
Image Enhancement in Active Incoherent Millimeter-Wave
Imaging

Stavros Vakalis, Daniel Chen, Ming Yan, and Jeffrey A. Nanzer

Michigan State University, East Lansing, MI, USA

ABSTRACT

Active incoherent millimeter-wave imaging is an emerging technology that combines the benefits of passive
and active millimeter-wave imaging by using incoherent noise transmission and passive receive interferometric
processing. In this paper, we investigate computational image processing techniques to achieve enhanced image
reconstruction with a small number of antenna elements and without the need for accurate calibration. We
demonstrate enhancement of images through simulation and experimental data collected with a 38-GHz active
incoherent millimeter-wave imager.
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1. INTRODUCTION

Millimeter-wave imaging with improved resolution and real-time operation can benefit multiple applications,
with the most prominent examples being contraband detection,1,2 medical imaging,3,4 remote sensing,5 and
non-destructive testing.6 One inherent limitation that most current techniques face is slow imaging speed. This
can be attributed to slow data acquisition because of mechanical rotations and scanning, or electrical scanning.7

Computational microwave imaging can significantly reduce the data acquisition time and required number of
antenna elements by employing image processing techniques and computational schemes. Computational imaging
can be used for deblurring and noise reduction. Furthermore, computational imaging can also help mitigate
hardware performance limitations.

Active incoherent millimeter-wave (AIM) imaging is a recently introduced technique that utilizes passive
staring millimeter-wave imaging without the need for high sensitivity receivers. This is achieved with incoherent
noise illumination from multiple transmit locations that mimic the properties of thermal radiation at a much
higher signal-to-noise ratio (SNR). This approach has multiple advantages, including fast Fourier processing
that can take place in real-time, sparse antenna arrays which lead to low system cost and are resistant to
element failures, and no synchronization requirements between transmitters and receivers. Imaging resolution is
inversely proportional to the maximum dimensions of the aperture, while image clarity depends on a number of
factors, including hardware imperfections and system noise. In this work, we compensate for the coarse imaging
resolution and low image quality that can be found in compact millimeter-wave arrays with a small number
of elements and commercially available hardware. We focus on raw image reconstructions captured without
array calibration, and use a computational imaging approach that is applicable in scenarios where accurate
hardware calibration is not available. We use total variation (TV) and Haar wavelet regularization to deconvolve
the image and simultaneously keep the image noise low. The sparsity of the Haar wavelets also maintain edge
information. We measure the point spread function (PSF) of a 38-GHz experimental active incoherent millimeter-
wave imaging system with a corner reflector in a semi-anechoic environment and deconvolve multiple imaging
scenes to demonstrate the feasibility of our proposed technique.
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2. ACTIVE INCOHERENT MILLIMETER-WAVE IMAGING

Interferometric imaging was first developed in radio astronomy8 where large antenna arrays observe the thermally
generated electromagnetic radiation from stars and other stellar objects. More recently, it has been used for
passive millimeter-wave imaging of humans and other objects.9,10 The reason that most interferometric imaging
systems are passive is related to the Van Cittert-Zernike theorem.11 The theorem requires that the scene radiation
should be spatio-temporally incoherent in order for the interferometric image reconstruction to succeed. This
means that the phase response of every point in space should be largely random as a function of time. Thermal
radiation is a result of random motions of atoms and molecules, hence by nature the phase in every spatial
point of a thermally-radiating object is random. However, thermal radiation has very low power in millimeter-
wave band, so passive interferometric systems require highly sensitive receive hardware that necessitates highly
accurate calibration, combined with wide bandwidth and long integration times in order to detect the radiation.
In contrast, active millimeter-wave imaging systems, which illuminate a scene with actively transmitted signals,
do not suffer from these drawbacks, because of the relatively higher SNR obtained from the scattered signals.
Nevertheless, most active millimeter-wave illuminations would not satisfy the incoherence requirement of the
Van Cittert Zernike theorem because they employ coherent signals and every point in the scene would therefore
generate highly correlated responses.

Active incoherent millimeter-wave imaging provides a novel way to mimic the incoherence of thermal radiation
by illuminating the scene with random noise signals from multiple locations.12,13 This retains all the benefits
of passive interferometric arrays, such as sparsity and resistance to failures,14,15 and the use of active signal
transmission significantly boosts the received SNR and therefore mitigates the need for very high sensitivity.16

Additional benefits include that there is no need for exact knowledge of the transmit fields in space, as is common
in coherent computational imaging.17

Interferometric arrays sample the scene visibility V(u, v) which is the spatial Fourier transform of the scene
intensity I. By performing pairwise cross-correlations on a sparse antenna array, samples of the scene visiblity
Vs(u, v) are obtained. The discrete sampling of spatial frequencies can be represented in the above formulation
through the use of a sampling function

S(u, v) =
M∑
m

N∑
n

δ(u− un)δ(v − vm), (1)

where N ·M is the maximum number of baselines, or spatial frequencies, realized by the array. The sampled
visibility can be written as

