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Abstract—In this paper, measuring dynamic signals at points
of interest (POIs) using a mobile agent is considered, where the
agent is required to repeatedly measure at and transit between
the POIs. Dynamic field sensing is needed in areas ranging from
nanomechanical mapping of live sample to crop monitoring.
Existing work on mobile sensing, however, has been focused
on cooperatively tracking one or few known or unknown POIs,
whereas the dynamics of the signals is ignored. Challenges arises
from capturing and recovering the dynamics at each POI by
using data intermittently measured, resulting in temporal-spatial
coupling in the mobile sensing. Moreover, trade off between the
sensing cost and the performance needs to be addressed. We pro-
pose a compressed-sensing based approach to tackle this problem.
First, a check-and-removal process based on random permutation
and partition of the measurement periods is developed to avoid
the temporal-spatial coupling under agent speed constraint. Then
a shuffle-and-pair process based on the simulate-annealing is
proposed to minimize the transition distance while preserving the
performance. It is shown that the distribution of the measurement
periods between the POIs converges. The proposed approach
is illustrated through a simulation study of measuring the
temperature-dependent nanomechanical variations of a polymer
sample.

Keywords: mobile sensing, dynamics mapping, compressed
sensing, simulated annealing optimization

I. INTRODUCTION

In this paper, the problem of measuring spatial-dependent
dynamic processes at multiple points of interest (POIs) using a
mobile agent is considered. Such a dynamic mobile sensing is
needed in a wide variety of applications, ranging from ocean
floor mapping [1] to forestry monitoring [2] and atmospheric
circulation monitoring [3]. In these applications, the mobile
agent moves between and measures at different POIs. Al-
though the status of interest at each POI can be observed from
the sensor data, the dynamic evolution at each POI may not be
captured by the intermittently acquired data, particularly when
the evolutions at these POIs change quickly relative to how
often the measurements are taken at each POI intermittently.
Measuring dynastic evolution rather than static (or quasi-
static) status is important in, for example, agriculture [4]
for precision regulation of water, fertilizer, and pesticide use
[5]. Alternatively, such an issue of dynamic evolution capture
might be mitigated by using enough number of mobile agents
of fast mobility. This hardware-enriched approach, however,
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is practically infeasible due to the cost vs. the field to be
covered limitation. Therefore, it is central to be able to capture
the dynamics of the sensing processes from the intermittent
measured data.

Capturing the dynamics across a 2D- or 3D- field has yet
to be addressed in mobile sensing. Although mobile sensing
has been investigated for various applications, majority of
these works are focused on the use of mobile agents to
cooperatively accomplish the mission needed. For example, in
coverage control [6], [7] and active information gathering [8],
the communication scheme and motion planning of a network
of mobile agents is developed for detecting and following
a feature or event of interests, where the notion of density
function has been explored based on the gradient descent
optimization [6], [7] and Lyapunov theory [8], to minimize
the sensing cost (e.g., total transition distance of the agents)
upon noise/disturbance [6], [7] or agent failures [8]. These
methods, however, do not aim to cover the POIs over the
entire field, nor to capture the dynamics at all the POIs
measured. Sensing over the entire field has been considered
in the work of information planning [9] and the mobile crowd
sensing [10]. The Although issues due to the sensing field
being confined and cluttered [9], or the trade-off between
the computational complexity optimization and the sensing
cost under limited resource (e.g., onboard power) [10] have
been tackled, measuring the dynamics at POIs across the field
was not yet considered. As a result, the data acquired may
not capture nor be used to recover the dynamics at each
POI. Therefore, techniques are needed for mobile sensing
of dynamic processes at multiple POIs.

Compressed sensing provides a framework to utilize data
sparsity for sensing applications [11], [12]. The CS framework
allows us to recover a signal from data acquired at sampling
frequency much lower than the Nyquist frequency [11], [13].
The CS-based approach has also been extended to wireless
sensor network (WSN) [14], [15], [16], [17], where the data
sparsity across the network is explored through the notion
of joint sparsity [18], [19], to optimize the sensing cost
vs. the quality, or to further consider the agent location-
and condition- dependent cost difference [20]. Although the
distribution over the entire field can be recovered vis CS-
based optimization [11], [12], the dynamic variations at each
POI was not considered, and significant temporal error can be
induced in the dynamics of the signals measured. Therefore,
efforts are needed to extend the compressed sensing to mobile
sensing of dynamic signals at multiple POIs.

Challenges arise in the problem of measuring spatial-
dependent dynamic processes at multiple POIs using a mobile
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agent. First, the spatial-temporal coupling in mobile sensing
arises from the need to capture the dynamics at each POI with
limited mobile sensing capability—To capture the dynamics
at each POI, the mobile agent must measure at each POI at
certain time instants. Thus, conflict in mobile sensing arises
when the required measurement time instants at different POIs
are too close or overlap to each other. Challenge also exists
in optimizing the sensing performance such as minimizing the
total transition distance while preserving the sensing quality.
Moreover, it is critical to ensure that the measurement time is
appropriately distributed between the POIs for capturing the
dynamics at each POI. These challenges are tackled in the
proposed work.

We propose a CS-based approach to achieve dynamics
measurement at multiple POIs across a field using a mobile
agent. Particularly, the above challenges arising from the
limited mobile sensing capability with respect to the “speed”
of the dynamics to be measured are addressed. Mainly, our
proposed approach possesses the following contributions:

1) The spatial-temporal coupling issue due to the limited
mobile sensing capability is resolved. Based on the CS
principle (i.e., random sampling) [12], [21], a feasible
measurement strategy is obtained through random per-
mutation and partition of the sensing sequence, followed
by a check-and-removal process. The obtained strategy
specifies the sensing and transition sequence of the agent
between the POIs, under the given mobile transition
speed constraint.

2) The measurement strategy is optimized by minimizing
the sensing cost while preserving the sensing perfor-
mance. We propose a shuffle-and-pair process based
on the simulated-annealing algorithm [22] to trade off
the minimization of the total transition distance (i.e.,
the cost) with respect to the number of measurement
periods used for transition (i.e., the more periods used
for measurement, the better the performance is).

3) The proposed sensing scheme is analyzed to characterize
the distribution of the measurement periods between the
POIs. We show that through the proposed method, this
distribution converges as the total number of measure-
ment periods increases, and can be tuned and adjusted
by choosing the distribution in the initial permutation
and partition.

4) Unlike other mobile sensing and CS-based techniques,
the proposed approach attains the goal of measuring
the dynamics of interest at all given POIs, by ensuring
that the sensing sequence at each POI follows, under
the mobility (speed) constraint, the random sampling
requirement of CS.

5) The proposed approach allows the sensing strategy to
be tailored towards the given sensing objectives. Not
only can the sensing cost be traded-off with the quality,
but also preference can be given towards chosen POIs
over others. Such a preference is particularly useful for
mapping dynamically heterogenous field.

We illustrate and evaluate the proposed method through a
simulation example of measuring the dynamic nanomechanical

variations of a heterogenous polymer sample using atomic
force microscope (AFM) [23], [24]. The simulation results
show that by using the proposed method, the dynamics at each
POI can be accurately recovered (with the dynamics measure-
ment error reduced by three to six times otherwise), the total
transition distance can be minimized, and the distribution of
the measurement periods between POIs can be tuned closely
to the desired one.
Notations: In the rest of the paper, S denotes a fi-
nite set of distinct natural numbers, S = {si|si ∈ N :
Natural numbers, and si 6= sj for i 6= j}, |S| is the cardinality
of S (i.e., the number of elements in S). For any given set S,
VS denotes the corresponding vector with elements from S
in ascending order, i.e., VS = {vi|vi ∈ S, and v1 < v2 · · · <
v|S|}, and eN (VS) = [0, 1, 0, · · · , 1, · · · , 0]1×N denotes a
1×N row vector consisting of only ones and zeros, with ones
appearing at entries specified by the vector VS of |VS| ≤ N
and ‖VS‖∞ ≤ N , i.e.,

eN [j] =

{
1 If j = VS[i], for i = 1, · · · , |VS|
0 Otherwise. (1)

Finally, 〈u,v〉 denotes the inner product of vectors u and v
of the same length.

