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SYSTEMATICS AND PHYLOGENY

Repeated parallel losses of inflexed stamens in Moraceae:
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Abstract We present a densely sampled phylogenomic study of the mulberry tribe (Moreae, Moraceae), an economically important
clade with a global distribution, revealing multiple losses of inflexed stamens, a character traditionally used to circumscribe Moreae.
Inflexed stamens facilitate ballistic pollen release and are associated with wind pollination, and the results presented here suggest that
losses of this character state may have evolved repeatedly in Moraceae. Neither Moreae nor several of its major genera (Morus, Stre-
blus, Trophis) were found to be monophyletic. A revised system for a monophyletic Moreae is presented, including the reinstatement
of the genera Ampalis, Maillardia, Taxotrophis, and Paratrophis, and the recognition of the new genus Afromorus. Pseudostreblus is
reinstated and transferred to the Parartocarpeae, and Sloetiopsis is reinstated and transferred to the Dorstenieae. The tribe Olmedieae
is reinstated, replacing the Castilleae, owing to the reinstatement of the type Olmedia and its exclusion from Moreae. Streblus s.str. is
excluded from Moreae and transferred to the Olmedieae, which is characterized primarily by involucrate inflorescences without re-
gard to stamen position. Nine new combinations are made.
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H INTRODUCTION

The preservation of plesiomorphic (ancestral) characters
can result in species that are similar in appearance but dis-
tantly related, connected only by a remote common ancestor.
The mulberry family (Moraceae Gaudich., 7 tribes, ca. 39
genera and 1200 species) illustrates this principle well. In-
flexed stamens in bud—an adaptation to wind pollination
that allows explosive pollen dispersal when flowers open
(Taylor & al., 2006)—were traditionally used to define a
tribe of the family, the Moreae Gaudich. (mulberries and
their allies). Yet phylogenetic analyses have revealed that

inflexed stamens, an ancestral feature of both Moraceae and
their sister family Urticaceae Juss. (nettles), have been lost
repeatedly (Clement & Weiblen, 2009). Thus, for example,
Cecropiaceae C.C.Berg, traditionally distinguished from the
nettle family by the absence of inflexed stamens, is in fact
embedded within the Urticaceae (Berg, 1978; Clement &
Weiblen, 2009). Likewise, while mulberries (Morus L.), pa-
per mulberries (Broussonetia L’Hér. ex Vent.), and osage
oranges (Maclura Nutt.) were once treated as tribe Moreae
on account of their inflexed stamens, phylogenetic analyses
have revealed them to belong to three distinct clades, each
containing an assemblage of genera with and without inflexed
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stamens (Clement & Weiblen, 2009; Zerega & Gardner,
2019).

This study focuses on the tribe Moreae, a clade of 6 genera
and an estimated 66 species (Clement & Weiblen, 2009). This
widespread group of plants contains species of ecological and
cultural importance, as well as the economically important
white mulberry (Morus alba L.), whose leaves sustain Bom-
byx mori L. (Bombycidae), the invertebrate engine of the silk
industry.

Morphological basis for higher classification in Mora-
ceae. — By the end of the 19th century, Engler (1889) had cir-
cumscribed a Moraceae that is quite similar to the modern
concept of the family, with two subfamilies. The first was
the Moroideae, comprising tribes Broussonetieae Bureau,
Dorstenieae Dumort., Fatoueae Engl., Moreae, and Strebleae
Bureau, characterized by stamens inflexed in bud (broadly
construed to include stamens in Dorstenia L., which straighten
gradually rather than springing outward suddenly). The other
was the Artocarpoideae, composed of the tribes Brosimeae
Trécul, Euartocarpeae Trécul, Ficeae Dumort., and Olme-
dieae Trécul and characterized by stamens straight in bud.
The two most influential scholars of Moraceae classification
in the 20th century were E.J.H. Corner and C.C. Berg. Corner
considered inflorescence architecture to be the most important
character for higher-rank taxonomy within the family and
inflexed stamens consequently of secondary importance
(Corner, 1962). Berg by contrast questioned the utility of
inflorescence architecture and took into account a variety
of characters, especially the presence of inflexed stamens
(Berg, 1977b, 2001).

The taxonomic history of the family has leaned heavily on
this stamen character. Engler’s (1889) Moreae, unchanged in
substance from Bureau’s (1873), contained six genera, Ampa-
lis Bojer, Pachytrophe Bureau, Paratrophis Blume, Pseudo-
morus Bureau, Morus, and Trophis P.Browne (Table 1), all
with inflexed stamens that spring out suddenly at anthesis.
Corner’s expanded Moreae consisted of eight genera with
either straight or inflexed stamens, but with pistillate inflores-
cences never condensed into a head: Ampalis, Clarisia Ruiz
& Pav,, Fatoua Gaudich., Morus, Pachytrophe, Sorocea
A.St.-Hil. (apparently including Paraclarisia Ducke), Streblus
Lour. (including Bleekrodea Blume, Neosloetiopsis Engl.,
Paratrophis, Pseudomorus, Pseudostreblus Bureau, Taxotro-
phis Blume, Sloetia Teijsm. & Binn. and Sloetiopsis Engl.),
and Trophis (including Maillardia Frapp. ex Duch.). Corner
himself, however, found the diversity of his Moreae unsatis-
factory, noting that “[tJoo many genera on insufficient and in-
valid grounds trouble this small tribe”” (Corner, 1962). Perhaps
in response, Berg’s Moreae comprised all of the genera with
inflexed stamens and none without, including Broussonetia
and Maclura but excluding Sorocea and Clarisia, providing a
simple character with which to delimit the tribe (Berg, 2001;
Berg & al., 2006).

Recent phylogenetic work has supported a third appro-
ach, with the Moreae comprising six genera, including genera
with both straight (Bagassa Aubl., Sorocea) and inflexed
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(Broussonetia, Maclura) stamens (Clement & Weiblen, 2009).
These studies also suggest that the character state of inflexed
stamens is plesiomorphic and is the ancestral state for both
Moraceae and Urticaceae (Datwyler & Weiblen, 2004; Zerega
& al., 2005; Clement & Weiblen, 2009). Inflexed stamens,
which are precursors to ballistic pollen release, are associated
with wind pollination (Bawa & Crisp, 1980; Berg, 2001;
Pedersoli & al., 2019), while the loss of inflexed stamens is as-
sociated with animal pollination. Although dominant in the
Moreae, inflexed stamens also occur in two other tribes: Chlo-
rophoreae A.Juss. (= Maclureac W.L.Clement & Weiblen) and
Dorstenieae. Genera lacking inflexed stamens occur in all
seven tribes of Moraceae (Clement & Weiblen, 2009; Zerega
& Gardner, 2019).

Taxonomic summary of Moreae. — Following Clement
& Weiblen (2009), the Moreae comprises 6 genera and an esti-
mated 66 species: Bagassa (1), Milicia Sim (2), Morus (16),
Sorocea (19), Streblus (23), and Trophis P.Browne (8) (Berg,
1977a, 2001; Berg & al., 2006; Clement & Weiblen, 2009;
Filho & al., 2009; Machado & al., 2013; Santos & Neto, 2015).
Here, we present an overview of these genera.

Morus, the true mulberries, is characterized by leaves with
crenate margins and trinerved bases, stamens inflexed in bud,
and many-flowered pistillate spikes whose 4-parted perianths
become fleshy in fruit, the aggregations superficially resembling
a blackberry. Morus comprises approximately 16 species whose
delimitation requires further research. There are three subgenera:
M. subg. Morus (ca. 14 species), which is found in temperate to
tropical Asia and from North America to Mexico; M. subg. Gom-
phomorus J.-F Leroy, a single species restricted to tropical South
America; and “M. subg. Afromorus Bureau ex J.-F.Leroy” (not
validly published), a single species restricted to tropical Africa.
Previous phylogenetic work has suggested that these three subge-
nera may not form a clade (Nepal, 2012). Milicia (2 spp., Africa)
has inflorescences that somewhat resemble those of Morus, but
the leaves of Milicia, with entire margins and pinnate venation,
prevent any confusion of the two genera.

Streblus, with 23 species from India to Southeast Asia and
Oceania, is morphologically heterogeneous, but its species are
all characterized by stamens inflexed in bud and pistillate
flowers with more or less free tepals that enclose the fruit
loosely or not at all. Initially described by Loureiro based on
the widespread S. asper Lour.—notable for its discoid-capitate
staminate inflorescences with the rudiments of an involucre—
Streblus was broadened by Corner (1962), bringing in as sec-
tions Bleekrodea, Paratrophis (including Pseudomorus), Phyl-
lochlamys Bureau, Pseudostreblus Bureau, Sloetia Teijsm. &
Binn., Taxotrophis, and apparently Neosloetiopsis and Sloe-
tiopsis but without making any new combinations for these last
two. None of these have discoid-capitate inflorescences; they
mostly have spicate staminate inflorescences, and several (Bleek-
rodea, Sloetia, and Sloetiopsis) can have bisexual inflorescences.
Corner viewed these sections as fragments of an ancient line-
age preserving ancestral characters (Corner, 1975). Following
additional work by Corner (1970, 1975), Berg included the
genera Ampalis and Pachytrophe as Streblus sect. Ampalis
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(Bojer) C.C.Berg, subsumed Sloetiopsis and Streblus sect.
Taxotrophis (Blume) Corner into S. sect. Streblus, and exclu-
ded S. sect. Bleekrodea (Blume) Corner, reinstating it as a ge-
nus (Berg, 1988). Berg later reinstated S. sect. Taxotrophis,
whose species are unique in bearing spines (Berg, 2005; Berg
& al., 2006). In 2009, Clement and Weiblen reinstated Sloetia
at generic rank and transferred it and Bleekrodea to Dorstenieae
based on phylogenetic evidence (Clement & Weiblen, 2009).

Trophis is characterized by stamens inflexed in bud, spi-
cate staminate inflorescences, and tubular pistillate perianths
that become fleshy and enclose the fruit, except for the mono-
typic T. sect. Olmedia (Ruiz & Pav.) C.C.Berg (T’ caucana),
which has discoid-capitate staminate inflorescences with an
involucre. Trophis as recognized by Berg (1988, 2001) has
five sections: Trophis sect. Trophis, restricted to Latin Amer-
ica; sect. Calpidochlamys (Diels) Corner (previously included
in Paratrophis and Uromorus), restricted to Southeast Asia
(Corner, 1962); sect. Maillardia (Frapp. ex Duch.) C.C.Berg,
restricted to Africa; sect. Malaisia (Blanco) C.C.Berg, from
Southeast Asia to the western Pacific; and sect. Olmedia, rest-
ricted to Latin America. After sinking Olmedia into Trophis,

Table 1. Overview of the taxonomic history of Moreae.
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Berg (1988) defined a new tribe Castilleae C.C.Berg based on
Castilla Cerv., in order to maintain a tribe consisting of the re-
maining genera of the former Olmedieae (which had been typi-
fied by Olmedia). Recently, Malaisia Blanco was reinstated
as a genus and transferred to Dorstenieae based on phyloge-
netic evidence (Clement & Weiblen, 2009), reducing the cur-
rent number of sections to four.

Two Neotropical genera included in Moreae by Clement
& Weiblen (2009) but not by Berg (2001) have straight stamens.
While the monotypic Bagassa, with its long staminate catkins,
is wind pollinated (Bawa & Crisp, 1980), evidence suggests
that Sorocea (19 spp.), which produces racemose staminate inflo-
rescences that do not have as many flowers as those of Bagassa,
likely contains both wind- and insect-pollinated species (Zapata
& Arroyo, 1978; Bawa & al., 1985; Lewis, 1986). The pistillate
perianths are subtended by pluricellular hairs, believed to serve
as a substrate for a fungus, which in turn attracts pollinators
(Berg, 2001). The staminate flowers of Sorocea affinis Hemsl.
are apparently fragrant (fide S. Zona 778, 21 Nov 1997,
FTBGQ3?), suggesting insect pollination for that species. If insect
pollination were confirmed in Sorocea, it would likely represent

Engler (1889) Corner (1962) Berg (2001) Clement & Weiblen (2009) This study
Afromorus®
Ampalis Ampalis (Ampalis)? (Ampalis)? Ampalis
Bagassa Bagassa
(Bleekrodea)® Bleckrodea
Broussonetia
Clarisia
Fatoua Fatoua
Maclura
(Maillardia)® (Maillardia)® (Maillardia)® Maillardia
(Malaisia)®
Milicia Milicia Milicia
Morus Morus Morus Morus Morus
Pachytrophe Pachytrophe (Pachytrophe)® (Pachytrophe)® (Pachytrophe)®
Paratrophis (Paratrophis)* (Paratrophis)* (Paratrophis)* Paratrophis
Pseudomorus (Pseudomorus)* (Pseudomorus)* (Pseudomorus)* (Pseudomorus)®
(Pseudostreblus)® (Pseudostreblus)® (Pseudostreblus)®
(Sloetia) (Sloetia)*
(Sloetiopsis)* (Sloetiopsis)* (Sloetiopsis)*
(Neosloetiopsis)* (Neosloetiopsis)*
Sorocea Sorocea Sorocea
Streblus Streblus Streblus
(Taxotrophis)® (Taxotrophis)® (Taxotrophis)® Taxotrophis
Trophis Trophis Trophis Trophis Trophis

Included in Streblus. — ®Included in Trophis. — “Newly separated from Morus. — “Included in Ampalis. — “Included in Paratrophis.
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another transition from ancestral wind to derived insect pollina-
tion in Moraceae.

Disagreement between the two principal recent monogra-
phers of the Moraceae, Corner (1962) and Berg (2001, 2005;
Berg & al., 2006), over the delimitation of the Moreae has
been compounded by molecular phylogenetic studies that
have redefined genera and their relationships. This has re-
sulted in a poorly delimited tribe with respect to diagnostic
morphological characters, the genera it comprises, and the
rank of several taxa (see above). Ensuring that the tribe and
its genera are monophyletic will result in a classification that
better reflects evolutionary history, providing a framework
for answering broader scientific questions. Our aim, therefore,
was to generate a comprehensive phylogeny of the Moreae
(Fig. 1) and its near allies by sampling all of the potential gen-
era and species in the tribe sensu Berg, sensu Corner, and
sensu Clement & Weiblen (2009) and use this to redelimit
the tribe and its genera. We aimed to do so through increased
taxon and genome sampling compared to previous studies, in-
cluding a nearly comprehensive sample of the taxa in Moreae
(56/66 species) and the allied tribes Artocarpeae (76/83 taxa)
and Chlorophoreae (12/12). Our dataset combines phyloge-
nomic data generated using two largely nonoverlapping sets
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of enrichment baits, one developed specifically for the Mora-
ceae (Gardner & al., 2016), the other for the whole of the An-
giosperms (Johnson & al., 2019), allowing us to explore the
possibilities and challenges of combining samples based on
largely nonoverlapping loci. The resulting generic revision
lays the groundwork for species-level revisionary work and
provides clarity to this economically important clade.

We also set out to reconstruct the evolutionary history
of inflexed stamens within Moraceae using ancestral state
reconstruction. The loss of inflexed stamens in Castilleae +
Ficeae and Artocarpeae have been associated with transitions
from wind to animal pollination (Momose & al., 1998; Sakai
& al., 2000; Datwyler & Weiblen, 2004; Gardner & al., 2018).
A more complete picture of evolutionary transitions between
inflexed and straight stamens may help focus further research
on transitions in pollination biology with Moraceae.

B MATERIALS AND METHODS

We used target enrichment sequencing (Hyb-Seq)
(Weitemier & al., 2014) to capture 333 genes previously de-
veloped for phylogenetic work in Moraceae (“Moraceae333”)

Fig. 1. Reproductive parts of Moreae. A—D, Staminate inflorescences of: A, Morus alba L.; B, Paratrophis glabra (Merr.) Steenis (= Streblus glaber
(Merr.) Corner); C, Taxotrophis macrophylla (Blume) Boerl. (= Streblus macrophyllus Blume); D, Sorocea affinis Hemsl. E-H, Pistillate inflores-
cences of the same taxa; I-L, Infructescences. — Photo credits: E. Gardner (A, B, E, F, I, J); M. Nuraliyev (C, G, K); S. Zona (D, H); R. Aguilar
(L); D, H, and L reproduced under a CC BY-NC-SA 2.0 license.
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(Gardner & al., 2016; Johnson & al., 2016). This method al-
lows for efficient capture of hundreds of loci and is suitable
for both fresh material and degraded DNA from herbarium
material (Villaverde & al., 2018; Brewer & al., 2019), which
comprises much of the material employed in this study.
Taxon sampling. — We employed species-level sam-
pling in Moreae (56 out of ca. 66 species), Artocarpeae
(73/75), Chlorophoreae (12/12), and Parartocarpeae Zerega
& E.M.Gardner (4/4), complemented by genus-level sampling
in Dorstenieae (11/15 genera), Castilleae (9/11) and Ficeae
(1/1). Outgroups included seven samples representing the ma-
jor clades of Urticaceae and Trema orientale (L.) Blume.
Library preparation, and sequencing. — For new librar-
ies, we sampled 56 out of 66 species (and all genera) in Moreae,
all 12 species of Chlorophoreae, as well as select outgroup taxa
from other tribes using DNA from leaf tissue preserved on sil-
ica gel or—in most cases—samples from herbarium specimens
(Appendix 1). In either case, DNA was extracted using a mod-
ified CTAB method, usually with increased incubation times to
maximize yield from herbarium tissue (Doyle & Doyle, 1987;
Hale & al., 2020). Samples were quantified using a Qubit fluo-
rometer (Invitrogen, Life Technologies, California, U.S.A.),
and herbarium samples were run on a gel to test for degrada-
tion. For most samples 200 ng of DNA was used for library
preparation; for some low-yield samples, as little as 50 ng
was used, and for very degraded samples, as much input as pos-
sible was used, up to 400 ng. Undegraded DNA was fragmen-
ted either using NEB DNA Fragmentase (New England
Biolabs, Ipswich, Massachusetts, U.S.A.) or on a Covaris
M220 (Covaris, Wobum, Massachusetts, U.S.A.). DNA sam-
ples with an average fragment size less than 500 bp were not
fragmented at all, but partially degraded samples with an aver-
age fragment size of over 500 bp were still fragmented on the
Covaris M220. TruSeq-style library preparation was carried
out using either the KAPA Hyper Prep kit (Kapa Biosystems,
Wilmington, Massachusetts, U.S.A.) or the NEB DNA Ultra
2 kit following the manufacturer’s protocols, except that end
repair, A-tailing, and adapter ligation were carried out in
reduced-volume reactions (0.25% for KAPA and 0.5x for
NEB) to reduce costs. Final products were quantified on the
Qubit and combined in equal molecular weights into pools
of 1620 samples. The pools totaled 1200 pg each if enough
library preparation was available. Pools were hybridized for
16-24 hours to custom Moraceae probes (Gardner & al., 2016)
using a myBaits kit (Arbor Biosciences, Ann Arbor, Michigan,
U.S.A)) following the manufacturer’s protocol, except that the
probes were diluted 1 : 1 with nuclease-free water. Hybridiza-
tion products were reamplified using KAPA Hot Start PCR
reagents following the myBaits protocol, quantified on the
Qubit, and quality-checked on an Agilent BioAnalyzer (Agilent
Technologies, Palo Alto, California, U.S.A.). Samples with
adapter dimer peaks were cleaned using 0.7x SPRI beads
and re-run on the Qubit and BioAnalyzer. An initial sequenc-
ing run took place on a MiSeq 2 x 300 bp run (v.3) (Illumina,
San Diego, California, U.S.A.) at the Field Museum of Natu-
ral History, and then additional samples were sequenced on a
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HiSeq 4000 2 x 150 bp run at the Northwestern University
Genomics Core.

We also included 46 Moraceae and Urticaceae samples en-
riched for the Angiosperm353 probes and sequenced as part of
the Plant and Fungal Trees of Life project (PAFTOL, RBG
Kew; https://www.kew.org/science/our-science/projects/plant-
and-fungal-trees-of-life; suppl. Table S1). Sample preparation
and sequencing followed Johnson & al. (2019). The PAFTOL
samples were enriched with a universal probe set developed
for angiosperms (the “Angiosperms353”).

Finally, we used samples sequenced for previous phylo-
genetics projects in Artocarpus J.R Forst. & G.Forst. and Par-
artocarpeae to complete our sampling (Johnson & al., 2016;
Kates & al., 2018; Zerega & Gardner, 2019; Gardner & al.,
2021). The final dataset contained 246 samples.

Assembly of reads. — We trimmed reads using Trimmo-
matic v.0.36 (ILLUMINACLIP: TruSeq3-PE.fa:2:30:10
HEADCROP:3 LEADING:30 TRAILING:25 SLIDING-
WINDOW:4:25 MINLEN:20) (Bolger & al., 2014) and as-
sembled them with HybPiper, which produces gene-by-gene,
reference-guided de novo assemblies (Johnson & al., 2016).
For the samples enriched with the Angiosperms353 baits,
we used the reference described by Johnson & al. (2019),
and for the samples enriched with the Moraceae333 baits,
we used the reference described in Zerega & Gardner (2019).
To increase overlap between the two datasets beyond the
5 genes they inherently have in common, we used HybPiper
to assemble the Angiosperms353-enriched reads using the
Moraceae333 targets and vice-versa, in order to capture any
additional genes found in off-target reads. The exception
was the Artocarpus dataset, which was previously assembled
for another study using only the Moraceae333 targets. We
used the HybPiper script “intronerate.py” to build “supercon-
tig” sequences for each gene, consisting of exons as well as
any assembled flanking noncoding sequences (intronic or in-
tergenic). To these new assemblies, we added 76 Moraceae333
assemblies from Gardner & al. (2021) to complete sampling
for the Artocarpeae.

