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ABSTRACT
Deep neural networks (DNNs) are becoming increasingly deeper,
wider, and non-linear due to the growing demands on prediction
accuracy and analysis quality. Training wide and deep neural net-
works require large amounts of storage resources such as memory
because the intermediate activation data must be saved in the mem-
ory during forward propagation and then restored for backward
propagation. However, state-of-the-art accelerators such as GPUs
are only equipped with very limited memory capacities due to
hardware design constraints, which significantly limits the max-
imum batch size and hence performance speedup when training
large-scale DNNs. Traditional memory saving techniques either
suffer from performance overhead or are constrained by limited
interconnect bandwidth or specific interconnect technology.

In this paper, we propose a novel memory-efficient CNN train-
ing framework (called COMET) that leverages error-bounded lossy
compression to significantly reduce the memory requirement for
training in order to allow training larger models or to accelerate
training. Our framework purposely adopts error-bounded lossy
compression with a strict error-controlling mechanism. Specifically,
we perform a theoretical analysis on the compression error propa-
gation from the altered activation data to the gradients, and empir-
ically investigate the impact of altered gradients over the training
process. Based on these analyses, we optimize the error-bounded
lossy compression and propose an adaptive error-bound control
scheme for activation data compression. Experiments demonstrate
that our proposed framework can significantly reduce the training
memory consumption by up to 13.5× over the baseline training and
1.8× over another state-of-the-art compression-based framework,
respectively, with little or no accuracy loss.
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1 INTRODUCTION
Deep neural networks (DNNs) have rapidly evolved to the state-of-
the-art technique for many artificial intelligence (AI) tasks in vari-
ous science and technology domains, including image and vision
recognition [47], recommendation systems [57], and natural lan-
guage processing (NLP) [7]. DNNs contain millions of parameters
in an unparalleled representation, which is efficient for modeling
complex nonlinearities. Many works [19, 28, 51] have suggested
that using either deeper or wider DNNs is an effective way to im-
prove analysis quality and in fact, many recent DNNs have gone
significantly deeper and/or wider [25, 58]. Most of such wide and
deep neural networks contain a large portion of convolutional
layers, also known as convolutional neural networks (CNNs). For
instance, EfficientNet-B7 increases the number of convolutional
layers from 31 to 109 and doubles the layer width compared to the
base EfficientNet-B0 for higher accuracy (i.e., top-1 accuracy of
84.3% compared to 77.1% on the ImageNet dataset) [52].

In this paper, we explore a general memory-driven approach for
enabling efficient deep learning training. Specifically, our goal is to
drastically reduce the memory requirement for training in order
to enlarge the limit of maximum batch size for training speedup.
When training a DNN model, the intermediate activation data (i.e.,
the input of all the neurons) is typically saved in the memory during
forward propagation, and then restored during backpropagation to
calculate gradients and update weights accordingly [20]. However,
taking into account the deep and wide layers in the current large-
scale nonlinear DNNs, storing these activation data from all the
layers requires large memory spaces which are not available in
state-of-the-art training accelerators such as GPUs. For instance, in
recent climate research [29], training DeepLabv3+ neural network
with 32 images per batch requires about 170 GB memory, which
is about 2× as large as the memory capacity supported by the
latest NVIDIA GPU A100. Furthermore, modern DNNmodel design
trades off memory requirement for higher accuracy. For example,
Gpipe [21] increases the memory requirement by more than 4× for
achieving a top-1 accuracy improvement of 5% from Inception-V4.

Evolving in recent years, on the one hand, model-parallel [3]
techniques that distribute the model into multiple nodes can re-
duce the memory consumption of each node but introduce high
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communication overheads; on the other hand, data-parallel tech-
niques [45] replicate the model in every node but distribute the
training data to different nodes, thereby suffering from high mem-
ory consumption to fully utilize the computational power. Several
techniques such as recomputation, migration, and lossless compres-
sion of activation data have been proposed to address the memory
consumption challenge for training large-to-large-scale DNNs. For
example, GeePS [8] and vDNN [42] have developed data migra-
tion techniques for transferring the intermediate data from GPU to
CPU to alleviate the memory burden. However, the performance
of data migration approaches is limited by the specific intra-node
interconnect technology (e.g., PCIe and NVLinks [14]) and its avail-
able bandwidth. Some other approaches are proposed to recompute
the activation data [5, 15], but they often incur large performance
degradation, especially for computationally intensive layers such as
convolutional layers. Moreover, memory compression approaches
based on lossless compression of activation data [49] suffer from the
limited compression ratio (e.g., only around 2:1 for most floating-
point data). Alternatively, recent works [6, 13] proposed to develop
compression offloading accelerators for reducing the activation
data size before transferring it to the CPU DRAM. However, adding
a new dedicated hardware component to the existing GPU archi-
tecture requires tremendous industry efforts and is not ready for
immediate deployment. This design may not be general enough to
accommodate future DNN models and accelerator architectures.

To tackle these challenges, we propose a memory-efficient deep
neural network training framework (called COMET, lossy Compres-
sion Optimized Memory-Efficient Training) by compressing the
activation data using adaptive error-bounded lossy compression.
Compared to lossy compression approaches such as JPEG [56] and
JPEG2000 [54], error-bounded lossy compression can provide more
strict control over the errors that occurred to the floating-point
activation data. Also, compared to lossless compression such as
GZIP [9] and Zstd [62], it can offer a much higher compression ratio
to gain higher memory consumption reduction and performance
improvement. The key insights explored in this work include: (i)
the impact of compression errors that occurred in the activation
data on the gradients and the entire CNN training process under
the strict error-controlling lossy compression can be theoretically
and experimentally analyzed, and (ii) the validation accuracy can
be well maintained based on an adaptive fine-grained control over
error-bounded lossy compression (i.e., compression error). To the
best of our knowledge, this is the first work to investigate the lossy
compression error impact during CNN training and leverage this
analysis to significantly reduce the memory consumption for training
large CNNs while maintaining high validation accuracy. In summary,
this paper makes the following contributions:

• We propose a novel memory-efficient CNN training framework
via dynamically compressing the intermediate activation data
through error-bounded lossy compression.

• We provide a thorough analysis of the impact of compression
error propagation during DNN training from both theoretical
and empirical perspectives.

• We propose an adaptive scheme to adaptively configure the
error-bounded lossy compression based on a series of current
training status data.

Figure 1: An example data flowof one iteration inCNN train-
ing with our COMET framework.

• We propose an improved SZ error-bounded lossy compression
to further handle compressing continuous zeros in the interme-
diate activation data, which can avoid the significant alteration
(vanish or explosion) of gradients.

• We evaluate our proposed training framework on four widely-
adopted DNN models (AlexNet, VGG-16, ResNet-18, ResNet-50)
with the ImageNet-2012 dataset and compare it against state-
of-the-art solutions. Experimental results show that our design
can reduce the memory consumption by up to 13.5× and 1.8×
compared to the original training framework and the state-of-
the-art method, respectively, under the same batch size. COMET
can improve the end-to-end training performance by leveraging
the saved memory for some models (e.g., about 2× training
performance improvement on AlexNet).