II. SINGLE MOBILE SENSING OF DYNAMIC FIELD:
PROBLEM FORMULATION

We consider applications of using a mobile agent to measure
spatial-dependent dynamic processes at multiple POIs across
a 2D/3D field. For example, in nanomechanical mapping
of a time-evolving sample using AFM (e.g., the two guard
cells during the opening or closing process of a stoma [25],
see Fig. 1), the cantilever probe—as the mobile agent—is
positioned and used to measure the nanomechanical properties
of the sample at a POI (by applying an excitation force to
the sample, and measuring the indentation generated along
with the force [26], see Fig. 1 (a)), and then repeatedly
transited between and measure at the POIs during the entire
mapping process (see Fig. 1 (b)). It is needed to quantitatively
capture not only the heterogeneous (i.e., location-dependent)
properties of the sample, but also their time-elapsing dynamic
evolutions at each covered POI [25].

More formally, the task is to measure the dynamic variations
of the signals at given Ns number of POIs over a given
period of measurement time, Ttot, i.e., the dynamics of the
signal at each POI over the entire period Ttot, dj(t), for
j = 1, 2, · · · , Ns and t ∈ [0, Ttot], is to be measured, where
the change of the signal is slow relative to the transition of
the mobile agent between the POIs (called the POI-transition
below), and thereby, can be recovered from the intermittently
acquired data. We assume

Assumption 1. During each between-POI transition, the
agent is moving at a constant speed no larger than the
maximum transition speed limit vs.

By Assumption 1, the agent dynamics is ignored—the agent
dynamics can be accounted for in the proposed approach with
minor changes. We define:
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Fig. 1: An example of dynamic field sensing using a mo-
bile agent—Nanomechanical mapping using AFM: (a) the
schematic illustration of the indentation-based nanomechanical
measurement on AFM; and (b) nanomechanical mapping at
multiple POIs of two guard cells during the stoma open-
ing/closing process, where the blue triangles and the green
arrowed lines denote the probe measuring at the POIs and the
probe transition between the POIs, respectively.

Definition 2. Unit Acquisition Time IA The unit acqui-
sition time IA is the length of the time interval during which
the agent R measures at each POI without POI-transition.

Definition 3. POI-Transition Time Tr`i,`j The transition
time between any two given ith and jth POIs, `i and `j , in
the set of POIs Ls below,

Ls = {`1, `2, · · · , `Ns |`i ∈ <3 :

the coordinate of the ith POI},
(2)

is defined as

Tr`i,`j ,
‖`i − `j‖2

vs
, (3)

where vs is as in Assumption 1.

Definition 4. Minimal and Maximal Transition Time IT

and ITX The minimal and the maximal transition time IT

and ITX are defined, respectively, as

IT = min
16i,j6Ns,i6=j

Tr`i,`j (4)

ITX = max
16i,j6Ns,i6=j

Tr`i,`j . (5)

where Tr`i,`j is as in Definition 3.

With the above definitions, the total measurement time Ttot

can be discretized as

N t = bT
tot

IM
c, with IM , IA + IT , (6)

where bac is the floor function (the largest integer that is not
larger than a for a ∈ <), i.e., the total measurement period
Ttot is now discretized into a sequence VStot

Ttot ∼ VStot
, with Stot = {1, 2, · · · , N t}, (7)

where Stot is called the total measurement set.

Definition 5. Discretized Transition Time Dtr(Tr`i,`j )
For a given POI-transition time between POIs `i and
`j , Tr`i,`j , the corresponding discretized transition time
Dtr(Tr`i,`j ) is defined as

Dtr(Tr`i,`j ) = d
Tr`i,`j − IT

IM
e, (8)

where dae is the ceiling function (the smallest integer that is
not smaller than a for a ∈ <).

Furthermore, we assume that:

Assumption 6. The number of POIs Ns is much smaller than
the total measurement intervals N t, i.e., Ns � N t.

The above Assumption 6 is to ensure that enough samples
are acquired for recovering the dynamics at each POI. Thus,
with no loss of generality, we present and discuss this mobile
dynamics sensing in discrete-time domain. This discretization
scheme implies that any two successive acquisition times are
separated by a minimal transition time IT—Additional time
is needed if the transition between two given POIs requires
more than the minimal transition time IT . Thus, it is assumed
that

Assumption 7. The maximum POI-transition time is much
smaller than the total measurement time: i.e., the maximum
discretized transition time N tr

max satisfies

N tr
max = Dtr(I

TX)� N t, (9)

where Dtr(·) is as defined in Eq. (8).

Thus, conceptually the mobile sensing problem considered
is to partition the total measurement set Stot into two subsets
each for measurement and transition, respectively, i.e.,

Stot = SM ∪ ST , (10)

where ST contains the indices of those intervals fully spent
on POI-transition (called transition-only intervals below), and
SM contains those used for measurement, respectively. Our
goal, thereby, is to maximize and minimize |SM| and |ST |,
respectively, while optimizing the measurement under the
agent mobility constraint. Formally,

Definition 8. Optimal single mobile sensing of a dynamic
field (OSMS-DF) Let Assumptions 1, 6 and 7 hold, then for
the POIs given by the set Ls in Eq. (2) and the measurement
interval sequence given by VStot

in Eq. (7), the problem of
OSMS-DF is to partition and distribute the total measurement
set Stot between all POIs, i.e.,

Stot = SM ∪ ST , with SM ∩ ST = ∅, and

SM =

Ns⋃
i=1

Si, with Si ∩ Sj = ∅,

for ∀1 ≤ i, j ≤ Ns, i 6= j,

(11)

where, respectively, Si for i = 1, · · · , Ns, is the ith sub-
measurement set consisting of the intervals (i.e., their orders)
for POI `i, such that
O1 At each POI `i (i = 1, 2, · · · , Ns), the signal di(t) is

acquired during the measurement intervals given by the
sequence VSi

, i.e., during each pth interval for p =
VSi [q], gi[q] = di[p] is measured for q = 1, 2, · · · , N `

i ,
with N `

i = |Si|;
O2 When POI-transition is needed, the agent R can be

transited from its current POI to the next within the given
transition time;
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O3 The dynamic signal at each POI `i, di[·], for i =
1, 2, · · · , Ns, can be recovered from the intermittently
measured data, gi[·], i.e.,

di[m] ≈ d̂i[m] = F (gi[1], gi[2], · · · , gi[N `
i ]),

for i = 1, 2, · · · , Ns, and m = 1, 2, · · · , N t,
(12)

where d̂i[·] is the recovered signal, F (·) is the recover
(approximation) function used, respectively;

O4 The total transition distance Ltot and the total number
of transition-only intervals |ST | is minimized via the
following cost function J ,

min J = min (c1Ltot + c2|ST |) , (13)

where c1, c2 > 0 are the corresponding weights, respec-
tively.

Thus, essentially the OSMS-DF problem is to determine
an optimal mapping M from the sequence of measurement
intervals, VStot

to the sequence of POIs VLs
, M: VStot

→
VLs

, to achieve the above objectives O1 to O4, i.e., determine
a mapping matrix M,

M =


eNt(VS1

)
eNt(VS2)

...
eNt(VSNs )


Ns×Nt

, (14)

where eNt(VSj )s for j = 1, · · · , Ns are the row vectors
defined via Eq. (1). Thus, M[j][m] = 1 indicates that the
agent R measures at the jth POI during the mth measurement
interval, where m = VSj

[p] for some index p. We call below
the matrix M a measurement decision (MD).

In the above OSMS-DF problem, POI-transition occurs
when the next measurement is assigned to a different POI.
Thus we define

Definition 9. Transition-Initialization Interval In a given
measurement decision M, a given pth measurement interval is
a transition-initialization interval if there exists a qth measure-
ment interval, such that (q−p) > 0 is the smallest, p, q /∈ ST ,
and p, q are not in the same sub-measurement set.