Summary of phylogenetic analyses. — We conducted
four main phylogenetic analyses, labeled as follows, and detailed
below. Main phylogenomic analyses: (1) exon-supermatrix — all
taxa, 686 nuclear genes, coding sequences only, concatenated
supermatrix; (2) exon-species-tree — all taxa, 686 nuclear genes,
coding sequences only, species tree; (3) supercontig-superma-
trix — Moreae only, 686 nuclear genes, coding and noncoding
sequences, concatenated supermatrix; (4) supercontig-species-
tree — Moreae only, 686 nuclear genes, coding and noncoding
sequences, species tree. We also conducted the following sup-
plemental analyses: (5) plastome — most taxa, all chloroplast
genes, coding and noncoding sequences, concatenated super-
matrix (to investigate cyto-nuclear discordance); (6) network
— Paratrophis clade, 686 nuclear genes, coding and noncoding
sequences, maximum-pseudolikelihood network based on in-
dividual gene trees (to investigate hybridization in the Paratro-
phis clade); (7) Involucrata-supermatrix and Involucrata-
species-tree — The Involucrata clade, 686 nuclear genes, coding
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and noncoding sequences, concatenated supermatrix and spe-
cies tree; (8) ITS-tree and rbcL-tree — most taxa plus select Gen-
Bank sequences, ITS or rbcL only (to place Streblus taxa not
included in our own sampling).

Main phylogenetic analyses. — The full dataset was an-
alyzed using the “exon” sequences to ensure good alignment
across the entire family. For non-Artocarpus samples, for each
of the 686 genes assembled, we discarded sequences shorter
than 25% of the average length for the gene and discarded
genes containing sequences for less than 30 samples. We
aligned each gene with MAFFT v.7.453 (Katoh & Standley,
2013) and used trimAl v.1.4 (Capella-Gutiérrez & al., 2009)
to discard sequences with an average pairwise identity of
less than 0.5 to all other sequences in the alignment (indica-
tive of a poor quality sequence that could not be properly
aligned) as well as columns containing more than 75% gaps.
Subsets of similarly trimmed alignments from the previous
Artocarpus study (Gardner, 2017; Gardner & al., 2021) were
then added to these alignments using the —merge option in
MAFFT. We used RAXML v.8.2.4 (Stamatakis, 2014) to es-
timate a maximum-likelihood tree for a partitioned superma-
trix of all genes (exon-supermatrix analysis) as well as for
each gene individually (GTRCAT model, 200 bootstrap rep-
licates). We then used ASTRAL-III (C. Zhang & al., 2017),
a summary-coalescent method, to estimate a species tree
from all gene trees (exon-species-tree analysis), estimating
node support using both bootstrap (160 replicates, resam-
pling across and within genes) and quartet scores (represent-
ing gene tree concordance). Finally, we used ASTRAL-III to
test whether, for each node, the null hypothesis of a polytomy
could be rejected (Sayyari & Mirarab, 2018). Alignment,
trimming, and estimation of gene trees were parallelized
using GNU Parallel v.20191122 (Tange, 2018). To maximize
phylogenetic resolution within Moreae, a smaller dataset con-
sisting only of Moreae taxa and a single outgroup taxon (4rto-
carpus heterophyllus) was analyzed using the “supercontig”
sequences but following the same methodology (supercontig-
supermatrix and supercontig-species-tree analyses).

Whole-chloroplast phylogenetic tree. — We also built a
whole-chloroplast phylogenetic tree (plastome analysis) as fol-
lows. Rather than assembling full-length genomes, which can
be extremely slow to align, we assembled and aligned the ge-
nomes in sections, dramatically speeding up the process. We
created HybPiper targets using the chloroplast genome of Morus
indica L. (NCBI RefSeq accession no. NC_008359.1) and the
associated gene annotations. Each target consisted of a gene fea-
ture concatenated with any internal or subsequent noncoding se-
quence, terminating one base before the start of the next gene
feature. These intervals were generated by manually editing the
NCBI gff3 file in Excel (Microsoft, Redmond, Washington,
U.S.A.) and then extracted using BedTools v.2.29.2 (Quinlan
& Hall, 2010). Assemblies for all Moraceae samples and Boeh-
meria nivea (L.) Gaudich. were carried out in HybPiper using a
coverage cutoff of 2 and otherwise with default parameters.
Within each target, sequences less than 25% of the average
length were discarded, and after alignment with MAFFT,
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sequences with an average pairwise identity of less than 0.7 were
discarded (the higher cutoff reflecting the conserved nature of
chloroplast DNA). Alignments were then concatenated into a
supermatrix, and samples with more than 50% undetermined
characters were discarded. Alignments were then rebuilt, fil-
tered, and concatenated, and columns in the final supermatrix
with more than 75% missing characters were discarded. A
maximum-likelihood tree was generated using RAXML v.8.2.4
under the GTRCAT model, with 200 rapid bootstrap replicates.

Phylogenetic network analysis. — To further investigate
relationships within the Paratrophis clade, including the
proper placement of Morus insignis Bureau and Trophis phi-
lippinensis (Bureau) Corner, we constructed phylogenetic net-
works (network analysis) based on two reduced 8-taxon
datasets (“exon” and “supercontig”) consisting of those taxa
plus Streblus anthropophagorum (Seem.) Corner, S. glaber
(Merr.) Corner, S. glaber subsp. australianus (C.T.White) C.C.
Berg, and S. heterophyllus (Blume) Corner, with S. mauritianus
(Jacq.) Blume as the outgroup. Alignment preparation followed
the workflow outlined above except that only genes with se-
quences for all eight taxa were retained. Rooted gene trees were
used to infer the network in PhyloNet v.3.8.0 using the “InferNet-
work_MPL” command, allowing a maximum of four hybridiza-
tion events and collapsing gene tree nodes with less than 30%
bootstrap support (Yu & Nakhleh, 2015; Wen & al., 2018); the
Akaike information criterion (AIC) was scored for the best five
networks from 10 runs, using the number of branch lengths and
hybridization events calculated as the number of parameters
(Kamneva & al., 2017).

Involucrata supercontig analyses. — To improve resolu-
tion within the Involucrata (Ficeae and Castilleae) clade and
further test the positions of Streblus asper and Trophis caucana,
we conducted additional phylogenetic analyses using ‘“‘super-
contig” sequences for members of the Involucrata clade, with
Fatoua pilosa Gaudich. as the outgroup. Methods followed
those used for the supercontig-supermatrix and supercontig-
species-tree analyses, except that genes with at least 4 taxa pre-
sent were retained (Involucrata-supermatrix and Involucrata-
species-tree).

ITS and rbcL phylogenetic trees. — While we did not
have our own sequences for Streblus ascendens Corner,
S. banksii (Cheeseman) C.J.Webb, S. smithii (Cheeseman) Cor-
ner, and S. fonkinensis (Eberh. & Dubard) Corner, either ITS
or rbeL sequences existed in NCBI GenBank for these taxa.
To investigate the phylogenetic affinities of these species,
we therefore assembled ITS and rbcL datasets from off-target
reads from our own samples using HybPiper, using Streblus
sequences for these loci (obtained from GenBank) as targets
and reducing the coverage cutoff to 2 to recover the loci from
off-target reads. To these sequences, we added GenBank se-
quences of Streblus taxa as well as Trophis caucana (Pittier)
C.C.Berg (rbcL only for the latter), to examine an alternative
line of evidence regarding their placement. We were not able
to examine the underlying specimens ourselves, but we con-
sidered the chances of misidentification low because those
species are morphologically and/or geographically distinctive;
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one of the 7' caucana samples came from a vouchered tree in
the Smithsonian Tropical Research Institute’s plot on Barro Col-
orado Island. For each locus, we aligned sequences with MAFFT,
discarded short sequences (<490 bp), trimmed alignments to
remove columns with over 75% gaps, and built maximum-
likelihood trees using RAXML (GTRGAMMA, 1000 rapid
bootstrap replicates) (ITS-tree and rbcL-tree analyses).
Divergence time estimation. — The supermatrix
maximum-likelihood tree was time calibrated using penalized
likelihood as implemented in ape v.5.3 (Paradis & Schliep,
2019) in R v.3.5.1 (R Core Team, 2019). First, the tree was
pruned of duplicate taxa and non-Moraceae outgroup taxa,
and edge lengths (in substitutions per site) were multiplied by
the number of sites in the alignment (to convert them to sub-
stitutions). The following stem nodes were constrained with
minimum ages (in million years, Ma) based on fossil data, fol-
lowing Q. Zhang & al. (2019): Ficus, 56 Ma; Broussonetia,
33.9 Ma; Morus (subg. Morus, based on the U.S.S.R. locality
of the fossil), 33.9 Ma; and Artocarpus, 64 Ma. The crown
node of Moraceae was constrained to a minimum age of
73.2 Ma and a maximum age of 84.7 Ma based on Q. Zhang
& al. (2019), which had a more extensive outgroup sampling
than this study. The tree was then time-calibrated using the
“chronos” function under three different models (“discrete”,
“correlated”, “relaxed”) (Kim & Sanderson, 2008; Paradis,
2013). The smoothing parameter (1) was chosen using the
cross-validation method implemented in the “chronopl” func-
tion (testing A = 0 and 0~ through 10'°), selecting the value
of A that minimized the cross-validation statistic (Sanderson,
2002). Models were compared using penalized log-likelihood
and “Phylogenetic information criterion” (®IC) scores (Paradis,
2013). The resulting trees were also visualized using the “densi-
Tree” function in phangornv.2.4.0 (Schliep, 2011) to assess the
sensitivity of the three models to changes in A. As the penalized
likelihood approach used does not integrate over model uncer-
tainty or uncertainty in calibration placement and timing, con-
fidence intervals on node ages are not provided in this study.
A geologic timescale based on the strat2012 dataset was added
to tree figures using PHYLOCH v.1.5-3 (Heibl, 2008).
Ancestral state reconstruction for inflexed stamens. —
All taxa were coded for presence (1) or absence (0) of inflexed
stamens in bud. Members of the Dorstenieae with stamens that
are inflexed in bud but gradually straighten were coded as
0. We reconstructed ancestral character states on the entire
phylogeny by stochastic mapping using the “make.simmap”
function in phytools v.0.6-99 (Revell, 2012). We also tested for
trait-associated shifts in diversification rates using BAMM
v.2.5.0 (Rabosky & al., 2013, 2014a; Rabosky, 2014), specifying
the amount of missing taxa per clade to account for the high
proportion of missing taxa in Ficeae, Castilleae, and Dorste-
nieae. Parameters were optimized using BAMMtools v.2.1.7
(Rabosky & al., 2014b). We also tested for trait-dependent
diversification using diversitree v.0.9-13 (FitzJohn, 2012).
We evaluated BiSSE and trait-independent models on the en-
tire tree and on a pruned tree consisting only of the densely
sampled Chlorophoreae + Moreae + Artocarpeae clade.
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Reads have been deposited in GenBank (Non-PAFTOL
samples: BioProject PRINA322184; PAFTOL samples:
BioProject PRIEB35285, subprojects PRIEB37667 for Mora-
ceae and PRJEB37665 for Urticaceae). Tree files and scripts
outlining the phylogenetic analyses have been deposited in
the Dryad Data Repository, https://doi.org/10.5061/dryad.
v41nslrrt).

B RESULTS

Assembly results. — The final dataset contained 246 sam-
ples (46 enriched with the Angiosperms353 baits, 196 enriched
with the Moraceae333 baits, and 4 extracted from whole ge-
nomes) and 619 genes (286 Angiosperms353 and all of the
Moraceae333) (Appendix 1; suppl. Table S1). The exon-
supermatrix alignment (all taxa) contained 613,126 charac-
ters, and the supercontig-supermatrix alignment (Moreae and
select outgroup taxa only) contained 799,926 characters. The
chloroplast alignment contained 113 loci.

Dataset combination. — On average, we assembled 39
Moraceae333 genes from the Angiosperms353-enriched sam-
ples and 20 Angiosperms353 genes from the Moraceae333-
enriched samples, and the average pairwise overlap in assem-
bled loci was 210 (suppl. Tables S1, S2; suppl. Fig. S1). Nine-
teen taxa were represented in both sets of samples, and 15 of
these were always monophyletic in the main analyses (exon-
supermatrix, exon-species-tree, supercontig-supermatrix, super-
contig-species-tree) (Figs. 2, 3, suppl. Fig. S1). Twelve resol-
ved as sister pairs: Antiaropsis decipiens (31 loci overlapping),
Bagassa guianensis Aubl. (38), Batocarpus amazonicus (Ducke)
Fosberg (22), Batocarpus orinocensis H.Karst. (34), Brosimum
alicastrum Sw. (42), Clarisia racemosa Ruiz & Pav. (59), Ma-
clura africana (Bureau) Corner (213), Milicia excelsa (Welw.)
C.C.Berg (45), Streblus asper (Retz.) Lour. (75), Streblus mauri-
tianus (Jacq.) Blume (40), Streblus usambarensis (Engl.) C.C.
Berg (43), and Trophis caucana (32). Three more represented
by more than two samples always resolved as a clade: Sorocea
bonplandii (Baill.) W.C.Burger & al. (3 samples; 19-35 loci over-
lapping), Maclura tinctoria (L.) D.Don ex Steud. (4 samples; 37—
43 loci overlapping), and Malaisia scandens (Lour.) Planch.
(3 samples; 27-43 loci overlapping). Three additional taxa re-
solved as sister pairs in the ASTRAL analyses (exon-species-tree
and when applicable, supercontig-species-tree) but as a grade in
the supermatrix analysis: Maclura cochinchinensis (Lour.) Corner
(28 loci overlapping), Streblus heterophyllus (Blume) Corner
(50), and Trophis montana (Leandri) C.C.Berg (56). Only one
species, Utsetela gabonensis Pellegr. (18 loci overlapping) was
never monophyletic, always forming a grade with U. neglecta
Jongkind. All genera (as revised below) with samples from both
sets were monophyletic except for Dorstenia in the exon-spe-
cies-tree analysis; the two Dorstenia samples both had a high pro-
portion of missing data (with 203 + 4 and 7 + 88 M333 + A353
loci, respectively) and only 6 loci overlapping.

Phylogenetic relationships. — For the main phyloge-
nomic analyses, supermatrix, species tree, exon, and supercontig
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analyses were broadly concordant, with disagreements largely
restricted to shallow phylogenetic depths, such as relationships
within Streblus sect. Paratrophis. For the species-tree analyses
sets, the polytomy hypothesis was rejected (P < 0.05) for Mora-
ceae and all tribe and genus-level clades (following the revised
classification presented below) (Figs. 2, 3).

() exon-supermatrix. — Of the genera in Moreae sensu
Clement & Weiblen, only Bagassa, Milicia, and Sorocea were
monophyletic; Morus, Streblus, and Trophis were not. The
monotypic Bagassa resolved as sister to Sorocea, with which
it shares straight stamens. Four Moreae species resolved with
other tribes: Trophis caucana was nested within Castilleae,
Streblus asper (Retz.) Lour. was sister to Castilleae, Streblus
indicus (Bureau) Corner was sister to Parartocarpeae, and
Streblus usambarensis was nested within Dorstenieae. Moreae
was otherwise monophyletic, comprising the following sub-
clades: (1) Streblus sect. Taxotrophis, sister to all other Moreae;
(2) (a) Trophis sect. Maillardia, (b) Milicia + Morus subg. Afro-
morus, (c) Streblus sect. Ampalis, (d) Streblus sect. Paratrophis
in part + Morus subg. Gomphomorus, (€) Streblus sect. Paratro-
phis in part + Trophis sect. Calpidochlamys; (3) Bagassa
+ Sorocea; and (4) Morus + Trophis sect. Trophis and sect.
Echinocarpa C.C.Berg. These are roughly geographic clades:
(1) Southeast Asia; (2) (a) Madagascar, (b) Southeast Africa,
(c) Madagascar, (d) Pacific + South America, (e) Southeast
Asia + Pacific; (3) South America; (4) South America.

(1) exon-species-tree. — This analysis was largely concor-
dant with the supermatrix, with no differences at the tribe
level. Within Moreae, only minor within-genus rearrange-
ments were observed, including rearrangements within the
white mulberry complex (Morus alba and allies) and a change
in the position of Morus insignis within the Paratrophis clade.
The polytomy hypothesis could not be rejected for the position
of M. insignis as sister to Streblus anthropophagorum +
S. heterophyllus. Outside of Moreae, disagreements included
minor rearrangements within Maclura sect. Cudrania (Trécul)
Corner, Dorstenieae (the position of Dorstenia in relation to
Utsetela Pellegr.), and Castilleae (the positions of Antiaris
and Naucleopsis).

(Il and 1V) supercontig-supermatrix and supercontig-
species-tree. — The addition of noncoding sequences generally
increased concordance between the supermatrix and species-
tree analyses within some clades in Moreae. In both the super-
contig-supermatrix and supercontig-species-tree analyses, Morus
insignis was sister to Streblus sect. Paratrophis, and the polyt-
omy test was rejected for that node (Fig. 3). However, within
Streblus sect. Taxotrophis, in the supercontig-supermatrix
analysis, Streblus zeylanicus (Thwaites) Kurz was sister to all
other member of that section, whereas in the supercontig-
species-tree analysis, S. zeylanicus was sister to S. taxoides
(B.Heyne ex Roth) Kurz.

(V) plastome. — The whole-choloroplast analysis (suppl.
Fig. S2) was generally in agreement with the nuclear phylo-
genetic trees, with three notable differences. Streblus indicus
and the Parartocarpeae formed a grade paraphyletic to Dorste-
nieae, Castilleae, and Ficeae, rather than a clade. Streblus
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zeylanicus was sister to S. taxoides as in the supercontig-spe-
cies-tree analysis instead of sister to all of Streblus sect. Taxo-
trophis as in the other nuclear analyses, although with low
support (62%). In addition, S. glaber subsp. australianus
was not sister to subsp. glaber, although its placement was
not strongly supported (80%). Finally, Morus insignis was sis-
ter to Paratrophis, agreeing with the supercontig analyses but
not the exon analyses.

(VI) network. — In the five best maximum-pseudolikeli-
hood networks, M. insignis was within the Paratrophis clade
in three, had a hybrid origin involving Paratrophis in one,
and was unambiguously sister to Paratrophis in one (Fig. 4).
AIC values for the five networks appear in supplementary
Table S3.

