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Abstract

Heat and drought affect plant chemical defenses and thereby plant susceptibility to pests and pathogens. Monoterpenes are
of particular importance for conifers as they play critical roles in defense against bark beetles. To date, work seeking to
understand the impacts of heat and drought on monoterpenes has primarily focused on young potted seedlings, leaving it
unclear how older age classes that are more vulnerable to bark beetles might respond to stress. Furthermore, we lack a clear
picture of what carbon resources might be prioritized to support monoterpene synthesis under drought stress. To address
this, we measured needle and woody tissue monoterpene concentrations and physiological variables simultaneously from
mature pifion pines (Pinus edulis) from a unique temperature and drought manipulation field experiment. While heat had no
effect on total monoterpene concentrations, trees under combined heat and drought stress exhibited ~85% and 35% increases
in needle and woody tissue, respectively, over multiple years. Plant physiological variables like maximum photosynthesis
each explained less than 10% of the variation in total monoterpenes for both tissue types while starch and glucose + fruc-
tose measured 1-month prior explained ~45% and 60% of the variation in woody tissue total monoterpene concentrations.
Although total monoterpenes increased under combined stress, some key monoterpenes with known roles in bark beetle
ecology decreased. These shifts may make trees more favorable for bark beetle attack rather than well defended, which one
might conclude if only considering total monoterpene concentrations. Our results point to cumulative and synergistic effects
of heat and drought that may reprioritize carbon allocation of specific non-structural carbohydrates toward defense.
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Introduction 2010; Hartmann et al. 2018). Biotic and abiotic stressors

are expected to become even more acute in the future (IPCC
Drought-induced tree mortality, alone or in conjunction  2014), emphasizing the need to understand what causes
with forest pests and pathogens, has changed ecosystem  trees to die. Work to date on the mechanisms underlying
composition and function across the globe (Allen et al. drought-related tree death has primarily focused on the cou-
pled roles of reduced available carbohydrates and hydraulic
conductivity (Anderegg et al. 2012; Hartmann et al. 2013;
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O’Brien et al. 2014; Sevanto et al. 2014; McDowell et al.
2016; Adams et al. 2017). Yet the carbon and water status
of trees is also critical to the synthesis of secondary metabo-
lites, i.e. plant chemical defenses, which in turn, influence
the insect population dynamics that also cause tree mor-
tality (Raffa et al. 2008; McDowell et al. 2011; Anderegg
et al. 2015). Thus, information on how secondary metabo-
lites change under heat and drought stress provides a criti-
cal link between tree stress physiology and the incumbent
insect behavior that can ultimately result in tree death. To
this end, more field studies are required to better understand
the links between well-studied aspects of primary physiol-
ogy (i.e., photosynthesis) and less understood components,
such as non-structural carbohydrates (NSCs) and defense
(Ryan et al. 2015). This is especially true considering the
majority of our assumptions regarding relationships between
these processes and carbon pools are primarily derived from
work in young potted seedlings (e.g. Llusia and Penuelas
1998; Turtola et al. 2003; Blanch et al. 2009; Klutsch et al.
2017; Lupke et al. 2017).

Bark beetles (Coleoptera: Curculionidae) and their
fungal symbionts are significant biotic disturbance agents
affecting coniferous forests (Raffa et al. 2008; Bentz et al.
2010). While climate directly impacts bark beetle popula-
tion dynamics, fitness is also indirectly affected by climate-
induced changes in host quality, namely nutrient availabil-
ity and oleoresin composition (Raffa and Berryman 1987;
Byers 2007; Franceschi et al. 2005). Oleoresin is a mixture
of monoterpenes, sesquiterpenes, and diterpene acids pro-
duced by trees (Keeling and Bohlmann 2006). Both biotic
and abiotic stresses can shift the composition of terpenes
within the oleoresin, ultimately determining whether a tree
will prove resistant or susceptible to insect pests and micro-
bial pathogens (Keefover-Ring et al. 2016; Trowbridge et al.
2016). The amount of carbon that can be allocated to com-
ponents within resin depends on both recently assimilated
photosynthates as well as stored NSCs (Huang et al. 2019b).
Thus, environmental conditions that impact carbohydrate
availability, like drought, will undoubtedly have cascading
effects on oleoresin production, and in turn, tree defense
against biotic agents (Christiansen et al. 1987).

Monoterpenes dominate conifer oleoresin and are of
particular interest as they mediate dynamic—but dose- and
composition-dependent—relationships among tree hosts,
bark beetles, and beetle-associated fungal pathogens (Raffa
et al. 2008; Raffa 2013). Generally, high monoterpene con-
centrations are toxic to bark beetles and their symbionts,
as has been demonstrated for both primary aggressive bark
beetles, such as mountain pine beetle (Dendroctonus pon-
derosae; Erbilgin et al. 2003), and secondary non-aggressive
species like the North American pine engraver (Ips pini;
Raffa et al. 2005). Both aggressive and non-aggressive
bark beetles that rely on aggregation pheromones can also
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exploit low emissions of monoterpenes for their produc-
tion. For example, cis-verbenol, a minor constituent of the
pheromone blend of the pinyon engraver (Ips confusus) is
produced through the hydroxylation of a-pinene from its
host tree, which is also the case for verbenol production by
D. ponderosae (Chiu et al. 2018; Fisher et al. 2021), Other
monoterpenes, such as f-myrcene, may serve as pheromone
synergists, but can also be toxic at high levels (Blomquist
et al. 2010; Erbilgin et al. 2017). Whether involved in deter-
rence or aggregation, monoterpene synthesis comes at the
expense of carbon that would otherwise be allocated towards
processes like growth and storage (Huang et al. 2019a). Fur-
thermore, in response to both abiotic and biotic stress, trees
may rely more on NSCs as opposed to newly fixed interme-
diates (Sevanto and Dickman 2015; Wiley et al. 2016; Roth
et al. 2018). The NSCs that are mobilized and the specific
defense compounds they support is likely shaped by a com-
bination of past biotic selective pressures and the need to
maintain critical physiological functions in the face of cur-
rent stresses (Cheng et al. 2007; Loreto et al. 2010). Identify-
ing conditions under which chemical defenses are prioritized
(or constrained) and trade-offs emerge is critical for calculat-
ing risk of mortality by biotic agents (Huang et al. 2020).