Thus, if the pth interval is a transition-initialization interval,
the corresponding POI-transition time is given by

Trp,q = (q − p)IM − IA. (15)

Once the MD M is determined, the measured data at any given
jth POI can be readily obtained as

gj = Φjdj , (16)

where for j = 1, 2, · · · , Ns, Φj ∈ <N
`
j×N

t

is the sensing
matrix for POI `j that determines the measurement sequence
at `j ,

Φj [k][m] =

{
1 m = VSj [k]

0 otherwise,

for k = 1, 2, · · · , N `
j , and m = 1, 2, · · · , N t.

(17)

We propose to solve the above OSMS-DF problem by
using the compressed sensing approach [11], [12]. Particularly,
provided that the dynamic signal dj [·] is sparse in some
transformed domain, i.e., the vector dj = Ψdj of length
N t is dominated by zero (or near zero) elements, where
Ψ is the corresponding transform used (e.g., the discrete
Fourier transform), then the dynamic signal dj [·] can be
approximated/recovered by seeking an “optimal” recovered
signal d̂j [·] that matches the intermittently measured data, i.e.,

find d̂j = Ψ−1d̂j such that

gj = ΦjΨ
−1d̂j , with minimal‖d̂j‖1,

(18)

where Φj is as defined in Eq. (17) (more details of the CS-
based recovery is provided later). It has been shown [12], [27]
that the solution to the above `1 optimization problem requires
that the sensing matrix Φj satisfies a restricted isometry
property (RIP) [21], [28]. In practice, this RIP property can be
satisfied by choosing the sensing matrix Φj to be a random
matrix (e.g., a Gaussian random matrix) [12], [29], i.e., the
column index of all the non-zero elements in Ψj are randomly
distributed over the entire range [12], [29]. Such a randomness
requirements implies that the elements in the sequence VSj

,
i.e., the measurement intervals at each POI `j , need to be
randomly chosen from the total measurement interval set Stot.

The issue of spatial-temporal coupling in mobile sensing of
dynamics, however, must be accounted in this random sam-
pling. Specifically, random sampling (at all POIs) can result in
the same measurement interval be assigned to multiple POIs,
i.e., ∃ i, j ∈ Stot, i 6= j, such that

〈eNt(VSi
), eNt(VSj

)〉 6= 0. (19)

Moreover, the transition time can be too short for the transition
required, i.e., ∃ p a POI-transition initialization interval (as in
Definition 9) such that

Trp,q < Tr`i,`j , (20)

where Trp,q is as defined in Eq. (15), p ∈ Si of POI `i and q ∈
Sj of POI `j , and Tr`i,`j is defined in Eq. (3), respectively.
Finally, the cost function Eq. (13) shall be minimized under
the randomness requirement too. Thus, the temporal-spatial
coupling, the POI-transition constraint, and the optimization
of the mapping strategy must be accounted for.

III. OPTIMAL SINGLE MOBILE SENSING OF A DYNAMIC
FIELD

We propose to extend the CS technique to solve the OSMS-
DF problem. The idea is to remove the temporal-spatial cou-
pling through a partition-pairing process, account for the POI-
transition constraint through a check-and-removal process, and
optimize the measurement decision through a shuffle-and-
pairing process based on the simulated annealing algorithm.

A. Proposed algorithm

First, elements in the total measurement set Stot are ran-
domly permuted by following a uniform distribution [30], and
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partitioned into Ns number of sub-measurement sets, Sj , for
j = 1, 2, · · · , Ns,

Sj = Random
(
Scj−1, U(1, |Scj−1|), N `

j

)
, with

Scj = Scj−1 \ Sj , and Sc0 = Stot,
(21)

where, respectively, “Random(S,D(1, |S|), Nd)” denotes the
operation of randomly selecting Nd number of elements from
set S (Nd ≤ |S|) according to the distribution, D(1, |S|),
U(1, N) denotes one-dimensional uniform distribution of N
elements, and S1 \ S2 denotes the set complement operation,
i.e., Sc2 = S1 \S2 is the complement of S2 in S1 for S2 ⊂ S1.

Next, the sequences of the obtained sub-measurement sets
Sjs, VSj s, are assigned to each POI `j respectively, i.e.,
VSj → `j , resulting in the so-called preliminary measurement
decision (PMD) MP

MP =


eNt(VS1)
eNt(VS2)

...
eNt(VSNs )


Ns×Nt

, (22)

where ST = ∅—the agent mobility constraint has not yet been
considered, and thereby, is not satisfied in general.

We propose a check-and-removal process to update the
PMD MP . Also in the PMD MP , for any p ∈ Si (p =
1, 2, · · · , N t) being a transition-initialization interval, the cor-
responding qth interval (see Definition 9) equals to p+ 1, and
the between-POI transition can be checked via Eq. (20) and
adjusted by assigning more intervals for transition. Thus,

For p ∈ Si a transition-initialization interval,
if Eq. (20) occurs, then find the smallest q̂ ≥ p+ 2 in
some Sk of the POI `k, such that

Trp,q̂ ≥ Tr`i,`k , and q̂ − p > 1,

then if k = i

Sri = {Sri , p+ 1, · · · , q̂ − 1},
otherwise

ST = {ST , p+ 1, · · · , q̂ − 1},
(23)

where Sri is called the ith reservoir measurement set, and
ST = ∅, and Sri = ∅ initially. Thus with this check-and-
removal process, additional transition time is added only when
the before- and after- transition POIs are different, otherwise
that transition is eliminated and additional measurements are
taken at the before-transition POI. Afterwards, the PMD
MP is updated accordingly to obtain the following feasible
measurement decision (FMD), MF ,

MF =


eNt(VS1\ST )
eNt(VS2\ST )

...
eNt(VSNs\ST )


Ns×Nt

. (24)

The computation complexity of this check-and-removal pro-
cess is O(N t).

The FMD MF , however, may not be optimal to minimize
the total transition distance and the total transition time, i.e.,
not optimal to minimize the cost function J in Eq. (13). As
the POIs are known a priori, and through the above check-
and-removal process, both the number of transitions and the
corresponding POIs are known, so are the total transition
distance Ltot and the total time spent on the transition |ST |.

This optimization problem of Eq. (13) is non-deterministic
polynomial-time hard (NP-hard)—as in the traveling salesman
problem (TSP) [31]. Thus, we propose to seek a sub-optimal
solution through a simulated annealing (SA) [22] based
shuffle-and-pair process. The basic idea of SA is to combine
the gradient decent search (i.e., search in the cost-decreasing
direction) with random jumps to avoid being trapped into local
minimum (i.e., by searching in the cost-increasing direction
instead) during the iterative searching process. The random
jumps are regulated through a factor called temperature TSA

via an exponential function eC∆J/TSA

(mimics the physical
annealing process) [22].

First, an initial FMD MF
0 is obtained via the check-and-

removal process from an initial PDM MP
0 , and the corre-

sponding cost function J0 for MF
0 is calculated via Eq. (13).

Then, in each ith iteration of the SA process, both the PMD
MP
i−1 and the FMD MF

i−1 (for i > 1) are used in the shuffle-
and-pair process to obtain the next PMD MP

i and update the
FMD towards the optimal: In the current PMD MP

i−1, a small
number of Nf elements (Nf � N `

j , N `
j : total number of

measurement intervals at each jth POI) is randomly selected
(via uniform distribution) from each jth sub-measurement set
in the ith iteration, Sj,i, to form the sub-shuffle set, S̃j,i
for j = 1, · · · , Ns, and then combined together to form the
interval-shuffle set S̃i (for the ith iteration)

S̃i =

Ns⋃
j=1

S̃j,i, with

S̃j,i = Random(Sj,i, U(1, |Sj,i|), Nf ).

(25)

The obtained interval-shuffle set S̃i is then randomly permuted
and partitioned into Ns number of subsets each of size Nf

(called the updated sub-shuffle sets), S̃uj,i,

S̃uj,i = Random
(
S̃u,cj,i , U(1, |S̃u,cj,i |), N

f
)
, with

S̃u,cj,i = S̃u,cj−1,i \ S̃
u
j,i, with

S̃u,c0,i = S̃i initially.