The rest of this paper is organized as follows. In Section 2, we
discuss the background and motivation of our research. In Section 3,
we describe an overview of our proposed COMET framework. In
Section 4, we present our theoretical support of error impact on
validation accuracy from compressed activation data during train-
ing. In Section 5, we present the evaluation results of our proposed
COMET from the perspectives of parameter selection, memory
reduction ability, and performance. In Section 6, we conclude our
work and discuss our future work.

2 BACKGROUND AND MOTIVATION
In this section, we first present the background information on large-
scale DNN training (i.e., some related work on memory reduction
techniques for training) and error-bounded lossy compression for
floating-point data. We then discuss the motivation of this work
and our research challenges.

2.1 Training Large-Scale DNNs
Training deep and wide neural networks has become increasingly
challenging. While many state-of-the-art deep learning frameworks
such as TensorFlow [1] and PyTorch [40] can provide high train-
ing throughput by leveraging the massive parallelism on general-
purpose accelerators such as GPUs, one of the most common bot-
tlenecks remains to be the high memory consumption during the
training process, especially considering the limited on-chipmemory
available on modern DNN accelerators. This is mainly due to the
ever-increasing size of the activation data computed in the training
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Figure 2: Memory consumption and top-1 accuracy of differ-
ent state-of-the-art neural networks (batch size = 128).

process. Training a neural network involves many training epochs
to update and learn the model weights. Each iteration includes a
forward and backward propagation, as shown in Figure 1. The inter-
mediate activation data (the output from each neuron) generated by
every layer are commonly kept in the memory until the backpropa-
gation reaches this layer again. Several works [5, 8, 13, 15, 42] have
pointed out the large gap between the time when the activation
data is generated in the forward propagation and the time when the
activation data is reused in the backpropagation, especially when
training very deep neural networks.

Figure 2 shows the memory consumption of various neural net-
works. For these CNNs, comparing with the model/weight size, the
size of activation data is much larger since the convolution kernels
are relatively small compared to the activation tensors. In addition,
training models with enormous batch size over multiple nodes can
significantly reduce the training time [16, 41, 61] while reducing
the memory consumption can enlarge the maximum batch size
capability of a single node for an overall lower cost. In summary,
we are facing two main challenges due to the high memory con-
sumption in today’s deep learning training: (1) it is challenging to
scale up the training process under a limited GPU memory capacity,
and (2) a limited batch size leads to low training performance.

In recent years, several works have been proposed to reduce the
memory consumption for DNN training, including activation data
recomputation [5, 15], migration [8, 42], and compression [13]. Re-
computation takes advantage of the layers with low computational
cost, such as the pooling layer. Specifically, it frees those layers’
activation data and recomputes them based on their prior layers
during the backpropagation on demand. This method can reduce
unnecessary memory costs, but it is only applicable for the layers
of limited types to achieve low performance overhead. For exam-
ple, compute-intensive convolutional layers that are often hard to
recomputed dwarf the efforts of such a method.

Another type of methods are proposed around data migration
[8, 42], which sends the activation data from the accelerator to the
CPU host when generated, and then loads it back from the host
when needed. However, the performance of data migration heavily
depends on the interconnect bandwidth available between the host
and the accelerator(s), and the intra-node interconnect technology
applied. For example, NVLink [14] technology is currently limited
to high-end NVIDIA AI nodes (e.g., DGX series) and IBM power
series. This paper targets to develop a general technique that can
be applied to all types of HPC and datacenter systems.

Finally, data compression is another efficient approach to reduce
memory consumption, especially for conserving the memory band-
width [12, 13, 30]. The basic idea using data compression here is to
compress the activation data when generated, hold the compressed
data in the memory, and decompress it when needed. However,
using lossless compression [6] can only provide a relatively low
memory reduction ratio (i.e., compression ratio), e.g., typically lower
than 2×. Some other studies such as JPEG-ACT [13] leverages the
similarity between activation tensors and images for vision recogni-
tion tasks and apply a modified JPEG lossy compressor to activation
data. But it suffers from two main drawbacks: First, it introduces
uncontrollable compression errors to activation data. Eventually,
it could lose control of the overall training accuracy since JPEG is
mainly designed for images and is an integer-based lossy compres-
sion. Second, the JPEG-based solution [13] needs support from a
dedicated hardware component to be added to GPU hardware, and
it cannot be directly deployed to today’s systems.

We note that all three methods above are orthogonal to each
other, which means they could be deployed together to maximize
the memory reduction and training performance. Thus, in this pa-
per, we mainly focus on designing an efficient data compression,
more specifically a lossy-compression-based solution, to achieve
the memory reduction ratio beyond the state-of-the-art approach
on CNN models. In addition, since convolutional layers are the
most difficult type of layers for efficient recomputation, our solu-
tion focuses on convolutional layers to provide high compression
ratios with minimum performance overheads and accuracy losses.
We also note that COMET can further improve the training per-
formance by combining with model parallelism techniques such
as Cerebro [39], which is designed for efficiently training multiple
model configurations to select the best model configuration.

2.2 Lossy Compression for Floating-Point Data
Floating-point data compression has been studied for decades. Lossy
compression can compress data with little information loss in the
reconstructed data. Compared to lossless compression, lossy com-
pression can provide a much higher compression ratio while still
maintaining useful information for scientific or visualized discover-
ies. Lossy compressors offer different compression modes to con-
trol compression error or compression ratio, such as error-bounded
mode. The error-boundedmode requires users to set an error bound,
such as absolute error bound and point-wise relative error bound.
The compressor ensures that the differences between the original
and reconstructed data do not exceed the user-set error bound.

In recent years, a new generation of lossy compressors for scien-
tific data have been proposed and developed, such as SZ [10, 32, 53]
and ZFP [34]. Unlike traditional lossy compressors such as JPEG
[56] which are designed for images (in integers), SZ and ZFP are
designed to compress floating-point data and can provide a strict
error-controlling scheme based on user’s requirements. In this work,
we choose SZ instead of ZFP because the GPU version of SZ—
cuSZ [55] 1 —provides a higher compression ratio than ZFP and
offers the absolute error bound mode that the GPU version of ZFP
does not support (but necessary for our error control). Specifically,

1Compared to CPU SZ, cuSZ can provide much higher compression and decompression
speed on GPUs and can also be tuned to avoid the CPU-GPU data transfer overheads.
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SZ is a prediction-based error-bounded lossy compressor for sci-
entific data. SZ has three main steps: (1) predict each data point’s
value based on its neighboring points by using an adaptive, best-fit
prediction method; (2) quantize the difference between the real
value and predicted value based on the user-set error bound; and
(3) apply a customized Huffman coding and lossless compression
to achieve a higher ratio. We note that a recent work [25] proposed
to use the new generation of lossy compressors to compress DNN
weights, thereby significantly reducing model storage overhead and
transmission time. However, this work only focuses on compressing
the DNN model itself instead of compressing the activation data to
reduce memory consumption.

