
1

Towards Space-Time Incoherent Transmitter Design
for Millimeter-Wave Imaging

Stavros Vakalis, Student Member, IEEE, Daniel Chen, Student Member, IEEE,
and Jeffrey A. Nanzer, Senior Member, IEEE

Abstract—It was recently demonstrated that microwave and
millimeter-wave imagery can be obtained using multiple noise
transmitters to illuminate the scene with incoherent space-time
varying fields and a sparse receiving interferometric array.
Incoherent imaging has a number of benefits compared to
coherent imaging, including no required synchronization between
the transmitters and receivers, and fast processing that does not
require solving an inverse problem. In this paper we present
a method for characterizing the spatial incoherence of the
transmitted signals in an incoherent millimeter-wave imager. We
demonstrate theoretically, and experimentally, the characteriza-
tion of the transmitted radiation spatial coherence as a function
of number of noise transmitters in a 37 GHz imaging system.

Index Terms—Distributed antenna arrays, incoherent imaging,
interferometric imaging, space-time

I. INTRODUCTION

INCOHERENT space-time fields have long been used in
optical imaging, with flashlight illumination in optical

photography a prominent example. In situations where there
is no ambient light in a room, the flashlight illumination can
compensate for this low visibility condition. Such incoherent
illumination has not traditionally been used for imaging in
the microwave and millimeter-wave range (3-300 GHz). Most
imaging techniques in these frequencies utilize mechanically
or electronically scanning arrays and coherent illumination
[1]–[3]. Generally, these techniques cannot produce real-time
imagery due to the extended time required to scan a scene
in the spatial domain. Computational imaging can reduce the
number of receivers and data acquisition time required to
reconstruct the images using coherent pseudo-random space-
time modulations with minimal mutual information between
measurement modes [4], [5]. However, such techniques require
significant signal processing, leading to latencies that are in-
feasible for real-time imaging. Furthermore, these approaches
require precise knowledge of the pseudo-random space-time
modulation, which necessitates additional and potentially fre-
quent calibration. Passive millimeter-wave imaging systems
capture incoherent thermal radiation emitted by people and
objects in a scene, and have been implemented with sparse re-
ceiving arrays for Fourier-domain imaging. However, thermal
radiation is very low in power at microwave and millimeter-
wave frequencies, necessitating high sensitivity through large
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signal gains, wide receiver bandwidth, and accurately cali-
brated components, leading to significant costs [6]–[8].

To overcome the sensitivity limitations of passive imagers,
the authors recently introduced a new computational imaging
technique called active incoherent millimeter-wave (AIM)
imaging that leverages incoherent signal transmission and
interferometric imaging for real-time imaging [9]–[11]. The
radiation emitted or scattered by a scene must be incoherent
for successful interferometric image reconstruction accord-
ing to the Van-Cittert Zernike theorem [12], [13]; thermal
radiation satisfies this requirement, but traditional coherent
illumination does not. Our prior work has shown that illu-
minating the scene with multiple noise transmitters gener-
ates a sufficiently incoherent signal at the image plane to
obtain imagery with an interferometric receiver [9]. The use
of active illumination serves to increase the signal-to-noise
ratio significantly compared to passive imagers, thus high-
gain wide-bandwidth receivers are not required, leading to
significantly lower overall system cost. Interferometric arrays
are furthermore inherently sparse [10], thus reducing the total
amount of hardware in comparison to a traditional phased
array. They are also resistant to element failures [11], making
them ideal for applications where lower-cost, uninterrupted
operation is desired. Another important advantage of AIM
imaging and other incoherent imaging techniques (e.g. [14])
compared to coherent approaches is that the exact knowledge
of the transmitter space-time modulation is not needed. The
significance of this becomes apparent considering the impact
of the necessary knowledge to implement other sparse array
imaging techniques such as multiple-input multiple-output
(MIMO), where the individual code on each transmitter must
be known and appropriately coordinated among all receivers
in the array. In AIM imaging, no synchronization is necessary
between transmitters and receivers. The received signals are
cross-correlated, and image formation is then obtained directly
using an inverse Fourier transform (IFT).