(26)

Next, each updated sub-shuffle set S̃uj,i is paired with the
complement of the sub-shuffle set in the corresponding sub-
measurement set, Sj,i \ S̃j,i, to obtain the updated sub-
measurement set S̄j,i,

S̄j,i = S̃uj,i ∪
(
Sj,i \ S̃j,i

)
, (27)

and then the next PMD MP
i ,

MP
i =


eNt(VS̄1,i

)

eNt(VS̄2,i
)

...
eNt(VS̄Ns,i

)


Ns×Nt

, (28)
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Fig. 2: A schematic representation of the FMD updating
process in the SA-based shuffle-and-pair process for three POI
case (denoted as “A”, “B”, and “C” in the y-axis label): (a)
sub-shuffle sets S̃j,is (those in the red circles) are randomly
selected from the ith PMD MP

i−1 and grouped together to form
the interval-shuffle set S̃i, then (b) S̃i is repartitioned into Ns

number of subsets and each subset is paired with the updated
sub-shuffle sets S̃uj,i (those in red circles) and assigned to the
POIs to form the next PMD MP

i ; (c) The new FMD MF
i is

generated via the check-and-removal process from the PMD
MP
i (where the red-crosses denote the removed intervals), and

(d) the FMD obtained from the previous PMD MP
i−1 via the

check-and-removal process directly (without the shuffle-and-
pair process in (b) and (c)) is also obtained as MF

i−1, for
comparison in the SA updating.

where each VS̄j,i
is the sequence corresponding to each set

S̄j,i, respectively. Then the check-and-removal process (see
Eq. (23)) is applied to MP

i to obtain the corresponding FMD
MF
i . This shuffle-and-pair process of the PMD is depicted in

Fig. 2.
The cost function corresponding to the FMD MF

i , Ji, will
be compared to that of the previous iteration Ji−1: 1) If the dif-
ference ∆Ji = Ji−Ji−1 ≤ 0, this FMD MF

i will be accepted;
2) Otherwise, the FMD MF

i will be accepted with a probability
Pi = e−C∆Ji/T

SA
i , i.e., MF

i will be accepted if Pi > ρ, with
ρ a random number generated via the uniform distribution
over the interval (0, 1), C > 0 a pre-chosen constant, and
TSAi > 0 the annealing ”temperature”, respectively; Otherwise
(i.e., Pi ≤ ρ), the previous PMD and FMD, MP

i−1 and MF
i−1,

respectively, are inherited as the current PMD MP
i and FMD

MF
i , respectively, i.e., MP

i = MP
i−1 and MF

i = MF
i−1. Then,

the annealing temperature TSA is decreased by following an a
priori chosen annealing schedule, e.g., set TSAi+1 = δ ·TSAi with
a pre-chosen δ ∈ (0, 1) and initial value TSA1 > 0, and the
above updating process is repeated until the annealing index
TSA is less than a preset threshold TSAmin.

The efficiency vs. the optimization quality of the above
SA-based searching process can be traded-off through the pa-
rameters involved: The optimization quality can be improved
with more iterations by choosing a large initial temperature
TSA1 , a large iteration-update parameter δ (close to 1), and a
small threshold parameter C in the probability of each iteration
Pi = e−C∆Ji/T

SA
i , and vise versa. This optimization process

is summarized in Alg. 1.

Algorithm 1: SA-based Optimization of the FMD

Input: PMD MP
0 , FMD MF

0

Output: Optimal FMD MF∗

1 Initialization: annealing index TSA1 , threshold TSAmin,
constant C, δ, the cost function J0 of the FMD MF

0 ;
2 while TSAi > TSAmin do
3 Generate a new PMD MP

i in the neighbor of
current PMD MP

i−1 by the shuffle-and-pair
process;

4 Generate the corresponding FMD MF
i of PMD

MP
i by check-and-removal;

5 Compute the cost function Ji of the new FMD
MF
i ;

6 if ∆Ji = Ji − Ji−1 ≤ 0 then
7 accept MF

i and MP
i ;

8 else
9 accept MF

i and MP
i with probability

P = e
−C∆J

TSA
i ;

10 Reduce the annealing index TSA by an annealing
schedule TSAi+1 = δ · TSAi ;

11 Set the optimal FMD MF∗ = MF
i ;

During the mobile sensing process, the optimal MD MF∗

obtained above is executed by the agent R to capture the dy-
namic signals at all POIs, and the intermittently measured data
at each jth POI, `j for j = 1, 2, · · · , Ns, are acquired and used
to recover/approximate the corresponding dynamic signal—by
solving Eq. (12) via the compressed sensing technique in time
domain.

B. Recovery via Compressed Sensing

For completeness, we briefly describe below the imple-
mentation of the compressed sensing technique in the pro-
posed OSMS-DF approach. For any given POI `j , the data
measured at the N `

j number of measurement intervals, gj [p]
for p = 1, 2, · · · , N `

j , is utilized to recover/approximate the
dynamic signal over the total N t sampling periods, dj [q] for
q = 1, 2, · · · , N t. First, the measured data gj [·] is transformed
to a sparse domain through an appropriately chosen transform,
for example, the discrete cosine transform (DCT) on gj [·],

η(k) =

√
2

N `
j

N`
j∑

p=1

gj [p]
1√

1 + δp1
cos(

π

2N `
j

(p− 1)(2k − 1)),

for p = 1, · · · , N `
j , and k = 1, 2, · · · , N `

j ,
(29)

where N `
j , δp1, and η denote the length of the transformed

signal of gj [p], the Kronecker delta, and the sparse representa-
tion of the observation vector gj [p] in the transformed domain,
respectively. Then, the dynamic signal on each jth POIs, dj [·],
for j = 1, 2, · · · , Ns, is recovered by minimizing the `1 norm
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of the approximated signal in the transformed domain, d̂j ,
[12], [32], i.e.,

minimize ‖d̂j‖1
subject to gj = Φj d̂j = ΦjΨ

−1d̂j
(30)

with

‖d̂j‖1 :=
Nt∑
q=1

|d̂j [q]|. (31)

The above constrained `1 optimization problem can be readily
solved by using existing algorithms (e.g., [32]).

Finally, the data measured during those intervals in the
reservoir set Sr, where Sr = ∪Ns

j=1S
r
j , can be utilized to further

improve the accuracy. For example, when the compressed
ratio is relatively high and the recovery quality can be further
enhanced by having more sampling data, then these data can be
combined with those acquired in Sj , and then used in the CS-
based recovery above. Alternatively, these data can be used to
replace those recovered for the intervals in Srj . More advanced
techniques such as nonlinear interpolation [33] can be explored
to further exploit the data acquired in the reservoir set.

The proposed OSMS-DF technique is summarized in Alg.
2.

Algorithm 2: Optimal Single Mobile Sensing of Dy-
namic Field (OSMS-DF)
Input: total measurement time Ttot, POIs Ls, agent

maximum transition speed vmax

Output: Dynamic signals at each POI
1 Initialization: Discretization (Ttot ∼ VStot ,

pre-calculation (all |`i − `j |/vmax);
2 Randomly partition the total measurement set Stot into

Ns number of sub-measurement sets Si for
i = 1, 2, · · · , Ns, and assign the corresponding
sequence VSis to POI `i, respectively, to generate
PMD MP ;

3 Check agent mobility constraint and move those
unsatisfying POI-transition intervals to the transition
set ST to generate the FMD MF ;

4 Use the PMD MP and the FMD MF obtained above
as the input in the simulated annealing process to
obtain the optimal FMD MF∗ (see Alg. 1);

5 Conduct the mobile sensing according to the optimal
FMD MF∗;

6 Recover the dynamic signal at each POI via the
compressed sensing.

IV. ANALYSIS OF THE PROPOSED OSMS-DF PROCESS

As the total transition time, i.e., the number of intervals
in the transition set ST , |ST |, directly effects the recov-
ery/approximation quality, i.e., the smaller is |ST |, the larger
amount of time is used for the measurement, we characterize,
in the proposed OSMS-DF approach, how the number of
measurement intervals at each POI varies in the probability
sense—The randomness nature of the SA process and the

Fig. 3: A schematic representation of neighborhoods at dif-
ferent level, H0,H1,H2, · · · of a POI `j : the black dots
denote the POIs other than `j , the red-dashed circles denote
the boundaries of each Hk neighborhood, and the area inside
each red dashed circle denote the corresponding neighborhood
H0,H1,H2, · · · , respectively.

distribution of the measurement intervals imply that the as-
signment of an interval to measurement at a POI or to a POI-
transition is also random.