2.3 Research Goals and Challenges
This is the first known work that explores whether the new gen-
eration of lossy compression techniques, which have been widely
adopted to help scientific applications gain significant compression
ratio with precise error control, can significantly reduce the high
memory consumption of the common gradient-descent-based train-
ing scenarios (e.g., CNNs with forward and backward propagation).
We focus on compressing the activation data of convolutional layers,
because (1) convolutional layers dominate the size of activation data
and cannot be easily recomputed [58], and (2) non-convolutional
layers (e.g., pool layers or fully-connected layers) can be easily
recomputed for memory reduction due to their low computation
complexity.

Note that convolutional layers also dominate the computational
time during training process, which benefits us for apply com-
pression with low overhead. Similar to many previous studies
[13, 24, 42, 58], our research goal is to develop an efficient and
generic strategy to achieve a high reduction in memory consump-
tion for CNN training. Our work can increase the batch size limit
and convergence speed or enable training on the hardware with
lower memory capacity for the same CNN model.

To achieve this goal, there are several critical challenges to be
addressed. First, because of the prediction-based mechanism of SZ
lossy compressor, when compressing continuous zeros in between
the data, SZ cannot guarantee the decompressed array to remain
the same continuous zeros but decompress them into a continuous
value that is within the user-defined error bound to zero. This char-
acteristic can cause non-negligible side-effects when implementing
our proposed COMET. Thus, we must propose a modified version
of SZ lossy compression to overcome this issue for our use case.
Second, since we plan to use an error-bounded lossy compressor, a
strictly controlled compression error would be introduced to the
activation data. In order to maintain the training accuracy curve
with a minimum impact to the performance and final model accu-
racy, we must understand how the introduced error would propagate
through the whole training process. In other words, we must theoreti-
cally and/or experimentally analyze the error propagation, which is
challenging. To the best of our knowledge, there is no prior investi-
gation on this. Third, once we understand the connection between
the controlled error and training accuracy, how to balance the com-
pression ratio and accuracy degradation in a fine granularity is
also challenging. In other words, a more aggressive compression
can provide a higher compression ratio but also introduces more

errors to activation data, which may significantly degrade the final
model accuracy or training performance (cannot converge). Thus,
we must find a balance to offer as high a compression ratio as possi-
ble to different layers across different iterations while maintaining
minimal impact to the accuracy.

3 DESIGN METHODOLOGY
In this section, we describe the overall design of our proposed
lossy compression supported CNN training framework COMET
and analyze the performance overhead.

Our proposed memory-efficient framework COMET is shown in
Figure 3. We iteratively repeat the process shown in the figure for
each convolutional layer in every iteration. COMETmainly includes
four phases, shown in Figure 3 from left to right: (1) parameter
collection of current training status for adaptive compression, (2)
gradient assessment to determine the maximum acceptable gradient
error, (3) estimation of compression configuration (e.g, absolute
error bound), and (4) compression/decompression of activation
data with our modified cuSZ. Note that the analysis of our error-
bound control scheme for lossy compression of activation data that
supports the COMET design will be presented in Section 4.

3.1 Parameter Collection
First, we collect the parameters of the current training status for the
following adjustment of lossy compression configurations. COMET
mainly collects two types of parameters: (1) offline parameters
in CNN architecture, and (2) semi-online parameters including
activation data samples, gradient, and momentum.

First of all, we collect multiple static parameters including batch
size, activation data size of each convolutional layer, and the size of
its output layer. We need these parameters because they affect the
number of elements considered into each value in the gradient and
hence affect the standard deviation𝜎 in its normal error distribution,
which will further impact the validation accuracy curve during
training if introduced excessive error too. It would also help the
framework collects corresponding semi-online parameters.

For the semi-online parameters, we collect the sparsity of activa-
tion data and its average gradient of the loss in backpropagation
to estimate how the compression error would propagate from the
activation data to the gradient. For the gradient, we compute the
average value of its momentum. Note that in many DNN training
frameworks such as Caffe [23] and TensorFlow [1], momentum
is naturally supported and activated, so it can be easily accessed.
The data collection phase is shown as the dashed thin arrows in
Figure 3.

Moreover, an active factor𝑊 needs to be set at the beginning
of training process to adjust the overall activeness in COMET.𝑊
is used to determine the activeness of our parameter extraction.
We only extract semi-online parameters every𝑊 iterations to re-
duce the computation overhead and improve the overall training
performance. Based on our experiment, these parameters vary rel-
atively slowly during training (i.e., the model would not change
dramatically with reasonable learning rates in a short time). Thus,
we only need to estimate the error impact in a fixed iteration in-
terval in COMET. In this paper, we set𝑊 to 1000 as default, which
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Figure 3: Overview of our proposed memory-efficient CNN training framework COMET.

provides high accuracy and low overhead in our evaluation. How-
ever, COMET would reduce𝑊 by half if it determines that the
maximum error-bound change of all layers between𝑊 exceeds 2×,
and reset𝑊 to default when the error-bound settles to reduce the
optimization time. We note that this technique is only effective for
models that evolve rapidly during training. Also, note that we still
use decompressed data during training to collect these parameters,
and the collected parameters from one period of iterations only
affect during the following optimization computation.

3.2 Gradient Assessment
Next, we estimate the limit of the gradient error that would result
in little or no accuracy loss to the validation accuracy curve during
training, as shown in Figure 3. Even with the help of the offset from
momentum, we still want to keep the gradient of each iteration as
close as possible to the original one. Based on our analysis (will be
discussed in Section 4.3), we need to determine the acceptable stan-
dard deviation 𝜎 in the gradient error distribution that minimizes
the impact on the overall validation accuracy curve during training.
We use 1% as the acceptable error rate based on our empirical study
(will be shown in Section 5.2), i.e., the 𝜎 in the momentum error
model needs to be:

𝜎 = 0.01𝑀𝐴𝑣𝑒𝑟𝑎𝑔𝑒 , (1)

where𝑀𝐴𝑣𝑒𝑟𝑎𝑔𝑒 is the average value of the momentum. Note that
here we use the average value instead of the modulus length of
the momentum because we focus on each individual value of the
gradient and the average value is more representative. The average
value of the momentum can be considered as the average value
of the gradient over a short time period based on the following
equation:

𝑀𝑡 = 𝛼𝐺𝑡−1 + 𝛽𝐺𝑡 , (2)

where 𝑀𝑡 is the momentum and 𝐺𝑡 is the gradient at iteration 𝑡 .
We monitor the momentum by using the API provided by training
framework (e.g., MomentumOptimizer in TensorFlow) and calcu-
late its average value using simple matrix operations. Similarly,
based on our experiment, the average value of gradient does not
tend to vary dramatically in a short time period during training.