Our conceptual understanding of investment in plant
chemical defenses has long been guided by the growth—dif-
ferentiation balance hypothesis (GDBH) (Loomis 1932;
Herms and Mattson 1992; Fig. 1a). The GDBH posits that
moderate stress inhibits growth more strongly than it does
photosynthesis such that the growth carbon sink strength
is dampened and the carbon pool available for second-
ary metabolism, and thus C allocation towards secondary
metabolism itself, is increased. Because drought impedes
growth, one would expect an increase in NSC availabil-
ity and subsequent allocation to monoterpenes as drought
stress becomes more severe. There are, however, conflicting
reports regarding NSC dynamics during drought (Li et al.
2018); they can decrease (Galiano et al. 2011; McDowell
et al. 2013; Woodruff 2014; Dickman et al. 2015), increase
(O’Brien et al. 2015), or remain unchanged (Rosas et al.
2013). Furthermore, most studies have focused on patterns
of NSC allocation to belowground structures, storage and,
osmoregulation (Hartmann and Trumbore 2016; Mackay
et al. 2020) with little consideration for chemical defense.
Despite the importance of secondary metabolites as carbon
sinks, to our knowledge, no studies have experimentally
tested the links between drought stress physiology, NSCs,
and defense in mature conifers in situ.

Trees are becoming increasingly vulnerable to pests
and pathogens under hotter droughts (Allen et al. 2015),
yet the interactive effects of heat and drought on monoter-
pene production in mature trees is largely unknown.
Monoterpene production can be quite variable in response
to drought (Niinemets 2017). While increased levels of
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Fig. 1 Differences in relative growth rate, net assimilation rate, non-
structural carbohydrates (NSCs), and constitutive secondary metabo-
lism across a gradient of resource availability as predicted by a the
growth-differentiation balance hypothesis (modified from Fig. 1 of
Herms and Mattson 1992). b Mid-day photosynthesis rate (A,,,), €
shoot growth rate, d total needle NSCs, e needle total monoterpene
concentrations, and f) woody tissue total monoterpene concentrations
from our study are shown as a function of pre-dawn water potential.

tissue monoterpene concentrations are generally reported
in response to drought (e.g., Llusia and Penuelas 1998; Tur-
tola et al. 2003; Blanch et al. 2009; Nowak et al. 2010),
these results stem primarily from young potted plants in
greenhouse studies. Elevated temperature alone has also
been shown to modify terpene metabolism (Penuelas and
Munne-Bosch 2005). However, recent studies have pro-
vided evidence that drought can override the effects of heat
in controlling monoterpene production and emissions (e.g.,
Trowbridge et al. 2014, 2019), but the observational nature
of these studies made it impossible to tease apart the rela-
tive contribution of heat and drought. Thus, an enhanced
understanding of carbon allocation to defense compounds
in response to heat and drought stress, both separately and
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Each set of data represent all the time points available from 2012 to
2016 for that analysis and relationships between total monoterpe-
nes and pre-dawn water potentials are on a 1-month lag. The best-fit
repeated measures regression lines are displayed along with the cor-
responding equation, R?, repeated measures correlation coefficient (r),
P value, and sample sizes (n). Throughout, different colors refer to
different trees

in concert, would provide crucial insight into mechanisms
governing defense production in mature trees.

To elucidate some of the complex relationships between
primary and secondary metabolism in situ, we assessed tree
water stress status, photosynthesis rate, growth, NSCs, and
constitutive monoterpene concentrations across a drought
and heat stress gradient. Specifically, we sampled needle
and woody tissues from mature pifion pine (Pinus edulis
(Engelm.)) trees that were part of a large-scale temperature
and precipitation manipulation experiment where trees were
assigned to one of the following treatments: ambient condi-
tions, heat (~5 °C above ambient), drought (~45% reduction
in precipitation), and combined heat and drought conditions.
We address the following research questions: (1) how do
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prolonged drought and heat stress, separate and combined,
alter monoterpene concentrations in different tissues? (2)
How do these shifts in total and individual monoterpene
concentrations change in relation to primary physiologi-
cal factors (e.g. growth and photosynthesis) over time? (3)
What NSC pools (sucrose, glucose + fructose, starch) are
potentially being mobilized to support monoterpene pro-
duction? We hypothesized that, as predicted by the GDBH,
monoterpene concentrations in needles and woody tissues
would increase under drought stress and that increased
stress/resource limitation by combined heat and drought
would result in even greater concentrations. Also, in line
with the GDBH, we expected that at drought levels that
reduced growth but still supported relatively high rates of
photosynthesis, photosynthates would in part support the
increased monoterpene concentration. We anticipated that as
photosynthesis declined as drought became more severe, we
would observe significant relationships between monoterpe-
nes and the soluble sugars sucrose, glucose, and fructose due
to a greater reliance on the mobilization of NSCs to support
monoterpene biosynthesis. Finally, we rely on previous work
regarding the pinyon engraver’s (Ips confusus) pheromone
production and the effects of monoterpenes on aggressive
and non-aggressive bark beetles to discuss how drought-
induced shifts in key monoterpenes may impact the pinyon
engraver’s host choice and success.

Materials and methods
Study site and experimental design

The study was performed near Los Alamos, New Mexico,
USA (35.49° N, 106.18° W, elevation 2150 m) at the Los
Alamos SUrvival-MOrtality (SUMO) experiment (Adams
et al. 2015; Grossiord et al. 2017a; McDowell et al. 2019).
The site is located within a pifion—juniper woodland and
Juniperus monosperma (Engelm.), respectively) near the
ponderosa pine (Pinus ponderosa) forest ecotone (see
Adams et al. (2015) for a full description of the tree com-
munity at SUMO). Soils are Hackroy clay loam 40—80 cm
above a parent material of volcanic tuff (Soil Survey Staff,
Natural Resources Conservation Service, USDA, http://
websoilsurvey.nrcs.usda.gov). The local climate is semi-
arid (mean annual temperature=21.1 °C and mean annual
precipitation=401 mm for 1987-2016) and experiences pro-
nounced monsoon rains between July and September.

A manipulative field experiment was established in
June 2012 with mature pifion trees (> 10 cm diameter at
chest height, mean tree age 56 +5 years) assigned to one
of five treatments: ambient precipitation and temperature
(A), heat stress (~+4.8 °C +0.3 °C above ambient; H),
reduced precipitation (~45% rainout; D), and both reduced
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precipitation and heat stress (~+4.8 °C and ~45% rainout;
HD). There were also chambers with temperatures regu-
lated to match ambient conditions, but plant physiological
measurements (e.g. photosynthesis, stomatal conductance,
NSC (sugars and starch), respiration, shoot growth, etc.)
did not differ between these treatments and the A treat-
ment (Adams et al. 2015) so the A treatment was selected.
Mature trees in the heat and combined heat and drought
treatments were enclosed in transparent open-top cham-
bers (OTCs) with temperature regulated via heating and
cooling units (RJPL Package Heat Pump and Air Con-
ditioner, Rheem Manufacturing Company, Atlanta, GA,
USA). The rainout structures, composed of concave plastic
troughs on a metal framework (~ 1.3 m above the ground),
were designed according to Pangle et al. (2012).