Particularly, for any given POI `j , all other POIs, `is for i =
1, 2, · · · , Ns and i 6= j, can be grouped into neighborhoods
of different levels based on the POI-transition time needed,
Hk, k = 0, 1, · · · , N tr

max, where the level of neighborhood
is determined by the discretized transition time needed: `i ∈
kth-level neighborhood Hk of `j if agent R can be transited
from `i to `j by having additional k number of measurement
intervals (see Fig. 3), i.e.,

`i ∈ Hk, if Dtr(Tr
∗
`i,`j ) ≤ k, and

H0 ⊂ H1 ⊂ H2 · · · ⊂ HNtr
max

,
(32)

where, respectively, Tr∗`i,`j is as defined in Eq. (20), Dtr(·)
is given in Eq. (8), and N tr

max is as given in Eq. (9)—by
Assumption 7, when k = N tr

max, the kth-level neighborhood
Hk contains all the POIs, i.e., HNtr

max
= Ls. Each of the kth

neighborhood of `j is a closed set.
The Lemma below quantifies the probability of any given

pth measurement interval being assigned to a POI `j , P`j ,p.

Lemma 10. Let Assumptions 1, 6, and 7 hold, then in
the proposed OSMS-DF method, the probability of agent R
measuring at any given jth POI `j (j = 1, 2, · · · , Ns) in any
given pth interval (p = 2, · · · , N t), P`j ,p, is given by

P`j ,p = P`j ,1

[ ∑
`i∈H0

P`i,p−1 +

min(p−2,Ntr
max−1)∑

k=1

(
( k∏
τ=1

PTr,r
p−τ

)
·
( ∑
`i∈Hk

P`i,p−k−1

))

+

min(p−1,Ntr
max)∏

τ=1

PTr,r
p−τ

]
(33)
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PTr,r
p = 1−

∑
`i∈Ls

P`i,p, (34)

where P`j ,1 is the probability to choose POI `j initially (i.e.,
the probability of choosing POI `j at the beginning of the
entire measurement process), and PTr,r

p is the probability for
moving the pth measurement interval to the reservoir set Sr

or to the transition set ST by the check-and-removal process,
respectively.

Proof. We show Eq. (33) first. For a given FMD MF , consider
the general scenario where in the current (p− 1)th measure-
ment interval, agent R is at a given POI `i, and the next
measurement POI `j is in the kth-level neighborhood of `i,
i.e., `j ∈ Hk for k = 0, · · · , N tr

max. Thus, the probability of
taking measurement at POI `j in the next pth interval, P`j ,`i,p,
is the sum of the probability of the following two cases: Case
1: `j ∈ H0 (including `j = `i), PH0

`j ,`i,p
; and Case 2: `j ∈ Hk

for k > 0, PHk

`j ,`i,p
,

P`j ,`i,p = PH0

`j ,`i,p
+ PHk

`j ,`i,p
. (35)

In Case 1, no additional transition time is needed (i.e., the
transition can be attained within the minimal transition time
IT ), thus the probability PH0

`j ,`i,p
equals to that of having agent

R at POI `i in the (p− 1)th interval, P`i,p−1, i.e.,

PH0

`j ,`i,p
= P`i,p−1. (36)

In Case 2, agent R is able to measure at POI `j only if
it can be transited from POI `i to POI `j within the given
transition time, i.e., only if Eq. (32) holds at the pth interval.
This condition requires that p > k + 1 and all the preceding
k consecutive number of intervals, p − 1, p − 2, · · · , p − k,
are all assigned for the POI-transition from `i to `j . Thus, the
probability PHk

`j ,`i,p
is given by the joint probability of having

all p−k, p−(k−1), · · · , p−1 ∈ ST ,
∏k
τ=1 P

Tr,r
p−τ , and having

agent R at POI `i in the (p−k−1)th interval, P`i,p−k−1, i.e.,

PHk

`j ,`i,p
=

(
k∏
τ=1

PTr,r
p−τ

)
· P`i,p−k−1, for p > k + 1. (37)

As the transited-to POI `j can be any one of the POIs in the
Hk neighborhood of `i, i.e., the probability of choosing `j
among all the POIs in the Hk neighborhood is the same as
that of choosing `j without the POI-transition time constraint,
or equivalently, the initial probability of choosing `j among
all POIs, P`j ,1, the probability of measuring at any POI `j in
the pth interval, P̂`j ,`i,p, can be obtained via Eqs. (35,36,37)
as

P̂`j ,`i,p = P`j ,1P`j ,`i,p

= P`j ,1

(
PH0

`j ,`i,p
+ PHk

`j ,`i,p

)
= P`j ,1

(
P`i,p−1

+

(( k∏
τ=1

PTr,r
p−τ

)
·
(
P`i,p−k−1

)))
.

(38)

Similarly, as the transited-from POI `i can be any one of those
in theH0 level (case 1) or any of those in theHk level (case 2)

neighborhood of `j , the probability of measuring at any given
POI `j in the pth interval can be obtained from Eq. (38) as

P̂`j ,p = P`j ,1

[ ∑
`i∈H0

P`i,p−1

+
( k∏
τ=1

PTr,r
p−τ

)
·
( ∑
`i∈Hk

P`i,p−k−1

)]
.

(39)

Finally, as in general, the level of neighborhood that shall be
considered increases with the interval p until the maximum
level k = N tr

max is reached, the number of neighborhood Hk
at most equals to N tr

max, the probability of measuring at any
given POI `j in the pth interval is given by

P`j ,p =
∑
`i∈Ls

P̂`j ,p

= P`j ,1

[ ∑
`i∈H0

P`i,p−1 +

min(p−2,Ntr
max−1)∑

k=1

(
( k∏
τ=1

PTr,r
p−τ

)
·
( ∑
`i∈Hk

P`i,p−k−1

))

+

min(p−1,Ntr
max)∏

τ=1

PTr,r
p−τ

]
.

(40)

The last term in Eq. (40) is the probability of having agent
R in the highest possible level of neighborhood of `j in
the previous (p − (min(p − 1, N tr

max)))th interval. With the
above probability quantified, the probability of moving any
pth interval to the reservoir set Sr or to the transition set ST
by the check-and-removal process can be obtained directly as
that of the interval not assigned for measurement at any POI,
as given in Eq. (34). This completes the proof.

Lemma 10 shows that the probability of measuring at a
given POI depends on the index of the measurement interval
p itself. Next, we examine as the measurement interval index p
increases along with the total number of measurement intervals
N t, how the probability of measuring at any given POI varies,
i.e., how the following distribution vector Pp varies,

Pp =
[
P`1,p, P`2,p, · · · , P`Ns ,p

]T
. (41)

We show the asymptotic convergence of this distribution for
the case where the POI-transition can be attained within one
measurement interval, N tr

max = 1.

Theorem 11. Let Assumptions 1, 6, and 7 hold, and for
any given jth POI `j , all other POIs are in the H0 or H1

neighborhood of `j , then in the proposed OSMS-DF method,
the measurement distribution vector Pp in Eq. (41) converges
as the index p increases with the total number of measurement
intervals N t, i.e.,

lim
p→Nt,Nt→∞

(Pp −Pp−1) = ~0, (42)

where ~0 ∈ <Ns×1 denotes a zero vector.

Proof. We proceed by defining a weight vector W
`j
Hk
∈

<Ns×1 where W
`j
Hk

[i] = 1 if POI `i ∈ Hk of `j and
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W
`j
Hk

[i] = 0 otherwise, and rewriting Eq. (33) in vector inner
product form by using W

`j
Hk

and the definition in Eq. (41) as

P`j ,p = P`j ,1

[
〈W`j
H0
,Pp−1〉

+

min(p−2,Ntr
max−1)∑

k=1

( k∏
τ=1

PTr,r
p−τ

)
〈W`j
Hk
,Pp−k−1〉

+

min(p−1,Ntr
max)∏

τ=1

PTr,r
p−τ

]
.