3.3 Activation Assessment
After that, we dynamically configure the lossy compression for
activation data based on the gradient assessment in the previous

phase and the collected parameters as shown in Figure 3. Based
on our analysis (to be performed in Section 4.2), we need 𝜎 (from
gradient error model), 𝑅 (sparsity of activation data), 𝐿 (average
value of current loss), and𝑁 (batch size) to determine the acceptable
error bound for compressing the activation data at the current layer
in order to satisfy the gradient error limit proposed in the previous
phase. We simplify our estimator as below:

𝑒𝑏 =
𝜎

𝑎𝐿
√
𝑁𝑅

, (3)

where 𝑒𝑏 is the absolute error bound for activation data with SZ
lossy compressor, 𝜎 describes the acceptable error distribution in
the gradient, 𝑎 is the empirical coefficient, 𝐿 is the average value of
the current layer’s loss,𝑁 is the batch size, and𝑅 is the sparsity ratio
of activation data. Note that our technique can be applied to any
non-momentum-based training, which only needs to monitor the
“hidden” momentum which can be derived by gradient via simple
matrix operations.

3.4 Optimized Adaptive Compression
In the last phase, we deploy the lossy compression with our op-
timized configuration to the corresponding convolutional layers.
We also monitor the compression ratio for analysis. Note that we
compress the activation data of each convolutional layer right after
its forward pass. We then decompress the compressed activation
data in the backpropagation when needed. Also, we only perform
the adaptive analysis in every 𝑊 iterations from Section 3.1 to
minimize the analysis overhead. For Pooling, Normalization, and
Activation layers, we use the recomputation technique to reduce
their memory consumption since they take a large proportion of
the memory consumption (∼ 60% in the four tested models) with
little recomputation overhead. The other layers do not consume a
noticeable amount of memory, so they are processed as is.

At the beginning of each training, the training dataset is un-
known, and there is no collected semi-online parameter. COMET
trains the model with original batch size to guarantee the memory
constraint for the first𝑊 iterations (negligible to the entire training
process) to collect parameters. After that, COMET starts to dy-
namically adjust the batch size based on the previous compression
ratio and control the remaining memory space under the follow-
ing optimizations: (1) choosing the batch size of 2𝑘 to stabilize the
performance, where 𝑘 > 0 is an integer; (2) defining a maximum
batch size to avoid unnecessary scaling for smaller models; and (3)
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reserving 5% of the total available GPU memory when calculating
the capable batch size to avoid overflow caused by unexpectedly
low compression ratio. For the extremely low compression ratio
case, the compressed data will be evacuated to CPU with a certain
communication overhead. However, in our evaluation, this rarely
happens with the 5% reserved memory space and thus results in a
negligible overhead to the system. We also note that the optimized
batch size is almost constant thanks to the batch size setting of 2𝑘 ,
and the compression ratio is relatively stable on our test models.
We will try to provide a dynamic batch size in future work.

Through analysis in Section 4.2 and evaluation in Section 5.2,
we identify that the current version of SZ algorithm cannot always
reconstruct continuous zeros as an exact zero but introduce a small
shift (within the error bound) to those continuous zeros. which
can eventually cause gradient explosion and an untrainable model
(showed in Figure 10). Thus, we need to force zeros in activation
data to remain unchanged in the compression algorithm to maxi-
mize the performance of COMET, as discussed in Section 2.3. To
solve this issue, we propose an improved version of cuSZ algo-
rithm [55] to handle the case of compressing continuous zeros.
Specifically, we add a filter to the decompression process to re-zero
those values within the error bound. Every reconstructed value
that has the distance to zero within the error bound would be de-
compressed as zero. Another solution is to leverage those values
into zeros during the first quantization step of cuSZ’s dual-quant
mechanism when compressing to grantee the reconstructed values
remain zeros. Compared to the second solution, re-zero those values
during decompression means we can still use these non-zero re-
constructed values for their following points’ prediction instead of
using zero during compression, which can ensure our compression
ratio would not be affected. By doing so, we will inevitably flush
some small values into zeros, but they only take a small proportion
and contribute little when calculating the gradient. Thus, it is not
worth adding extra overhead to distinguish these decompressed
zeros from real zeros.

4 COMPRESSION ERROR IMPACT ANALYSIS
In this section, we present the analytical support of our proposed
training framework—analyzing compression error propagation (1)
from activation data to gradient and (2) from gradient to validation
accuracy curve during training for convolutional layers.

4.1 Modeling Compression Error
cuSZ [55] is a prediction-based error-bounded lossy compressor for
floating-point data on GPUs. It first uses a dual-quantization tech-
nique to quantize the floating-point input data based on user-set
error bound. Then, it applies Lorenzo-based predictor [22] to effi-
ciently predict the value of each data point based on its neighboring
points. After that, a quantization code (integer) is generated for each
value. Finally, a customized Huffman coding is applied to all the
quantization codes. Similar to the original SZ, the error introduced
to the input data after decompression usually forms a uniform dis-
tribution. This is mainly because of the linear-scaling quantization
technique adopted. We refer readers to [35] for more details about
the error distribution of SZ from a statistical perspective.

Figure 4: An example of compression error distribution of
activation data compressed by cuSZ error-bounded lossy
compression with absolute error bound 𝑒𝑏 = 10−4.

Figure 4 illustrates an example of compression error distribution
when compressing/decompressing the activation data (generated
by the 5th convolutional layer of AlexNet [28] with the ImageNet
dataset) by cuSZ. Note that we plot the error distribution every
50 iterations, and observe that all the error distributions are quite
similar and follow uniform distribution, which is consistent with
the conclusion drawn in the prior work [35]. In fact, based on the
evaluation in Section 5, COMET compresses the activation data
with a compression ratio less than 20×, where the error distribution
is uniform in theory with SZ compression [26]. Thus, we propose to
use the uniformly distributed error model to perform analysis and
an error-injection-based approach to demonstrate the effectiveness
of our theoretical derivation in this section:

𝑒 ∼ 𝑈 [−𝑒𝑏, +𝑒𝑏] =
{

1
2𝑒𝑏 , −𝑒𝑏 ≤ 𝑥 ≤ 𝑒𝑏,

0, otherwise,
(4)

where 𝑒𝑏 is the user-defined absolute error bound for SZ lossy
compressor. Note that for the purpose of our preformed analysis,
we inject the error, rather than actually compressing activation
data, to demonstrate how uniformly distributed error propagates
from the activation data to the gradient and then to the whole
training process. We will use actual compression/decompression in
our following evaluation.

4.2 Modeling Error Impact on Gradient
Next, we theoretically derive how error propagates from activation
data to gradient and provide experimental proof based on statistical
analysis using error injection.

As aforementioned (shown in Figure 1), the compressed acti-
vation data needs to be decompressed when the backpropagation
reaches the corresponding layer. During the backpropagation, each
layer computes the gradient to update the weights and the gradient
of the loss to be propagated to the previous layer (backpropagation).
As shown in Figure 5, on the one hand, the gradient of the loss of
activation data for the previous layer only depends on the current
layer’s gradient of the loss and weight. On the other hand, the
gradient depends not only on the gradient of the loss of the current
layer but also on the activation data. We note that errors introduced
in activation data do not pass across layers along with loss function.
In conclusion, in order to understand the impact of compressing the
activation data, we must first understand how compression error
introduced to the activation data would propagate to the gradient.