In this paper, we present and experimentally demonstrate
a technique for measuring the spatial coherence in the image
plane of signals emitted by a set of incoherent transmitters.
Currently, no metrics exist for characterizing the image plane
coherence in AIM imaging systems, meaning that transmitter
design has proceeded in heuristic form. This work provides
a fundamental first step towards a comprehensive design ap-
proach for AIM transmitter arrays. We present a multi-element
measurement concept and demonstrate through experiment
with a 37 GHz system the spatial coherence of transmitters
with one, two, and three incoherent emitters.
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Fig. 1. (a) Point source response of a correlation interferometer. (b) Corre-
lation interferometer observing two point sources A and B.

II. ACTIVE INCOHERENT MILLIMETER-WAVE IMAGING

Interferometric antenna arrays capture samples of the im-
age visibility V (u, v), which is the two-dimensional Fourier
transform of the image, by cross-correlating the information
between their antenna elements. This set of samples is called
the sampled visibility Vs(u, v), and the reconstructed intensity
Ir is given by

Ir(↵, �) =

NX

n

MX

m

Vs(un, vm)e�j2⇡(un↵+vm�) (1)

where N ·M is the maximum number of visibility samples,
and ↵ = sin ✓ cos� and � = sin ✓ sin� are the direction
cosines relative to the azimuth and elevation planes.

The way correlation interferometers capture spatial fre-
quency information can be described when seeing the response
of a monochromatic point source as shown in Fig. 1a.

The geometric time delay ⌧g = D
c sin ✓ for wavefront

propagation speed c, a target at angle ✓ and baseline D gives
a cross-correlation response

r(✓) =
⌦
V1V2

↵
=

⌦
cos(2⇡fct) cos[2⇡fc(t � ⌧g)]

↵
(2)

where fc is the carrier frequency. Using a low-pass filter
removes the high frequency terms, resulting in

r(✓) =
1

2
cos

✓
2⇡

�
D sin ✓

◆
(3)

where � = c/fc is the corresponding wavelength. The result
is a fringe response with a number of sidelobes equal to
the corresponding spatial frequency D/�, and can be seen in
Fig. 1a with gray colour. In the literature, interferometers are
referred to as spatial filters, because of their fringe response
resonating at a particular spatial frequency.

The reader will start suspecting that the fringe response will
be ambiguous, because it does not contain a main lobe, and is
composed from multiple sidelobes instead. The importance of

the incoherence illumination can become more profound from
Fig. 1b. A simple example to explain the difference between
coherent and incoherent systems can be seen in the following.
Consider an antenna baseline pair in the interferometric array
observing two point sources as shown in Fig. 1b, where the
two receiver voltages can be expressed as

V1 = s1A + s1B + n1 (4)

V2 = s2A + s2B + n2 (5)

where siA, siB are the terms that represent the response on the
ith element due to the point sources A and B respectively, and
ni is the noise received by the ith element. The output voltage,
after cross-correlating the two receiver responses, can be given
by

Vout =
⌦
V1V2

↵

=
⌦
s1As2A

↵
+

⌦
s1Bs2B

↵
+

⌦
s1As2B

↵
+

⌦
s1Bs2A

↵
(6)

By illuminating the scene in this way, each angular point
obtains an incoherent response as a function of time. As
a result the signals from the point sources have very low
correlation with each other, and the output voltage of the
correlation interferometer can be expressed as

Vout =
⌦
V1V2

↵
⇡

⌦
s1As2A

↵
+

⌦
s1Bs2B

↵
(7)

where
⌦
s1As2A

↵
and

⌦
s1Bs2B

↵
represent the common parts

from the two-point sources. In practice, the transmitted signals
will be bandlimited and thus have some non-zero correlation.
However, how much bandwidth is needed to make this terms
sufficiently small, or what transmitter locations can optimize
incoherence has not been studied before. In this work, we will
be considering different ways to analyze the illumination from
the noise transmitters.