Vs(u, v) = S(u, v) · V(u, v). (2)

The two-dimensional reconstructed scene intensity is then given by

Ir(α, β) =

∫∫ ∞
−∞
Vs(u, v)e−j2π(uα+vβ)dudv (3)

where α = sin θ cosφ and β = sin θ sinφ are the direction cosines relative to u and v. The spatial frequency
sampling process can be seen in terms of the scene intensity, and the spatial-domain response of the sampling
function, which is the PSF of the array, and it is related to the sampling function in (1) through an inverse
Fourier transform

PSF (α, β) = F−1{S(u, v)}. (4)

The PSF represents a synthesized beam in the spatial domain, and is defined by the baselines realized by the
array. The output of the imaging process, the reconstructed image, is the convolution of the scene intensity and
the PSF

Ir(α, β) = PSF (α, β) ∗ I(α, β), (5)

where ∗ indicates convolution. From this formulation, it can be seen that the reconstructed image will be
modified by the shape of the PSF. Eq. (5) is valid when the PSF is spatially invariant. This is not always the
case, however for a narrow field of view broadside to the antenna array it is approximately true. The ideal PSF
is a Dirac delta function δ(α, β), however in practice it will consist of a main beam and a number of sidelobes
because of the finite spatial bandwidth.



Figure 1. (left) Element locations of 24 element Y-shaped antenna array. (middle) Ideal point spread function of the
24-element array. The ambiguities on the edges can be mitigated by focusing on a narrower field of view. (right) Actual
point spread function when introducing random amplitude and phase errors. The sidelobe level is significantly increased.

Figure 2. (a) Original scene. (b) Simulated millimeter-wave reconstruction with SNR=3.3 dB. The image appears shifted
because of the random phase shifts in the PSF. (c) Deconvolved image using simple Fourier inversion of the Fourier
transform of the PSF. The blurring is mitigated but the noise amplification effect is visible (RMSE= 0.62). (d) Deconvolved
image using TV regularization. The blurring is mitigated, although not significantly, while higher frequency noise is
smoothed out (RMSE = 0.07). (e) Deconvolved image using TV and Haar regularization. The Haar regularization has
retained the edge information of the image, while the TV constraint has reduced noise significantly (RMSE = 0.06).



3. COMPUTATIONAL IMAGING FOR DECONVOLUTION

The PSF is usually used to characterize the blurring effect in the image reconstruction. A naive way to remove
the blurring would be performing deconvolution by converting (5) in the spatial frequency domain and divide the
Fourier transform of the reconstructed scene Vs with the Fourier transform of the PSF (i.e. S(u, v)). However,
this is an ill-posed problem and would result in significant noise amplification. A regularizer function is needed
to compensate for the lost information during the blurring.

The convolution based image formation from (5) can be turned into the general image reconstruction model

y = Ax + n, (6)

where y represents the reconstructed image samples from Ir, A is an operator modelling the blurring process
from the PSF, x represents the true image samples from I, and n represents the image noise. An estimate of
the reconstructed image x̂ can be obtained by

min L(x) = ‖y −Ax‖22 + λR(x), (7)

where R(x) is the regularizer function and λ is the regularizer parameter. A very commonly used regularizer
function for millimeter-wave images, which are piece-wise constant functions of reflectivity, is total variation
TV(x)

TV(x) =
∑
i

√
(∆H

i x)2 + (∆V
i x)2 (8)

where ∆H
i and ∆V

i are the finite differences operator along the horizontal and vertical dimension of x.18,19

TV is also frequently used for denoising without the deconvolution.20 Another commonly used regularizer
function for deconvolution of images is the `1 norm ‖ · ‖1 of the Haar wavelet transform. The Haar wavelet Ψ
is a computationally efficient transform and widely used in image processing because it produces a sparse or
approximately sparse matrix. The Haar wavelet regularizer can be written as

min ‖Ψx‖1 (9)

In this work, we will be using TV regularizers along with the combination of TV and Haar wavelet. Haar wavelets
are usually called “square” wavelets and can retain edge information in image reconstructions.21