In the forward pass, multiple kernels perform convolutions on
the input activation data. As shown in Figure 6a, the kernel is
performed on the activation data (marked in brown) and generates
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Figure 5: Data dependencies in one convolutional layer dur-
ing backpropagation.

(a) Forward pass

(b) Backward pass

Figure 6: Forward and backward computation in a sample
convolutional layer. Kernel size is 2×2, stride is 1, input
channel count is 3, and output channel count is 1. Batch size
is on another dimension and shown as 1.

the output value as shown in red. Similar to the forward pass, the
backward pass reverses the computation, where the parameter’s
gradient is computed based on the gradient of the loss (with the
same dimension of the output data in the forward pass) and the
original data in the kernel, as shown in Figure 6b. Similarly, the
activation data and the gradient of the loss calculate the gradient
value (as shown in red). More specifically, this value is computed as

𝐺𝑘,𝑖 =
∑𝑛
𝑖=0𝐴𝑘,𝑖

′×𝐿𝑖 , (5)

where𝐺 is the gradient,𝐴 is the activation data, 𝐿 is the gradient of
the loss, 𝑘 is the current channel, 𝑖 is the value index of the channel,
𝑛 is the number of values in the gradient of the loss matrix, 𝑖

′
is the

corresponding index of activation data to the gradient of the loss
matrix. Note that for simplicity, we ignore all 𝑖 on the right side of
Equation (5). Note that here, if the number of output channels is
greater than 1, which is true for most convolutional layers, the same
process will be used for multiple kernels, as shown in Figure 6b,
and the above formula still holds in this case.

Based on our analysis in Section 4.1, the error introduced to the
activation data is uniformly distributed. Thus, in the backpropaga-
tion, we can have

𝐺
′

𝑘,𝑖
=
∑𝑛
𝑖=0𝐴

′

𝑘,𝑖
′×𝐿𝑖 , (6)

𝐴
′

𝑘,𝑗
= 𝐴𝑘,𝑗 + 𝑒, 𝑒 ∼ 𝑈 [−𝑒𝑏, +𝑒𝑏],

where 𝐴
′
is the decompressed activation data, 𝐺

′
is the gradient

altered by the compression error, 𝑒 is the error, and 𝑒𝑏 is the user-set

absolute error bound. After a simple transform, we can have

𝐺
′

𝑘,𝑖
=
∑𝑛
𝑖=0𝐴𝑘,𝑖

′×𝐿𝑖 +
∑𝑛
𝑖=0 𝑒𝑖×𝐿𝑖 = 𝐺𝑘,𝑖 + 𝐸, (7)

𝐸 =
∑𝑛
𝑖=0 𝑒𝑖×𝐿𝑖 ,

where 𝐸 is the gradient error.
Although it is not possible to calculate or predict the exact value

of every element 𝐸, we can predict its distribution based on our
previous assumption. We also note that the batch size of a typical
neural network is usually relatively large during the training pro-
cess, such as 256, since a larger batch size results in higher training
performance in general. As a result, the final gradient for updating
weights can be computed as follows.

𝐺
′

𝑓 𝑖𝑛𝑎𝑙
= 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝐺

′
0,𝐺

′
1, ...,𝐺

′
𝑁 ),

𝐸𝑓 𝑖𝑛𝑎𝑙 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝐸0, 𝐸1, ..., 𝐸𝑁 ) (8)

=
∑𝑛
𝑖=0

∑𝑁
𝑗=0 𝑒 𝑗,𝑖×𝐿𝑗,𝑖 ,

𝑒 ∼ 𝑈 [−𝑒𝑏, +𝑒𝑏],

where 𝑁 is the batch size. Note that all 𝑒s are independently and
uniformly distributed as discussed in Section 4.1. Although 𝐿 can
be related to each other in the same batch, they are still indepen-
dently distributed across different batches. According to Central
Limit Theorem [50], the sum of a series of independent random
variables with the same distribution follows a normal distribution,
which means the error distribution of the gradient can be expected
to be normally distributed. We identify that the distribution of the
gradient of the loss 𝐿 for one input (i.e., one image) is highly con-
centrated in zero, where the highest value in the gradient of the
loss is usually much larger than the average of 𝐿. Thus, we can
simplify Equation 8 to

𝐸𝑓 𝑖𝑛𝑎𝑙 ≈
∑𝑁
𝑖=0 𝑒𝑖×𝐿𝑚𝑎𝑥,𝑖 , (9)

𝑒 ∼ 𝑈 [−𝑒𝑏, +𝑒𝑏],

where 𝐿𝑚𝑎𝑥 is the maximum value in the gradient of the loss for
each input alone. To reduce the complexity, we can greatly improve
the performance with fewer parameters that need to be collected.

Next, we inject error (to simulate the compression error) to the
activation data in convolutional layers based on our error model
discussed in Section 4.1. Then, we collect the error of the gradient
in the backpropagation.

Figure 7a illustrates the normalized error distribution of gradi-
ents collected from different layers, all of which follow the normal
distribution as expected. In fact, by calculating the percentage of
the area within ±𝜎 of each curve, we can get a value close to 68.2%,
which confirms our theoretical derivation. Then, we need to figure
out how to predict 𝜎 before compression in order to calculate the
desired and acceptable error bound for each layer’s activation data.

First, we note that 𝜎 is highly related to the number of elements
that are combined together. In general, more elements result in
larger 𝜎 , and vice versa. A 2× increase of elements results in

√
2×

increase of 𝜎 , whichmeans that more uncertainties have been added
to the system. Second, 𝜎 is also related to the value scale, in this
case, the average of the gradient of the loss 𝐿 at the current layer.
Note that it is not necessary to compute the average value of the
gradient of the loss in every iteration. Instead, we can compute it
every𝑊 iterations to reduce the computation overhead, since this
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(a) Original zeros have been compressed

(b) Original zeros remain zero

Figure 7: Distributions of gradient errorwhen injectingmod-
eled compression error to activation data. Note that the num-
ber of elements is normalized to ensure different layers un-
der the same scale. Data is collected every 100 iterations.

value is relatively stable in a fixed period of time. Based on these
two parameters, we can estimate 𝜎 by the following equation:

𝜎 ≈ 𝑎𝐿
√
𝑁𝑒𝑏, (10)

where 𝐿 is the gradient of the loss matrix, 𝑁 is the batch size, and 𝑎
is an empirical coefficient. Note that this coefficient 𝑎 is unchanged
for different neural networks because it is essentially a simplified
value of the previous equation.

Finally, we note that there is a notable fraction of activation
data to be zeros, however, our above analysis so far does not cover
it. When compressing a series of continuous zeros, the original
cuSZ may change them into a continuous small value within the
user-defined error bound instead of exactly zero. Because the re-
constructed continuous small values are the same value due to the
Lorenzo-based predictor in SZ, this can cause the gradient computa-
tion to have nonnegligible offset that eventually can cause gradient
exploding problems. To solve this issue, we propose an improved
version of cuSZ to enhance the compression on continuous zeros
as discussed in Section 3. This means no error would be introduced
when facing continuous zeros. Moreover, in some cases, the activa-
tion data may contain many zeros due to the activation function
layer (such as the ReLU layer) before the current convolutional
layer. If this happens, the activation data of convolutional layer
can be quickly recomputed through the activation function instead
of being saved, which will essentially erase the negative values to
zeros. Since lossy compression such as cuSZ is unlikely to change
the sign of the activation data value, these data will remain at zero.