III. SPATIO-TEMPORAL INCOHERENCE ANALYSIS

As two incoherent signals propagate in space, the way that
they are summed create unique responses as a function of
space. When illuminating a scene with two noise sources, Fig.
2a shows that unique superposition of them will illuminate
each point of the scene. This can be understood by taking
the intersection of two circles with centers the location of
the transmitters. The black and red arcs show the same
contribution from the individual transmitters, and for diverse
responses the two arcs should not align, because each angular
point will have very similar response. In two dimensions two
circles that do not share the same center can have up to two
intersection points. In Fig. 2a the points that will have exactly
the same contribution from the two circles is the one located at
their intersection in front of the antennas and the other one will
be symmetric at the back of the two antennas. Using directive
antennas we can easily assume that the reflections from a point
in the back of the antenna baseline will be negligible. Although
for simplicity we will be discussing here the one-dimensional
example, this directly extends to two dimensions, where three
spheres can have up to two intersections with the same front
and back symmetry. So for two-dimensional imagery, at least
three incoherent transmitters are required.

Fig. 1. (a) Point source response of a correlation interferometer. (b) Corre-
lation interferometer geometry observing two point sources A and B.

II. ACTIVE INCOHERENT MILLIMETER-WAVE IMAGING

Interferometric antenna arrays perform image reconstruction
by capturing samples of the scene visibility V (u), which is the
Fourier transform of the scene intensity I . This set of samples
is called sampled visibility Vs(u), and the reconstructed scene
intensity Ir in one dimension is given by

Ir(γ) =
N∑

n

Vs(un)e−j2πunγ (1)

where N is the number of visibility samples, and γ = sin θ.
While we consider one-dimensional signals in this work,
the process directly extends to two dimensions [9], [15].
Interferometric arrays measure spatial frequency information
by cross-correlating the signals received at different elements
in the array. The interference pattern generated by two widely-
spaced elements forming a correlation interferometer, shown
in Fig. 1a, defines a specific spatial frequency um (rad−1), and
the cross-correlation of the signals between the two elements
corresponds to one sample of the visibility. The geometric time
delay between the two antennas τg = D

c sin θ for wavefront
propagation speed c, a target at angle θ and the antenna
baseline D gives a cross-correlation response

r(θ) =
〈
V1V2

〉
=
〈

cos(2πfct) cos[2πfc(t− τg)]
〉

(2)

where fc is the carrier frequency. The angle brackets indicate
multiplication and integration (low-pass filtering), resulting in

r(θ) =
1

2
cos

(
2π

λ
D sin θ

)
(3)

where λ = c/fc is the corresponding wavelength. The result
is a fringe response with a number of lobes equal to the
corresponding spatial frequency um = D/λ.

The importance of spatial incoherence at the image plane
can be seen by considering two point sources as shown in Fig.
1b, where the two receiver voltages can be expressed as

V1 = s1A + s1B + n1 (4)

V2 = s2A + s2B + n2 (5)

TX1

TX2

Fig. 2. Two noise sources illuminating two targets.

where siA, siB are the terms that represent the response of the
ith element due to the point sources A and B respectively, and
ni is noise. The output voltage, after cross-correlating the two
receiver responses, can be given by

Vout =
〈
V1V2

〉

=
〈
s1As2A

〉
+
〈
s1Bs2B

〉
+
〈
s1As2B

〉
+
〈
s1Bs2A

〉
(6)

The noise terms, being completely uncorrelated, tend to zero
when multiplied and integrated, leaving only the responses
from the two point sources. The first two terms in (6) represent
the cross-correlation of the individual signals from the two
points at each receiver, and thus are points in the sampled
visibility. The second two terms are cross-correlations that re-
main if the signals scattered off points A and B are correlated.
Ideally, these signals will be completely uncorrelated and will
tend to zero as well, leaving

Vout =
〈
V1V2

〉
≈
〈
s1As2A

〉
+
〈
s1Bs2B

〉
(7)

In practice, the transmitted signals, and thus the signals
scattered off A and B will have some non-zero correlation,
and the residual cross terms

〈
s1As2B

〉
and

〈
s1Bs2A

〉
will

be present, corrupting the visibility sample and degrading the
reconstructed image. In the following, we present a method of
characterizing the incoherence of the signals emitted by the
transmitting array in the spatial domain.

