
tackle that question, for example, by using syncopated music
stimuli, which would allow for a more distinct separation of beat
and notes (Tal et al., 2017).

Silence neural signals are graded by expectations

The TRF analysis in Figure 5 confirmed the hypothesis that low-
frequency EEG responses to naturalistic music encode melodic ex-
pectation in correspondence with prospectively predictable silent-
events. The responses to silent-events were shown to covary with
the expectation strengths, which were drawn from a note onset
time statistical model (Pearce, 2005), as it was previously
shown for music notes (Omigie et al., 2013; Di Liberto et
al., 2020). These results are in line and go beyond previous
measurements of the neural responses to sensory omissions
that focused on scenarios where strong expectations on the
upcoming occurrence of a stimulus were built artificially
[missing stimulus potentials (MSPs); Bendixen et al,
2009)]. Mismatch negativity responses (MMN) to omitted
tones were measured for SOAs up to 150 ms (Yabe et al.,
1997), whereas studies with longer asynchronies, closer to
those of the present study, were shown to elicit MSPs with a
modality-specific (auditory) negativity at ~230ms and a
modality-independent (both auditory and visual) positivity
at 465 ms (Simson et al., 1976; Joutsiniemi and Hari, 1989).
Silent-events in melodies differ from omissions in that they
have a much lower probability of corresponding to a sound.
Furthermore, omission cannot be predicted; although the par-
ticipants of experiment 2 were pre-exposed to the four melo-
dies, silent-events were not unexpected per se. In other words,
the participants were certainly not surprised in the traditional
sense when they encountered a silent-event as they had heard
the melody before. Instead, our results are different from the
unexpectedness investigated with sensory omission paradigms
as they reveal prediction errors related to the processing of
melodic structure based on the melody statistics.

J. Neurosci., September 1, 2021 - 41(35):7449-7460 - 7459

Further work should be conducted to directly explain the
overlap and interaction of the two phenomena. Our finding con-
tributes to that question by suggesting a unifying view linking
MSP (omission response), expectation modulation (EM) of sen-
sory responses, and auditory imagery using naturalistic music lis-
tening. Our results suggest that the MSP negativity and EM are
results of the same prediction process. In addition to providing
new direct evidence on the neural substrate of MSPs, we show
that such responses can be measured when the music is inter-
nally generated (imagery). This result is in line with a view of the
auditory system where predictions are simultaneously computed
at multiple time scales (e.g., hierarchical predictive coding) and,
crucially, where local expectations (at short time scales) are per-
formed by our brain even in presence of exact prior knowledge
of the upcoming stimulus (e.g., repetition of a song, production
or imagination of a song). In fact, the TRF analysis in Figure 5
indicates a robust encoding of melodic expectations, although
the stimuli were precisely known by the participants (Only four
repeated stimuli were presented, and participants were exposed
to the pieces before the start of the EEG experiment.).

We contend that the present finding has implications for
computational models of sensory perception. For example, neu-
ral signals have been modeled by focusing on evoked responses
(Ferezou and Deneux, 2017; Doelling et al., 2019), thus describ-
ing the neural signal as a sum of fixed-latency sensory evoked
responses while generally ignoring prediction processes. Instead,
as highlighted by this study, prediction signals emerge in corre-
spondence to both notes and silent-events in the neural signal.
As in Figure 6, evoked-response models could be extended by
including such prediction mechanisms both in the presence and
absence of a sensory event. The resulting model would describe
the S and P duality and would explain the neural responses to
music silence that were measured in the present study. We con-
clude that our brain considers silent-events as temporally precise
and information-rich events that provide our brain with valuable
information (i.e., that a note was not present at a particular plau-
sible time point) contributing to the subsequent predictions. Our
results may reflect a general property of sensory perception and,
as such, we expect similar neural responses to emerge during
meaningful silences in other auditory stimuli such as speech.
Specifically, expectation signals similar to the predictive melodic
expectations in music sequences have been demonstrated in the
neural responses to phoneme sequences, the fundamental units
of speech (Brodbeck et al., 2018; Di Liberto et al, 2019).
Therefore, we anticipate that future studies may reveal predictive
responses that closely resemble those we identified in music
silences but that would reflect the linguistic model of the listener,
confirming that the findings of the current study are indicative
of general auditory perception mechanisms.

In summary, the present study shows robust neural signatures
of music silence, suggesting that silent-events have great impor-
tance in the neural encoding of music. Furthermore, we provide
evidence that the encoding of silent-events reflects a neural pre-
diction signal with results that are in line with the predictive
processing framework.
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