4. SIMULATED COMPUTATIONAL IMAGING RECONSTRUCTIONS

Simulations were performed in Python using the PyLops toolbox.22 The antenna locations synthesizing a 24-
element Y-shaped array are shown in Fig. 1(left).23 The simulated PSF of the Y-shaped array can be seen in Fig.
1(middle). The ambiguities on the edges of the PSF can be mitigated using a narrower circular window. The
actual PSF when introducing random amplitude and phase errors can be seen in Fig. 1(right). Each antenna is
characterized by a complex gain Gi = egi+jφi , where gi is uniformly distributed in [-0.5,0.5] and φi is uniformly
distributed in [0,π]. Using the actual PSF with random amplitude and phase errors, the simulations can be seen
in Fig. 2. The original scene with an H-shaped target can be seen in Fig. 2(a). The blurred scene is a result
of convolving the original scene with the actual PSF with random amplitude and phase errors plus noise. The
SNR is 3.3 dB. Naively performing deconvolution by division in the spatial frequency domain amplifies the noise
significantly. The root-mean-square error (RMSE) is 0.62. Deconvolving the scene using TV regularization gives
significantly improved results in the noise suppression and achieves RMSE = 0.07. Adding the Haar wavelet
sparsity constraint suppreses the noise even more and the rippling effect from simple TV regularization achieving
RMSE = 0.06.
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Figure 3. (a) Millimeter-wave digital array architecture used in the experimental measurements. Four noise transmitters
are used in combination with 24 receivers. Each receive antenna response is digitized and all the processing takes place
inside the host computer. (b) Photograph of the 38 GHz array. The transmitters (TX) are noted with green color while
the receivers (RX) are noted with red color. All the digital hardware and the computer are placed inside the rack.

Figure 4. (left) Measured PSF using a corner reflector that provides a point-like response. (middle) Deconvolved recon-
struction of a shifted response of the same corner in space using TV regularization. The result is a nice point like response.
A circular mask is used to suppress the ambiguities at the edges of field of view. (right) Deconvolved reconstruction of a
shifted response of the same corner in space using TV and Haar wavelet regularization. The result appears to be almost
the same with the TV deconvolved scene.

5. EXPERIMENTAL COMPUTATIONAL IMAGING RECONSTRUCTIONS

Experimental measurements were conducted in a semi-anechoic environment. The system architecture that was
used is shown in Fig. 3(a) and consisted of 24 receivers shaped in an asymmetric Y-shaped configuration and
four noise transmitters placed outside the receiving array. Each received signal is downconverted to baseband
and sampled using three ATS9416 - 14 bit, 100 MS/s, 16 channel digitizers. A photograph of the imager can be
seen in Fig. 3(b). The 38 GHz receiving array is element-level digital, meaning that all processing of the signals
received at each element occurs in the digital domain.

The 3D-printed receive antenna placement bracket had horizontal and vertical dimensions of 34 cm and 34
cm respectively. The horizontal and vertical spacings between the four transmitters were 56 cm and 49 cm,



Figure 5. (a) Target with two reflecting stripes that was used in the experimental measurements. (b) Experimental
raw scene reconstruction. (c) Deconvolved reconstruction of the scene using TV regularization. The artifacts have been
suppressed significantly. A circular mask has been used. (d) Deconvolved reconstruction of the scene using TV and Haar
wavelet regularization. The reconstruction appears improved compared to the TV reconstructed scene because of the
edge information that the Haar wavelet can retain.

respectively. The transmitters consisted of 0.1-2 GHz calibrated noise sources with 15 dB excess noise ratio
(ENR), that were upconverted to 38 GHz using Analog Devices (ADI) HMC6787A upconverters. At 38 GHz
the noise signal was amplified using ADI HMC7229 power amplifiers. Both transmit and receive antennas were
15 dBi 3D-printed horn antennas that were fabricated at Michigan State University. For the receivers, each
antenna was followed by a 20 dB gain ADI HMC1040 low-noise amplifier (LNA) before being downconverted
to baseband using an ADI HMC6789 I/Q downconverter. A 19 GHz local oscillator (LO) was used for all the
downconverters after being split into 24 ways.

The PSF was estimated using a large corner reflector, which acts as a strong point source. The “dirty” beam
can be seen in Fig. 4 (left). Using the “dirty” beam we can perform deconvolution using TV regularization and
the results can be seen in Fig. 4 (middle) for a a shifted corner reflector point source. A circular mask is used to
filter the spatial ambiguities at the edges of the field of view. The noise has been suppressed and the response
forms the desired shape of a sharp point. The results from the TV+Haar regularization can be seen in Fig. 4
(right). The results using TV or TV+Haar regularizers are minimally different for the single strong point target.

A target with two reflecting stripes was used which can be seen in Fig. 5(a). The distance between the two



stripes is 22 cm, while each stripe has dimensions of 10 by 38 cm. The “raw” reconstruction can be seen in Fig.
5(b). The deconvolved reconstruction using the TV constraint has significantly reduced the noise and the two
stripes are visible in Fig. 5(c). The reconstruction is again multiplied with the circular mask. The deconvolved
scene using TV + Haar regularization can be seen in Fig. 5(d). The edge information has been preserved due
to the use of the “square” wavelet regularization.

6. CONCLUSION

The effect of computational imaging techniques was examined in this work in order to enhance the image
reconstruction of active incoherent millimeter-wave systems. Although the transmitted radiation is not known,
the PSF of the receive array can be estimated through a point source measurement using a corner reflector. The
combination of TV and Haar Wavelet regularization demonstrates that a desirable overall performance can be
achieved given the scenarios that no receiver calibration has been performed.
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