(43)

For case N tr
max = 0, i.e., all the POIs are in the H0-level

neighborhood of `j , no additional measurement interval is
needed for the POI-transition, and ST = ∅, thereby, PTr,r

p = 0
for any p = 1, · · · , N t, and Eq. (43) is simplified as

P`j ,p = P`j ,1〈W
`j
H0
,Pp−1〉, (44)

with W
`j
H0

[i] = 1 for i = 1, 2, · · · , Ns. As
∑Ns

j=1 P`j ,p = 1,
we have P`j ,p = P`j ,1 holds for any p > 1.

For case N tr
max = 1, all the POI-transition can be attained

within at most one measurement period, i.e., all the POIs are
in the neighborhoodH0 orH1 of POI `j , Eq. (43) is simplified
as

P`j ,p = P`j ,1

( ∑
`i∈H0

P`i,p−1 + PTr,p−1

)

= P`j ,1

( ∑
`i∈H0

P`i,p−1 + 1−
∑
`i∈Ls

P`i,p−1

)

= P`j ,1

1−
∑

`i∈Ls\H0

P`i,p−1


= −P`j ,1〈W

`j

H−0
,Pp−1〉+ P`j ,1,

(45)

where H−0 = Ls \H0 is the complement set of H0 in set Ls,
and W

`j

H−0
is the corresponding weight vector, i.e., W`j

H−0
[i] =

1 if W`j
H0

[i] = 0 and W
`j

H−0
[i] = 0 otherwise.

By Eq. (45), the measurement distribution vector Pp can be
obtained as

Pp = −ŴT
H−0

Pp−1 + P1, (46)

where ŴH−0
∈ <Ns×Ns

is the weighting matrix given by

ŴH−0
=

[
P`1,1W

`1
H−0

, · · · , P`j ,1W
`j

H−0
, · · · , P`Ns ,1W

`Ns

H−0

]
.

(47)
As the diagonal elements of the above matrix ŴH−0

are all

zero (i.e., `j ∈ H0 for ∀j = 1, · · · , Ns), and
∑Ns

j=1 P`j ,1 = 1,
the above matrix ŴH−0

is a Markov matrix [34]. Hence, by the

stability of Markov matrix [34], all the eigenvalues of ŴH−0
,

λj , has |λj | < 1 for j = 1, · · · , Ns, and the discrete dynamics
system given by Eq. (46) is stable,

lim
p→∞

Pp = lim
p→∞

p−1∑
i=0

(
−ŴT

H−0

)i
P1 (48)

exists. This completes the proof.

Remark 12. The above result of Theorem 11 should also
hold for higher-order case. By following similar algebraic
operations it can be verified that in general scenario of Hk-
level neighborhood with k ≥ 2, the distribution vector can
also be represented by a difference dynamic equation as

P̂p = ŴP̂p−1 + P̂1, (49)

where

P̂p =
[
Pp,Pp−1, · · · ,Pp−Ntr

max+1

]T
, (50)

P̂1 =
[
P1, 0, · · · , 0

]T
, (51)

are the augmented vectors of measurement period distribution,
and

Ŵ =


−ŴT

H−0
−ŴT

H−1
· · · −ŴT

H−
Ntr

max−2

−ŴT
H−

Ntr
max−1

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0


(52)

is the corresponding discrete-dynamics matrix, with

ŴH−k
=

[
P`1,1

( k∏
i=1

PTr,r
p−i

)
W`1
H−k

, · · · ,

P`j ,1

( k∏
i=1

PTr,r
p−i

)
W

`j

H−k
, · · · ,

P`Ns ,1

( k∏
i=1

PTr,r
p−i

)
W`Ns

H−k

]
,

for k = 1, · · · , N tr
max − 1.

(53)

Simulation has shown that the eigenvalues of Ŵ are always
within the unit circle, and thereby, the distribution vector
Pp alse converges. Rigorous proof of this extension will be
pursued in the future work.

Remark 13. Theorem 11 implies that the number of measure-
ment intervals NM

j at any POI `j can be estimated by the limit
case—when the total number of measurement intervals N t is
large enough, the number of measurement intervals taken at
any given POI `j , NM

j , can be estimated as

NM
j =

P`j
P`j ,1

N `
j ≈

P`j ,p

P`j ,1
N `
j , (54)

where N `
j is the initial number of measurement intervals

assigned to POI `j before the check-and-removal process,
and P`j can be estimated by the value of P`j ,p when the
measurement index p is large enough.

Remark 14. Theorem 11 also implies that the distribution of
the measurement intervals between the POIs can be adjusted
through the choice of initial distribution P1: Based on the
transition requirements between the POIs (determined by the
spatial distribution of the POIs relative to the agent mobility
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Fig. 4: A schematic representation of the neighborhoods of
POIs A, B, and C, according to the preset agent speed limit
(3 per transition interval) and the distances between these POIs
in Table I, respectively.

capacity), the initial distribution can be selected such that
the distribution of the measurement intervals can be adjusted
towards chosen POIs over others (as demonstrated in the
simulation example below). Such a non-uniform distribution of
measurements is particularly useful when the POIs are largely
dynamically heterogenous with respect to each other.

V. SIMULATION EXAMPLE: DISCRETE NANOMECHANICAL
MAPPING

In this section, we illustrate the proposed technique by
applying it to discrete nanomechanical mapping (DNM) [24]
of a heterogeneous sample in simulation.

A. Discrete Mapping of Dynamic Mechanical Variations at
Nanoscale

In this simulation, we aim to quantify the nanomechanical
variations of a heterogeneous polymer sample undergoing a
temperature fluctuation—the scenario where the sample was
putting on a heater whose temperature was controlled to follow
a given profile. As such, the viscoelasticity of the sample
would fluctuate along with the temperature fluctuation differ-
ently at different POIs. The proposed OSMS-DF technique
was implemented to plan the measurement sequence of the
cantilever probe between the chosen POIs (see Fig. 1), such
that the dynamic viscoelasticity variations of the sample at
these POIs can be recovered from the intermittently sampled
data. For ease of comparison, the parameters had been nor-
malized in the simulation.

More specifically, we consider three POIs A, B, and C,
where the normalized distance between them are given in
Table I, and the normalized maximum agent speed vmax was
chosen as 3 (i.e., 3 unit distance per transition interval). The
variations of the viscoelasticity at these three POIs under
the effect of an external temperature profile hT (t) were

TABLE I: Distance between the sampling locations (POIs) A,
B, and C with the maximum agent speed at 3 per transition
interval and the neighborhood relations between them (H0 or
H1).

distance, neighborhood A B C
A 0, H0 4, H1 3, H0

B 4, H1 0, H0 3, H0

C 3, H0 3, H0 0, H0

modeled by the following linear Prony series [35]—by the
time-temperature superposition principle of polymers [36]

Ei(hT (t)) = E∞,i +
3∑
j=1

Ei,j · exp−hT (t)/τi,j , i = A,B,C

(55)
where E∞,is, Ei,js and τi,js, whose normalized values are
given in Table II, are the fully relaxed modulus, the modulus
coefficient, and the discrete relaxation times, respectively [36],
and hT (t) was the external temperature field applied (i.e., the
temperature of the polymer sample at time instant t).

To simplify the presentation and focus on the sensing
performance itself, we assumed in the simulation that the
viscoelasticity Ei(hT (t)) was the measured signal—In AFM-
based nanomechanical experiments, the viscoelasticity Ei(t) is
obtained by measuring the force applied and the indentation
generated in the sample, and then computing Ei(·) from
a chosen probe-sample interaction mechanics model (e.g.,
Hertzian Contact model) [35].