Temperature was monitored at the site and within each
OTC at 1 m and 2/3 tree height (CS215 Temperature and
Relative Humidity Probe and CR1000 data logger, Camp-
bell Scientific, Logan, UT, USA) to set desired tempera-
ture conditions in the chambers. There were a total of 18
chambers with some chambers containing up to five trees.
This setup was chosen because some trees grew in clusters
and separating them to different chambers was not possi-
ble. In some cases, tree replicates for the same treatment
were in the same chamber, but there were no more than
three trees of the same species (Pinus edulis or Juniperus
monosperma) in any of the chambers. However, for this
study we measured four pifions within each treatment. The
four pifions sampled within the H+ D treatment group
were in different chambers, and the only trees that were in
the same chamber were two H treatment pifions. A more
detailed description of the SUMO experimental design can
be found in Adams et al. (2015), Grossiord et al. (2017a),
and McDowell et al. (2019).

Monoterpene sample collection and chemical
analysis

Current and 1-year-old pifion pine needles and the distal
10-12 cm of the shoot were collected at chest height from
south-facing branches of trees in the A, H, D, and HD treat-
ments (n=4 trees per treatment) across nine sampling dates
from 2012 to 2016: one date in 2012 (14 November), two in
2013 (4 April and 18 September), four in 2014 (15 May, 8
July, 5 August, and 9 September), one in 2015 (31 March),
and one in 2016 (24 August). Needle and woody tissue sam-
ples were immediately flash frozen and stored in liquid nitro-
gen prior to transport to the lab where they were stored in
a—80 °C freezer before being shipped on dry ice to Montana
State University for analysis. Pifion pine tissue processing
and analysis followed Trowbridge et al. (2014) (see Support-
ing Information Methods S1 for more detail).
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Water potential and leaf gas exchange

We measured both mean predawn (y,4) and midday leaf
water potentials (n =2 twigs per tree) for each tree within the
A, H, D, and HD treatments (n =4 trees per treatment) using
a Scholander pressure chamber (PMS Instruments, Albany,
OR). Twigs were excised from sun-exposed portions on the
south side of each tree before dawn and between 11:30 and
13:00 on the same days as monoterpene sample collections
and monthly over the course of the experiment. Samples
were stored in the dark at 20 °C until measurement within
2 h of collection.

We also measured mid-morning photosynthesis (A,
pmol m~ 2 s7!) and stomatal conductance (g, mol mZs™h
(LI-6400 infrared gas-exchange analyzer system, Li-Cor,
Lincoln, NE, USA) from one current-year or previous-year
(depending on whether new needles had emerged) sun-
exposed shoot on the south side of each tree. Gas exchange
was measured in the morning when the highest stomatal
conductance could be expected and was typically measured
within one day of water potential measurements. We used
the 2x 3 LED chamber with a reference CO, concentration
of 380 ppm, 2000 umol m ™2 s~! photosynthetic photon flux
density (which is saturating for this species), 20 °C or 25 °C
block temperature depending on ambient temperatures, and
we kept the relative humidity between 5 and 10% (which was
done using the full scrub setting) to mimic typical conditions
at our site for all treatments (Grossiord et al. 2017a). Meas-
urements were recorded after steady state gas-exchange rates
had been maintained for at least 2 min and chambers were
sealed with Qubitac sealing (Channel Technology, Hong
Kong) to prevent leakage from the spot where the branchlet
enters the chamber. Gas exchange measurements were cor-
rected for projected leaf area, which was measured using an
LI-300C area meter (Li-Cor, Lincoln, NE, USA).

Growth

In 2013, we selected two or three branches on the same four
pifion pines within each treatment to measure shoot exten-
sion of buds along the main (primary) axis of the branch,
and also a paired side branch that diverged from the primary
axis 3-5 years prior to measurement (Adams et al. 2015).
At the beginning of the growing season (March), we meas-
ured bud length with a digital caliper or ruler, then returned
at the end of the growing season (October or November)
to measure final branch length. At the beginning of each
subsequent year of measurement (2014-2016), if main axis
buds were dead, damaged, or missing, we selected replace-
ment branches such that there were always at least two
measurement branches on each tree. Because shoot growth
increments can be easily distinguished and dated in pifion
pine, we also measured the shoot lengths of the prior three

years at the time of the first branch selection in 2013. This
resulted in a 7-year record of annual shoot growth, from
2010 to 2016. Additionally, in 2013 and 2014, we measured
shoot extension periodically during the growing season, on
average every 18 days in 2013 and every 26 days in 2014.
From these measurements, we calculated daily growth rates
of shoot extension assuming steady growth rate throughout
the period.

Non-structural carbohydrates

Foliar and twig samples for NSC analysis were collected
between 11:30 and 13:00 from the same four trees per treat-
ment four times during each growing season (usually April,
June, August, October). Samples for NSC analyses were
collected concurrently with monoterpene samples for six
of nine monoterpene sampling dates; the other three dates
(May, July, and August of 2014) had samples for NSCs col-
lected within one month of the monoterpene tissue samples.
Once collected, samples for NSCs were frozen in liquid N,
at collection, transported to Los Alamos National Labora-
tory on dry ice, stored at — 70 °C until microwaved for 5 min
at 800 W, and then dried at 65 °C for 48 h. We pre-ground
samples in a Wiley mill (Thomas Scientific, Swedesboro,
NIJ, USA) then ground all samples into a fine powder using
a ball mill (VWR, Radnor, PA, USA). We measured soluble
sugars (glucose, fructose, and sucrose) and starch concentra-
tions following Dickman et al. (2015), which was modified
from Hoch et al. (2002). We used water extraction, enzy-
matic starch digestion (with amyloglucosidase), and enzy-
matic sugar quantification (with phosphoglucose isomerase,
invertase, glucose hexokinase, and glucose-6-P dehydroge-
nase). More details are provided in Adams et al., (2015).
Comparison of NSC measurements among laboratories and
protocols can be problematic (Quentin et al. 2015, Landhéu-
sser et al. 2018), but we are confident in comparison among
treatments in this study as all measurements were made in
the same laboratory using the same protocol. We report con-
centrations as percentage of dry weight.