Figure 7b shows the distribution of the gradient error after we
inject the error into the activation data (maintaining zeros un-
changed). Compared with Figure 7a, we can observe a decrease of
𝜎 , but it still holds a normal distribution. This decrease is partly
because of the reduction of the number of elements in Equation 8,

since those zeros do not have any error. In these cases, we can
revise the prediction of 𝜎 accordingly by the following equation:

𝜎
′
= 𝜎

√
𝑅, (11)

where 𝑅 is the ratio of non-zero elements percentage in the activa-
tion data. Again, in practice, we do not need to compute this ratio
every iteration but every𝑊 iterations, since this ratio is relatively
stable in a fixed period of time.

4.3 Error Impact Analysis
Finally, we discuss the error propagated from gradient to overall
validation accuracy curve during training using an experimental
analysis. Our goal is to identify the maximum acceptable gradient
error that would cause little or no validation accuracy loss. Accord-
ing to our performed analysis in Section 4.2, the gradient error can
be modeled as a normally distributed error.

In this subsection, we follow the same strategy used in the last
subsection to inject error to the gradient that follows our error
model and perform the analysis and evaluation. It is worth noting
that similar to many existing studies (e.g., CNN model pruning [18],
compression [25], mixed-precision training [37]), our hypothesis
is that the accuracy loss caused by the errors added to a given con-
volutional layer is not noticeably amplified by its following layers.
Other existing study [59] also points out that adding noise to the
training data can even provide a regularization effect that can help
improve the training performance from overfitting. Our introduced
error is slightly different from purely adding noise to training data,
but rather it can be considered as noise with a uniform distribution
on the nonzero activation data, which only affects the gradient
computation during the backpropagation phase and precludes any
error propagation across layers. This might degrade the training
performance due to the alternated gradient update. However, as
pointed out by Lin et al. [33], gradient can be considerably approxi-
mated until the training performance is affected. In addition, such
noise can potentially help training get rid of local minima, espe-
cially for models with rough loss surfaces, while providing similar
convergence speeds for models with smooth loss surfaces [31].

Momentum has been widely adopted in most neural network
training [11], which can be used for alleviating the impact of the
gradient error [44]. Actually, in order to update the weights, it is
based not only on the gradient computed from the current iteration
but also on the momentum. In other words, both the gradient and
the momentum (with the same dimension as the weights and gra-
dient) take up a portion of the updated data for weights. Thus, it is
critical to maintaining an accurate momentum vector (similar to
the error-free one) to guide the weight update. While thanks to the
normally distributed gradient error, which is centralized and sym-
metric in the original direction, the momentum error is relatively
low compared to the gradient error. Therefore, this does help the
training towards the correct direction—even a few iterations may
generate the undesired gradient, they can be offset quickly through
the momentum based on the estimated gradient error. Similarly,
other optimization algorithms such as Adagrad and Adam [44] also
follow a similar principle and can be benefited from COMET.
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Figure 8: Comparison of standard deviation 𝜎 of gradient er-
ror (caused by compression error introduced to activation
data) from measured distribution and from predicted distri-
bution (based on our theoretical analysis).

Figure 9: Validation accuracy training curve started from
itration 190,000. Learning rate updated at iteration 200,000
Evaluation on different fractions of error introduced to the
gradient.𝐺 represents for average value of gradient with co-
efficient value used in COMET.

5 EXPERIMENTAL EVALUATION
In this section, we evaluate COMET from four aspects, including
(1) evaluation of compression error impact on gradient, (2) eval-
uation of error propagation from gradient to training curve, (3)
comparison between COMET and the state-of-the-art method, and
(4) performance evaluation with multiple state-of-the-art GPUs. We
manually set the batch size of COMET for observation and variable
control purposes unless specified.

5.1 Experimental Setup
Our evaluation is conducted with Caffe [23] and Tensorflow 1.15 [1].
We choose Caffe for a single-node experiment due to its easy-to-
modify architecture and choose Tensorflow for multi-node evalua-
tion due to its being widely used in the research. Our experiment
platform is the Longhorn system [36] at TACC and the Bridge-2
system [4] at PSC, of which each GPU node is equipped with 4/8
NVIDIA Tesla V100 GPUs [17] per node. Our evaluation dataset is
the ImageNet-2012 [28] and Stanford Dogs Dataset [27]. The CNN
models used for image classification include AlexNet [28], VGG-16
[47], ResNet-18, ResNet-50 [19], and EfficientNet [52].

5.2 Error Impact Evaluation
First, we evaluate our proposed theoretical analysis in Section 4.2.
Based on Equations 10 and 11, we can estimate 𝜎 which stands for
how an error is distributed in the gradient. After implementing our
estimation, we identify that coefficient 𝑎 in Equation 10 is 0.32 based

Figure 10: Validation accuracy training curve at the start of
training. Comparison of validation accuracy (during train-
ing) using original SZ and our optimized SZ in COMET on
AlexNet (batch size = 256). The evaluation of the original SZ
is conducted four times (with four curves).

on our experiment. This is reasonable because if we consider the
extreme condition that the batch size 𝑁 = 1, the error distribution
in the gradient will be the same as the SZ lossy compression to
uniformly distribute and result in 𝑎 = 1/3.

We also evaluate our estimation on different layers of AlexNet
and VGG-16 using the batch size of 256, as shown in Figure 8. We
can clearly observe that the coefficient and how our estimated value
aligns with the actual error distribution. This means that we can not
only estimate the error propagation but also determine the error
bound based on a given acceptable 𝜎 error distribution.

Next, we evaluate the error impact from gradient to the overall
training process in terms of validation accuracy, as discussed in
Section 4.3. Since we target to cause little or no accuracy loss, we
focus on the iterations close to the end of training in this evaluation,
since the accuracy is harder to be increased when the training is
close to the end. To reduce the training time and find an empirical
solution for this specific analysis, we pre-train the model without
COMET first and save the snapshot every epoch. Then, we perform
our evaluation of error impact analysis using those snapshots from
different iterations to demonstrate the effectiveness of COMET.

Figure 9 shows our experiment with AlexNet starting from the
iteration of 190,000 with a batch size of 256. Here smaller coefficient
value means less error introduced to the gradient but potentially
lower compression ratio. On the one hand, we can observe from the
zoomed-in subfigure that 𝜎 = 0.05 would result in an unacceptable
error loss that cannot be eventually recovered. On the other hand,
𝜎 = 0.02 can provide better accuracy and a higher compression
ratio, but it does affect the accuracy a bit in some cases. Thus,
considering that our goal is a general solution for convolutional
layers, we eventually choose 𝜎 = 0.01 as default in COMET; in
other words, the target 𝜎 is 1% of the average of gradient. In fact,
we evaluate 0.1%∼5% for 𝜎 and choose the best one (i.e., 1%) to
minimize the accuracy impact.