The temperature profile hT (·) of a multiple sinusoidal signal
was applied: hT (t) = 40 + 10 sin(0.04πt) + 10 sin(0.4πt) +
10 sin(4πt). The total measurement time was set at 120
seconds and the length of each measurement interval IM

was set at 0.1 second, with the ratio between the acquisition
interval and the minimal transition interval at IA : IT = 3 : 1,
resulting in a total of 1,200 measurement intervals. Thus, for
the given distance between POI A and POI B in Table I,
additional measurement interval was needed for POI A-B
transition.

B. Implementation of the OSMS-DF Technique

The simulation was implemented in MATLAB. First, the
total 1,200 measurement intervals were randomly permuted
by following a uniform distribution, then partitioned into
three sub-measurement sets Sk with |Sk| = 400 for k =
1, 2, 3 (see Eq. (21)). Then, the corresponding sequence VSk

s
were assigned to each POI `j , respectively, k = 1, 2, 3
for `j = A,B,C, respectively, resulting in an initial PMD
MP

0 ∈ <3×1200 (see Eq. (22)). The proposed check-and-
removal process was applied to this initial PMD MP

0 , and
the obtained FMD MF

0 was employed along with MP
0 as

the initial choice in the SA-based shuffle-and-pair process
to minimize the cost function Eq. (13), where the weights
were chosen as c1 = 1 and c2 = 20/9 to equally weight the
transition distance and the total measurement time (the value
of c2 equaled to the averaged transition distance). Ten out
of 400 measurement periods were randomly selected (based

TABLE II: The parameters of the Prony model at the three
POIs.

POI A B C
E∞ (MPa) 5 5 5
E1 (MPa) 1 1 1
E2 (MPa) 3 2 1
E3 (MPa) 5 3 1
τ1 (ms) 10 50 100
τ2 (ms) 1 10 50
τ3 (ms) 0.1 1 10
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Fig. 6: Comparison of (a) the transition speed of the probe between each measurement interval given by the PMD MP
0 in Fig.

5 and the corresponding MF
0 , respectively, (b) the same comparison for the optimal PMD MP∗ and the corresponding optimal

FMD MF∗ after the SA-based optimization process, respectively, where the speed limit is marked by the green dashed-line, and
(c) the comparison of the number of transition intervals at each required speed regions (i.e., the number ‘i’ for i = 0, 1, 2, 3, 4
denotes the speed region from i− 0.5 to i+ 0.5) for the above four measurement decisions, respectively.

on uniform distribution) from each sub-measurement set Sk
(k = 1, 2, 3) to update the PMD MP

i and the FMD MF
i for

the next iteration (See Eqs. (25)–(28) in Subsec. III-A). The
cost function of the updated FMD MF

i was then calculated
and compared to that of the previous FMD MF

i−1, and the
FMD MF

i was accepted or rejected based on the cost function
difference, ∆Ji, with a probability Pi = e−C∆Ji/T

SA
i , where

C = 1
∆Ji

if i = 1, and C = 0.2 otherwise. The temperature
TSA was initially set at TSA1 = 2.8037 to keep the probability
of accepting a non-decreasing worse solution at the begin-
ning P1 = 0.7, then decrementally reduced via a multiplier
δ = 0.9970 until TSAmin = 0.1390. This SA-based shuffle-
and-pair process was iterated 1,000 times, and the optimal
measurement decision MF∗ was chosen for the mobile agent
to follow in the measurement simulation next.

Finally, the intermittently measured viscoelasticity data at

these three POIs, gA[·], gB [·], and gC [·], were obtained by
selecting the viscoelasticity values (at these three POIs) in
the measurement intervals given by the optimal FMD MF∗.
The viscoelasticity value at each POI—under the external
temperature fluctuation—was recovered using the compressed
sensing algorithm via the `1-minimization in Eq. (30). Also,
the so-called sequential-sensing method was implemented,
where samples were taken sequentially in turn at the three
POIs—under the same setup and speed constraint above, and
the entire sequence of viscoelasticity data was obtained from
the sampled data via linear interpolation. As the sequential-
sensing represented the ideal, constraint-free scenario (no
constraints other than the mobile speed were imposed, and
no requirement of minimizing the cost in the total distance
and number of transitions was considered), it served well as
a baseline to assess the quality/performance of the proposed
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SA process across the 1,000 iterations, respectively.

technique.
To evaluate the effect of the weights c1 and c2 in the

SA-based optimization process on the sensing performance,
the simulation was repeated for c1 : c2 = 100 : 1 and
c1 : c2 = 1 : 100, respectively. We also examined the
performance of the check-and-removal process in maintaining
the distribution of the measurement periods between the POIs
(Lemma 10 and Theorem 11 in Sec. III). First, for the given
distances between the three POIs and the speed of the agent,
the neighborhood relation of these three POIs was determined,
as shown in Table I and Fig. 4, and then used to determine the
probability of taking measurement at each POI in any given
pth interval by Lemma 10 (see Eq. (33)), as given blow

PA,p = PA,1

[(
PA,p−1 + PC,p−1

)
+ PTr,r

p−1

]
, (56)

PB,p = PB,1

[(
PB,p−1 + PC,p−1

)
+ PTr,r

p−1

]
, (57)

PC,p = PC,1. (58)

At POI C, agent R can reach from any POI within one
transition interval, thereby, the probability of measuring at POI
C in any period was the same as the initial distribution of
the measurement interval, PC,1. And the probability of having
any pth measurement interval for transition was obtained
accordingly as

PTr,r
p = 1−

(
PA,p + PB,p + PC,p

)
(59)

The probability of measuring at each POI for each measure-
ment period were computed recursively via Eq. (56) to Eq. (59)
for given initial distribution PA,1, PB,1, PC,1. In the simula-
tion, the uniform initial distribution PA,1 = PB,1 = PC,1 = 1

3

and PTr,r
1 = 0 was chosen, and then compared to those ob-

tained for non-uniform initial distributions PA,1 = PB,1 = 2
5 ,

PC,1 = 1
5 , and PA,1 = 1

2 , PB,1 = 1
3 , PC,1 = 1

6 , respectively.

C. Results and Discussions

The simulation results are presented and discussed be-
low. First, the measurement sequences at each POI given
by the initial PMD MP

0 and the corresponding FMD MF
0

are compared in Fig. 5(a), respectively, and after the SA-
based optimization process, the sequences of the optimal
PMD MP∗ and the optimal FMD MF∗ are also compared
in Fig. 5(b), respectively. The required speeds of the agent for
each between-POI transition are compared for the PMD MP

0

and the FMD MF
0 in Fig. 6(a), where the speed limit of 3

(units per transition interval) is marked (green-dashed line),
and zero speed corresponds to no-transition. Correspondingly,
the required transition speeds for the optimal PMD and the
optimal FMD, MP∗ and MF∗ respectively, are also compared
in Fig. 6(b). The numbers of measurement intervals at each
required speed in the above four MDs are compared in
Fig. 6(c), where the histogram were all zero at trans. speed=2,
because the minimal required speeds, computed by using the
distance between the POIs (3 or 4) and the given transition
time (IT or IT + IM = 5IT ) via Eq. (3), were either in the
region of [0,0.5), or [0.5,1.5), or [2.5,3.5), or [3.5,4].

The accumulated transition distance of the mobile agent for
PMDs MP

0 and MP∗ and FMDs MF
0 and MF∗ are compared

in Fig. 7. The SA-based optimization process was further
examined through the progress of the cost function J , the
total transition distance Ltot, and the total number of intervals
for transition |ST | along with the SA iteration process in
Fig. 8, respectively. The recovered signals and the errors
at the three POIs are compared to the original signals and
those obtained via the sequential-sensing method in Fig. 9
(a), (b), respectively. In Fig. 9 (b), the relative 2-norm error
was quantified with the DC-component (E∞,i = 5 in Eq. (55))
removed—to better evaluate the three methods for dynamics
mapping. The recovery errors of using c1 : c2 = 100 : 1 and
c1 : c2 = 1 : 100 in the SA-based optimization process are
compared in Fig. 10(a), (b), (c) for POI A, B, C, respectively,
and the accumulated transition distance of these two cases are
compared in Fig. 10(d). Finally, the variation of the probability
distribution of the measurement between the POI A, B, C with
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Fig. 9: The recovered results using the initial FMD MF
0 (red) and the SA optimized FMD MF∗ (yellow) are compared to the

underlined dynamic signals (blue) and those obtained using the sequential-sensing and linear interpolation (purple) at POIs
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0 (red) and MF∗ (yellow) with comparison to that obtained via the sequential-sensing at POIs A (a2), B (b2), and C (c2),
respectively, with the relative 2-norm errors shown in the legend.

the increase of the interval is compared in Fig. 11, and the
expected distribution of the total measurement interval number
between the three POIs by Eqs. (56)-(59) are compared to the
actual numbers counted in the simulation for the FMD MF

0

and the optimal FDM MF∗ in Fig. 12, respectively. The curves
of POI A and POI B in Fig. 11 (a) and (b) overlapped each
other, because both the neighborhood relations of these two
POIs to POI C and the initial condition were chosen the same.