Data analysis

Mixed model analyses were performed using SAS statisti-
cal software 9.4 (SAS Institute, Cary, North Carolina, USA)
to compare monoterpene chemistry, A, ,., and growth data
between treatments. All data were confirmed to meet the
assumption of normality. For individual monoterpene com-
pounds, we performed separate single-factor ANOVAs (SAS:
PROC MIXED) and the sum of all measured monoterpene
concentrations for each tissue type, hereafter called ‘total’. For
all mixed models, we included treatment and time as the fixed
factors and tree (nested in treatment) as the random factor to
account for our repeated measures approach. Tukey’s post hoc
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analyses were employed if main effects were significant. It is
prudent to note here that the level of drought imposed on the
trees did not significantly affect the needle tissue water content,
and thus the fresh weight:dry weight (FW:DW) coefficient of
trees among treatments (Supporting Information Fig. S1A).
Ambient trees had a significantly higher FW:DW coefficient
relative to trees in all other treatments, but the effect size was
very low (Supporting Information Fig. S1B). Because fresh
and dry weight monoterpene data for both tissue types pro-
vided the same statistical results, we present all monoterpene
concentration data here on a fresh weight (FW) basis (Trow-
bridge et al. 2014, 2019). This also avoids introducing unnec-
essary error by converting all values to a dry weight using
a conversion factor when chemistry was originally extracted
from fresh mass.

To test correlations and linear models we used R version
3.5.2 (R Core Team 2018). We used repeated measures cor-
relation analysis via the rmcorr package (Bakdash and Maru-
sich 2017) to assess potential relationships between needle
and woody tissue monoterpene concentrations (totals and
individual compounds), NSCs, and what we call ‘primary’
physiological variables (e.g. shoot growth rate, ¥, Ay
g, midday water potential, etc.) and performed Bonferroni
corrections to account for multiple pairwise comparisons.
Because physiological variables and secondary chemistry
were measured at different frequencies (e.g., A x> Wpa» and
NSCs were measured more frequently than monoterpenes),
analyses that correlate primary physiology with secondary
chemistry contain less data than those testing relationships
among primary physiological variables. To explore potential
lag responses between NSCs and total monoterpenes, we com-
pared correlations using NSC data from the month in which
monoterpenes were measured and also 1 and 2 months prior.
We performed compositional analyses to determine differences
in needle and woody tissue monoterpene composition among
treatment, time, and their interaction using permutational
multivariate ANOVA (Anderson et al. 2014; Oksanen et al.
2019). To do so, we used the ‘vegdist’ function in the ‘vegan’
package in R (Oksanen et al. 2019) to calculate dissimilarities
among samples using the Bray—Curtis metric with tree ID as
the strata to control for repeated measures on the same tree. To
visualize needle and woody tissue monoterpene composition
among treatment averaged over nine sample periods, we used
non-metric multidimensional scaling (NMDS) and plotted the
first two axes.
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Results

Effects of heat and drought stress on gas exchange,
growth, and NSCs

Across the sampling periods, there was a significant effect
of time and the interaction of treatment and time on A, ,,
(Fg9,=33.60, P<0.0001 and F,4 ¢,=1.72, P=0.035,
respectively). Over the course of the experiment, A, ,,
in target trees was markedly lower in combined heat and
drought trees (3.4+0.4 umol m~2 s™!) relative to trees in
both ambient (5.6+0.4 pmol m~2 s}, P=0.002) and heat
treatments (4.7 +£0.4 pmol m 2 s™', P=0.02). A, in trees
experiencing drought (4.1 +0.4 umol m~2 s~!) was no differ-
ent from combined heat and drought trees and, while lower
than ambient, were not different from heated trees alone.
As expected, A,,,, was positively correlated with predawn
leaf water potential (Fig. 1b), meaning that assimilation was
reduced with increasing drought stress.

Primary shoot growth rate (mm day ') was positively cor-
related with 4 (r=0.35, R*=0.12, n =458, P <0.0001)
meaning it decreased with increasing drought stress
(Fig. 1c). The effect of year on annual growth was significant
(Fs,66=25.89, P<0.0001), and while there was no treatment
effect, there was a significant treatment X year interaction
(Fig66=2.70, P=0.0018) (Supporting Information Fig. S2).
Within years, there were significant differences in annual
primary growth by treatment in 2013 and 2015 where the
only differences were reduced growth in heat, drought, and
combined heat and drought trees relative to controls (2013:
F;1,=38.70, P=0.003 and 2015: F5 ;;=3.92, P=0.04); Sup-
porting Information Fig. S2).

Total NSCs in needles were positively correlated with
Voa (r=0.46, R*=0.22, P<0.0001, n=>531, Fig. 1d),
driven primarily by positive correlations with needle starch
(r=0.44, R?>=0.19, P<0.0001, n=531, Table 1). There was
no correlation between total twig NSCs and 4 (Table 1)
despite negative correlations with twig sucrose (r= —0.27,
R?>=0.07, P<0.0001, n= 531) and twig glucose + fructose
(r=—-0.33,R*=0.11, P<0.0001, n=531, Table 1). In both
tissues, total monoterpene concentrations were uncorrelated
(needles) or poorly correlated (twigs) with Vpa (Fig. le and
f), which explained only 4% of the variation.

Effects of heat and drought on total monoterpene
concentrations

Sixteen monoterpenes were identified in the needle and
wood samples: (—)-a-pinene, (+)-a-pinene, tricyclene,
(—)-camphene, (+)-camphene, B-myrcene, (4)-pB-pinene,
(—)-B-pinene, 6-3-carene, S-(—)-limonene, R-(+)-limonene,
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Table 1 Correlations between
non-structural carbohydrates

Tree organ Total NSCs

Starch Sucrose Glucose + fructose

and pre-dawn water potential Leaf
from Pinus edulis twigs

Twig ~0.03 (0.49)
Bole —0.35 (0.0006)
Root ~0.25 (0.07)

0.46 (<2.2x 10716

0.44 (<22x1071%  0.10(0.019) 0.11 (0.011)

0.11 (0.013) —0.27 (7x1071%  —0.33 (A x107'%
-0.03 (0.77) —0.57 (3x107% —0.66 (1x1071%)
0.019 (0.89) —0.50 (0.0001) —0.61 (1x10°°

Repeated measures r correlation coefficient (P value) is displayed and significant correlations after apply-
ing the Bonferroni correction for multiple comparisons (a <0.0031) are indicated in bold. Negative cor-
relation coefficients represent increasing values of NSCs with increasing drought stress (more negative
pre-dawn water potential values) while positive coefficients represent decreasing values of NSCs with

increased drought stress
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Fig.2 Total monoterpene compound concentrations (mg g FW-1)
in a Pinus edulis needles and b woody tissue across the four treat-
ments averaged over nine sampling periods from 2012 to 2016. Bars
are means+SEM and significant differences between treatments is
expressed using differing lowercase letters (a <0.05)

B-ocimene, B-phellandrene, y-terpinene, and terpinolene,
as well as bornyl acetate (C,,H,,0,), a monoterpene ester.
Tricyclene was only identified in needle samples while
B-ocimene and (+)-B-pinene were only identified in sam-
ples from woody tissues. Hereafter, “total monoterpenes”
and “total monoterpene concentrations” are used to represent
the sum of all the aforementioned compounds present in
each tissue type.