Last but not the least, we also evaluate the effectiveness of our
proposed optimized SZ, by adding a filter to the decompression pro-
cess to re-zero values that are closer to zero than the defined error
bound in order to improve the performance for the reconstruction
of contiguous zeros. As shown in Figure 10, we can observe that
without our modification to the current version of SZ, the training
process cannot even sustains through 5,000 iterations. This is be-
cause the original SZ would usually reconstruct continuous zeros
to a continuous small value by design of the Lorenzo predictor (i.e.,
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Figure 11: Comparison of validation accuracy between base-
line training and COMET (batch size = 256). Lines represent
the validation accuracy during training; dots represent the
compression ratio of COMET on secondary y-axis.

only ensuring the reconstructed values to be within the pre-defined
error bound to the original values) and can cause gradient update to
shift from original that eventually leads to gradient explosion. Note
that we perform the experiment with the original SZ four times,
leading to crashes in four different iterations due to their different
training initial states and the uncertainty of gradient explosion.
Figure 10 illustrates that our optimized SZ can solve this issue and
provide stable performance during the training process.

5.3 Memory Reduction Evaluation
We test COMET on various popular CNNs and evaluate its memory
reduction capability. We use the original training approach of each
model without memory reduction techniques (i.e., recomputation,
migration, and compression) as the baseline. Figure 11 illustrates
the result with AlexNet and ResNet-50. The black and red lines are
the validation accuracy curves of the baseline training and COMET.
We can observe that these two curves are very close to each other,
meaning COMET does not noticeably affect the validation accuracy.
We also illustrate the change of compression ratio to iteration in
yellow dots. In the early stage of training, the compression ratio can
be slightly unstable because of the relatively large change to the
model itself. Note that the compression ratio will change slightly
when the learning rate changes because the learning rate only
matters when updating the gradient to the weights. Other than
that, for some layers, although the average maximum loss of each
input should be decreased and result in a higher error bound, the
corresponding activation data value is actually increased. Thus,
the compression ratio would not increase even with a higher error
bound. Moreover, we evaluate a static strategy for comparison: we
estimate the error bound only once at the beginning of training (i.e.,
at iteration 1, 100, and 200) and keep using this error bound through
the whole training process. This static strategy leads to a significant
accuracy drop (i.e., top-1 accuracy of only 30.6%, 36.7%, and 31.0%
on AlexNet at 10 epochs, respectively) compared to the baseline
training (i.e., 45.9% at 10 epochs), which proves the necessity of
adaptively configuring error bound.

Table 1 shows the compression ratio of convolutional layers and
the overall peak memory usage that COMET can provide at the
batch size of 128. “Max batch” means the maximum batch size that
the baseline and COMET can run with on a single GPU with 16

Table 1: Comparison of validation accuracy between base-
line training and COMET; comparison of compression ratio
between JPEG-ACT and COMET.

Neural Nets Top-1
Accuracy

Peak
Mem.

Max
Batch

Conv.
Act. Size COMET JPEG-

ACT

b. 57.41% 2.17 GB 512 407 MB
AlexNet c. 57.42% 0.85 GB 2048 30 MB 13.5× -

b. 68.05% 17.29 GB 64 6.91 GB
VGG-16 c. 68.02% 5.04 GB 256 0.62 GB 11.1 × -

b. 67.57% 5.16 GB 256 1.71 GB
ResNet-18 c. 67.43% 1.37 GB 1024 0.16 GB 10.7 × 7.3 ×

b. 75.55% 15.57 GB 128 5.14 GB
ResNet-50 c. 75.51% 4.40 GB 512 0.46 GB 11.0 × 6.0 ×

b.= baseline, c.= compressed

GB memory. There is almost no accuracy loss or only little, with
up to 0.31%. Thanks to our careful control of compression error
and thorough analysis and modeling of error impact. COMET can
deliver a promising compression ratio without heavy efforts of fine-
tuning any parameter for different models. Overall, COMET can
provide up to 13.5× compression ratio with little or no validation
accuracy loss.

Compared to recomputation-basedmemory reduction solution [5,
15], COMET can provide a high compression ratio to activation
data of convolutional layers that cannot be reduced with acceptable
overhead by recomputation. Compared to the migration-based solu-
tion, COMET provides a higher compression ratio on our evaluated
models without the constrain of CPU-GPU communication (e.g.,
COMET provides 11.0× compression ratio compared to 2.1× by
Layrub [24] on ResNet-50). COMET is also more flexible in compar-
ison: if users decide not to increase the batch size (although it is a
common optimization), COMET can still help train the same model
with much lower memory requirement, which otherwise cannot
be trained with the baseline training, enabling a scaled-up train-
ing solution; it can also save more precious shared-memory space
for other co-running workloads via container [2] or GPU multi-
instance technologies [38]. Comparedwith the lossless-compression-
based solution [43], which reduces the memory usage by only 1∼2×,
COMET outperforms it by over 9×; compared with the current
state-of-the-art JPEG-based solution [13], which uses an hardware-
implemented image-based compressor to provide up to 7× compres-
sion ratios, COMET outperforms it by 1.5× and 1.8× on ResNet-18
and ResNet-50, respectively, shown in Table 1. Note all methods
mentioned above including our proposed COMET are orthogonal
to each other and can be deployed together to maximize the com-
pression ratio and training performance.

Moreover, other than training from scratch, COMET is also ca-
pable of fine tuning from an existing model. We use EfficientNet-
B0 [52] for demonstration. The model was pre-trained on ImageNet
dataset and is evaluated by fine tuning on the Stanford Dogs dataset
that contains 12,000 images for training and 8,580 images for testing
in 120 categories. We set all layers “trainable” and use a relatively
small learning rate of 2−5 to perform COMET on all activation
data. Note that compressing all convolutional layers (i.e., intro-
ducing compression error to all convolutional layers) during the
fine-tuning stage with a small learning rate is more challenging to
COMET compared to the partial-layer fine-tuning approach. Simi-
lar to Figure 11, Figure 12 shows that the validation accuracy curve
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Figure 12: Comparison of validation accuracy between base-
line training and COMET on EfficientNet-B0.

Figure 13: Overhead comparison between migration, recom-
putation, and COMET on VGG-16 (batch size = 128). Time is
normalized to the computation time of given convolutional
layer, which is also the recompute overhead.

Figure 14: Time breakdown of one training iteration with
COMET on VGG-16 (batch size = 128).

of the baseline and COMET are aligned with each other, meaning
that COMET successfully provides a high compression ratio with
minimal validation accuracy loss during the training process.

5.4 Performance Evaluation and Analysis
As aforementioned, COMET features a theoretical analysis to esti-
mate error propagation and to provide an adaptive configuration for
activation data compression based on easy-to-collect parameters.
Note that it is almost impossible to find adaptive configurations by
trial-and-error method for DNN training because of its extremely
long training period, not to mention it requires a large number
of traverses for high configuration precision. As a result, only by
using the theoretical analysis as the backbone of COMET can we
avoid the trial-and-error method to select adaptive solutions.