The simulation results showed that by using the proposed
OSMS-DF technique, the temporal-spatial coupling in mobile
dynamics sensing was avoided while the sensing performance
was optimized (Objectives O1, O2, and O4). First, through
the random permutation and partition process, assignment
of one interval to multiple POIs was avoided (blue ‘o’ in
Fig. 5(a)). However, as the agent mobility capacity (speed
limitation) was not accounted for in the partition, out-of-range
transition speed occurred in the PMD MP

0 obtained—as shown
in Fig. 6(a), (c), speed of 4 (over the limit of 3) occurred at
over 260 POI-transitions (over 32% of the total transitions).
Contrarily, through the proposed check-and-removal process,
by using only a small fraction (16.42%) of the intervals for
POI-transition, such out-of-range transitions were avoided: As
shown in Fig. 5(a), (b), the non-overlapped blue ‘o’s and
red ‘+’s (representing the transition-only intervals) were only

∼ 16%, and no out-of-range transition speed occurred in the
FMD MF

0 obtained (see Fig. 6(a)).

The sensing performance was further enhanced through the
proposed SA-based shuffle-and-pair process: First, the number
of out-of-range transition speed occurred less in the optimal
PMD MP∗ than those in the previous PMD MP

o (see Fig. 6
(b), (c)). As a result, the accumulated POI-transition distance
was reduced by nearly 17% (from 2693 to 2242, see Fig. 7).
Consequently, the number of POI-transitions was dramatically
reduced (i.e., the number of intervals with zero transition speed
dominated, see Fig. 6(c)), so was the accumulated transition
distance (reduced from 1630 to 1228, an over 32% reduction,
see Fig. 7). Moreover, random “jump” in the SA-optimization
process was clearly observed in the simulation, as the cost
was not monotonically reduced during the initial phase of
the iteration process, but eventually reduced later (Fig. 8(a)).
The choice of balanced weights on the transition distance and
the number of transition intervals was also clearly observed
(Fig. 8(b)). As the number of POIs Ns, in general, was orders
of magnitude smaller than the total number of measurements
N t (i.e., in many applications Ns < 10 shall be chosen to
ensure the recovery quality via the CS method [12]), the Ns

increase effect on the convergence of the SA-based optimiza-
tion tens to be small (as also observed in our simulation
when Ns was increased from 3 to 5). Thus, the simulation
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Fig. 10: The error of the recovered signals by the SA optimized FMD MF∗
c1 (red) with weight c1 : c2 = 100 : 1 and by the
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Fig. 11: The first fifty probabilities that the agent R will measure at POIs A, B, and C in the simulation example with
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5 ; and (c) initial distribution PA,1 = 1

2 , PB,1 = 1
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6 , respectively.

results demonstrated the efficacy of the proposed technique
in addressing the coupling and optimization requirements in
mobile dynamics sensing.

Next, we can see from the simulation that the dynamic
viscoelasticity of the sample can be accurately captured by
the proposed method. The highest frequency component of the
input at 1 Hz implies that the total 1200 measurements over
the 120 seconds was enough to capture the dynamic variation
at any of the POI—Through the proposed mobile sensing
scheme, such a dynamic variation can also be recovered from
the intermittently measured data of size ∼300-400 at each
POI: The recovered nanomechanical variations at all three
POIs by using the FMD MF

0 followed the “true” dynamics
closely, with the relative 2-norm error between 2.5% to 22.4%,
respectively (see Fig. 9). On the contrary, when using the
sequential-sensing method aliasing in capturing the dynamics
at the three POIs was pronounced (see the inserts in Fig. 9
(a)), resulting in much larger errors in capturing the dynamics
of the viscoelasticity at the three POIs—the relative 2-norm
error was three to six times larger than that when using the
proposed technique (see Fig. 9).

Moreover, by using the proposed SA-based optimization,
the total transition distance was reduced by over 25% while
maintaining the same accuracy (see the results of the optimal
FMD MF∗ in Fig. 9). The dynamics mapping quality was
not effected by the type of distribution used in the random
permutation process (Step 2 of the proposed method)—the
quality was ultimately determined by the compressed ratio
relative to the full length of the sequence attained at each
POI. Our simulation results also showed that for ten different
types of distribution used in the permutation, same level of
mapping quality was achieved. Also, through the SA-based
optimization the sensing cost (i.e., the total transition distance)
can be traded-off with the sensing quality (i.e., the number of
intervals fully used for transition—|ST |), by tuning the relative
size of the weights c1 vs c2 in the cost function (Eq. (13)): As
shown in Fig. 10, instead of weighting on the measurement
error (c1 : c2 = 1 : 100), an emphasis on the transition distance
(c1 : c2 = 100 : 1) results in much less transition distance
(a 42% reduction), at the price of a larger estimation error
(as marked out by the errors in Fig. 10(a)-(c)). Therefore,
the simulation results demonstrated that mobile sensing of
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6 , respectively.

dynamic processes at multiple POIs can be achieved by using
the proposed OSMS-DF technique.

Finally, the simulation validated the theoretical prediction
of the measurement interval distribution between the POIs
(Lemma 10 and Theorem 11). For the neighborhood relation
of the POIs given in Table I, the eigenvalues of the distri-
bution mapping matrix ŴH−0

in Eq. (46) were computed
as λ = [0.3333,−0.3333, 0] for the chosen uniform initial
distribution. As a result, the measurement distribution vector
Pp converged quickly to a constant (see Theorem 11 and
Remark 12), as shown in Fig. 11(a). Moreover, it was clear
that such a distribution can be tuned through the choice of
different initial distribution. For example, by choosing a non-
uniform initial distribution of PA,1 = 2

5 and PA,1 = 1
2 , the

measurement distribution at POI A was changed from 0.25
to 0.29 and 0.4, respectively (See Fig. 11(b) and (c)). The
theoretical prediction of the measurement distribution matched
those counted in the simulation well—the simulation values
for the initial FMD MF

0 were at most 7% less than the
theoretical prediction, and those for the optimal FMD MF∗

were all no less than the theoretical prediction, respectively
(see Fig. 12). Therefore, the simulation results showed that
through the proposed OSMS-DF technique, distribution of
the measurement time between the POIs converged, and can
be tuned through the choice of initial distribution to ensure
and enhance the dynamics recovery at different POIs—for
dynamically heterogeneous fields.

VI. CONCLUSION

In this paper, an optimal mobile sensing algorithm based
on compressed sensing is proposed to capture the dynamics
variations at multiple POIs by using a mobile agent. A check-
and-removal process based on random permutation and parti-
tion was developed to remove the spatial-temporal coupling in
the dynamics sensing with limited mobile sensing capability.
Then a simulated-annealing based shuffle-and-pair process was
explored to minimize the total POI-transition distance while
preserving the measurement quality. The distribution of the

measurement intervals between the POIs was characterized in
the probability sense, and converge of the distribution was
shown for a simplified case. Simulation study of implemen-
tation of the proposed technique in discrete nanomechanical
mapping was demonstrated and discussed. For future work,
the robustness and performance of the proposed approach can
be further improved via online adaptation of the measurement
decision, to account for external disturbances and dynamics
heterogeneity of the sampling field.
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