(VII) Involucrata-supermatrix and Involucrata-species-
tree. — In the analyses of the Involucrata clade (suppl.
Fig. S3), Streblus asper was always sister to Castilleae, which
always comprised the following three subclades: (1) Antiarop-
sis + Sparattosyce, (2) Antiaris, (3) the Neotropical genera +

Trema orientale (Cannabaceae)

Urticaceae

Parartocarpeae

Ficeae

Olmedieae

Dorstenieae

Chlorophoreae

Artocarpeae

Moreae

Fig. 2A. Summary of topology by tribe (revised classification) and color
legend for Fig. 2B-D.
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Trema orientale SRR5674478

-
Elatostema retrohirtum Monro7601 Elatostema retrohirtum Monro7601
Urtica urens FayMF173 Urtica urens FayMF173
Poikilospermum suaveloens AsmanTA2 Poikilospermum suaveloens AsmanTA2
Cecropia ficifolia BergCC18418 Cecropia ficifolia BergCC18418
Leucosyke capitellata LugasL41 Leucosyke capitellata LugasL41
Soleirolia soleirolii Sheahan M C17 Soleirolia soleirolii Sheahan M C17
Boehmeria nivea HuSY 8113 Boehmeria nivea HuSY 8113
Streblus indicus NewmanLA0518 Pseudostreblus indicus NewmanLA0518
Pseudostreblus indicus Tsang24252 Pseudostreblus indicus Tsang24252
10 100 Parartocarpus bracteatus NZ730 Parartocarpus bracteatus NZ730 80/41
100 Parartocarpus venenosus NZ874 Parartocarpus venenosus NZ874
100 Hullettia griffithiana Kerr16886 Hullettia griffithiana Kerr16886
Hulletia dumosa NZ242 Hulletia dumosa NZ242
Ficus racemosa SRR1405699 SRR1405700 Ficus racemosa SRR1405699 SRR1405700
Ficus macrophylla EG30 Ficus macrophylla EG30
Ficus sagittifolia ChaseMW19852 Ficus sagittifolia ChaseMW19852
| Streblus asper EG696 Streblus asper EG696
Streblus asper Townsend73142 Streblus asper Townsend73142 10084
Sparattosyce dioica WeiblenWW1223 Sparattosyce dioica WeiblenWW1223
Antiaropsis decipiens NZ281 Antiaropsis decipiens NZ281
Antiaropsis decipiens WeiblenGW1865 Antiaropsis decipiens WeiblenGW1865
Poulsenia armata Pennington14600 Poulsenia armata Pennington14600
Antiaris toxicaria 5595 Antiaris toxicaria 5595
Naucleopsis macrophylla BergP18534 Olmedia aspera Fuentes5323 S41
Trophis caucana Fuentes5323 S41 % Olmedia aspera AceedoR8833
Trophis caucana AceedoR8833 Naucleopsis macrophylla BergP18534 [57751
Pseudolmedia spuria Lobo263 Pseudolmedia spuria Lobo263
Helicostylis tomentosa Gomes511 Helicostylis tomentosa Gomes511
Castilla elastica ChaseMW 19850 Castilla elastica ChaseMW 19850 g8y
Fatoua pilosa TaylorP218 — Fatoua pilosa TaylorP218
Malaisia scandens EG122 Malaisia scandens GrayB8416
Malaisia scandens GrayB8416 ><Malaisia scandens EG122
Malaisia scandens Sands sn Malaisia scandens Sands sn

Broussonetia papyrifera SRR1477753
Broussonetia cf. papyrifera Heng14289
Broussonetia kazinoki ChaseMW 17827
Bleekrodea madagascariensis DavisRakotonasolo3117
Streblus usambarensis Faden77 417

Streblus usambarensis CheekM18194 Sloetiopsis usambarensis CheekM18194 100192
100 Brosimum alicastrum EG23 Brosimum alicastrum EG23 21k
Brosimum alicastrum MonroLander7382 Brosimum alicastrum MonroLander7382
100 Brosimum amazonicum Prance13461 Brosimum amazonicum Prance13461
104 Brosimum sprucei Ribeiro1204 Brosimum sprucei Ribeiro1204 35/63
100 Utsetela gabonensis Lebrun5879 Utsetela gabonensis Lebrun5879
Utsetela gabonenesis Breteler14086 Utsetela gabonenesis Breteler14086 iogs

Utsetela neglecta Bissiengen923
Dorstenia hildebranaltii NZ311
Dorstenia barteri ChaseMW18153
Bosqueiopsis gilletii Fronties243
Trilepisium madagascariense Richard403
Maclura tinctoria Fernandez314

Maclura tinctoria subsp. mora Nee40044
Maclura tinctoria subsp. tinctoria Campos2679
Maclura tinctoria Reuvoize3252
Maclura spinosa Perumal RHT22554
Maclura andamanica M 1189-436

|

Maclura africana GreenwayKanuri15269
Maclura africana Manktelow93027
Maclura brasiliensis NeeVargas45025
Maclura pomifera EG139

Maclura pomifera Swannsn

Maclura thorellii Pierre4709

Maclura cochinchinensis Guill6841
Maclura fruticosa NMCuong 1193
Maclura cf. cochinchinensis NZ757
Maclura amboinensis Takeuchi16578
Maclura cochinchinensis SAGBE887
Maclura aff. pubsecens Averyanov1198
Maclura tricuspidata MOR 68-7917

=
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99/80

32165

Fig. 2B-D. Phylogenetic trees from the “exon” dataset. Maximum-likelihood tree based on a supermatrix of all loci, with bootstrap support and pre-
vious nomenclature (left), and a species tree based on gene trees from all loci with bootstrap/quartet support and revised nomenclature (right). Dis-
cordant branches are colored in red, and tribal classifications are shaded with previous (left) and revised (right) classifications presented here. For
summary topology and color legend, see Fig. 2A.
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Clarisia flicifolia Carranta6386

Clarisia ilicifolia Souza2492

Clarisia ilicifolia Maguire56675

Clarisia biflora GW1460

Clarisia racemosa Assuncao690
Clarisia racemosa NeilD1291
Batocarpus orinocensis VVasquez27440
Batocarpus orinocensis Palacios3265
Batocarpus costaricensis GW1463
Batocarpus amazonicus Salidas1233
Batocarpus amazonicus Berg18524
Artocarpus scandens EG411
Artocarpus papuanus NZ61
Artocarpus limpato NZ609

Artocarpus tonkinensis EG174
Artocarpus hypargyraeus EG170
Artocarpus styracifolius EG176
Artocarpus petelotii DDS14435
Artocarpus gongshanensis HAST137747
Artocarpus pithecogallus LiJianwu3200
Artocarpus zeylanicus NZ956
Artocarpus lacucha NZ420

Artocarpus humilis EG258
Artocarpus dadah NZ694
Artocarpus griffithii NZ216
Artocarpus parvus NZ911
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Artocarpus thailandicus NZ402

Artocarpus gomezianus NZ533
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Artocarpus sepicanus GW1701
Artocarpus heterophyllus EG98
Artocarpus annulatus NZ985
Artocarpus integer NZ918
Artocarpus brevipedunculatus NZ814
Artocarpus anisophyllus NZ606
Artocarpus lanceifolius subsp. clementis NZ739
Artocarpus hirsutus NZ953
Artocarpus nobilis AHJ3283
Artocarpus chama NZ354
Artocarpus melinoxylus DDS14222

Artocarpus odor 1s NZ618

Artocarpus rigidus subsp. asperulus NZ507
Artocarpus rigidus NZ728

Artocarpus hispidus NZ258

Artocarpus treculianus Elmer12468

Artocarpus blancoi Ramos42018

Artocarpus treculianus ("ovatifolius") NZ203
Artocarpus treculianus ("nigrescens") Ramos2107
Artocarpus multifidus PP13911

Artocarpus pinnatisectus Escritor

Artocarpus montanus AveryanovVH1819
Artocarpus bergii RM160
Artocarpus horridus EG437
Artocarpus altilis K7 UluFiti
Artocarpus mariannensis DD4
Artocarpus camansi EG149
Artocarpus excelsus NZ780
Artocarpus lowii MWL2
Artocarpus obtusus NZ729
Artocarpus sericicarpus NZ771
Artocarpus corneri Fuchs21347
Artocarpus tamaran EG92
Artocarpus scortechinii NZ209
Artocarpus elasticus EG87
Artocarpus jarrettiae SAN120933
Artocarpus teiismannii NZ946
Artocarpus sumatranus AA2766
Artocarpus maingayi NZ257
Artocarpus kemando NZ612
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Fig. 3. Phylogenetic trees of the Moreae clade from the “supercontig” dataset. Maximum-likelihood tree based on a supermatrix of all loci, with
bootstrap support and previous nomenclature (left), and a species tree based on gene trees from all loci with bootstrap/quartet support and revised
nomenclature (right). Discordant branches are colored in red.
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Trophis caucana. Within the Neotropical clade, Trophis
caucana was sister to Naucleopsis + Pseudolmedia in the In-
volucrata-supermatrix analysis but was sister to all Neotropi-
cal genera except Poulsenia in the Involucrata-species-tree
analysis. The polytomy hypothesis (P < 0.05) was rejected
for all relationships except for the positions of Poulsenia and
Naucleopsis.

(VIII) ITS-tree and rbcL-tree. — The ITS and rbcL phylo-
genetic trees, based on few characters, were not very well
resolved, with only few nodes attaining 100% bootstrap sup-
port (suppl. Fig. S4). Nevertheless, with the exception of a
few stray taxa (one Dorstenia sample in ITS and one Streblus
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indicus sample in rbcL), both phylogenetic trees reconstructed
monophyletic tribes with at least moderate support. In the ITS
phylogenetic tree, Streblus smithii and S. banksii were both in
a well-supported clade comprising S. sect. Paratrophis. In the
rbcL phylogenetic tree, the two S. ascendens samples, the four
samples of the undetermined Streblus from Papua New
Guinea, and S. smithii were part of a well-supported clade
comprising S. sect. Paratrophis, and S. tonkinensis, S. asper
and Trophis caucana were part of a well-supported Castilleae
clade.

Time-calibration and ancestral state reconstruction. —
The cross-validation criterion was minimized by a smoothing
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Fig. 4. The best five maximum-
pseudolikelihood phylogenetic net-
works for the Paratrophis clade,
with revised nomenclature. Blue
lines represent hybridization events.
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parameter (4) value of 10. The tree with the highest likelihood
score was that calibrated under the “correlated” model,
closely followed by that calibrated under the “discrete” model
(Table 2); we note however that scores for those two models
may not be directly comparable (Paradis, 2013). The tree cal-
ibrated under the relaxed model was the poorest fit (Table 2),
was much more sensitive to changes in A than the other trees,
and had perhaps implausibly long terminal branches (suppl.
Fig. S5). The correlated and discrete trees had similar ages
for Moreae (64.8 and 57.5 Ma, respectively) and were more
consistent with past family-wide studies (Zerega & al., 2005;
Q. Zhang & al., 2019).

The correlated tree was used for further analyses (Fig. 5).
The BAMM analysis found a single credible rate shift, not sur-
prisingly at the crown node of Ficus (suppl. Fig. S6); that rate
shift was—also not surprisingly—associated with a loss of in-
flexed stamens, which are never found in Ficus (P = 0.027);
no rate shifts were found within Moreae. Ancestral recon-
struction on the entire tree found that ancestral Moraceae
had stamens inflexed in bud; these were lost nine times
(in Ficeae, Olmedieae [= Castilleae], Parartocarpeae, twice
in Dorstenieae, Maclura sect. Cudrania (Trécul) Corner, Arto-
carpeae, Bagassa, Sorocea) and regained once (in Trophis cau-
cana) (Fig. 6). Model testing on both the whole tree and on the
Moreae + Artocarpeae + Chlorophoreae subtree indicated
that a BiSSE model was not substantially better than a trait-
independent model (Moreae only: AIC for BiSSE = 1110.4;
trait-independent = 1112.8; AAIC = 2.4; whole family: AIC for
BiSSE = 1552.1; trait-independent = 1555.0; AAIC = 2.9). In
any event, the reconstructions were identical.

H DISCUSSION

The analyses here comprise the most complete phyloge-
nomic analysis within Moraceae to date, with species-level

Gardner & al. * Phylogenomics and generic revision of Moreae

sampling in four out of seven tribes. Broad agreement and high
statistical support across the analyses at the genus and tribe
levels provide a well-supported framework for the revisions
outlined below.

Sequencing and combination of datasets. — This study
was materially improved by our ability to combine samples
enriched with two largely nonoverlapping bait sets. Despite
minimal by-design overlap, we were able to assemble many
overlapping loci for samples with moderate to deep cover-
age (suppl. Table S2), adding taxa that would not otherwise
have been included in the study and replicating taxa to con-
firm unexpected phylogenetic placement (e.g., Streblus
asper). Species replicated across the two datasets performed
well in phylogenetic analyses, with 15 out of 19 always resolv-
ing as monophyletic in supermatrix analyses and 18/19 mono-
phyletic in ASTRAL analyses, with only Utsetela gabonensis
always forming a grade instead (with a difficult-to-distinguish
congener). We hope that our results embolden others to com-
bine and repurpose datasets in similar ways.

Essential to successful combination appears to be suffi-
cient sequence overlap and the employment of robust method-
ologies. In general, the species tree method (ASTRAL)
appeared to be more robust to missing data overall than the
supermatrix method. For example, three species with 2856
overlapping loci were monophyletic in the exon-species-tree
analysis but not in the exon-supermatrix analysis. The Castil-
leae topology in the Involucrata-species-tree analysis was also
more consistent with a recent well-sampled study (Clement
& al., 2020) than the Involucrata-supermatrix analysis. But
there is a limit, evidenced perhaps by the nonmonophyly of
Dorstenia in the exon-species-tree analysis, where the two
samples had 6 loci overlapping. That genus was monophyletic
in the exon-supermatrix analysis, perhaps because the six loci
taken together had enough characters to unite the samples, but
the six individual gene trees were not sufficiently informative.
We thus recommend that both supermatrix and species-tree

Table 2. Divergence times (in Ma) estimated using penalized likelihood under the three tested models.

Discrete Correlated Relaxed
logLik = —22.3 logLik = —16.7 logLik = —28.7
p-logLik = —17 p-logLik = —16.7 p-logLik = —1059
Clade OIC =437 ®IC = 1095 ®IC=1193
Moraceae 84.7 84.7 84.7
Parartocarpeae 75.7 75.3 14.1
Ficeae 24.0 30.7 433
Olmedieae 36.5 39.1 46.1
Dorstenieae 73.6 67.6 82.5
Maclureae 443 54.8 24.8
Artocarpeae 64.0 64.0 78.5
Moreae 57.5 64.8 83.0

Taxonomy follows the revisions proposed in this study.

logLik, log-likelihood; p-logLik, penalized log-likelihood; ®IC, Phylogenetic information criterion.
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Fig. 5. Time-calibrated phylogenetic tree under the correlated model, with revised nomenclature.
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Fig. 6. Ancestral reconstruction of stamen position, with revised nomenclature. The reconstruction was identical under a trait-dependent (BiSSE) or
a trait-independent model. Blue = inflexed in bud; yellow = straight in bud.
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analyses be employed and compared when combining data-
sets in this manner.

Higher taxonomy in Moraceae and the delimitation of
the tribe Moreae. — Our results support Corner’s overall ap-
proach to the classification of Moraceae, if not all of its de-
tails, including the primacy of inflorescence architecture and
the unreliability of inflexed stamens for higher taxonomy
(Corner, 1962). Inflexed stamens are a plesiomorphy that
was lost nine times in Moraceae (Fig. 6), a preserved ancestral
character whose past taxonomic importance accounts for the
rather extreme nonmonophyly of the Moreae. Streblus
s.l. provides the best illustration of this principle, appearing
in four out of seven tribe-level clades within Moraceae. We
may justly call its disparate sections, as Corner did, “frag-
ments of an ancestral Streblus” (Corner, 1975)—or in modern
parlance, a paraphyletic remnant preserving plesiomorphic
staminate flowers similar to those likely to have occurred in
the ancestor of all Moraceae, with four free tepals and four in-
flexed stamens (Clement & Weiblen, 2009). If one of the goals
of modern systematics is to establish taxonomic frameworks
that reflect as far as possible real evolutionary relationships,
our results may serve as a warning to carefully investigate
whether characters used for taxonomy are derived (synapo-
morphic) or ancestral (symplesiomorphic).

Broadly speaking, a tribal delimitation based on inflores-
cence architecture (supplemented with other characters in
some cases) agrees best with the phylogenetic trees presented
here. Moreae (as revised below) have unisexual spicate or ra-
cemose inflorescences (the pistillate ones sometimes uniflor-
ous), with the globose-capitate pistillate inflorescences of
the monotypic Bagassa as the sole exception. Stamens may
be either inflexed or straight. Elsewhere in the family, racemes
and spikes are rare, with the former found in Maclura (in part)
and the latter found in the related genera Broussonetia, Al-
laeanthus Thwaites, and Malaisia and arguably in Batocarpus
H.Karst. and Clarisia; all of these have capitate pistillate in-
florescences. The taxa of Streblus s.l. and Trophis s.1. that
must be excluded from Moreae all have inflorescences that
do not fit our general rule: discoid-capitate (Streblus asper,
Trophis caucana), cymose (Streblus indicus), or (sometimes)
bisexual (Streblus usambarensis). In these cases, perhaps Cor-
ner did not follow his own belief in the primacy of inflores-
cence architecture quite far enough, including too much variety
in this one tribe. In critiquing the utility of inflorescence archi-
tecture for classification, Berg (1977b) noted the similarity
in the inflorescence structure of Bleekrodea (then part of Mo-
reae, and included in Streblus by Corner) to that of Utsetela
and Helianthostylis Baill. (= Brosimum subg. Helianthostylis
(Baill.) E.M.Gardner & Zerega) (Dorstenieae), an observation
that proved prescient when Bleekrodea was found to belong
to Dorstenieae (Clement & Weiblen, 2009).

Olmedieae (as revised below, including Castilleae) can be
defined entirely based upon the presence of a discoid inflores-
cence subtended by an involucre of imbricate bracts. Two spe-
cies with such involucres previously classified as Moreae,
Streblus asper (rudimentary) and Trophis caucana (= Olmedia
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aspera) (well developed) always appeared in the Olmedieae
(= Castilleae) clade in our analyses (Figs. 2, 3). Olmedia aspera
(= Trophis caucana)y—the nomenclatural type of the tribe
Olmedieae—was transferred to Moreae because of its inflexed
stamens and lack of self-pruning branches (Berg, 1977b).
In inflorescence morphology, however, 7. caucana closely
resembles other Castilleae, always subtended by an involucre
of imbricate bracts (Berg, 1977b, 2001). The staminate
inflorescences of Streblus asper are strikingly similar to those
of T caucana, and it is remarkable that the affinity between
S. asper and the Olmedieae has not been seriously considered
until now. Previous barcoding or phylogenetic studies have
placed Trophis caucana (Kress & al., 2009) and Streblus tonki-
nensis (Chen & al., 2016) (closely allied to S. asper) in the Cas-
tilleae clade, but those results went unremarked upon, perhaps
because of the broad scale of the studies (respectively, forest
community phylogenetics and the vascular plants of China).

The remaining five tribes can all be broadly defined based
on inflorescence architecture as Corner argued, sometimes
supplemented by other characters as Berg preferred, allowing
of course for the exceptions made inevitable by the vicissitudes
of evolution. Ficeae of course is defined by the syconium (es-
sentially an urceolate disc that has been closed at the top) and
together with Olmedieae comprises the Involucrata clade
(Clement & al., 2020). Chlorophoreae have densely packed
globose infructescences and can be distinguished from Arto-
carpeae by their four stamens (inflexed in most sections) and
armature. Artocarpeae also have densely packed globose in-
fructescences but only one straight stamen and no armature.
Parartocarpeae have a few connate involucral bracts and
(in large part) flowers embedded in fleshy receptacles. Dorste-
nieae are perhaps the most heterogeneous group, but in large
part they have bisexual inflorescences, often capitate or dis-
coid, and often with ballistically ejected endocarps.

The role of inflexed stamens in the evolution of Mora-
ceae. — The repeated losses of inflexed stamens (Fig. 6),
which are associated with wind pollination (Bawa & Crisp,
1980; Berg, 2001), raise the possibility that transitions from
wind to animal pollination, which have already been documen-
ted in Moraceae (Momose & al., 1998; Sakai & al., 2000; Dat-
wyler & Weiblen, 2004; Gardner & al., 2018), are even more
common within the family. Generally considered rare (Culley
& al., 2002), the shift from wind to animal pollination may be
a repeated feature of Moraceae deserving of further investiga-
tion. Further investigation of Sorocea, with its straight sta-
mens and sometimes-scented inflorescences, may reveal that,
like Artocarpus, it contains both wind and animal pollination.
And while little is known about pollination in the Dorstenieae,
the presence of unisexual inflorescences and inflexed stamens
(e.g., Broussonetia) as well as bisexual inflorescences with
straight stamens (e.g., Brosimum, Dorstenia) raises the possi-
bility of transitions within that clade as well; taxa with inflexed
stamens but bisexual inflorescences such as Bleekrodea and
Sloetia (the latter of which is visited by bees, E.M. Gardner,
pers. obs.) may represent remnants of an intermediate state.
Pseudostreblus, which has inflexed stamens but fragrant
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flowers (fide W. Tsang 24252, F) and is sister to the straight-
stamen Parartocarpus and Hullettia clade, also warrants inves-
tigation. Finally, the conclusion that a single transition to insect
pollination preceded the split between the Ficeae and Olme-
dieae (Castilleae) should be re-evaluated in light of the position
of Streblus asper as sister to the latter (Figs. 2, 3). The only
shift in diversification rates our analyses recovered was on
the branch leading to the very diverse Ficus, suggesting that
the shift away from wind pollination may not by itself lead
to increased diversification.

Explanation of taxonomic revisions. — We present a
generic revision of Moreae (Fig. 7) based on the present phylo-
genetic study as well as morphological characters. Arranging
monophyletic and morphologically coherent genera requires
one new genus and nine new combinations, but no new epi-
thets. Four taxa are transferred to other tribes, one of which
(Castilleae) must revert to its previous name (Olmedieae). These
revisions provide a framework for within-genus revisionary

Gardner & al. * Phylogenomics and generic revision of Moreae

work, which will require more intensive sampling and review
of specimens within the genera circumscribed here, as well as
further exploration of the areas of disagreement between ana-
lyses (for example, within Paratrophis and Taxotrophis). We
provide an explanation of the taxonomic changes, followed
by a formal presentation of the affected tribes and genera, with
complete species lists and synonymy.

Reinstatement of Olmedieae. — As detailed above, Tro-
phis caucana fell within the Castilleae with high support in
all analyses in which it was included here (exon-supermatrix,
exon-species-tree, plastome, rbcL) as well as in a previous
study (Kress & al., 2009), and we are unaware of any counter-
vailing phylogenetic evidence. Moreover, its involucrate mor-
phology is typical of Castilleae. We therefore exclude it from
Trophis, reinstating its previous name Olmedia aspera, and
transfer it to Castilleae. Because the tribe name Olmedieae,
typified by Olmedia, has priority over Castilleae, that too
must be reinstated. We note, however, that should a pending
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Maillardia montana
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Fig. 7. Revised classification of
Moreae on a strict consensus tree of
all four main phylogenomic ana-
lyses (exon-supermatrix, exon-
species-tree, supercontig-super-
matrix, supercontig-species-tree).
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nomenclatural proposal fail, the name must instead revert to
Antiarideae Dumort. (nom. utique rej. prop.), which has ulti-
mate priority (Gardner & al., 2020).

Trophis. — To make Trophis monophyletic, we propose
that it be applied strictly to the Neotropical clade that includes
the type Trophis americana L. (= Trophis racemosa (L.) Urb.).
To accomplish this, we reinstate the genus Maillardia and
transfer Trophis philippinensis to Paratrophis (discussed be-
low), reinstating its former name Paratrophis philippinensis
(Bureau) Fern.-Vill. In addition, Trophis caucana must be
excluded, as discussed above.