III. SPATIAL COHERENCE OF NOISE TRANSMITTERS

The superposition of two completely incoherent signals
transmitted from two different points in space manifests as
a unique signal across space and time. The degree to which
two points in space are correlated impacts the residual terms
in (6) and therefore the image reconstruction quality. The
spatial dependence from the superposition of the two signals,
such as shown in Fig. 2, can be analyzed by considering
the signals to be emitted by two point radiators. The two
transmitters generate two spherical waves whose information
is completely correlated along the surface of the wave. Two
circles with different centers in a 2-D plane can have up to
two intersecting points. Due to the symmetry of our case it
will be one intersecting point in the front and one in the
back of the array. Using directive antennas the ambiguous
“image” point located behind the antennas can be ignored.
Therefore, the intersection of the waves from separate equal
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amplitude transmitters represents a unique point, as shown in
Fig. 2. The argument extends directly to a 3-D space, where
three spheres emitted by the sources intersect. With the same
front-back symmetry and directive antennas, an unambiguous
measurement is thus obtained in 3-D using three emitters.

The intersections of the wavefronts represent points of
unique illumination, however even completely uncorrelated
transmit signals will display some amount of correlation at
the image plane, depending on the number of transmitters.
This is because the information at the intersection contains
information from all the transmitters, which is constant across
the wavefronts; hence for a two-element transmitter as in
Fig. 2, the information everywhere along the red wavefront
from TX1 is also present at the intersection. The signal at
the intersection is therefore correlated with the information at
every point along the wavefront by 1

2 , because the contribution
from one out of the two transmitters is identical for all these
points. Designating an image plane extending vertically across
the scene, there will thus be one other point in the plane that is
50% correlated with the signal at the intersection. Extending
this concept, by using N trasmitters, any two points in the
image plane will have at most 100

N % correlation. A useful
metric to quantify the similarity of the electric field E at two
points 1 and 2 is the complex degree of coherence [12], [13],
[16] which in optics and radio astronomy can be found through
the following formula

Γ12(τ) = lim
T→∞

1

2T

∫ T

−T
E1(t)E∗2 (t− τ) dt (8)

where T is the integration time. Usually when measuring
spatial coherence between two different points we refer to their
fields at exactly the same time, so we can set τ = 0. Temporal
coherence is also critical for interferometric imaging and radar
systems in general [17], [18], however in this work the spatial
coherence is of greater importance. The integral in Eq. 8 can
be written for a set of N points in discretized form as the
mutual coherence matrix γ [19], [20], each entry of which γij
is the dot product of the point responses εi and εj ,

γij =
|εiεHj |
||εi||||εj ||

(9)

where 1 ≤ i, j ≤ N . A dot product γij close to 1 indicates
high spatial coherence, while γij close to 0 indicates low
coherence (incoherence); intermediate values 0 < γij < 1
correspond to partial coherence. In the example of Fig. 2 two
points in the same circle arc will have γij = 1/2, and for N
transmitters γij = 1/N .

IV. MODELING COHERENCE FROM MULTIPLE SOURCES

In a two-dimensional space the field from N noise sources
at a carrier frequency fc with bandwidth ∆f can be found as
a function of time as

E(x, y, t) =

N∑
i=1

∫ fc+
∆f
2

fc−∆f
2

ai(f)e
j2πft+φi(t) · δ(t−Ri/c)

Ri
df (10)

where αi(f) is the amplitude of the signal emitted by antenna
i, φi(t) is the signal phase, and Ri =

√
(x− xi)2 + (y − yi)2

(a)

(b)

Fig. 3. Simulation of the mutual coherence matrices γ at a 1-D image plane
for (a) three incoherent sources and (b) two incoherent sources. The unity
diagonal elements represent the self-coherence of every point. The additional
lines represent partial coherence from the emitter wavefronts, with coherence
of 1

3
for N = 3 and 1

2
for N = 2. Generally, N transmitters yield N partial

coherence lines with amplitude 1
N

is the distance of each point (x, y) from the transmitters
locations (xi, yi). We evaluated the mutual coherence from
a set of three 37 GHz incoherent sources TX1, TX2, and
TX3 simulated in MATLAB and placed in a rectangular
grid (x,y) at locations (-0.1,0), (0.1,0), and (0.15,0) meters,
respectively. The image segment where mutual coherence was
measured was set to be the line connecting the points (-
1,2.61) and (1,2.61). The simulated mutual coherence is shown
in Fig. 3 where γ is plotted for all three transmitters in
Fig. 3a and for TX1 and TX2 in Fig. 3b. The matrices are
symmetric and its diagonal elements are unity because each
spatial point is self-coherent. Most of the terms γij where
i 6= j, representing the points outside of the wavefront arc,
are negligible because of the spatial incoherence, however in
Fig. 3a three partial coherence lines appear with amplitude
1
3 , and in Fig. 3b two partial coherence lines show up with
amplitude 1