Total monoterpenes in trees experiencing combined heat
and drought were nearly 85% higher in needles (Fig. 2a)
and ~35% higher in woody tissues (Fig. 2b) relative to
trees in the ambient (needles: P=0.03 and woody tissue:
P=0.02) and heat stress (needles: P=0.01 and woody tis-
sue: P=0.0015) treatment groups. In both tissues, trees in
the drought treatment alone exhibited higher total needle
monoterpene concentrations relative to trees from the heat
treatment group (P =0.02; Fig. 2), while monoterpene lev-
els in the heat trees were not different from trees exposed
to ambient conditions. Unlike in the needles, woody tis-
sue monoterpene concentrations in the combined heat and
drought trees were higher than those in the drought alone
treatment (P =0.05). These trends were the same when
concentrations were analyzed on a dry weight basis (Sup-
porting Information Fig. S3). In both tissues, treatment and
time had significant effects on total monoterpenes (needles:
Fig. 3a, treatment: F; 1,=4.13, P=0.02; time: Fg6y=5.52,
P <0.0001 and woody tissue: Fig. 3b, treatment: F; 5=8.38,
P=0.002; time: Fgqoy=7.17, P<0.0001). There was also
a treatment X time interaction for total concentrations in
the woody tissue (Fig. 3b, treatment X time: F,, g4 =2.15,
P=0.005). The timing of treatment effects on total monoter-
penes, however, differed between tissue types. Responses in
the needles were evident upon first measurement (Fig. 3a),
where concentrations in the drought and the combined heat
and drought trees remained elevated relative to ambient trees
until 2015. In contrast, differences between the drought and
combined heat and drought treatments relative to ambient
were not apparent within woody tissues for approximately
one year following the initiation of the treatments (Fig. 3b).

Relationships between total monoterpenes
and physiological variables

Total monoterpenes in the leaf tissue were not correlated to
mid-day water potential, A, g, Or primary shoot growth
rates (data not shown for mid-day water potential, A ., &
but see Fig. 4a for shoot growth rate). Unlike the leaf tis-
sue, however, total monoterpenes in the woody tissue were
inversely correlated to primary shoot growth rate, which
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Fig.3 Time series data representing means (+SEM) of total
monoterpene concentrations (mg ¢ FW 1) a needles and b woody tis-
sue for Pinus edulis exposed to the four treatments across nine sam-
pling dates from 2012 to 2016. Totals were calculated by summing all
identified monoterpenes for each tree (n= 14 for needle tissue; n=16
for woody tissue) within each treatment (n=4) during each sampling
period. Different colored asterisks represent a significant difference
from ambient (a < 0.05) for that treatment

explained 11% of the variation (Fig. 4b). Total monoterpenes
in the needles exhibited a negative correlation with starch as
well as total NSCs measured that same month (r= —0.55,
R?>=0.31, P=0.0007, n=753, Fig. 5a, Table 2) and were not
correlated to other NSCs at any time point (Table 2). In con-
trast, total monoterpenes in the woody tissue were negatively
correlated with starch from the previous month (r= —0.66,
R?>=0.44, P= <0.0001, n=48, Fig. 5b, Table 2) and posi-
tively correlated with the sum of glucose and fructose from
the previous month (r=0.78, R%*=0.61, P<0.0001, n=>50,
Fig. 5c, Table 2); each variable explained 44% and 61% of
the variation, respectively.

Effects of heat and drought on monoterpene
composition and individual compounds

In the ambient treatment, (—)-a-pinene, (+)-a-pinene,
B-phellandrene, and (—)-B-pinene were the four most
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Fig.4 Repeated measures correlations between total monoterpene
concentrations (mg g FW™!) and primary shoot growth rates (mm
day™!) in a needles and b woody tissue in Pinus edulis from the four
treatments for six sampling periods from 2013 to 2014. Solid lines
represent the best-fit repeated measures regression line for the data
and the linear equations, P values, repeated measures correlation
coefficients (r), and sample sizes (1) are presented

common monoterpenes and made up ~84% of the total
monoterpene composition in the needle tissue (Support-
ing Information Table S1) while (+)-a-pinene, 6-3-carene,
and B-myrcene made up ~87% of the total monoterpene
composition in the woody tissue (Supporting Informa-
tion Table S2). Both treatment and time shifted the overall
composition of monoterpenes in the needles (Supporting
Information Table S3), but only the chemical profile of heat
trees was different than ambient (Fig. 6a and Supporting
Information Fig. S4a). Treatment and time also had sig-
nificant effects on the overall composition of woody tissue
monoterpenes (Supporting Information Table S3), but in
contrast with needles, all treatment trees (heat, drought, and
combined stress) demonstrated more distinctive monoter-
pene profiles relative to ambient (Fig. 6b and Supporting
Information Fig. S4b).

The treatments had significant effects on six of the four-
teen compounds identified in the needles (Table 3). The
most notable change in individual compound concentration
involved an approximately twofold increase in (—)-a-pinene
and (4)-a-pinene under combined heat and drought stress
compared to heat alone (Fig. 7a and b). Similarly, R-(+)-
limonene increased threefold in response to drought and
combined heat and drought (Fig. 7f); however, several other
compounds (including its enantiomer) were notably unaf-
fected by the treatments (e.g., B-myrcene, 6-3-carene, and
S-(—)-limonene concentrations, Fig. 7c, d, and e, respec-
tively). NSC content never explained more than 12% of the
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variation in individual compound concentrations in response
to stress, except y-terpinene in twigs where glucose + fruc-
tose explained 18% of the variance (Supporting Information
Table S4).

Treatments had significant effects on nine of the fif-
teen compounds identified in the woody tissues (Table 3).
Notable changes in individual compound concentrations
included ~62% and 42% increases in (—)-a-pinene (Fig. 8a)
and (+)-a-pinene (Fig. 8b), respectively, in trees from the
combined heat and drought treatment relative to ambient.
Combined heat and drought trees also exhibited ~60%
increase in bornyl acetate (Table 3) and ~80% increases in
(+)-R-limonene (Fig. 8f) and both enantiomers of camphene
(Table 3). Like the pattern observed in needles, there was
no treatment effect on B-myrcene concentrations (Fig. 8c).
However, unlike the needles, heat significantly decreased
levels of a number of woody tissue compounds relative to
ambient including S-(—)-limonene (Fig. 8e), y-terpinene,
and terpinolene (Table 3). Heat alone also led to a three-
fold decrease in 6-3-carene, and interestingly, drought and
combined heat and drought caused a tenfold decrease rela-
tive to ambient (Fig. 8d). Several individual monoterpene
compounds in the woody tissues were significantly corre-
lated with glucose + fructose but not with starch or sucrose
(Table 4). Similar to needle tissues, NSC content never
explained more than 14% of the variation in individual com-
pound concentrations in response to stress (Table 4).