Streblus. — We restrict the genus Streblus to three spe-
cies comprising most of Streblus sect. Streblus—S. asper,
S. celebensis C.C.Berg, and S. fonkinensis—and transfer the
genus to Olmedieae. As detailed above, this placement is sup-
ported by inflorescence morphology, all analyses here, as well
as a previous study (Chen & al., 2016), and we are unaware of
any countervailing phylogenetic evidence. Although S. cele-
bensis was not included in our phylogeny, the subinvolucrate
inflorescences are similar to those of S. asper, with which
S. celebensis differs primarily in vegetative characters, the
latter having broadly toothed margins in the distal half of the
leaf. Both occur in Sulawesi, where at least one specimen with
intermediate leaf morphology has been collected (Sulawesi,
Kendari: Kjellberg 452, 24 Feb 1929, L, det. S. asper by
E.J.H. Corner). We therefore retain its taxonomic position in
Streblus.

Streblus usambarensis fell within the Dorstenieae in all of
our analyses, and we are unaware of any countervailing evidence.
It is morphologically similar to Sloetia (Dorstenieae), with nearly
amplexicaul stipules and a fleshy dehiscent exocarp that ejects
the endocarp body at maturity—a distinctive character typical
of many Dorstenieae. Berg (1977a) noted an alliance based
on this character between Sloetiopsis usambarensis, Sloetia,
Fatoua, and Bleekrodea, observing that Bureau had previously
classified all four in Dorstenieae (Bureau, 1873). The latter three
were restored to Dorstenieae by Clement & Weiblen (2009). We
reinstate Sloetiopsis usambarensis Engl. and transfer it to Dorste-
nieae, reuniting the quartet.

Streblus indicus, remarkable in Moraceae for its 5-parted
staminate flowers, was sister to Parartocarpeae in our nuclear
phylogenomic analyses (exon-supermatrix, exon-species-tree);
however, it formed a grade with Parartocarpeae in the plastome
analysis. In a previously published whole-chloroplast study, its
position—sister to Dorstenicae + Olmedieae + Ficeae—could
be consistent with either result because no members of Pararto-
carpeae were included. What appears certain is that it does not
belong in Moreae and that its closest allies are Parartocarpus
and Hullettia, with which it shares a small involucre of a few
connate bracts (not imbricate as in Olmedieae). We therefore
reinstate its previous name Pseudostreblus indicus Bureau and
transfer it to Parartocarpeae.

The remaining species of Streblus s.1. are properly placed in
Moreae but are still paraphyletic. We therefore reinstate the gen-
era Ampalis, Paratrophis, and Taxotrophis, largely correspond-
ing to Berg’s sections but requiring some new combinations.
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Paratrophis as understood here is united by spicate staminate
and (usually) pistillate inflorescences with peltate or reniform
bracts, mostly without fleshy enlarged tepals in fruit. Within
Paratrophis we follow Corner (1975) and include Paratrophis
ascendens (Corner) E.M.Gardner (= Streblus ascendens Cor-
ner) based on its inflorescence morphology and phylogenetic
position in the 7bcL tree (suppl. Fig. S4B). Corner (1970) and
Berg (1988) included this species in the monotypic Protostre-
blus due to the type specimen’s spiral phyllotaxy, but the latter
may be atypical, as a more recent collection (Womersley NGF
24791 [BO, K, L]) has distichous leaves.

Berg (1988), recognizing the close affinity between Pa-
chytrophe dimepate Bureau and Ampalis mauritiana, included
both in Streblus sect. Ampalis. Our phylogenetic results sup-
port this grouping, which we maintain in the reinstated genus
Ampalis, requiring one new combination. We follow Baillon
in maintaining Pachytrophe as a section of Ampalis in order
to recognize the differences between them in phyllotaxy, sti-
pule amplexicaulity, and embryo characters. Further intensive
study of these species may ultimately warrant a different
approach, including potentially reducing both to a section of
Paratrophis.

Our species concepts within Taxotrophis and Paratrophis
follow Berg’s (1988; Berg & al., 2006) approach, with two ex-
ceptions. We provisionally recognize Taxotrophis zeylanica
(Thwaites) Thwaites as distinct from 7. faxoides (B.Heyne ex
Roth) Chew ex E.M.Gardner (= Streblus taxoides (B.Heyne ex
Roth) Kurz) following the Flora of China, which recognizes
Streblus zeylanicus as distinct from S. faxoides based on its clus-
tered pistillate inflorescences. This separation is consistent with
our analyses, although maintaining a broad 7. faxoides would
not be inconsistent with the supermatrix-species-tree and plas-
tome trees. In addition, we provisionally recognize Paratrophis
australiana (= S. glaber subsp. australianus) as distinct from
Paratrophis glabra based on its geographic and consistent mor-
phological distinctiveness. Taxotrophis and Paratrophis warrant
further investigation to refine species limits.

Morus. — Morus is in need of revision. Species concepts
within the genus are often based on minor morphological differ-
ences (Berg, 2001; Berg & al., 2006), and the paraphyly of sev-
eral species in our analyses suggests that a broad M. alba similar
to Bureau’s (1873) may be worth a second look. Morus meso-
zygia, sole member of the not validly published “M. subg.
Afromorus”, was sister to Milicia in our analyses, but the leaf
morphology is markedly different, instead resembling other
Morus species in its trinerved based and crenate margins. We
therefore describe the new genus Afromorus to accommodate
this species. Morus insignis, from western Central and South
America, bears a remarkable resemblance to Paratrophis, in
particular P. pendulina, especially in leaf morphology, which
in M. insignis is not consistently trinerved as in other mul-
berries. The infructescence appears superficially like a mul-
berry because of its basally fleshy tepals, although with
more loosely packed flowers, but closer inspection places it
firmly within Paratrophis, with drupes protruding from the
persistent tepals, peltate bracts, and a sterile groove. Because
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analyses differ as to whether M. insignis is sister to Paratro-
phis or part of it, it seems safest to treat it as a member of
Paratrophis for the time being, rather than erecting a mono-
typic genus for it.

These changes result in 10 monophyletic genera of Mor-
eae, providing a framework for revisionary work within the
genera. Below, we present a complete genus and species list
for Moreae with brief descriptions for all genera and synony-
mies for new combinations and reinstated or recircumscri-
bed taxa. All cited protologues were reviewed, and dates for
works published piecemeal were confirmed by reference to
TL-2 (Stafleu & Cowan, 1976-2009).

H TAXONOMIC REVISIONS

Key to the tribes of Moraceae. — This key follows the
tribal circumscription of Clement & Weiblen (2009), as subse-
quently modified by Zerega & al. (2010), Chung & al. (2017),
Zerega & Gardner (2019), and this study.

1. Inflorescence a syconium (urceolate with the opening en-
tirely closed by ostiolar bracts, flowers enclosed at all
stages of development)..................... Ficeae (Ficus)

1. Inflorescence not a syconium (capitate, spicate, discoid,
or urceolate, but flowers not entirely enclosed at all devel-
opmental Stages).........oiiiiiiii i 2

2. Inflorescences (at least staminate) with an involucre of im-
bricate bracts; often with self-pruning horizontal branches
(except Olmedia, Poulsenia, Streblus)............ Olmedieae
(Antiaris, Antiaropsis, Castilla, Helicostylis, Maquira, Me-
sogyne, Naucleopsis, Olmedia, Perebea, Poulsenia, Pseu-
dolmedia, Sparattosyce, Streblus)

2. Inflorescences not involucrate or involucre with few
non-overlapping bracts; plants without self-pruning
branches..........ooviiiiii 3

3. Plants woody; dioecious; pistillate inflorescences globose-
capitate; spines axillary or terminating short shoots.........
.................................... Chlorophoreae (Maclura)

3. Plants woody, herbaceous, or succulent; dioecious or
monoecious; pistillate inflorescences various; spines ab-
sent or if present, then pistillate inflorescences not glo-
bose capitate........ooeviiiiiii 4

4. Trees or shrubs; monoecious; inflorescences unisexual;
staminate flowers with 1 stamen (rarely 2)...... Artocarpeae
(Artocarpus, Batocarpus, Clarisia)

4. Trees, shrubs, lianas, herbaceous, or succulent; monoe-
cious or dioecious; inflorescences unisexual or bisexual;
staminate flowers with more than 1 stamen (or if 1stamen
then dioecious).......coovviiiiiiii i 5

5. Trees or shrubs; monoecious; inflorescences unisexual;
stamens straight in bud or staminate flowers 5-parted
and inflexed in bud..................... Parartocarpeae
(Hullettia, Parartocarpus, Pseudostreblus)

5. Trees, shrubs, lianas, herbaceous, or succulent; monoe-
cious or dioecious; inflorescences bisexual or unisexual;
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stamens straight or inflexed in bud but staminate flowers
never S-parted..........oooiiiiiiiii e 6
6. Trees, shrubs, lianas, herbaceous, or succulent; inflo-
rescences bisexual (or if unisexual then a climber or
herbaceous); endocarp body often ballistically ejected
from infructescence............... Dorstenieae in part
(Allaeanthus in part, Bleekrodea, Bosqueiopsis, Brosi-
mum, Broussonetia in part, Dorstenia, Fatoua, Malai-
sia, Scyphosyce, Sloetia, Sloetiopsis, Treculia, Trilepsium,

Utsetela)
6. Trees or shrubs; inflorescences unisexual; endocarp body
never ballistically ejected..................colL 7
7. Trees; stamens inflexed in bud; pistillate inflorescences
globose-capitate........................ Dorstenieae in part

(Allaeanthus in part, Broussonetia in part)

7. Trees or shrubs; stamens inflexed or straight in bud; pis-
tillate inflorescences various, not globose-capitate if sta-
mens are inflexed in bud........................... Moreae
(Afromorus, Ampalis, Bagassa, Maillardia, Milicia,
Morus, Paratrophis, Taxotrophis, Sorocea, Trophis)

Tribe MOREAE

Moreae Dumort., Anal. Fam. PL.: 17. 1829 — Type: Morus L.
= [Moreae] subtr. Soroceae Miq. in Martius, Fl. Bras. 4(1):
111. 1853 = tr. Soroceae Bureau in Candolle, Prodr. 17:

283. 1873.

Monoecious or dioecious trees or shrubs. Leaves alternate
or opposite, distichous or spirally arranged; stipules lateral to
amplexicaul. Inflorescences unisexual, uniflorous or racemose,
spicate, capitate, or globose; bracteate; tepals 4, free to connate;
staminate flowers with 4 stamens, filaments straight or inflexed
in bud, pistillode usually present; pistillate flowers with
(mostly) free ovary, 2 stigmas. Fruits drupaceous or achene-like
with a fleshy persistent perianth, dehiscent or not. Seeds with
or without endosperm, testa usually with a thick vascularized
part below the hilum, cotyledons equal or unequal, straight
or folded.

Genera and distribution: 10 genera (Afromorus, Ampalis,
Bagassa, Maillardia, Milicia, Morus, Paratrophis, Sorocea, Tax-
otrophis, Trophis) and 66 species with a worldwide distribution.

Afromorus

Afromorus E.M.Gardner, gen. nov. — Type: Afromorus
mesozygia (Stapf) E.M.Gardner (= Morus mesozygia
Stapf).

Dioecious trees, shoot apices deciduous. Leaves disti-
chous, triplinerved or at least trinerved at the base. Stipules
free, more or less lateral. Inflorescences solitary or paired,
bracts of varying shapes. Staminate inflorescences spicate, to
2.5 mm long, flower 4-parted, tepals imbricate, ciliolate, pistil-
lode small, apiculate. Pistillate inflorescences subglobose,
ca. 5 mm across, flowers 4-parted, tepals ciliolate, stigma bi-
fid, equal or unequal, arms filiform to 5 mm long. Infructes-
cences subglobose or less often slightly elongate, ca. 1 mm
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across, tepals fleshy, yellowish to greenish, drupes ca. 5 x 3—
5 mm. Seeds ca. 4.5 x 2.5-4.5 mm.

Species and distribution: 1 species, in tropical Africa.

Note: The leaves of Afromorus—with crenate margins and
trinerved bases—bear a striking resemblance to those of Morus,
and it is thus not surprising that the former was heretofore in-
cluded within the latter. However, leaves of Afiomorus are dis-
tinct in being usually completely triplinerved, without an upper
pinnately veined portion as in most species of Morus. The name
of the new genus is based on “Morus subg. Afromorus A.Chev.
ex J.-F.Leroy”. However, the latter was not validly published
as neither Chevalier’s initial (Chevalier, 1949) publication nor
Leroy’s two subsequent papers (Leroy, 1949a,b) contained the
necessary Latin description, and it is therefore not available for
use as a formal basionym.

1. Afromorus mesozygia (Stapf) E.M.Gardner, comb. nov. =
Morus mesozygia Stapf in J. Bot. (Morot), ser. 2, 2: 99.
Apr 1909.

= Celtis lactea Sim, Forest Fl. Port. E. Aft.: 97, t. 96. Sep
1909 = Morus lactea (Sim) Mildbr. in Notizbl. Bot. Gart.
Berlin 8: 243. 1922 = Morus mesozygia var. lactea (Sim)
A.Chev. in Rev. Bot. Appl. Agric. Trop. 29: 72. 1949.
Figure 8.2.

Ampalis

Ampalis Bojer ex Bureau in Candolle, Prodr. 17: 250. 1873 =
Streblus sect. Ampalis (Bojer ex Bureau) C.C.Berg in
Proc. Kon. Ned. Akad. Wetensch. C 91(4): 358. 1988 —
Type: Ampalis madagascariensis Bojer (= Ampalis mau-
ritiana (Jacq.) Urb.).

= Streblus subg. Parastreblus Blume, Mus. Bot. 2: 89. 1856 —
Type: Streblus mauritianus (Jacq.) Blume (= Ampalis
mauritiana (Jacq.) Urb.).

— “Ampalis Bojer”, Hortus Maurit.: 291. 1837, not validly
published.

Dioecious trees or shrubs. Leaves distichous to spirally
arranged, pinnately veined. Stipules free, nearly lateral. In-
florescences solitary or paired in the leaf axils, spicate, with
an abaxial sterile groove, flowers in longitudinal rows,
bracts basally attached to subpeltate. Staminate inflores-
cences to 9 cm long, flowers 4-parted, decussate-imbricate,
stamens 4, inflexed in bud, pistillode present. Pistillate in-
florescences to 12 cm long, tepals 4, separate, decussate-
imbricate, ovary free, stigmas 2, equal. Infructescences
with enlarged fleshy perianths ca. 6-8 mm long, surround-
ing drupaceous fruits, the latter ca. 5-6 mm long. Seeds
ca. 4 x 4 mm, testa thickened and not distinctly vascular-
ized, cotyledons equal.

Species and distribution: 2 species, native to Madagascar
and the Comoros.

Note: The two sections differ in their phyllotaxy
(usually spiral in Ampalis and distichous in Pachytrophe) and
stipules (free in Ampalis, connate in Pachytrophe). Ampalis
sect. Ampalis usually has somewhat larger inflorescences.
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Ampalis sect. Ampalis

1. Ampalis mauritiana (Jacq.) Urb., Symb. Antill. 8: 165. 1920
= Morus mauritiana Jacq., Collectanea 3: 206. 1791 =
Streblus mauritianus (Jacq.) Blume, Mus. Bot. 2: 80.
1856.

= Morus nitida P.Willemet in Ann. Bot. (Usteri) 18: 56.
1796.

= Morus ampalis Poir. in Lamarck, Encycl. 4: 380. 1797.

= Trophis cylindrica Roxb., Fl. Ind., ed. 1832, 3: 599. 1832,
nom. illeg., pro syn.

= Ampalis madagascariensis Bojer, Hortus Maurit.: 291.
1837, nom. illeg.

= Morus rigida Hassk., P1. Jav. Rar.: 198. 1848.

= Streblus maritimus Palacky, Catal. Pl. Madagasc. 2: 31.
1907.

= Ampalis madagascariensis var. occidentalis Leandri in Mém.
Inst. Sci. Madagascar, Sér. B, Biol. Vég. 1: 12. 1948.
Figure 9.1.

Ampalis sect. Pachytrophe (Bureau) Baill., Hist. P1. 6: 191.
1875 = Pachytrophe Bureau in Candolle, Prodr. 17: 234.
1873 — Type: Pachytrophe dimepate Bureau.

2. Ampalis dimepate (Bureau) E.M.Gardner, comb. nov. =
Pachytrophe dimepate Bureau in Candolle, Prodr. 17: 234.
1873 = Streblus dimepate (Bureau) C.C.Berg in Proc.
Kon. Ned. Akad. Wetensch. C 91(4): 358. 1988.

= Pachytrophe obovata Bureau in Candolle, Prodr. 17:
235. 1873.

= Plecospermum (?) laurifolium Baill. in Grandidier, Hist.
Phys. Madagascar: t. 294A. 1895 = Pachytrophe obovata
var. laurifolia (Baill.) Leandri in Mém. Inst. Sci. Mada-
gascar, Sér. B, Biol. Vég. 1: 16. 1948.

= Pachytrophe obovata var. montana Leandri in Mém. Inst.
Sci. Madagascar, Sér. B, Biol. Vég. 1: 16. 1948.

Bagassa

Bagassa Aubl., Hist. Pl. Guiane 2, Suppl.: 15 & 4: t. 376.

1775 — Type: Bagassa guianensis Aubl.

Dioecious trees. Leaves opposite and decussate, lamina tri-
plinerved, 3-lobed to entire. Stipules free, lateral. Inflorescences
solitary or paired in the leaf axils, bracteate. Staminate inflores-
cences spicate with an abaxial sterile groove, to 12 cm long,
flowers in longitudinal rows with, tepals 4, stamens 2, straight
in bud, pistillode present. Pistillate inflorescences globose-capi-
tate, ca. 1-1.5 cm across, flowers 4-lobed to 4-parted, stigmas
2, filiform. Infructescences globose, ca. 2.5-3.5 cm across,
green, tepals fleshy, yellowish to greenish, drupes ca. 7-8 mm
long. Seeds ca. 3 x 2 mm, testa thin and not vascularized, coty-
ledons equal.

Species and distribution: 1, in tropical South America.

1. Bagassa guianensis Aubl., Hist. Pl. Guiane 2, Suppl.:
15 & 4:1.376. 1775.
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Fig. 8.1. Milicia excelsa (Welw.) C.C.Berg: A, Leafy shoot with pistillate inflorescences; B, Staminate inflorescence; C, Staminate flower and
bracts; D, Pistillate flower and bracts; E, Fruit in section. 8.2. Afromorus mesozygia (Stapf) E.M.Gardner: A, Leafy shoot; B, Staminate inflores-
cences; C, Staminate flowers; D, Pistillate inflorescences; E, Pistillate flower; F, Fruit. — Drawn by J. Williamson.

Version of Record 969



Gardner & al. * Phylogenomics and generic revision of Moreae TAXON 70 (5) * October 2021: 946988

Fig. 9.1. Ampalis mauritiana Urb.: A, Leafy shoot with pistillate inflorescences; B, Staminate inflorescence; C, Staminate flower; D, Pistillate
flower; E, Immature fruit; F, Mature fruit. 9.2. Maillardia montana Leandri: A, Leafy shoot with pistillate inflorescences; B, Immature staminate
inflorescences; C, Staminate inflorescence; D, Staminate flower and bract; E, Pistillate inflorescence; F, Fruiting perianths. — Drawn by

J. Williamson.
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= Piper tiliifolium Desv. ex Ham., Prodr. Pl. Ind. Occid.:
4. 1825 (‘tilicefolium’).

= Laurea tiliifolia Gaudich., Voy. Uranie: 513. 1830 (‘tilice-
folia’) = Bagassa tiliifolia (Desf.) Benoist in Arch. Bot.
Mém. 5(1): 31. 1933.

= Bagassa sagotiana Burch. ex Benth. & Hook.f., Gen. PI. 3:
362. 1880.
Figure 10.1.

Maillardia

Maillardia Frapp. ex Duch. in Maillard, Notes Ile Réunion

2, Annexe P.: 3. 1862 = Trophis sect. Maillardia (Frapp.

ex Duch.) Corner in Gard. Bull. Singapore 19: 230.

1962 — Type: Maillardia borbonica Duch.

Dioecious trees or shrubs. Leaves distichous, pinnately
veined. Stipules free, semi-amplexicaul. Inflorescences soli-
tary or paired in the leaf axils, bracts subpeltate. Staminate in-
florescences spicate with an abaxial sterile groove, flowers
4-parted, decussate-imbricate, stamens 4, inflexed in bud, pis-
tillode present. Pistillate inflorescences up to three together,
uni- or bi-florous, perianth tubular 4-lobed, ovary adnate to
the perianth, stigmas 2, equal. Infructescences with enlarged
fleshy perianths surrounding drupaceous fruits, the latter to
18 mm long. Seeds to 13 mm long, testa thin, with a thickened
vascularized part below the hilum, cotyledons unequal.

Species and distribution: 2 species, in Madagascar, the
Comoros, and the Seychelles.

1. Maillardia borbonica Duch. in Maillard, Notes Ile Ré-
union, Annexe P.: 3. 1862 = Trophis borbonica (Duch.)
C.C.Berg in Proc. Kon. Ned. Akad. Wetensch. C 91(4):
355. 1988.

2. Maillardia montana Leandri in Mém. Inst. Sci. Madagas-
car, Sér. B, Biol. Vég. 1: 25. 1948 = Trophis montana
(Leandri) C.C.Berg in Proc. Kon. Ned. Akad. Wetensch.
C91(4): 355. 1988.

= Maillardia occidentalis Leandri in Mém. Inst. Sci. Mada-
gascar, Sér. B, Biol. Vég. 1: 26. 1948.

= Maillardia orientalis Leandri in Mém. Inst. Sci. Madagas-
car, Sér. B, Biol. Vég. 1: 27. 1948.

= Maillardia mandrarensis Leandri in Mém. Inst. Sci. Mada-
gascar, Sér. B, Biol. Vég. 1: 28. 1948.