Regarding the performance overhead of COMET, it needs to
extract usable parameters and compute the compression config-
uration every 1,000 iterations, while the amortized overhead is

Figure 15: Training throughputs with different batch sizes
on ResNet-50. Throughput per GPU slightly decreases with
more GPUs due to increasing communication overhead for
gradient updates.

almost negligible; on the other hand, thanks to its high working
efficiency, cuSZ can provide an extremely high compression and
decompression speed on GPU [55]. We modify cuSZ by adding
a filter that changes all the values under the error bound to ze-
ros, as discussed in Section 3.4. This helps us to keep zeros in the
activation data unchanged while only causing little overhead to
the framework. Overall, COMET introduces about 17% overhead
the training process while keeping the same training batch size
for our experimented models. In comparison, the state-of-the-art
recomputation-based solution [15] cannot support convolutional
layers without the significantly large overhead, and the image-based
compression solution [13] is based on hardware implementation
and simulation. Moreover, the state-of-the-art migration solution
Layrub achieves a memory reduction of 2.4× on average but with a
higher performance overhead of 24.1% [24] on K40MGPU. Figure 13
shows the overhead comparison between the three techniques on
convolutional layers. Note that the migration takes an even larger
overhead than claimed because the computational power improve-
ment from K40M to V100 reduces the computation time while
both systems still bottleneck by similar communication bandwidth.
Overall, compared to data migration, COMET can provide a com-
parable compression ratio while introducing fairly less overhead;
both outperform recomputation on convolutional layers.

Figure 14 demonstrates the training time breakdown of COMET
on VGG-16. We can observe that for most layers, COMET only
introduces a little overhead in comparison to the forward and back-
ward propagation time. Specifically, COMET introduces an overall
overhead of 11.5% with the same batch size. Note that for each
group of convolutional layers (framed in purple dashed line in Fig-
ure 14), the first convolutional layer (i.e., layer 1, 3, 5, 8, and 11) has
less overhead compared to the other layers in the group due to its
smaller size of activation data. We also acknowledge that COMET
may introduce higher overheads than expected to the networks
that contain convolutional layers with many 1×1 kernels. This is
because 1×1 kernels take little time to compute but require a rela-
tively high overhead to compress and decompress. Calculating such
layers is very efficient, compared with the GPU (de)compression
on similar sizes of activation data. Thus, COMET is more suitable
for the CNNs composed of larger convolution kernels than 1×1.

COMET introduces relatively small overhead to the training
process while can greatly reduce the memory utilization and al-
low larger and wider neural networks to be trained with limited
GPU memory. Moreover, the saved memory can also be further
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Figure 16: Multi-GPU performance of COMET framework
with ResNet-50. Y-axis represents the overall throughput.
“Ideal” represents the ideally linear performance scalability.

utilized for a larger batch size, which improves the overall per-
formance. Figure 15 shows the improvement of training through-
out (i.e., images per second per GPU) with increasing batch size
on both single-/multi-GPU cases. Specifically, COMET provides
a training throughout improvement of up to 1.27× and 1.30× on
ResNet-50 with 1 GPU and 8 GPUs, respectively. Furthermore, this
performance improvement can offset the overheads of COMET
(e.g., error-bound estimation and activation data compression). For
example, the overall overhead can be reduced from 11.5% to -7%
on VGG-16 by utilizing the saved memory to increase the batch
size from 32 to 256. It means that we can still improve the over-
all training performance by fully utilizing the GPU computational
performance despite the compression overhead.

In addition, we also evaluate the performance of our frame-
work scaled from a single GPU (from a single node) to 64 GPUs
(from 8 nodes), as shown in Figure 16. It illustrates that COMET
is highly scalable thanks to no extra communication cost intro-
duced. Note that the small performance degradation compared to
the ideal speedup is due to the training framework itself (e.g., the
communication overhead of AllReduce for gradient update).

Finally, COMET improves the end-to-end training performance
by faster convergence speed due to larger batch size [60]. This is
because a larger batch size involved more training data per iteration
which leads to a more precise gradient direction. Figure 17 shows
that the convergence speed of COMET is faster with a larger batch
size on AlexNet. For example, it takes 14.6 epochs with the batch
size of 1024 (COMET at Mem = 12 GB) while 21.3 epochs with the
batch size of 512 (COMET at Mem = 8 GB) to train AlexNet to the
same top-1 accuracy of 53.0%. The baseline training under 12 GB
memory can only use the batch size of 512, which is significantly
slower than COMET. As a result, we can achieve over 2× speedup
by using 8× larger batch size for AlexNet. Note that the convergence
speeds of AlexNet at the batch sizes of 512 and 1024 are similar to
each other, as both of them reach the scalability limit, meaning that
larger batch sizes cannot further improve the training performance.

It is worth noting that prior studies [16, 46] showed that the
scaling limit is considerably large for many deep neural networks.
For example, Goyal et al.work [16] provides tuning insights to train
ResNet-50 at an enormous batch size of 8k without scaling bottle-
neck. Shallue et al. [46] points out that the scaling bottleneck can
be more significant for deep convolutional models. Thus, increas-
ing batch size can reduce the overall training time with the same
amount of compute resources and significantly increase the training
performance on various models and datasets [13, 24, 41, 48]. Consid-
ering that the memory consumption is relatively large for datasets

Figure 17: Validation accuracy curve of COMETunder differ-
ent GPUmemory constraint onAlexNet. By compressing ac-
tivation data and increasing batch size, COMET can improve
the end-to-end training performance.

like ImageNet, COMET can help the training reach the maximum
batch size that can achieve the minimum time-to-solution.

Overall, we identify that the performance improvement of COMET
is threefold: (1) higher throughput per GPU unit due to higher re-
source utilization (thanks to larger batch size), (2) higher conver-
gence speed (thanks to larger batch size within the scaling limit),
and (3) a new capability of training larger models with limited
memory space. We acknowledge that not all three benefits can be
achieved at the same time for a given model. For simple models such
as AlexNet, enlarging the batch size to increase the convergence
speed only happens at a relatively small batch size (i.e, 210).

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a novel memory-efficient deep learning
training framework. We utilize the SZ error-bounded lossy com-
pressor to reduce the memory consumption of convolutional layers.
We develop an error propagation model and prove its accuracy. We
evaluate our proposed framework on several popular CNNs with
the ImageNet dataset. The result shows that our framework signifi-
cantly reduces the memory usage by up to 13.5×with little or no ac-
curacy loss. Compared with the state-of-the-art compression-based
approach, our framework can provide a memory reduction improve-
ment of up to 1.8×. By leveraging the saved memory, COMET can
improve the end-to-end training performance (e.g., about 2× on
AlexNet). We plan to integrate data migration and recomputation
methods into COMET for higher performance and more memory
reduction. We will also explore the applicability of COMET to other
types of layers and models such as transformer. Moreover, we will
further reduce the (de)compression overhead of COMET by over-
lapping compression with operations such as convolution.
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