Discussion

We leveraged a unique manipulative temperature and
drought experiment to explore relationships between pri-
mary and secondary metabolism in mature pifion pine
across a water-stress gradient in situ. The data support
our hypothesis that, as predicted by the GDBH, monoter-
pene concentrations would increase in both tissues under
drought stress (Fig. 2); however, increased stress/resource
limitation by combined heat and drought only resulted in

Table 2 Correlations between

. Tissue Lag Total NSCs Starch Sucrose Glucose +fructose  Total sugars

leaf and twig total monoterpene

concentrations and non- - Leaf 0 —0.55 (0.0007) —0.55(0.0007) —0.29 (0.09) —0.07 (0.70) —0.48 (0.004)

jff;lj;“;;i;?rb"hydrates mn Leaf 1 0.06 (0.75) 0.08 (0.65) ~023(023)  0.14 (0.45) ~0.03 (0.87)
Leaf 2 0.38 (0.16) 0.51 (0.051) -0.19 (0.50) —0.14(0.61) —0.25(0.37)
Twig 0 —0.10 (0.56) —0.4(0.43) —0.21 (0.23) 0.33 (0.04) 0.05 (0.76)
Twig 1 —0.48 (0.007) —0.66 (6x1075) —0.02 (0.93) 0.78 1x1077) 0.54 (0.002)
Twig 2 0.014 (0.96) 0.06 (0.84) -0.39(0.19)  0.18 (0.55) -0.09 (0.77)

Repeated measures r correlation coefficient (P value) is displayed and significant correlations after apply-
ing the Bonferroni correction for multiple comparisons (a <0.0017) are indicated in bold. Negative cor-
relation coefficients represent increasing values of NSCs with increasing drought stress (more negative
pre-dawn water potential values) while positive coefficients represent decreasing values of NSCs with

increased drought stress
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Fig.6 Nonmetric multidimensional scaling (NMDS) of treatment
effect on monoterpene composition in Pinus edulis a needles and b
woody tissue across the four treatments averaged over nine sampling
periods (2012-2016). Ellipses encircle the centroids (diamonds) and
the relative monoterpene composition of all the tree individuals from
the same treatment

greater monoterpene concentrations (relative to drought
alone) in the woody tissues (Fig. 2b). Not only were
woody tissue total monoterpene concentrations in trees
under combined heat and drought significantly higher than
levels observed in both heat-stressed and ambient trees,
but this increase was sustained over multiple growing sea-
sons (Fig. 3b). We also expected a relationship between
monoterpenes and the soluble sugars sucrose, glucose, and
fructose under increased stress due to a greater reliance
on NSC mobilization to support monoterpene biosynthe-
sis as photosynthesis declines. Maximum photosynthetic
rates were suppressed under combined heat and drought
stress, yet woody tissue monoterpene concentrations were
elevated. Our data suggest these elevated woody tissue
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monoterpene levels in the face of low A, rates are sup-
ported in part through fructose and glucose mobilization
via starch hydrolysis (Fig. 5) on a 1-month lag. Further-
more, individual monoterpenes were affected by heat and
drought in different ways (Table 3) highlighting the need
to consider both tissue source and specific compounds as
well as lags in effects when determining context for how
and when monoterpene synthesis is regulated and the con-
sequences for species interactions.

Physiological variables and total monoterpenes

Consistent with the GDBH and previous work in conifers
(e.g., Llusia and Penuelas 1998; Turtola et al. 2003; Blanch
et al. 2009), total monoterpene concentrations in both tissues
increased under resource-limiting conditions (Fig. 2). These
elevated levels under prolonged drought stress suggests that
physiological stress levels required to initiate a decline in
total monoterpene production in pifion pine likely occur at
lower water potentials than observed, i.e. < —3 MPa, which
was not reached during our study due to access to deep
soil water and amelioration of the imposed water limita-
tion (Grossiord et al. 2017b; McDowell et al. 2019). While
growth rates were correlated to woody tissue total monoter-
penes, they did not explain more than 11% of variation in
concentrations (Fig. 4b) offering very little mechanistic
explanatory power. Rather, elevated total monoterpene con-
centrations in the combined heat and drought treatments—
with lower assimilation rates and reduced growth sink
strength (Supporting Information Fig. S2)—suggest active
defense response(s) to drought that are not controlled solely
by source-driven processes or increased temperature. This
is consistent with studies that have shown genes involved
in biotic stress defenses to be upregulated in response to
drought stress with concurrent downregulation of genes
involved in cell division and growth (Dubos and Plomion
2003; Behringer et al. 2015; Moran et al. 2017). The severity
and duration of stress required to exceed the physiological
threshold(s) and initiating such responses remains relatively
unknown for many species. Yet our data suggest that some
stress level was reached and initiated a shift in the demand
for monoterpenes. In fact, another study at our site showed
that for two months prior to our first monoterpene sampling
date, both g, and net assimilation rates in the combined heat
and drought stressed trees were significantly lower than
ambient (Garcia-Forner et al. 2016). This is similar to pat-
terns observed in Pinus sylvestris where monoterpenes only
increased following periods of reduced A,,, and g, (Sancho-
Knapik et al. 2017). Thus, while monoterpene synthesis may
be decoupled from instantaneous A, relatively short and
intense periods of reduced net assimilation rates can lead to
a reprioritization of carbon from NSCs towards biosynthetic
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Table 3 Mean individual monoterpene concentrations from Pinus edulis needles and twigs