= Maillardia pendula Fosberg in Kew Bull. 29: 266,
t. 2. 1974.

Figure 9.2.

Milicia

Milicia Sim, Forest F1. Port. E. Aft.: 97. 1909 — Type: Milicia
africana Sim (= M. excelsa (Welw.) C.C.Berg).
Dioecious trees. Leaves distichous, lamina pinnately

veined. Stipules free, not fully amplexicaul. Inflorescences

spicate, usually solitary in the leaf axils or on leafless nodes,
spicate, flowers in longitudinal rows alternating with rows of
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bracts, bracts mostly basally attached, abaxial sterile groove
present. Staminate inflorescences to 20 cm long, flowers
4-parted, imbricate, stamens 4, inflexed in bud, pistillode
present. Pistillate inflorescences to 4.5 cm long, flowers
4-parted, decussate-imbricate, ovary free, stigmas 2, un-
equal. Infructescences with enlarged fleshy perianths, sur-
rounding slightly flattened drupaceous fruits, the latter to
ca. 3 mm long. Seeds ca. 2 mm long, testa thin with a slightly
thickened vascularized part below the hilum, cotyledons
equal.
Species and distribution: 2 species, in tropical Africa.

1. Milicia excelsa (Welw.) C.C.Berg in Bull. Jard. Bot. Natl.
Belg. 52(1-2): 227. 1982 = Morus excelsa Welw. in
Trans. Linn. Soc. London 27: 69, t. 23. 1869 = Maclura
excelsa (Welw.) Bureau in Candolle, Prodr. 17: 231.
1873 = Chlorophora excelsa (Welw.) Benth. & Hook.f.,
Gen. PL. 3(1): 363. 1880.

= Chlorophora tenuifolia Engl. in Bot. Jahrb. Syst. 20:
139. 1894.

= Milicia africana Sim, Forest Fl. Port. E. Afr.: 97,
t. 122. 1909.

= Chlorophora alba A.Chev. in Bull. Soc. Bot. France
58 [Mém. Soc. Bot. France 2] (Mém. 8): 209. 1912.
Figure 8.1.

2. Milicia regia (A.Chev.) C.C.Berg in Bull. Jard. Bot. Natl.
Belg. 52(1-2): 227. 1982 = Chlorophora regia A.Chev.
in Bull. Soc. Bot. France 58 [Mém. Soc. Bot. France 2]
(Mém. 8d): 209. 1912 = Maclura regia (A.Chev.) Corner
in Gard. Bull. Singapore 19: 237. 1962.

Morus

Morus L., Sp. PL. 2: 986. 1753 — Type: Morus nigra L.

Dioecious trees or shrubs. Leaves trinerved (to 5-nerved)
at the base. Stipules free, nearly lateral. Inflorescences solitary
or paired in the leaf axils, without an obvious sterile groove,
interfloral bracts absent. Staminate inflorescences spicate or
racemose, to 8 cm long, flowers 4-parted, imbricate, stamens
4, inflexed in bud, pistillode present. Pistillate inflorescences
subcapitate to spicate, up to 16 cm long, flowers tepals 4,
separate, decussate-imbricate, ovary free, stigmas 2, equal.
Infructescences with enlarged fleshy perianths enclosing
achene-like fruits, the latter ca. 1 mm long. Seeds less than
1 mm long, cotyledons equal.

Species and distribution: Perhaps 16 species, Asia and
North to Central America; introduced worldwide.

1. Morus alba L. var. alba, Sp. Pl. 2: 986. 1753. —
Figure 11.2.

1.1 Morus alba var. multicaulis (Perr.) Loudon, Arbor. Frutic.
Brit. 3: 1348, fig. 1223. 1838.

2. Morus australis Poir. in Lamarck, Encycl. 4: 380. 1797.
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Fig. 10.1. Bagassa guianensis Aubl.: A, Leaty shoot; B, Staminate inflorescences; C, Staminate flower; D, Pistillate inflorescence; E, Pistillate
flower; F, Fruiting perianth. 10.2. Sorocea affinis Hemsl.: A, Leafy shoot with pistillate inflorescences; B, Staminate inflorescence; C, Staminate
flower and bracts; D, Pistillate inflorescence; E, Pistillate flower and bracts; F, Fruiting perianth. — Drawn by J. Williamson.
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Fig. 11.1. Trophis racemosa (L.) Urb.: A, Leafy shoot with pistillate inflorescences; B, Staminate inflorescence; C, Staminate flower; D, Pistillate
inflorescence; E, Pistillate flower; F, Fruiting perianth. 11.2. Morus alba L.: A, Leafy shoot with pistillate inflorescences; B, Staminate inflores-
cences; C & D, Staminate flowers; E, Pistillate inflorescence; F, Pistillate flower; G, Infructescence. — Drawn by J. Williamson.
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3. Morus boninensis Koidz. in Bot. Mag. (Tokyo) 31: 38. 1917.

4. Morus cathayana Hemsl. var. cathayana in J. Linn. Soc.,
Bot. 26: 456. 1894.

4.1 Morus cathayana var. gongshanensis (2.Y .Cao) Z.Y.Cao
in Acta Bot. Yunnan. 17: 154. 1995 = Morus gongshanensis
Z.Y .Cao in Acta Phytotax. Sin. 29(3): 264. 1991.

5. Morus celtidifolia Kunth in Humboldt & al., Nov. Gen.
Sp. 2: 33. 1817.

6. Morus liboensis S.S.Chang in Acta Phytotax. Sin. 22:
66. 1984.

7. Morus macroura Miq. var. macroura, Pl. Jungh. 1: 42.
1851.

7.1 Morus macroura var. laxiflora G.K.Upadhyay & A.A.
Ansari in Rheedea 20: 44. 2010.

8. Morus koordersiana J.-F.Leroy in Bull. Mus. Natl. Hist.
Nat., sér. 2, 21: 729. 1949.
Comment: Endemic to Sumatra and possibly synonymous
with M. macroura. However, it was not cited by Berg &
al. (2006) either as a good species or as a synonym of the latter.

9. Morus microphylla Buckley in Proc. Acad. Nat. Sci. Phil-
adelphia 1862: 8. 1863.
Comment: Recognized in the Flora of North America
(Wunderlin, 1997) but likely conspecific with M. celtidifolia
and considered so by Berg (2001).

10. Morus mongolica (Bureau) C.K.Schneid. in Sargent,
Pl. Wilson. 3: 296. 1916 = Morus alba var. mongolica
Bureau in Candolle, Prodr. 17: 241. 1873.

11. Morus nigra L., Sp. P1. 2: 986. 1753.

12. Morus notabilis C.K.Schneid. in Sargent, P1. Wilson. 3:
293. 1916.

13. Morus rubra L. var. rubra, Sp. P1. 2: 986. 1753.

13.1 Morus rubra var. murrayana (Saar & Galla) Saar &
Galla in Phytologia 94(2): 246. 2012 = Morus murra-
yana Saar & Galla in Phytologia 91(1): 106, t. 1-2. 2009.

14. Morus serrata Roxb., Fl. Ind., ed. 1832, 3: 596. 1832.

15. Morus trilobata (S.S.Chang) Z.Y.Cao in Acta Phytotax.
Sin. 29: 265. 1991 = Morus australis var. trilobata S.S.
Chang in Acta Phytotax. Sin. 22(1): 66, pl. 5. 1984.

16. Morus wittiorum Hand.-Mazz. in Anz. Akad. Wiss.
Wien, Math.-Naturwiss. KI. 58: 88. 1921.
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Paratrophis

Paratrophis Blume, Mus. Bot. 2: 81. 1856 = Streblus sect.
Paratrophis (Blume) Corner in Gard. Bull. Singapore
19: 216. 1962 — Type: Paratrophis heterophylla Blume
(= P. microphylla (Raoul) Cockayne).
= Pseudomorus Bureau in Ann. Sci. Nat., Bot., sér. 5, 11: 371.
1869 — Type: Pseudomorus brunoniana (Endl.) Bureau
(= Paratrophis pendulina (Endl.) E.M.Gardner).
= Uromorus Bureau in Candolle, Prodr. 17: 214, 236. 1873 —
Type (designated here): Uromorus anthropophagorum
(Seem.) Bureau (= Paratrophis anthropophagorum
(Seem.) Benth. & Hook.f. ex Drake).
= Calpidochlamys Diels in Bot. Jahrb. Syst. 67: 172. 1935 =
Trophis sect. Calpidochlamys Corner in Gard. Bull. Sin-
gapore 19: 230. 1962 — Type: Calpidochlamys drupacea
Diels (= Paratrophis philippinensis (Bureau) Fern.-Vill.).
= Chevalierodendron J.-F.Leroy in Compt. Rend. Hebd.
Séances Acad. Sci. 227: 146. 1948 — Type (designated
here): Chevalierodendron glabrum (Merr.) J.-F.Leroy
(= Paratrophis glabra (Mert.) Steenis).
= Morus subg. Gomphomorus J.-F.Leroy in Bull. Mus. Hist.
Nat. (Paris), ser. 2, 21: 732. 1949 — Type: Morus insignis
Bureau (= Paratrophis insignis (Bureau) E.M.Gardner).
= Streblus sect. Protostreblus Corner in Blumea 18:393. 1970
— Type: Streblus ascendens Corner (= Paratrophis ascen-
dens (Corner) E.M.Gardner).
Dioecious trees or shrubs. Leaves distichous (or spiral in
P. ascendens), pinnately veined, sometimes trinerved at the
base. Stipules free, lateral. Inflorescences axillary, solitary or
up to 5 together, spicate, with an abaxial sterile groove, inter-
floral bracts mostly peltate, flowers sessile in longitudinal rows,
tepals 4, valvate, ciliolate. Staminate inflorescences up to at
least 20 cm. long, flowers with filaments inflexed in bud, pistil-
lode present. Pistillate inflorescences up to at least 10 cm long,
flowers usually at least 2 (to many), tepals free (except in
P. philippinensis), stigma bifid, arms equal. Fruits drupaceous,
red to black, with tepals persistent but usually not enlarged or
fleshy (except in P. philippinensis and P. insignis), up to
ca. | cm long. Seeds up to ca. 8 x 6 mm, cotyledons equal.
Species and distribution: 12 species from the Malesian re-
gion to Australia, New Zealand, and Oceania, Central and
western South America.

1. Paratrophis anthropophagorum (Seem.) Benth. & Hook.f.
ex Drake, Ill. Fl. Ins. Pacif.: 296. 1892 = Trophis anthro-
pophagorum Seem., Fl. Vit.: 258, t. 68. 1868 = Uromorus
anthropophagorum (Seem.) Bureau in Candolle, Prodr.
17: 236. 1873 = Streblus anthropophagorum (Seem.)
Corner in Gard. Bull. Singapore 19: 221. 1962.

= Caturus oblongatus Seem., Fl. Vit.: 254. 1868.

= Pseudomorus brunoniana var. tahitensis J.Nadeaud, Enum.
PIL. Tahiti: 43. 1873 = Uromorus tahitensis (J.Nadeaud)
Bureau in Candolle, Prodr. 17: 237. 1873 = Paratrophis
tahitensis (Bureau) Benth. & Hook.f. ex Drake, Ill. Fl. Ins.
Pacif.: 296. 1892 = Streblus tahitensis (J Nadeaud) Corner
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in Gard. Bull. Singapore 19: 225. 1962 = Paratrophis oster-
meyeri Rech. in Repert. Spec. Nov. Regni Veg. 5: 130. 1908.
= Paratrophis viridissima Rech. in Repert. Spec. Nov. Regni
Veg. 5: 130. 1908.
= Paratrophis zahlbruckneri Rech. in Repert. Spec. Nov. Re-
gni Veg. 5: 130. 1908.
Figure 12.2.

2. Paratrophis ascendens (Corner) E.M.Gardner, comb. nov. =
Streblus ascendens Corner in Blumea 18: 395, t. 1. 1970.

3. Paratrophis australiana C.T.White in Contr. Arnold
Arbor. 4: 15. 1933 = Streblus glaber var. australianus
(C.T.White) Corner in Gard. Bull. Singapore 19: 221.
1962 = Streblus glaber subsp. australianus (C.T.White)
C.C.Berg in Blumea 50: 548. 2005.

4. Paratrophis banksii Cheeseman, Man. New Zealand Fl.:
633. 1906 = Streblus banksii (Cheeseman) C.J.Webb in
New Zealand J. Bot. 25(1): 136. 1987.

= Paratrophis heterophylla var. elliptica Kirk in Trans. &
Proc. New Zealand Inst. 29: 500, t. 46. 1897 = Streblus
heterophyllus var. ellipticus (Kirk) Corner in Gard. Bull.
Singapore 19: 222. 1962.

Comment: Morphologically very close to and not always
distinguishable from P. microphylla.

5. Paratrophis glabra (Merr.) Steenis in J. Bot. 72: 8. 1934 =
Gironniera glabra Merr. in Philipp. J. Sci. 1(Suppl.): 42.
1906 = Chevalierodendron glabrum (Merr.) J.-F.Leroy
in Compt. Rend. Hebd. Séances Acad. Sci. 227: 146.
1948 = Streblus glaber (Merr.) Corner in Gard. Bull. Sin-
gapore 19: 221. 1962.

= Aphananthe negrosensis Elmer in Leafl. Philipp. Bot. 2:
575.1909.

= Pseudostreblus caudatus Ridl. in J. Fed. Malay States Mus.
6: 54. 1915.

= Streblus laevifolius Diels in Bot. Jahrb. Syst. 67: 171. 1935.

= Streblus urophyllus Diels in Bot. Jahrb. Syst. 67: 172. 1935
= Streblus glaber subsp. urophyllus (Diels) C.C.Berg in
Blumea 50(3): 548. 2005.

= Streblus urophyllus var. salicifolius Corner in Gard. Bull.
Singapore 19: 225. 1962.

Comments: Berg & al. (2006) treated Paratrophis australi-
ana and Streblus urophyllus as subspecies of S. glaber. Paratro-
phis australiana, endemic to Australia, has crenate leaf margins
and somewhat larger staminate inflorescences with more inter-
floral bracts than P. glabra; these morphological differences are
consistent and geographically confined, and we therefore rein-
state P australiana. This stands in contrast to S. urophyllus,
which we provisionally maintain in synonymy under P. glabra.
Although collections from Mt. Wilhelm in New Guinea are re-
markable for their thick coriaceous leaves and spinose margins,
similar toothed margins can be found at higher elevations in Bor-
neo and Sulawesi, suggesting that the striking leaf morphology
of S. urophyllus is an alpine effect not indicative of speciation.
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We reserve judgement on the status of S. urophyllus var. salicifo-
lius, applied by Corner (1962) to specimens with linear leaves,
provisionally maintaining it in synonymy following Berg &
al. (2006).

6. Paratrophis insignis (Bureau) E.M.Gardner, comb.
nov. = Morus insignis Bureau in Candolle, Prodr. 17:
247.1873.

= Morus peruviana Planch. ex Koidz., Fl. Symb. Orient.-
Asiat.: 88. 1930.

= Morus trianae J.-F.Leroy in Bull. Mus. Hist. Nat. (Paris),
ser. 2, 21: 731. 1949.

= Morus marmolii Legname in Lilloa 33: 334. 1973.
Comment: The infructescences differ from most other Para-

trophis in their fleshy free tepals and denser aggregation of

flowers, but the staminate inflorescences are typical of the genus.

7. Paratrophis microphylla (Raoul) Cockayne, Bot. Notes Ken-
nedy’s Bush & Scenic Res. Port Hills, Lyttelton (Rep. Scen-
ery Preserv.): 12. 1915 = Epicarpurus microphyllus Raoul,
Choix Pl. Nouv.-Z¢l.: 14. 1846 = Taxotrophis microphylla
(Raoul) F.Muell., Fragm. 6: 193. 1868 = Streblus microphyl-
lus (Raoul) Corner in Gard. Bull. Singapore 19: 221. 1962.

= Trophis opaca Banks & Sol. ex Hook.f., Bot. Antarct. Voy.
II (F1. Nov.-Zel.) 1: 224. 1853., nom. illeg = Paratrophis
opaca Druce, Rep. Bot. Soc. Exch. Club Brit. Isles 4
(Suppl. 2): 639. 1917.

= Paratrophis heterophylla Blume, Mus. Bot. 2: 81. 1856.

8. Paratrophis pendulina (Endl.) E.M.Gardner, comb. nov. =
Morus pendulina Endl., Prodr. Fl. Norfolk.: 40. 1833 =
Pseudomorus pendulina (Endl.) Stearn in J. Arnold Arbor.
28: 427. 1947 = Pseudomorus brunoniana var. pendulina
(Endl.) Bureau in Ann. Sci. Nat., Bot., ser. 5, 11: 372. 1869
= Streblus pendulinus (Endl.) F.Muell., Fragm. 6: 192. 1868.

= Morus brunoniana Endl., Atakta Bot.: t. 32. 1835 = Streblus
brunonianus (Endl.) F.Muell., Fragm. 6: 192. 1868 =
Pseudomorus brunoniana (Endl.) Bureau in Ann. Sci.
Nat., Bot., ser. 5, 11: 372. 1869.

= Pseudomorus brunoniana var. australiana Bureau in Ann.
Sci. Nat., Bot., ser. 5, 11: 373. 1869 = Pseudomorus pen-
dulina var. australiana (Bureau) Stearn in J. Arnold
Arbor. 28: 427. 1947.

= Pseudomorus brunoniana [var. australiana] subvar. castaneae-
folia Bureau in Ann. Sci. Nat., Bot., ser. 5, 11: 372. 18609.

= Pseudomorus brunoniana var. obtusa Bureau in Ann. Sci.
Nat., Bot., ser. 5, 11: 373. 1869 = Pseudomorus pendulina
var. obtusa (Bureau) Stearn in J. Arnold Arbor. 28: 428.
1947 (‘obtusata’).

= Pseudomorus sandwicensis O.Deg., Fl. Hawaiiensis: fam.
96. 21 Dec 1938 = Pseudomorus brunoniana var. sand-
wicensis (0O.Deg.) Skottsb. in Acta Horti Gothob. 15:
347. 1944 = Pseudomorus pendulina var. sandwicensis
(O.Deg.) Stearn in J. Arnold Arbor. 28: 428. 1947 = Stre-
blus sandwicensis (0.Deg.) H.St.John in Mem. Pacific
Trop. Bot. Gard. 1: 374. 1973.
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Fig. 12.1. Taxotrophis taxoides (B.Heyne ex Roth) Chew ex E.M.Gardner: A, Leafy shoot; B, Staminate inflorescence; C, Staminate flower; D & E,
Pistillate flowers; F, Fruit; G, Leafy shoot with fruits. 12.2. Paratrophis anthropophagorum (Seem.) Benth. & Hook.f. ex Drake: A, Leafy shoot
with pistillate inflorescences; B, Staminate inflorescences; C, Detail of staminate flowers and bracts; D, Staminate flower; E, Pistillate inflores-
cence; F, Pistillate flower; G, Fruit. — Drawn by J. Williamson.
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Comments: This complex requires further investigation.
Although the types of Morus pendulina, M. brunoniana, Pseu-
domorus sandwicensis, and P. brunoniana var. obtusa differ
from one another, it has so far been difficult to discern clear
geographic patterns that warrant maintaining separate species.
We therefore provisionally treat them all as one widespread
and variable species, awaiting further study before making ad-
ditional new combinations. Besides additional phylogenetic
work, expanding on the careful morphological study by
Conn (2015), who found consistent differences between mate-
rial from Norfolk Island (there assigned to Streblus pendulinus)
and mainland Australia (assigned to S. brunonianus), would be
most welcome in that regard.

9. Paratrophis philippinensis (Bureau) Fern.-Vill. in Fernandez-
Villar & Naves, Nov. App.: 98. 1880 = Uromorus philippi-
nensis Bureau in Candolle, Prodr. 17: 237. 1873 = Trophis
philippinensis (Bureau) Corner in Gard. Bull. Singapore 19:
231.1962.

= Sloetia minahassae Koord. in Meded. Lands Plantentuin
19: 645. 1898.

= Paratrophis grandifolia Elmer in Leafl. Philipp. Bot. 5:
1814. 1913.

= Calpidochlamys branderhorstii Diels in Bot. Jahrb. Syst.
67: 173. 1935 = Trophis branderhorstii (Diels) Corner
in Gard. Bull. Singapore 19: 231. 1962.

= Calpidochlamys drupacea Diels in Bot. Jahrb. Syst. 67:
173. 1935 = Trophis drupacea (Diels) Corner in Gard.
Bull. Singapore 19: 231. 1962.

Comments: This species is the only Paratrophis with
fused tepals and one of only two whose tepals develop into a
fleshy accessory fruit. The staminate inflorescences, however,
are typical of the genus.

10. Paratrophis sclerophylla (Corner) E.M.Gardner, comb.
nov. = Streblus sclerophyllus Corner in Blumea 18: 399.
1970.

11. Paratrophis smithii Cheeseman in Trans. & Proc. New
Zealand Inst. 20: 148. 1888 = Streblus smithii (Cheeseman)
Corner in Gard. Bull. Singapore 19: 224. 1962.

Comment: Morphologically very close to Paratrophis
anthropophagorum.

12. Paratrophis solomonensis (Corner) E.M.Gardner, comb.
nov. = Streblus solomonensis Corner in Gard. Bull. Sin-
gapore 19: 224. 1962.

Comment: Morphologically very close to Paratrophis
anthropophagorum.