2 . These lines are due to the intersection of the
circular wavefront coming from the three sources with the
line segment, and do not indicate the antenna locations. Using
N incoherent transmitters will result in N partial coherence
lines in the image plane with γij = 1

N . As the number of
element increases more partial coherence lines will appear
but with lower amplitude. Thus, by increasing the number of
transmitters, points of ambiguity are significantly reduced at
the image plane. The next section presents an experimental
verification of the image plane coherence.
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Fig. 4. Experimental setup for measuring the mutual coherence on a line
segment using 15 receivers and three transmitters.

V. EXPERIMENTAL MEASUREMENTS OF PARTIAL
COHERENCE FROM INCOHERENT SOURCES

Experimental measurements were conducted inside a semi-
anechoic environment at a carrier frequency of 37 GHz. 15 dBi
3D-printed horn antennas were used for both transmitters
and receivers. For the receivers each antenna was followed
by a 20 dB gain Analog Devices (ADI) HMC1040LP3CE
low-noise amplifier (LNA) before being downconverted to
baseband using a 37-44 GHz quadrature downconverter (ADI
HMC6789BLC5A). Their outputs were captured using two
ATS9416 14 bit, 100 MS/s, AlazarTech waveform digi-
tizers installed on a computer in master-slave mode. The
three transmitters consisted of three calibrated 15 dB Ex-
cess Noise Ratio (ENR) noise sources which were amplified
at baseband, and then upconverted to 37 GHz using ADI
HMC6787ALC5A 37-40 GHz upconverters. Three power am-
plifiers ADI HMC7229LS6 were used to amplify the 37 GHz
signal to a transmit power of -8 dBm.

The experimental configuration can be seen in Fig. 4. The
receive array consisted of 15 antennas spaced uniformly in
5 cm increments seen at the top of Fig. 4. Receive elements are
numbered from 1 to 15 with the receiver 1 being the receiver
at the top right side of the picture, while receiver 15 is the
one at the top left side of the picture. The sampling rate was
100 MS/s and the integration time 1.6 ms. The receivers were
calibrated using redundant spacings [15], [21]. The distance
between transmitters and receivers was 2.62 m. TX1 and
TX2 were spaced 0.2 m apart, while TX2 and TX3 were
spaced 0.51 m apart. The locations here are sparse compared
to the discretized grid in the simulations of the previous
section, however they are a useful indicator for how the partial
coherence in the image plane behaves as a function of number
of transmitters and transmit element spacings. The results can
be seen in Fig. 4 for (a) all three noise sources, (b) TX1 and
TX3, and (c) only TX1 transmitting. The matrix is normalized
columnwise and due to residual calibration errors is not
perfectly symmetric. It can be seen that three noise sources in
Fig. 4a produce significantly more incoherent radiation than
the two noise sources in Fig. 4b, where the partial coherence

(a)

(b)

(c)

Fig. 5. Experimentally measured coherence matrices γ using (a) three
incoherent transmitters, (b) two incoherent transmitters, and (c) one incoherent
transmitter, showing lower mutual coherence (higher incoherence) as the
number of emitters increases.

lines that are significantly higher than the image noise floor,
which is due to hardware imperfections and variations between
the transmitter power levels, start to appear. Fig. 4c shows that
a single noise transmitter produces significant correlation in
the scene, thus active interferometric imaging requires multiple
incoherent transmitters when imaging in even 1-D. While
the measurement was not optimized to mitigate multipath or
other environmental reflections, there is nonetheless significant
agreement between simulation and measurement.

VI. CONCLUSION

Analysis of the coherence in the image plane from a set of
transmitters represents a significant step towards transmit array
design in AIM imaging. In this work, we demonstrated the use
of mutual coherence to determine the impacts of image-plane
spatial coherence as a function of the number of transmitters.
This approach can be used in the design of active incoherent
imaging systems, and also in the analysis of non-cooperative
emitters, such as WiFi signals, which may also be used for
incoherent imaging [22].
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