Compound Needles Woody tissue
Ambient Heat Drought Heat+drought Ambient Heat Drought Heat+ drought
(-)-a-Pinene 285 +49% 197 +46° 398 +49° 393 +54° 278 +41° 287439 414+40° 451 +44°
(+)-a-Pinene 324+118%®  274+110° 640+118"  830+130° 3547+0.518* 3748 +489° 5050+511% 6334+561°
Tricyclene 34+1.3° 42412 50x1.3" 62+1.5 NA NA NA NA
(-)-Camphene  0.7+0.2° 0.6+0.2* 0.6+0.2* 0.6+0.2° 12+1.5% 13+1.5% 17+1.5% 22+1.6°
(+)-Camphene ~ 0.09+0.02® 0.07+0.02* 0.12+0.02* 0.14+0.02cd 23+3.5° 2443.3% 334£3.5% 41+3.8°
-Myrcene 75+17% 79+ 16* 95+17° 112+ 19 5924128 272+120° 5214126 524+139*
y
(+)-B-Pinene NA NA NA NA 27+4.9° 23+4.6° 31+4.8° 36+5.3"
(—)-B-Pinene 222 +57% 122453 407+57° 304 +63" 105 +44° 69+41° 164 +44* 141 +49°
8-3-Carene 8.8+1.8" 63+1.7" 6.8+1.8" 8.5+2.0° 835+162° 258+150°  95+162° 91+180°
S-(-)-Limonene 10 +3* 1243 14+3° 173 10+0.6° 6.7+0.6°  9+0.6° 11+0.6*
R-(+)-Limonene 5.8+ 1.6 47+1.5" 108+1.6"  109+1.7° 18+2.5% 18+2.4% 2542.5% 32+2.7°
B-Ocimene NA NA NA NA 36+8.0° 48+7.5° 42479 43+8.8*
B-Phellandrene  312+154°  389+142% 513+154°  625+171° 49+ 14° 28+13* 51+14° 45+15°
v-Terpinene 1.240.5% 1.5+0.4° 1.4+0.5° 2.240.5% 11+2.12 2+2.1° 54220 5+2.4%
Terpinolene 3.6+0.6° 3.0+£0.6°  45+06® 5.7+0.6° 95+13? 28+12° 39+12° 32+14°
Bornyl acetate 117 +39° 86 +36" 105 +39* 74 +24° 47+6.6* 43 +6.2° 64+6.5° 75+7.1%

Differences in lower case letters represent significant differences in concentrations between treatments for each compound and tissue type are

designated by (a <0.05)

pathways associated with chemical defense that is sustained
for extended periods.

Non-structural carbohydrates and total
monoterpenes

With a significant decrease in photosynthetic rate, conifers
rely on NSCs as a carbon source (Hartmann et al. 2013;
Sevanto et al. 2014) and can synthesize carbon-based
monoterpenes at the cost of storage and other secondary
metabolites (Huang et al. 2019a). As hypothesized, increases
in total monoterpene concentrations in woody tissues under
water-limiting conditions were correlated with NSCs,
namely fructose and glucose likely mobilized via starch
hydrolysis (Fig. 5b and c). These observations indicate a
link between chemical defenses and whole-tree carbon and
water economics due to the spatiotemporal variation that
exists in NSC storage and transport. These links, however,
appear to be tissue specific and manifest themselves over
different environmental conditions and time scales.
Specific plant tissues are known to possess different NSC
allocation strategies that not only help cope with drought
but can have important consequences for chemical defenses.
Total monoterpenes in needles were not significantly cor-
related with total sugars, which explained some 23% of the
variation in monoterpene concentrations (Table 2). This
relatively poor relationship is likely due to the multifunc-
tionality of sugars in leaf tissues where high quantities of
soluble sugars are required to maintain normal cellular

turgor (DeSchepper and Steppe 2011) while simultane-
ously supporting respiration and other critical processes.
This weak correlation also suggests that other unmeasured
carbon sources are supporting elevated monoterpene levels
in the leaves under drought conditions (Fig. 2a). In contrast
to leaf tissues in our study, total monoterpenes in the woody
tissues were related to the previous month’s starch and glu-
cose + fructose content (Fig. 5b and c), which explained
more than 40% and 60% of the variation, respectively. These
data suggest that drought-induced monoterpene synthesis in
woody tissues is in part supported by starch hydrolysis as a
source of soluble sugar substrates among other intermediate
and stored carbon sources, the dynamics of which have yet to
be identified. The delayed availability of glucose from starch
(via starch synthesis, followed by hydrolysis and subsequent
sugar transport to sites of monoterpene synthesis) may also
explain the lag observed for concentration changes in these
tissues (Table 2 and Fig. 3b).

While the NSCs measured did not explain more than 18%
of the variation in drought-induced changes in individual
monoterpene concentrations (Table 4 and Supporting Infor-
mation Table S4), this does not preclude that other NSCs
contribute to their synthesis. In addition, trade-offs between
defenses and carbohydrate reserves may only manifest
under more profound carbon limitations (Zust and Agrawal
2017) that were not reached in the present field-based
study (McDowell et al. 2019). Nonetheless, these tissue-,
organ- and compound-specific relationships with NSCs sug-
gest synthesis controls beyond passive carbon source-sink
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Fig.7 Mean individual monoterpene concentrations (mg g~! FW) of
six compounds found in Pinus edulis current and one-year old needle
tissue across the four treatments averaged over nine sampling peri-
ods (2012-2016). a (—)-a-Pinene, b (+)-a -pinene, ¢ B -myrcene, d

dynamics, likely involving drought-induced phytohormonal
signaling and the active gene regulation of specific monoter-
pene synthases (Radwan et al. 2017).

Compositional responses of monoterpenes to heat
and drought stress

Drought affects secondary compound synthesis via
changes in source-sink carbon dynamics and also by alter-
ing the activities of key enzymes responsible for produc-
ing individual compounds like monoterpene synthases
(Keeling and Bohlmann 2006). We observed compound-
and tissue-specific changes in individual monoterpene
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6-3-carene, e S-(-)-limonene, f) R-(+)-limonene. Compounds were
chosen to highlight the variation in responses across treatments and
tissues. Bars represent means +SEM and significance between treat-
ments is expressed using different lowercase letters (a <0.05)

concentrations and overall composition in response to
the treatments (Table 3, Fig. 6). Notably, the differences
in monoterpene profiles between trees exposed to the
treatments and controls were greater in the woody tissue
than in needles (Fig. 6). While it is common for chemical
composition to differ between organs (Sjodin et al. 1996,
2000), the ways in which drought, heat, and their combi-
nation affect chemical diversity is less understood. It is
possible that drought and heat affect monoterpene com-
position more in woody tissues as opposed to young nee-
dles due to either constraint on carbon transport (Sevanto
2014) and/or different biosynthetic processes in the tis-
sue types (Manninen et al. 2002). Carbon is not allocated



Oecologia

0.6 §
a
s @
0.4 4

0.3 4

0.2 4

0.1 4

[()-a-pinene] (mg g FW ™)

0.0

(b)

[(+)-a-pinene] (mg g FW™)

1(c)

0.6 1

04 4

0.2 4

[B-myrcene] (mg g FW1)