Sorocea

Sorocea A.St.-Hil. in Mém. Mus. Hist. Nat. 7:473. 1821 — Type
(designated by Burger & al. in Acta Bot. Neerl. 11: 430.
1962): Sorocea bonplandii (Baill.) W.C.Burger, Lanj. &
Wess.Boer ( = Pseudosorocea bonplandii Baill.).
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= Pseudosorocea Baill., Hist. Pl. 6: 210. 1875 — Type: Pseu-
dosorocea bonplandii Baill. (= Sorocea bonplandii

(Baill.) W.C.Burger, Lanj. & Wess.Boer).
= Trophisomia Rojas Acosta in Bull. Géogr. Bot. 24: 211.

1914 — Type: Trophisomia edulis Rojas Acosta (= Soro-

cea sprucei subsp. saxicola (Hassler) C.C.Berg).
= Paraclarisia Ducke in Arq. Serv. Florest. 1(1): 2. 1939 —

Type: Paraclarisia amazonica Ducke (= Sorocea duckei

W.C.Burger).

Dioecious trees. Leaves alternate, distichous, lamina pin-
nately veined, 3-lobed to entire. Stipules free, lateral. Inflores-
cences solitary or paired in the leaf axils or below the leaves,
racemose to spicate to subcapitate or uniflorous, bracts basally
attached to peltate. Staminate flowers 4-lobed to 4-parted, tepals
decussate-imbricate, stamens (3—)4, straight in bud, pistillode
usually absent. Pistillate flowers tubular, 4-lobed to subentire,
ovary basally adnate to the perianth, stigmas 2, short, usually
tongue-shaped. Infructescences with drupaceous fruits enclosed
by fleshy enlarged perianths, the latter red to orange, turning black
at maturity. Seeds large, testa thin, embryo green, cotyledons very
unequal, the smaller one minute and enclosed by the larger.

Species and distribution: 19 species in Central and South
America from Mexico to Argentina.

Note: This species list follows the Flora Neotropica mono-
graph (Berg, 2001) with the addition of four new species and
one status change published later. Names synonymized by
Berg (2001) but recognized by Burger & al. (1962) are noted in
comments. Complete synonymies can be found in those
treatments.

Sorocea subg. Sorocea

1. Sorocea affinis Hemsl., Biol. Cent.-Amer., Bot. 3: 150.
1883. — Figure 10.2.

2. Sorocea angustifolia Al.Santos & Romaniuc in Novon
24(2): 199. 2015.

3. Sorocea bonplandii (Baill.) W.C.Burger, Lanj. & Wess.
Boer in Acta Bot. Neerl. 11: 465, t. 12, fig. 1. 1962 =
Pseudosorocea bonplandii Baill. in Adansonia 11:
296. 1875.

4. Sorocea briquetii ].F Macbr. in Publ. Field Columb. Mus.,
Bot. Ser. 11: 16. 1931.
Comment: Includes Sorocea pileata W.C.Burger.

5. Sorocea carautana M.D.M.Vianna, Carrijo & Romaniuc
in Novon 19: 549, fig. 1. 20009.

6. Sorocea ganevii R.M.Castro in Neodiversity 1: 18. 2006.

7. Sorocea guilleminiana Gaudich., Voy. Bonite, Bot. 3:
t. 74. 1843
Comment: Includes Sorocea klotzschiana Baill. and
S. macrogyna Lanj. & Wess.Boer.
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8. Sorocea hilarii Gaudich., Voy. Bonite, Bot. 3: t. 71. 1843.
Comment: Includes Sorocea racemosa Gaudich.

9. Sorocea jaramilloi C.C.Berg in Novon 6: 241, fig. 9. 1996.

10. Sorocea longipedicellata A.F.P.Machado, M.D.M.
Vianna & Romaniuc in Syst. Bot. 38(3): 687. 2013.

11. Sorocea muriculata Miq. subsp. muriculata in Martius,
FI. Bras. 4(1): 113. 1853.
Comment: Includes Sorocea amazonica Miq.

11.1 Sorocea muriculata subsp. uaupensis (Baill.) C.C.Berg
in Proc. Kon. Ned. Akad. Wetensch. C 88: 387. 1985 =
Pseudosorocea uaupensis Baill. in Adansonia 11: 297. 1875.
Comment: Includes Sorocea guayanensis W.C.Burger.

12. Sorocea pubivena Hemsl. subsp. pubivena, Biol. Cent.-
Amer., Bot. 3: 150. 1883.
Comment: Includes Sorocea cufodontii W.C.Burger.

12.1 Sorocea pubivena subsp. hirtella (Mildbr.) C.C.Berg
in Novon 6(3): 243. 1996 = Sorocea hirtella Mildbr. in
Notizbl. Bot. Gart. Berlin-Dahlem 10: 183. 1927.
Comment: Includes Sorocea opima J.F.Macbr.

12.2 Sorocea pubivena subsp. oligotricha (Akkermans &
C.C.Berg) C.C.Berg in Novon 6(3): 243. 1996 = Soro-
cea hirtella subsp. oligotricha Akkermans & C.C.Berg
in Proc. Kon. Ned. Akad. Wetensch. C 88: 383,t. 1. 1985.

13. Sorocea ruminata C.C.Berg in Novon 6(3): 244. 1996.

14. Sorocea sarcocarpa Lanj. & Wess.Boer in Acta Bot.
Neerl. 11:452. 1962.

15. Sorocea steinbachii C.C.Berg in Proc. Kon. Ned. Akad.
Wetensch. C 88: 385. 1985.

16. Sorocea trophoides W.C.Burger in Acta Bot. Neerl. 11:
450. 1962.

Sorocea subg. Paraclarisia (Ducke) W.C Burger, Lanj. & Wess.
Boer in Acta Bot. Neerl. 11: 468. 1962 = Paraclarisia
Ducke in Arq. Serv. Florest. 1(1): 2. 1939 — Type: Paracla-
risia amazonica Ducke (= Sorocea duckei W.C.Burger).

17. Sorocea duckei W.C Burger in Acta Bot. Neerl. 11: 473. 1962.

18. Sorocea sprucei (Baill.) J.F. Macbr. subsp. sprucei in Publ.
Field Mus. Nat. Hist., Bot. Ser. 11: 16. 1931 = Pseudo-
sorocea sprucei Baill. in Adansonia 11: 296. 1875.
Comment: Includes Sorocea arnoldoi Lanj. & Wess.Boer.

18.1 Sorocea sprucei subsp. saxicola (Hassl.) C.C.Berg in
Proc. Kon. Ned. Akad. Wetensch. C. 88: 391. 1985 =
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Sorocea saxicola Hassl. in Bull. Herb. Boissier, ser. 2,
7:11.1906.

19. Sorocea subumbellata (C.C.Berg) Cornejo in Novon
19(3): 297-299. 2009.

Taxotrophis

Taxotrophis Blume, Mus. Bot. 2: 77. 1856 = Streblus sect.
Taxotrophis (Blume) Corner in Gard. Bull. Singapore
19: 217-218. 1962 — Type: Taxotrophis javanica Blume
(=T spinosa (Blume) Boerl.).

= Phyllochlamys Bureau in Candolle, Prodr. 17: 217. 1873 =
Streblus sect. Phyllochlamys (Bureau) Corner in Gard.
Bull. Singapore 19: 217. 1962 — Type (designated here):
Phyllochlamys spinosa (Roxb.) Bureau (= Taxotrophis
taxoides (B.Heyne ex Roth) E.M.Gardner).

= Balanostreblus Kurz in J. Asiat. Soc. Bengal., Pt. 2, Nat.
Hist. 42: 247. 1874 — Type: Balanostreblus ilicifolia Kurz
(= Taxotrophis ilicifolia (Kurz) S.Vidal).

= Pseudotrophis Warb. in Bot. Jahrb. Syst. 13(3—4): 294.
1891 = Streblus sect. Pseudotrophis (Warb.) Corner in
Gard. Bull. Singapore 19: 217. 1962 — Type: Pseudotro-
phis laxiflora Warb. (= Taxotrophis ilicifolia S.Vidal).

= Dimerocarpus Gagnep. in Bull. Mus. Natl. Hist. Nat. 27: 441.
1921 — Type (designated here): Dimerocarpus brenieri
Gagnep. (= Taxotrophis macrophylla (Blume) Boerl.).
Monoecious or dioecious trees or shrubs, usually with lat-

eral or terminal thorns. Leaves distichous, pinnately veined,

petioles adaxially pubescent. Stipules free, lateral. Inflorescen-

ces axillary, solitary or paired, with an abaxial sterile groove,

interfloral bracts basally attached, flowers with 4 free tepals,

valvate. Staminate inflorescences spicate to subcapitate, flowers

with filaments inflexed in bud, pistillode present. Pistillate

inflorescences uniflorous or subspicate, flowers usually pedi-

cellate, stigma bifid, arms equal. Fruits drupaceous, up to ca.

1 cm long, usually loosely enclosed by the enlarged persistent

tepals. Seeds up to ca. 8 x 6 mm, cotyledons subequal to unequal.
Species and distribution: 6 species, ranging from Sri

Lanka to New Guinea.

1. Taxotrophis ilicifolia (Kurz) S.Vidal, Revis. Pl. Vasc. Filip.:
249. 1886 = Balanostreblus ilicifolia Kurz in J. Asiat. Soc.
Bengal, Pt. 2, Nat. Hist. 42(4): 248. 1874 = Streblus ilicifo-
lius (Kurz) Corner in Gard. Bull. Singapore 19: 227. 1962.

= Pseudotrophis laxiflora Warb. in Bot. Jahrb. Syst. 13:
294. 1891.

= Taxotrophis obtusa Elmer in Leafl. Philipp. Bot. 5:
1813. 1913.

= Taxotrophis triapiculata Gamble in Bull. Misc. Inform.
Kew 1913: 188. 1913.

= Taxotrophis eberhardtii Gagnep. in Lecomte, Fl. Indo-
Chine 5: 700. 1928.

= Taxotrophis laxiflora Hutch. in Bull. Misc. Inform. Kew
1918: 151. 1918 = Streblus laxiflorus (Hutch.) Corner in
Gard. Bull. Singapore 19: 229. 1962.
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= Taxotrophis aquifolioides W.C.Ko in Acta Phytotax. Sin.

8(4): 353. 1963.

The correct basionym for this species under Art. 41.4 of
the Code (cf. Ex. 10) is Balanostreblus ilicifolia Kurz. As de-
tailed by Gardner (2021), the latter has been misapplied to
Sorocea guilleminiana Gaudich. based on original material
without type status, the extant syntypes being clearly identifiable
as Taxotrophis ilicifolia (Hutchinson, 1918; Jarrett, 1958).

2. Taxotrophis macrophylla (Blume) Boerl., Handl. F1. Ned.
Ind. 3: 359. 1900 = Streblus macrophyllus Blume, Mus.
Bot. 2: 80. 1856 = Diplocos? macrophyllus (Blume) Bu-
reau in Candolle, Prodr. 17: 216. 1873.

= Pseudotrophis mindanaensis Warb. in Perkins & al., Fragm.
Fl. Philipp. 1: 165. 1905 = Taxotrophis mindanaensis
(Warb.) Elmer in Leafl. Philipp. Bot. 5: 1815. 1913 (*Tax-
atrophis’ in nota).

= Paratrophis caudata Merr. in Philipp. J. Sci. 1(Suppl.):
183. 1906.

= Taxotrophis balansae Hutch. in Bull. Misc. Inform. Kew
1918(4): 151. 1918.

= Dimerocarpus brenieri Gagnep. in Bull. Mus. Hist. Nat.
(Paris) 27: 441. 1921.

3. Taxotrophis perakensis (Corner) E.M.Gardner, comb.
nov. = Streblus perakensis Corner in Gard. Bull. Singa-
pore 19: 223. 1962.

Note: Although Corner (1962) considered Streblus pera-
kensis part of S. sect. Paratrophis, albeit with some hesitation,
Berg & al. (2006), whom we follow, placed it in Taxotrophis
based on the spines that appear on some specimens. This is a
rather variable species that requires further investigation to
properly elucidate its limits and affinities.

4. Taxotrophis spinosa (Blume) Steenis in Backer & Bak-
huizen van den Brink, Fl. Java 2: 16. 1965 = Urtica spi-
nosa Blume, Bijdr. Fl. Ned. Ind. 10: 507. 1825 =
Streblus spinosus (Blume) Corner in Gard. Bull. Singa-
pore 19: 229. 1962.

= Taxotrophis javanica Blume, Mus. Bot. 2: 77, t. 26. 1856.

5. Taxotrophis taxoides (B.Heyne ex Roth) Chew ex E.M.
Gardner, comb. nov. = Trophis taxoides B.Heyne ex
Roth, Nov. Pl. Sp.: 368. 1821 = Trophis taxiformis
Spreng., Syst. Veg. 3: 902. 1826, nom. illeg. = Streblus
taxoides (B.Heyne ex Roth) Kurz, Prelim. Rep. Forest
Pegu, App. A: cxviii. 1875 = Phyllochlamys taxoides
(B.Heyne ex Roth) Koord., Exkurs.-F1. Java 2: 89. 1912.

= Trophis spinosa Roxb., Fl. Ind., ed. 1832, 3: 762. 1832,
nom. illeg., non Willd. 1806, nec Blume 1826 = Epicar-
purus spinosus (Roxb.) Wight, Icon. Pl. Ind. Orient. 6:
7,t.1962. 1853, p.p = Albrandia spinosa (Roxb.) D.Dietr.,
Syn. PL 5: 280. 1852 = Phyllochlamys spinosa (Roxb.)
Bureau in Candolle, Prodr. 17: 218. 1873.

= Epicarpurus timorensis Decne. in Nouv. Ann. Mus. Hist.
Nat. 3: 499, t. 21. 1834 = Epicarpurus involucratus Zipp.
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ex Span. in Linnaea 15(4): 344. 1841, pro syn., nom.

illeg. = Albrandia timorensis (Decne.) D.Dietr.,, Syn.

PL 5:280. 1852.
= Taxotrophis roxburghii Blume, Mus. Bot. 2: 78. 1856.
= Streblus microphyllus Kurz in Prelim. Rep. Forest Pegu

App. A: cxviii; App. B: 86. 1875 = Streblus taxoides

var. microphylla (Kurz) Kurz, Forest Fl. Burma 2:

465. 1877.
= Phyllochlamys wallichii King ex Hook.f., Fl. Brit. India 5:

489. 1888.
= Phyllochlamys taxoides var. parvifolia Merr., Enum. Phi-

lipp. F1. P1. 2: 38. 1923.
= Taxotrophis poilanei Gagnep. in Lecomte, F1. Indo-Chine 5:

701. 1928.
= Taxotrophis crenata Gagnep. in Lecomte, Fl. Indo-Chine 5:

702, t. 82. 1928 = Streblus crenatus (Gagnep.) Corner in

Gard. Bull. Singapore 19: 226. 1962.
= Phyllochlamys tridentata Gagnep. in Lecomte, Fl. Indo-

Chine 5: 714. 1928.

Figure 12.1.

Comments: The species authority recognizes the contri-
bution of Dr. Chew Wee Lek, who in the 1950s annotated
quite a lot of specimens (including at K, L, and SING) with
the new combination Taxotrophis taxoides, proposed in his
doctoral dissertation (Chew, 1960). However, the combina-
tion was never published, probably because the need for
the combination was obviated in 1962 when Corner, his doc-
toral supervisor, reduced Taxofrophis to a section of
Streblus.

6. Taxotrophis zeylanica (Thwaites) Thwaites, Enum. PL
Zeyl.: 264. 1861 = Epicarpurus zeylanicus Thwaites in
Hooker’s J. Bot. Kew Gard. Misc. 4: 1. 1852 = Diplocos
zeylanica (Thwaites) Bureau in Candolle, Prodr. 17:
215. 1873 = Streblus zeylanicus (Thwaites) Kurz, Forest
F1. Burma 2: 464. 1877.

= Taxotrophis caudata Hutch. in Bull. Misc. Inform. Kew
1918(4): 149. 1918.

Trophis

Trophis P.Browne, Civ. Nat. Hist. Jamaica: 357. 1756, nom.
cons. — Type: Trophis americana L. (= T racemosa
(L.) Urb.).

= Bucephalon L., Sp. Pl. 2: 1190. 1753, nom. rej. — Type:
Bucephalon racemosum L. (= Trophis racemosa (L.) Urb.).

= Skutchia Pax & K.Hoffm. ex C.V.Morton in J. Wash. Acad.

Sci. 27: 306. 1937 — Type: Skutchia caudata Morton (=

Trophis mexicana (Liebm.) Bureau).

Dioecious trees or shrubs. Leaves distichous, pinnately
veined. Stipules free, lateral. Inflorescences axillary or just be-
low the leaves, solitary or paired, interfloral bracts basally at-
tached. Staminate inflorescences spicate to racemose with an
abaxial sterile groove, tepals 4, basally connate, stamens 4, fil-
aments inflexed in bud, pistillode present. Pistillate inflores-
cences spicate to racemose or subcapitate, tepals 4, connate,
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forming a tubular perianth, ovary adnate to the perianth or not,
stigma bifid, arms equal. Fruits drupaceous, up to ca. 1.5 cm
long, adnate to the perianth or not, the perianth enlarged and
fleshy or not. Seeds up to ca. 1 cm long, cotyledons equal.
Species and distribution: 5 species in the Neotropics.

Trophis sect. Trophis

1. Trophis cuspidata Lundell in Amer. Midl. Naturalist 19:
427.1938.

2. Trophis mexicana (Liebm.) Bureau in Candolle, Prodr. 17:
253. 1873 = Sorocea mexicana Liebm., Kongel. Danske
Vidensk. Selsk. Skr., Naturvidensk. Math. Afd., ser. 5, 2:
335. 1851.

3. Trophis noraminervae Cuevas & Carvajal in Acta Bot.
Mex. 47: 2, fig. 1-7. 1999.

4. Trophis racemosa Urb., Symb. Antill. 4(2): 195. 1905. —
Figure 11.1.

Trophis sect. Echinocarpa C.C.Berg in Proc. Kon. Ned.
Akad. Wetensch. C 91:353. 1988 — Type: Trophis involu-
crata W.C.Burger.

5. Trophis involucrata W .C.Burger in Phytologia 26: 432. 1973.
Tribe OLMEDIEAE

Olmedieae Trécul in Ann. Sci. Nat., Bot., ser. 3, 8: 126. 1847.
= Antiarideac Dumort., Anal. Fam. PL.: 16. 1829 (‘Anthiari-
deae’), nom. utique rej. prop. — Type: Antiaris Lesch.
= Strebleae Bureau in Candolle, Prodr. 17: 215. 1873 — Type:

Streblus Lour.
= Castilleae C.C.Berg in Acta Bot. Neerl. 26: 78. 1977 —

Type: Castilla Cerv.
= Antiaropsideae C.C.Berg in Blumea 50: 536. 2005 — Type:

Antiaropsis K.Schum.

Tree or shrubs, monoecious or dioecious (or androdioe-
cious), mostly with self-pruning branches. Leaves alternate
or opposite, distichous or spirally arranged; stipules lateral to
amplexicaul. Inflorescences mostly unisexual, capitate, mostly
discoid to urceolate, involucrate, tepals mostly 4, connate or
not. Staminate inflorescences usually many-flowered; stamens
4 or fewer, with filaments straight or less often inflexed in bud,
pistillode mostly absent. Pistillate inflorescences one to many-
flowered, ovary free or not, stigmas 2, filiform. Fruits mostly
drupaceous, mostly enclosed by a fleshy perianth or embedded
in a fleshy receptacle. Seeds with or without endosperm, testa
thin, vascularized, cotyledons mostly equal.

Genera and distribution: 13 genera with 63 species. Eight
Neotropical genera: Castilla Cerv. (3 spp.), Helicostylis Trécul
(7), Maquira Aubl. (4), Naucleopsis Miq. (22), Olmedia Ruiz
& Pav. (1), Perebea Aubl. (9), Poulsenia Eggers (1), and Pseu-
dolmedia Trécul (9); and five Paleotropical genera: the
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widespread Antiaris Lesch. (1); Antiaropsis K.Schum. (2) in
New Guinea; Mesogyne Engl. (1) in Africa; Sparattosyce Bu-
reau (1) in New Caledonia; and Streblus Lour. (3) in South to
Southeast Asia.

Note: During review of the manuscript, it became appar-
ent that Antiarideae Dumort., a little-used name, has priority
over both Olmedieae and Castilleae, neither of which had ever
been conserved. A proposal has been made to reject that name,
but should the proposal not be accepted, the legitimate name
of this tribe must be Antiarideae.

Olmedia

Olmedia Ruiz & Pav., Fl. Peruv. Prodr.: 129, t. 28. 1794 = Tro-
phis sect. Olmedia (Ruiz & Pav.) Berg in Proc. Kon. Ned.
Acad. Wetensch. C. 91: 354. 1988 — Type: Olmedia as-
pera Ruiz & Pav.

Dioecious trees or shrubs. Leaves distichous, lamina pin-
nately veined. Stipules free, not fully amplexicaul. Inflores-
cences unisexual, with a well-developed involucre of imbricate
bracts. Staminate inflorescences discoid, multiflorous; tepals
4, valvate, stamens 4, inflexed in bud, pistillode absent. Pistil-
late inflorescences usually uniflorous, perianth tubular, 4-den-
tate, ovary free, stigmas 2, equal. Fruits drupaceous, surrounded
by fleshy persistent perianth and subtended by spreading, fleshy
involucral bracts. Seeds ca. 5 mm long, cotyledons equal.

Species and distribution: 1 species, in the Neotropics.

1. Olmedia aspera Ruiz & Pav., Syst. Veg. Fl. Peruv. Chil. 1:
257.1798.

= Olmedia caucana Pittier in Contr. U.S. Natl. Herb. 13: 434.
1912 = Trophis caucana (Pittier) C.C.Berg in Proc. Kon.
Ned. Acad. Wetensch. C. 91: 354. 1988.

= Olmedia aspera Poepp. & Endl., Nov. Gen. Sp. Pl. 2: 31.
1838, nom. illeg., non Ruiz & Pav. 1798.

= Olmedia poeppigiana Klotzsch in Linnaea 20: 525. 1847,
pro syn., nom. illeg., non Mart. 1841.

= Trophis aurantiaca Herzog in Repert. Spec. Nov. Regni
Veg. 7: 51. 1909.

= Olmedia falcifolia Pittier in Contr. U.S. Natl. Herb. 13:
435.1912.
Figure 13.2.

Streblus

Streblus Lour., Fl. Cochinch.: 615. 1790 = Achimus Vahl ex
Poir. in Lamarck, Encycl. 8: 123. 1808 — Type: Streblus
asper (Retz.) Lour. (= Trophis aspera Retz.)

= Epicarpurus Blume, Bijdr. Fl. Ned. Ind. 10: 488. 1825 —
Type (designated here): Epicarpurus orientalis Blume.

= Albrandia Gaudich., Voy. Uranie: 509. 1830 — Type (desig-
nated here): Albrandia orientalis (Blume) D.Dietr. (=
Streblus asper (Retz.) Lour.).

= Calius Blanco, FI. Filip.: 698. 1837 — Type (designated
here): Calius lactescens Blanco (= Streblus asper (Retz.)
Lour.).
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Fig. 13.1. Streblus asper (Retz.) Lour.: A, Staminate inflorescences; B, Pistillate inflorescence; C, Fruit. 10.2. Olmedia aspera Ruiz & Pav.: A & B,
Staminate inflorescences; C, Pistillate inflorescences. 10.3. Sloetiopsis usambarensis Engl.: A, Staminate inflorescence; B, Bisexual inflorescence;
C, Pistillate inflorescence; D, Fruiting perianth; E, Detail of ovule, showing subapical placentation typical of Moraceae. 10.4. Pseudostreblus in-
dicus Bureau: A, Staminate inflorescences; B, Pistillate inflorescence; C, Fruiting perianth. — Drawn by J. Williamson.
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= Teonongia Stapf in Hooker’s Icon. Pl. 30: t. 2947. 1911 —

Type (designated here): Teonongia tonkinensis (Eberh.

& Dubard) Stapf (= Streblus tonkinensis (Eberh. &

Dubard) Corner).
= Diplothorax Gagnep. in Bull. Soc. Bot. France 75: 98. 1928

— Type (designated here): Diplothorax tonkinensis

Gagnep. (= Streblus asper (Retz.) Lour.).

Trees or shrubs, dioecious or monoecious. Leaves dis-
tichous, lamina pinnately veined. Stipules free, lateral. Inflo-
rescences bisexual or unisexual, capitate, with a rudimentary
involucre, bracts basally attached. Staminate inflorescences
discoid capitate, multiflorous; tepals 4, imbricate, stamens
4, inflexed in bud, pistillode present but small. Pistillate inflo-
rescences usually uniflorous, tepals 4, ovary free, stigmas
2, equal. Fruits drupaceous, up to ca. § mm long, initially en-
closed by enlarged but not fleshy tepals, which may open later.
Seeds ca. 5 mm long, cotyledons equal or very unequal.

Species and distribution: 3 species from India to South
China and from mainland Southeast Asia to the Philippines
and the Moluccas.

1. Streblus asper (Retz.) Lour., Fl. Cochinch.: 615. 1790 = Tio-
phis aspera Retz., Observ. Bot. 5: 30. 1788 = Epicarpurus
asper (Retz.) Steud., Nomencl. Bot., ed. 2, 1: 556. 1840 =
Trophis zeylanica J.Koenig ex Blume, Mus. Bot. 2: 79.
1856, pro syn., nom. illeg = Achymus pallens Sol. ex
Blume, Mus. Bot. 2: 79. 1856, pro syn., nom. illeg.

= Trophis cochinchinensis Poir. in Lamarck, Encycl. 8:
123. 1808.

= Epicarpurus orientalis Blume, Bijdr. Fl. Ned. Ind. 10: 488.
1825 = Albrandia orientalis (Blume) D.Dietr., Syn. P1. 5:
280. 1852.

= Calius lactescens Blanco, Fl. Filip.: 698. 1837 = Streblus
lactescens (Blanco) Blume, Mus. Bot. 2: 80. 1856.

= Epicarpurus gaudichaudii Steud., Nomencl. Bot., ed. 2, 1:
556. 1840 = Albrandia gaudichaudii (Steud.) D.Dietr.,
Syn. Pl. 5: 280. 1852.

= Cudrania crenata C.H.Wright in J. Linn. Soc., Bot. 26: 469.
1899 = Vanieria crenata (C.H.-Wright) Chun in J. Arnold
Arbor. 8: 21. 1927.

= Diplothorax tonkinensis Gagnep. in Bull. Soc. Bot. France
75:98. 1928.

Figure 13.1.

Note: Retzius’s Trophis aspera predated Loureiro’s Streblus
asper by two years, and we therefore treat the latter a presumed
new combination under Art. 41.4 of the Code (cf. Ex. 10). Syn-
onymies of S. asper have sometimes erroneously included
T aculeata Roth, which is actually Maclura spinosa (Roxb. ex
Willd.) C.C Berg.

2. Streblus celebensis C.C.Berg in Blumea 50: 547. 2005.

3. Streblus tonkinensis (Eberh. & Dubard) Corner in Gard.
Bull. Singapore 19: 228. 1962 = Bleekrodea tonkinensis
Eberh. & Dubard in Compt. Rend. Hebd. Séances
Acad. Sci. 145: 632. 1907 = Teonongia tonkinensis
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(Eberh. & Dubard) Stapf. in Hooker’s Icon. Pl. 30:
t.2947. 1911.

Tribe DORSTENIEAE

Dorstenieae Dumort., Anal. Fam. PL: 16. 1829 — Type:

Dorstenia L.
= Broussoneticae Gaudich., Voy. Uranie: 508. 1830 — Type:

Broussonetia L’Hér. ex Vent.
= Brosimeae Trécul in Ann. Sci. Nat., Bot., ser. 3, 8: 146.

1847 — Type: Brosimum Sw.
= Fatoueae Engl. in Engler & Prantl, Nat. Pflanzenfam. 3(1):

71. 1888 — Type: Fatoua Gaudich.

Monoecious or less often dioecious trees, shrubs, lianas,
and herbs. Leaves alternate or less commonly (sub)opposite,
distichous or spirally arranged; stipules lateral to fully amp-
lexicaul. Inflorescences unisexual or bisexual, cymose, spicate,
globose, or discoid to turbinate or cup-shaped, multiflorous or
uniflorous (the latter in pistillate inflorescences only), bracteate
or not, interfloral bracts mostly peltate. Staminate flowers with
tepals (1-)2—4 or absent, stamens 1-4 with filaments straight
or inflexed in bud, pistillode present or (more often) absent.
Pistillate flowers free or connate or embedded in the recepta-
cle, tepals 2—4, ovary free or not, stigmas 1 or 1, equal or un-
equal. Fruits drupaceous or drupe-like due to a persistent
fleshy perianth and/or receptacle, the whole endocarp unit
often ballistically ejected from the infructescence. Seeds with
or without endosperm, large or small; cotyledons equal or
unequal.

Genera and distribution: 12 genera and 156 species with a
worldwide distribution: Bleekrodea Blume (Africa, Southeast
Asia), Bosqueiopsis De Wild. & T.Durand (Africa), Brosi-
mum Sw. (Neotropics), Broussonetia L’Hér. ex Vent. (Asia
to Oceania; introduced worldwide), Dorstenia Plum. ex L.
(Africa and South America, with one species in India), Fatoua
Gaudich. (Madagascar and Japan to New Caledonia; intro-
duced worldwide), Malaisia Blanco (Southeast Asia to New
Caledonia), Scyphosyce Baill. (Africa), Sloetia Teijsm. &
Binn. ex Kurz (Southeast Asia), Sloetiopsis Engl. (Africa),
Trilepisium Thouars (Africa), Utsetela Pellegr. (Africa).

Sloetiopsis

Sloetiopsis Engl. in Bot. Jahrb. Syst. 39: 573. 1907 — Type:

Sloetiopsis usambarensis Engl.
= Neosloetiopsis Engl. in Bot. Jahrb. Syst. 51: 426. 1914 —

Type: Neosloetiopsis kamerunensis Engl.

Dioecious (or monoecious) trees or shrubs. Leaves disti-
chous, pinnately veined, cystoliths present; stipules free, nearly
amplexicaul. Inflorescences unisexual (or bisexual); staminate
inflorescences spicate with an abaxial sterile groove, bracts
mostly peltate, tepals 4, free or basally connate filaments in-
flexed in bud, pistillode small; pistillate inflorescences uniflor-
ous, bracts mostly basally attached, tepals 4, free, imbricate,
2 stigmas. Fruits drupaceous, fleshy endocarp dehiscent, tepals
enlarged and persistent but not fleshy. Seeds globose, ca. 4 mm,
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endocarp coriaceous with a hard disc against the hilum, testa
vascularized with a thick apical cap, cotyledons equal.

1. Sloetiopsis usambarensis Engl. in Bot. Jahrb. Syst.
39: 573. 1907 = Streblus usambarensis (Engl.) C.C.
Berg in Proc. Kon. Ned. Acad. Wetensch. C. 91:
357. 1988.

= Neosloetiopsis kamerunensis Engl. in Bot. Jahrb. Syst. 51:
426. 1914.

Figure 13.3.

Comment: The nearly amplexicaul stipules, occasional
bisexual inflorescences, and ballistic ejection of the endocarp
body reflect an affinity with the Southeast Asian Sloetia, also
a member of the Dorstenieae.

Tribe PARARTOCARPEAE

Parartocarpeae Zerega & E.M.Gardner in Phytotaxa 388(4):

260. 2019 — Type: Parartocarpus Baill.

Monoecious or dioecious shrubs to large trees; abundant
white exudate. Leaves distichous or spirally arranged; simple;
entire; pinnately veined; thin to thick coriaceous; glabrous, pu-
bescent, scabrid, or hispid pubescent. Stipules axillary, simple
or paired, lateral. Inflorescences solitary or paired in leaf axils,
unisexual (or bisexual with a single apical pistillate flower), uni-
florous, cymose, or capitate with stamens or ovaries sunken into
the receptacle; pedunculate; involucre of 3—8 triangular bracts,
basally connate. Staminate inflorescences with numerous flowers,
tepals 4-5, stamens 5 and normally positioned or 1-3 in cavi-
ties in the receptacle with the anthers exerted through perfora-
tions in the upper surface of the receptacle, filaments free or
united. Pistillate inflorescences uniflorous or (sub)globose with
ovaries solitary in each cavity, unilocular, the style apical with a
short exerted stigma. Fruits drupaceous, enclosed by persistent
tepals, or aggregated into syncarps formed by the enlargement
of the entire inflorescence.

Genera and distribution: 3 genera and 5 species, from
southern China to the Solomon Islands: Hullettia King, Para-
rtocarpus Baill., and Pseudostreblus Bureau.

Pseudostreblus

Pseudostreblus Bureau in Candolle, Prodr. 17: 220. 1873 =
Streblus sect. Pseudostreblus (Bureau) Corner in Gard.
Bull. Singapore 19: 217. 1962 — Type: Pseudostreblus
indicus Bureau.

Monoecious trees. Leaves distichous, pinnately veined.
Stipules free, lateral. Inflorescences axillary. Staminate inflo-
rescences cymose, tepals 5, imbricate, filaments inflexed
in bud but apparently straightening gradually upon anthesis,
pistillode minute, conical, pubescent, interfloral bracts few,
basally attached. Pistillate inflorescences uniflorous, peduncu-
late, involucral bracts 3, + connate, tepals 4, imbricate, stigma
bifid, arms equal. Fruits drupaceous, ca. 1 cm long, with te-
pals enlarged and loosely enclosing the fruit. Seeds ellipsoid,
ca. 6 x 8 mm, cotyledons unequal.

Gardner & al. * Phylogenomics and generic revision of Moreae

Species and distribution: 1, in South to Southeast Asia
and southern China.

Note: Pseudostreblus is remarkable for its 5-parted stami-
nate flowers.

1. Pseudostreblus indicus Bureau in Candolle, Prodr. 17: 220.
1873 (‘indica’) = Streblus indicus (Bureau) Corner in
Gard. Bull. Singapore 19: 226. 1962.

Figure 13.4.

B CONCLUSION

The revisions presented here provide for seven monophy-
letic tribes of Moraceae and ten monophyletic genera within
Moreae. We hope that the resulting taxonomic and phyloge-
netic framework will provide a solid foundation for further re-
search into the systematics and evolution of Moraceae.
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Appendix 1. Accessions used for sequencing, showing taxon, geographic origin, voucher information, GenBank SRA accession number, and number of loci
recovered (Moraceae333/Angiosperms353). Asterisks (*) denote samples newly sequenced for this study.