0.0

Heat +
Drought

Ambient Heat Drought

Treatments

Fig. 8 Monoterpene concentrations (mg g~' FW) of six compounds
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to individual compounds equally and is likely related to
shifts in synthase enzyme activity that are differentially
induced by heat and drought stress (Radwan et al. 2017).
Because monoterpenes originate from the same precursor
molecule, geranyl diphosphate, it is likely that these stress-
induced shifts in individual concentrations are due to syn-
thase activation, a topic that requires additional research.
Identifying molecular mechanisms responsible for heat-
and drought-induced shifts in monoterpene diversity will
require a combination of transcriptomics, metabolomics,
and stable isotope approaches, and our findings provide
key insights that can be used to develop testable hypoth-
eses to explain these targeted allocation patterns.
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limonene. Compounds were chosen to highlight the variation in
responses across treatments and tissues. Bars are means +SEM and
significance between treatments is expressed using different lower-
case letters (a < 0.05)

It is widely accepted that conifers become more suscepti-
ble to biotic attacks during drought due to decreased levels
of defense compounds (Mattson and Haack 1987; Dobbertin
et al. 2007; McDowell et al. 2011; Gaylord et al. 2013; Neth-
erer et al. 2015). We identified decreased concentrations of
some compounds despite overall increases in major constitu-
ents of the monoterpene profile. Drought-induced shifts in
individual compounds may result from cumulative past evo-
lutionary pressures, including drought-induced bark beetle
attacks, especially given the unique changes to monoterpene
profiles in woody tissue (Fig. 6). For example, drought and
combined heat and drought stress increased levels of woody
tissue (—)-a-pinene (Fig. 8a), a precursor molecule used by
1. confusus to produce cis-verbenol, a minor constituent
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Table4 Correlations between individual monoterpene concentrations
and non-structural carbohydrates in twigs of Pinus edulis

Compound Starch Sucrose Glucose + fructose
(—)-a-Pinene —0.24 (0.016) —0.09 (0.39) 0.38 (9% 1075)
(4+)-a-Pinene —0.29 (0.003) —0.04 (0.69) 0.31 (0.001)
(—)-Camphene  —0.24 (0.017)  —0.06 (0.53) 0.29 (0.002)
(+)-Camphene  —0.30 (0.002) —0.06 (0.54) 0.33 (0.0007)
B-Myrcene —0.25(0.012) —0.002 (0.98) 0.25 (0.009)
(+)-B-Pinene —0.27 (0.007)  —0.10(0.32) 0.26 (0.008)
(—)-B-Pinene 0.09 (0.40) —0.07 (0.48) —0.002 (0.99)
6-3-Carene —0.19 (0.06) —0.06 (0.51) 0.29 (0.003)
(—)-Limonene -0.23(0.02) —0.11(0.27) 0.29 (0.003)
(+)-Limonene —0.26 (0.01) —0.04 (0.67) 0.36 (0.0002)
B-Ocimene —0.17 (0.08) —0.08 (0.42) 0.18 (0.06)
B-Phellandrene —0.07 (0.49) —0.02 (0.81) 0.05 (0.61)
g-Terpinene —0.008 (0.93) 0.07 (0.48) 0.04 (0.71)
Terpinolene —0.23(0.02) —0.01(0.92) 0.28 (0.004)
Bornyl acetate —0.21 (0.03) 0.01 (0.90) 0.29 (0.003)

Repeated measures r correlation coefficient (P value) is displayed
and significant correlations after applying the Bonferroni correction
for multiple comparisons (a <0.0011) are indicated in bold. Nega-
tive correlation coefficients represent increasing values of NSCs with
increasing drought stress (more negative pre-dawn water potential
values) while positive coefficients represent decreasing values of
NSCs with increased drought stress

of the bark beetle’s pheromone blend that also consists of
monoterpenoid alcohols (ipsenol and ipsdienol) synthesized
de novo from the beetles themselves (Tittiger and Blomquist
2016; Fisher et al. 2021). In addition, our combined heat and
drought treatments decreased levels of other woody tissue
compounds, most notably (—)-6-3-carene (Fig. 8d). High
levels of 6-3-carene are characteristic of more resistant trees
(Boone et al. 2011; Erbilgin et al. 2017) due to toxicity to
bark beetles (Raffa and Berryman 1987; Raffa et al. 2005)
and negative effects on the growth of symbiotic fungi (Raffa
and Berryman 1983). While the effects of 6-3-carene on 1.
confusus are yet to be determined, the impact of this par-
ticular compound on both aggressive and non-aggressive
bark beetle-fungi complexes suggests that its toxicity may
be relatively common among taxa. Given the benefit of
(—)-a-pinene as an aggregation pheromone precursor for 1.
confusus and the general toxicity of 6-3-carene to the bark
beetle-fungal complex, higher (—)-a-pinene and lower 6-3-
carene levels under combined heat and drought conditions
may make these trees more favorable for bark beetle attack,
rather than well-defended, which one might conclude if only
studying monoterpene concentrations in total. Whether these
shifts are enough to promote attack by Ips confusus (pifion
engraver beetle) requires field studies investigating these
mechanisms under more severe drought stress as well as
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bioassays that can provide a clearer understanding of how
these altered profiles impact bark beetle choice and success.

Conclusions

Two of the more important abiotic stressors affecting tree
function are heat and drought, yet adequate tests of defense
responses in mature trees to these stressors are rare and often
fail to consider their interactive effects. Our experimental
design allowed us to observe heat and drought-induced
changes in monoterpenes in relation to growth, C assimila-
tion, and NSCs over a range of water potentials that pro-
vided an opportunity to evaluate mechanistic underpinnings
in the context of theory (GDBH) and potential impacts on
destructive biotic agents. Our results point towards drought-
induced changes in monoterpenes where cumulative climatic
effects activate a reprioritization of source and sink strengths
and thus allocation towards defense. While some aspects
of our findings are consistent with the predictions of the
GDBH, our results challenge source-based processes and
suggest sophisticated signaling mechanisms are at play that
actively reallocate NSCs to specific defense compounds
after critical physiological thresholds induced by drought
are surpassed. We found the interactive effects of heat and
drought on monoterpenes to be frequently synergistic and
sustained, although some compounds were insensitive or
decreased in response to either stress across the levels we
observed. This is critical to note as particular compounds
play important roles in defense against biotic attacks. As
such, it is imperative that the dynamics identified here con-
tinue to be studied to identify when key defensive com-
pounds decline as drought becomes more severe, and how
this occurs through NSC availability via gene regulation. It
is clear that drought and heat stress change plant metabo-
lism at levels ranging from enzymes to whole organisms.
Coupling advanced metabolomics techniques to field-based
experimental research may further illuminate the changes
that plants undergo to defend against pest and pathogen
attack while under physiological stress.
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