Afromorus mesozygia (Stapf) E.M.Gardner, Nigeria: Daramola 330 (F), SRR12282929* (330/31); Central African Republic: Buckner 309 (MO),
SRR 12282928* (330/29). Ampalis dimepate (Bureau) E.M.Gardner, Madagascar: Rakotonirina & al. 405 (MO), SRR12282873* (331/30). Ampalis mauriti-
ana (Jacq.) Urb., Madagascar: Rakotonirina & Be 489 (MO), SRR12283062* (329/12); Comoros (the): Hoffmann & al. 438 (K (K000618250)), ERS4414222*
(39/302). Antiaris toxicaria Lesch., Indonesia: Nooteboom 5995 (K (K000618256)), ERS4414194* (8/186). Antiaropsis decipiens K.Schum, Papua New
Guinea: Zerega & al. 281 (NY), SRR3907583 (298/7); Papua New Guinea: Weiblen & al. 1865 (K (K000618255)), ERS4414199* (59/327). Artocarpus altilis
(Parkinson) Fosberg, U.S.A. (cult. from Samoa): Breadfruit Institute grid no. K7 (PTBG), SRR12282879 (331/NA). Artocarpus altissimus (Miq.) J.J.Sm., Java
(cult.): Gardner & al. 441 (F), SRR12283100 (322/NA). Artocarpus anisophyllus Miq., Borneo: Zerega & al. 606 (CHIC), SRR3907106 (328/NA). Artocar-
pus annulatus F.M.Jarrett, Borneo: Zerega & al. 985 (F), SRR12283099 (324/NA). Artocarpus bergii E.M.Gardner, Arifiani & Zerega, Moluccas: Mahroji
& al. 160 (BO, L, MO), SRR12283019 (331/NA). Artocarpus blancoi (Elmer) Merr., Philippines: Ramos 42018 (L), SRR12282902 (331/NA). Artocarpus bor-
neensis Merr., Borneo: Zerega & al. 686 (F, SAN), SRR12283067 (331/NA). Artocarpus brevipedunculatus (F.M.Jarrett) C.C.Berg, Borneo: Zerega & al. 814
(F, SAN), SRR3907332 (327/NA). Artocarpus camansi Blanco, U.S.A. (cult.): Gardner 149 (PTBG), SRR12283098 (332/NA). Artocarpus chama Buch.-
Ham., Bangladesh: Zerega & al. 354 (F), SRR12283079 (331/NA). Artocarpus corneri Kochummen, Borneo: Fuchs 21347 (K, SAR), SRR12283015
(318/NA). Artocarpus dadah Miq., Borneo: Zerega & al. 694 (F, SAN), SRR3907210 (330/NA). Artocarpus elasticus Reinw. ex. Blume, Borneo: Gardner
& al. 87 (F, SAN), SRR3907457 (332/NA). Artocarpus excelsus F.M.Jarrett, Borneo: Gardner & al. 222 (F, SAN, SNP), SRR3907331 (330/NA). Artocarpus
fretessii Teijsm. & Binnend., Borneo: Adriansyah AA2243 [type of A. albobrunneus C.C.Berg] (LE, MO, P), SRR12282906 (328/NA); Zerega & al. 929
(F, SAN), SRR3907410 (330/NA). Artocarpus fiutescens (Becc.) Renner, Borneo: Gardner & al. 411 (F, SAN), SRR12283088 (263/NA). Artocarpus fulvicortex
F.M.Jarrett, Singapore: Lee YO 35 (CHIC, SING), SRR12283075 (331/NA). Artocarpus glaucus Blume, Borneo: Zerega & al. 852 (F, SAN), SRR12283074
(330/NA). Artocarpus gomezianus Wall. ex Trécul, Thailand: Zerega & al. 533 (CHIC, KKU), SRR12283072 (329/NA). Artocarpus gongshanensis S.K.Wu
ex. C.Y.Wu & S.S.Chang, China: Gaoligong Shan Biodiversity Survey 24987 (HAST, MO), SRR12283006 (324/NA). Artocarpus griffithii (King) Merr., Ma-
laysia (Peninsula): Zerega & al. 216 (F), SRR12283066 (330/NA). Artocarpus heterophyllus Lam., Borneo: Gardner & al. 98 (F, SAN), SRR3907497
(330/NA). Artocarpus hirsutus Lam., India: Zerega & al. 953 (ATREE (photo voucher CHIC)), SRR12283116 (323/NA). Artocarpus hispidus F . M.Jarrett,
Malaysia (Peninsula): Zerega & al. 258 (F), SRR12283071 (322/NA). Artocarpus horridus F M.Jarrett, Java (cult.): Gardner & al. 437 (F), SRR12283095
(332/NA). Artocarpus humilis Becc., Borneo: Gardner & al. 258 (F, SAN), SRR12283050 (329/NA). Artocarpus hypargyreus Hance ex. Benth., China
(Hong Kong): Gardner & al. 170 (F, HK), SRR12283054 (329/NA). Artocarpus integer (Thunb.) Merr. var. integer, Borneo: Zerega & al. 918 (F, SAN),
SRR3907371 (329/NA). Artocarpus jarrettiae Kochummen, Borneo: Amin & Francis SAN120933 (K, L, SAN), SRR12282898 (116/NA). Artocarpus ke-
mando Miq., Borneo: Zerega & al. 612 (F, SAN), SRR3907163 (331/NA). Artocarpus lacucha Roxb. ex Buch.-Ham., Thailand: Zerega & al. 420 (CHIC,
KKU), SRR3907082 (330/NA). Artocarpus lamellosus Blanco, Philippines: Gaerlan & al. PP110374 (L), SRR12282893 (327/NA). Artocarpus lanceifolius
Roxb. subsp. clementis (Merr.) F.M.Jarrett, Borneo: Zerega & al. 739 (F, SAN), SRR3907263 (328/NA). Artocarpus limpato Miq., Borneo: Zerega & al. 609 (F,
SAN), SRR3907129 (325/NA). Artocarpus longifolius Becc. subsp. adpressus C.C.Berg, Borneo: Gardner & Zerega 412 (F, SAR), SRR12283094 (328/NA).
Artocarpus lowii King, Malaysia (Peninsula): Wang & al. MWL2 (CHIC), SRR3907544 (332/NA). Artocarpus maingayi King, Malaysia (Peninsula): Zerega
& al. 257 (F), SRR12283069 (324/NA). Artocarpus mariannensis Trécul, U.S.A. (cult. from Micronesia): Breadfiuit Institute grid no. DD4 (PTBG),
SRR 12283068 (332/NA). Artocarpus melinoxylus Gagnep., Vietnam: Soejarto & al. 14222 (F), SRR12282896 (324/NA). Artocarpus montanus E.M.Gardner
& Zerega, Vietnam: Averyanov & al. VHI819 (LE, MO, P), SRR12283017 (322/NA). Artocarpus multifidus F.M.Jarrett, Philippines: Stone & Fuentes PPI3911
(K), SRR12282895 (132/NA). Artocarpus nobilis Thwaites, Sri Lanka: Jayasuriya 3283 (US), SRR12282892 (332/NA). Artocarpus obtusus F.M.Jarrett, Bor-
neo: Zerega & al. 729 (F, SAN), SRR12283064 (331/NA). Artocarpus odoratissimus Blanco, Borneo: Zerega & al. 618 (F, SAN), SRR12283115 (329/NA).
Artocarpus ovatus Blanco, U.S.A. (Hawaii): Zerega & al. 202 (F), SRR12283063 (148/NA). Artocarpus papuanus (Becc.) Renner, Papua New Guinea: Zerega
& al 61 (NY), SRR12283061 (323/NA). Artocarpus parvus Gagnep., Malaysia (cult.): Zerega & al. 911 (F, SAN), SRR3907350 (330/NA). Artocarpus pete-
lotii Gagnep., Vietnam: Soejarto & al. 14435 (F), SRR12282891 (327/NA). Artocarpus pinnatisectus Merr., Philippines: Escritor 20789 (K, US),
SRR12282890 (305/NA). Artocarpus pithecogallus C.Y.Wu, China: Li Jianwu 3200 (KUN), SRR12282992 (328/NA). Artocarpus primackii Kochummen,
Malaysia (Borneo): Zerega & al. 687 (F, SAN), SRR3907189 (329/NA). Artocarpus rigidus Blume subsp. asperulus (Gagnep.) F.M.Jarrett, Thailand: Zerega
& al. 507 (CHIC), SRR12283043 (333/NA). Artocarpus rigidus Blume subsp. rigidus, Malaysia (Borneo): Zerega & al. 728 (F, SAN), SRR3907233 (333/NA).
Artocarpus rubrosoccatus EM.Gardner, Chaveer. & Zerega, Thailand: Zerega & al. 517 (CHIC, KKU), SRR12283080 (329/NA). Artocarpus rubrovenius
Warb., Philippines: Burley 84 (F), SRR12283021 (327/NA). Artocarpus scortechinii King, Malaysia (Peninsula): Zerega & al. 209 (F), SRR12283022
(330/NA). Artocarpus sepicanus Diels, Papua New Guinea: Weiblen & al. 1701 (MIN), SRR3907521 (322/NA). Artocarpus sericicarpus F.M.Jarrett, Malaysia
(Borneo): Zerega & al. 771 (F, SAN), SRR3907288 (332/NA). Artocarpus styracifolius Pierre, China (Hong Kong): Gardner & al. 176 (F, HK), SRR12283038
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(324/NA). Artocarpus subrotundifolius Elmer, Philippines: Wenzel 1576 (F), SRR12282887 (328/NA). Artocarpus sumatranus F.M.Jarrett, Sumatra: Am-
briansyah AA2766 (L), SRR12282886 (330/NA). Artocarpus tamaran Becc., Malaysia (Bormeo): Gardner & al. 92 (F, SAN), SRR3907480 (332/NA). Arto-
carpus teijsmannii Miq., Malaysia (Borneo): Zerega & al. 946 (F, SAN), SRR3907434 (331/NA). Artocarpus thailandicus C.C.Berg, Thailand: Zerega & al.
402 (CHIC), SRR3907065 (326/NA). Artocarpus tomentosulus F M.Jarrett, Malaysia (Borneo): Zerega & al. 617 (F, SAN), SRR12283060 (330/NA). Arto-
carpus tonkinensis Chev. ex. Gagnep., China (Hong Kong): Gardner & al. 174 (F, HK), SRR12283037 (325/NA). Artocarpus treculianus Elmer, Philippines:
Elmer 12468 (US), SRR12282985 (286/NA); [A. nigrescens Elmer] Ramos BS-34736 (US), SRR12282995 (317/NA); U.S.A., Hawaii cultivated: [4. ovatifolius
Merr.] Zerega & al. 203 (F), SRR12283058 (330/NA). Artocarpus vriesianus Miq. var. refractus (Becc.) F.M.Jarrett, Papua New Guinea: Hoogland 4822 (L),
SRR12282981 (314/NA). Artocarpus vriesianus Miq. var. vriesianus, Papua New Guinea: Weiblen & al. 1229 (MIN), SRR12283057 (331/NA). Artocarpus
xanthocarpus Merr., Taiwan (cult.): Yang 15648 (MO), SRR12283033 (327/NA). Artocarpus zeylanicus (F.M.Jarrett) E.M.Gardner & Zerega, India: Zerega
& al. 956 (ATREE (photo voucher CHIC)), SRR12283117 (327/NA). Bagassa guianensis Aubl., Guyana: Jansen-Jacobs & al. 3767 (K (K000618248)),
ERS4414223* (60/324); French Guiana: Weiblen & al. 1677 (MIN), SRR12283114 (333/NA). Batocarpus amazonicus (Ducke) Fosberg, Bolivia: Salidas
1233 (F), SRR12283113 (329/NA); Brazil: Berg & al. 18524 (K (K000946661)), ERS4414214* (36/310). Batocarpus costaricensis Standl. & L.O.Williams,
Costa Rica: Weiblen & al. 1463 (MIN), SRR12283111 (329/NA). Batocarpus orinocensis H Karst., Peru: Vasquez 27440 (F), SRR12283110 (330/NA); Ecua-
dor: Palacios 3265 (K (K001257751)), ERS4414228%* (50/315). Bleekrodea madagascariensis Blume, Madagascar: Davis & Rakotonasolo 3117 (K),
ERS4414207* (37/297). Boehmeria nivea (L.) Gaudich.: Hu S.Y. 8113 (K), ERS4414210* (11/297). Bosqueiopsis gilletii De Wild. & T.Durand, Tanzania:
Frontier Tanzania Coastal Forest Research Program 243 (K (K000618258)), ERS4414219* (30/209). Brosimum alicastrum Sw.: Monro & Lander 7382
(K), ERS4414237* (54/209); U.S.A. (cult.): Gardner 23 (CHIC), SRR12283030 (287/NA). Brosimum amazonicum (Poepp. & Endl.) E.!M.Gardner & Zerega,
Brazil: Prance & al. 13461 (K (K000618261)), ERS4414195* (28/295). Brosimum sprucei (Baill.) E.M.Gardner & Zerega, Brazil: Ribeiro & al. 1204
(K (K001257756)), ERS4414229% (34/305). Broussonetia kazinoki Siebold: Chase 17827 (K), ERS4414202* (33/304). Broussonetia papyrifera (L.) L’Hér.
ex Vent., China: unknown, SRR1477753 (268/343). Broussonetia sp., China Yunnan: Heng 14289 (F), SRR12283034* (309/22). Castilla elastica Cerv.: Chase
19850 (K), ERS4414204* (26/257). Cecropia ficifolia Warb. ex Snethl., Brazil: Berg & al. 18418 (K), ERS4414209* (24/305). Clarisia biflora Ruiz & Pav.,
NA: Weiblen & al. 1460 (NA), SRR12283032 (314/NA). Clarisia ilicifolia (Spreng.) Lanj. & Rossbach, Brazil: Maguire & al. 56675 (F), SRR12283023*
(322/22); Brazil: Souza 2492 (F), SRR12283012* (329/26); NA: Carranta 6386 (F), SRR12282978 (290/NA). Clarisia racemosa Ruiz & Pav., Brazil: Assuncao
690 (F), SRR12283109 (329/NA); Ecuador: Palacios & Neill 1291 (K (K000618272)), ERS4414218* (83/318). Dorstenia barteri Bureau: Chase 18153 (K),
ERS4414203%* (7/88). Dorstenia hildebrandtii Engl., U.S.A. (cult.): Zerega & al. 311 (CHIC), SRR3907584 (203/4). Elatostema retrohirtum Dunn: Monro
& al. 7601 (K), ERS4414235% (9/208). Fatoua pilosa Gaudich., Indonesia: Taylor 218 (K (K000618252)), ERS4414197* (41/306). Ficus macrophylla Roxb.
& Buch.-Ham. ex Sm., U.S.A. (cult.): Gardner 30 (CHIC), SRR3907044 (326/12). Ficus racemosa L., China: unknown, SRR1405699, SRR1405700 (188/101).
Ficus sagittifolia Warb. ex Mildbr. & Burret: Chase 19852 (K), ERS4414205* (45/309). Helicostylis tomentosa (Poepp. & Endl.) J.F.Macbr., Brazil: Gomes
& al. 511 (K (K001257758)), ERS4414220%* (25/239). Hullettia dumosa King, Malaysia (Peninsula): Zerega & al. 242 (CHIC), SRR12283106 (232/7). Hul-
lettia griffithiana (Kurz) Hook.f., Thailand: Kerr 16866 (US), SRR12282908 (275/NA). Leucosyke capitellata (Poir.) Wedd., Lugas 41 (K), ERS4414208*
(13/293). Maclura africana (Bureau) Corner, Tanzania: Greenway & Kanuri 15269 (S), SRR12282990* (316/25); Tanzania: Manktelow 93027
(K (K000618268)), ERS4414226* (6/217). Maclura amboinensis Blume, Papua New Guinea: Takeuchi 16378 (US), SRR12282979* (319/24). Maclura an-
damanica (Hook.f.) Corner, Thailand: Maxwell 89-436 (L), SRR12282968* (322/23). Maclura brasiliensis Endl., Bolivia: Nee & Vargas 45025 (NY),
SRR12282959* (322/23). Maclura cochinchinensis (Lour.) Corner, Malaysia (Borneo): Zerega & al. 757 (F, SAN, SNP), SRR12283027* (232/NA); China
Guizhou: Sino-American Guizhou Botanical Expedition 887 (NY), SRR12282958* (324/24); New Caledonia: Baumann 6841 (K (K000618267)),
ERS4414221% (22/297). Maclura fruticosa (Roxb.) Corner, Vietnam: Cuong & al. 1193 (F), SRR12282957* (323/27). Maclura pomifera (Raf.) C.K.Schneid.,
U.S.A. (Illinois): Gardner 139 (CHIC), SRR3907028 (324/9); U.S.A.: Swann s.n. (K (K000618269)), ERS4414232%* (20/288). Maclura sp., Vietham: Averya-
nov & al. CBL1198 (MO), SRR12283001%* (327/31). Maclura spinosa (Willd.) C.C.Berg, India: Perumal RHT 22554 (L), SRR12282955* (326/21). Maclura
tinctoria (L.) D.Don ex Steud., Costa Rica: Fernandez 314 (F), SRR12282953* (325/28); Argentina: Renvoize & al. 3252 (K (K000618246)), ERS4414230*
(21/311); subsp. tinctoria, Peru: Campos & Diaz 2679 (F), SRR12282951* (325/31); subsp. mora (Griseb.) Vazq.Avila, Bolivia: Nee 40044 (NY),
SRR12282952%* (326/34). Maclura thorelii (Gagnep.) Corner, Cambodia: Pierre 4709 (NY), SRR12282954* (323/22). Maclura tricuspidata Carriére,
U.S.A. (lllinois): Gardner MOR 68-7917 (MOR), SRR12282950* (301/20). Maillardia borbonica Duch., Réunion: Cadet 4518 (K (K000618265)),
ERS4414217* (49/319). Maillardia montana Leandri, Madagascar: van Nek 1882 (K (K000618270)), ERS4414227* (81/326); Andrianantoanina 1023 (F),
SRR12283024 (328/NA). Malaisia scandens (Lour.) Planch., Gray 8416 (K), ERS4414231* (70/265); Indonesia: Sands 6590 (K (K000618264)),
ERS4414236* (45/321); Borneo: Gardner & al. 122 (F, SAN), SRR12283025 (304/NA). Milicia excelsa (Welw.) C.C.Berg, Gabon: Williamson 187
(K (K000618247)), ERS4414198* (53/319); Gabon: McPherson 16087 (US), SRR12283108 (332/NA). Milicia regia (A.Chev.) C.C.Berg, Liberia: Cooper
332 (F), SRR12282949* (331/40). Morus alba L., U.S.A., lllinois, cultivated: Gardner MOR 920-26*1 (MOR), SRR12282946* (325/17); Gardner MOR
38087*1 (MOR), SRR12282944* (326/17); Gardner MOR 523-30*5 (MOR), SRR12282943* (326/20). Morus australis Poir., India: Koelz 4431 (F),
SRR12282948* (261/9); Taiwan: Tanaka 17776 (F), SRR12282947* (331/25); U.S.A., Illinois, cultivated: Gardner MOR 241-71*%6 (MOR), SRR12282942*
(326/17); South Korea: Chung In-Cho 3290 (F), SRR12282941%* (332/23); Oh & al. 110618-012 (MOR), SRR12282940* (332/30). Morus cathayana Hemsl.,
China, Jiangxi: Nie Min-xiang 92144 (MOR), SRR12282939* (331/31); Western Hupeh: Wilson 10 (F), SRR12282938* (164/5). Morus celtidifolia Kunth,
Mexico: Sandoval & Gutierrez 637 (MO), SRR12282937* (332/33). Morus cf. alba L., Bermuda: Hamilton 618 (K (K000214340)), ERS4414211*
(52/310). Morus kagayamae Koidz., U.S.A., cult from Algeria: 4420187-4 (F), SRR12282931* (333/35). Morus macroura Miq., U.S.A., Florida: Gardner
28 (CHIC), SRR12282930* (332/21); Laos: Bounhong Southavony LAOS_366 (F), SRR12282918* (332/49); Vietnam: Soejarto & al. 14088 (F),
SRR12282917* (331/29). Morus microphylla Buckley, Mexico Sonora: Fishbein & al. 1058 (F), SRR12282927* (332/33); U.S.A., Texas: Stone & al. 4225
(MO), SRR12282926* (333/34). Morus mongolica (Bureau) C.K.Schned., U.S.A., Illinois, cultivated: Gardner MOR 55-95%1 (MOR), SRR12282925*
(325/14). Morus nigra L., U.S.A., Florida, cultivated: Gardner 29 (CHIC), SRR12282924* (331/21). Morus notabilis C.K.Schneid., China: unknown,
SRR8138828 (333/333). Morus rubra L., U.S.A., Florida: Gardner 141 (CHIC), SRR12282922* (327/20); U.S.A., lllinois, cultivated: Gardner MOR
326-78%4 (MOR), SRR12282921%* (327/20). Morus serrata Roxb., India: Koelz 4788 (F), SRR12282920* (296/14); Pakistan: Rodin 5315 (F), SRR12282919*
(274/12). Naucleopsis macrophylla Miq., Brazil: Berg & al. 18534 (K (K000946832)), ERS4414215* (30/316). Olmedia aspera Ruiz & Pav., Bolivia: Fuentes
& al. 5323 (MO), SRR12282905* (258/8); Peru: Acevedo & al. 8833 (K (K000618263)), ERS4414213* (57/316). Parartocarpus bracteatus (King) Becc., Ma-
laysia (Borneo): Zerega & al. 730 (F, SAN), SRR12283105 (189/NA). Parartocarpus venenosus (Zoll. ex Moritzi) Becc., Malaysia (Borneo): Zerega & al. 874
(F, SAN), SRR3907334 (221/3). Paratrophis anthropophagorum (Seem.) Benth & Hook.f. ex Drake, Fiji: Degener 4698 (F), SRR12282876* (331/31). Para-
trophis australiana C.T.White, Australia: Hyland 10634 (BO), SRR12282872* (324/14). Paratrophis glabra (Merr.) Steenis, Malaysia (Borneo): Gardner & al.
78 (F, SAN), SRR3907307 (320/NA). Paratrophis insignis (Bureau) E.M.Gardner, Ecuador: Homeier 1949 (MO), SRR12282936* (326/19); Peru: Monteagudo
& al. 3734 (F), SRR12282935%* (332/30); Bolivia: Vargas 4154 (F), SRR12282933* (332/36); Peru: Vasquez & Francis 28068 (F), SRR12282932* (332/33).
Paratrophis microphylla (Raoul) Cockayne, New Zealand: Beecher s.n. (F), SRR12282870* (314/16); New Zealand: Chase 17825 (K), ERS4414201*
(56/316). Paratrophis pendulina (Endl.) E.M.Gardner, U.S.A., Hawaii: Degener 17839 (F), SRR12282863* (327/19); Fosberg 12877 (F), SRR12282862*
(331/27); Wood 989 (F), SRR12282859* (330/26); Australia: Gray 3277 (SING), SRR12282861* (331/27). Paratrophis philippinensis (Bureau) Fern.-Vill.,
Indonesia (cult.): Gardner & al. 430 (F), SRR12283026* (333/9); Sulawesi: Brambach 465 (BO), SRR12283087* (331/30). Poikilospermum suaveolens
(Blume) Merr., Indonesia: Asman 2 (K (K000576177)), ERS4414136* (9/251). Poulsenia armata (Miq.) Standl., Pennington & al. 14600 (K), ERS4414206*
(29/295). Pseudolmedia spuria (Sw.) Griseb., Costa Rica: Lobo & al. 263 (K (K001257760)), ERS4414224%* (17/301). Pseudostreblus indicus Bureau, China,
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Guangxi: Tsang 24252 (F), SRR12282867* (201/NA); Laos: Newman & al. LA0518 (SING), SRR12282866* (327/NA). Sloetiopsis usambarensis Engl.,
Kenya: Faden & al. 77/417 (F), SRR12282916* (320/20); Guinea: Cheek & al. 18194 (K (K000743352)), ERS4414216* (42/295). Soleirolia soleirolii
(Req.) Dandy: Sheahan 17 (K), ERS4414200%* (12/175). Sorocea affinis Hemsl., Costa Rica: Espinosa 706 (F), SRR12282915* (331/32). Sorocea bonplandii
(Baill.) W.C.Burger, Paraguay: Stevens & al. 30948 (MO), SRR12282914* (329/29); Argentina: Tressens & al. 6347 (F), SRR12283086* (300/4); Brazil: Cloc-
let & al. 21.236 (K (K000618271)), ERS4414212* (22/242). Sorocea briquetii ].F Macbr., Peru: Valenzula & Huamantupa 954 (F), SRR12283085* (322/9).
Sorocea duckei W.C.Burger, Peru: Stein & Kallunki 3931 (F), SRR12282911* (330/27). Sorocea guilleminiana Gaudich., Bolivia: Moya & al. 112 (MO),
SRR12283035* (307/5); Brazil: [S. klotzschiana Baill.] Maguire & al. 56625 (F), SRR12282910* (325/28). Sorocea hilarii Gaudich., Brazil: Carauta 795
(F), SRR12282956* (316/7); Pirani & Zappi 1136 (F), SRR12282878* (319/6). Sorocea jaramilloi C.C.Berg, Ecuador: Madison 4772 (F), SRR12282934*
(318/8). Sorocea muriculata Miq. subsp. muriculata, Peru: Vigo & Graham 16489 (F), SRR12282923* (324/14). Sorocea muriculata Miq. subsp. uaupensis
(Baill.) C.C.Berg, Venezuela: Plowman s.n. (F), SRR12282912* (324/13). Sorocea pubivena Hemsl. subsp. hirtella (Mildbr.) C.C.Berg, Peru: Vasquez & al.
19236 (F), SRR12282880* (332/29). Sorocea pubivena Hemsl. subsp. oligotricha (Akkermans & C.C.Berg) C.C.Berg, Panama: Kennedy 2124 (F),
SRR12282945%* (325/11). Sorocea pubivena Hemsl. subsp. pubivena, Panama: Galdames 4477 (F), SRR12282871* (322/12); Costa Rica: [S. cufodontisii
W.C.Burger] Kernan 406 (F), SRR12282913* (261/3). Sorocea sprucei (Baill.) J.F.Macbr. subsp. saxicola (Hassl.) C.C.Berg, Bolivia: Nee 35729 (F),
SRR12282860* (323/9). Sorocea steinbachii C.C.Berg, Brazil: Weiblen & al. 1501 (MIN), SRR12283107 (332/NA). Sorocea subumbellata (C.C.Berg) Cor-
nejo, Ecuador: Dodson 9601 (F), SRR12283084* (304/4). Sorocea trophoides W .C.Burger, Costa Rica: Fuentes 304 (F), SRR12282877* (330/30); Peru: Perea
2479 (F), SRR12283073* (283/4). Sparattosyce dioica Bureau, New Caledonia: Weiblen 1223 (K (K000618253)), ERS4414234* (21/262). Streblus asper
(Retz.) Lour., Indonesia Java cultivated: Gardner 696 (F), SRR12282875% (327/36); Sri Lanka: Townsend 73/42 (K (K000618251)), ERS4414233* (95/329).
Taxotrophis ilicifolia (Kurz) S.Vidal, Singapore, cultivated from Johor: Gardner & al. 720 (SING), SRR12282874* (329/28); Vietnam: Cuong 122 (F),
SRR12282869* (326/NA); Sumatra: de Wilde 18958 (BO), SRR12282868* (327/NA). Taxotrophis macrophylla (Blume) Boerl., Vietnam: Soejarto & al.
10673 (F), SRR12282865* (329/NA); Vietnam: Scornickova & al. JLS 2916 (SING), SRR12282857* (330/31). Taxotrophis spinosa (Blume) Steenis, Indone-
sia, Sumatra: Mahyuni & al. 020 (BO), SRR12282864* (325/NA); Sulawesi: Sidiyasa & Arifin 4071 (BO), SRR12282858* (317/18); Indonesia, Java, cult.:
Gardner & al. 702 (F), SRR12282856* (330/30). Taxotrophis taxoides (B.Heyne ex Roth) W.L.Chew ex E.M.Gardner, Indonesia, Java, cult.: Gardner & al.
701 (F), SRR12282855%* (331/26); Philippines Palawan: Ridsdale SMHI 422 (BO), SRR12282854* (290/14). Taxotrophis zeylanica (Thwaites) Thwaites, Sri
Lanka: Meijer 701 (SING), SRR12282853%* (230/4). Trema orientale (L.) Blume, Netherlands: unknown, SRR5674478 (236/245). Trilepisium madagascar-
iense DC., Madagascar: Richard 403 (K (K000618259)), ERS4414196* (19/199). Trophis cuspidata Lundell, Mexico: Gomez-Dominguez 774 (MO),
SRR12282852%* (331/27). Trophis involucrata W .C.Burger, Costa Rica: Aguilar 4679 (F), SRR12283089* (333/36); Costa Rica: Lent 2243 (F), SRR12282894*
(323/12). Trophis mexicana (Liebm.) Bureau, Nicaragua: Stevens & Montiel 27939 (MO), SRR12282883%* (327/12). Trophis racemosa (L.) Urb., Nicaragua:
Stevens 37196 (MO), SRR12283112* (327/NA). Urtica urens L., Fay 173 (K), ERS4414127* (8/185). Utsetela gabonensis Pellegr., Gabon: Breteler 14086
(MO), SRR12283083* (302/24); Congo (the Democratic Republic of the): Lebrun 5879 (K (K000618257)), ERS4414225%* (11/232). Utsetela neglecta Jong-
kind, Gabon: Bissiengou 923 (MO), SRR12283082* (308/30).
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