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Abstract

Structural battery composite is a new class of multifunctional lightweight materials with profound
potential in harvesting electrical energy in the form of chemical energy, while simultaneously
providing structural integrity to the system. In this study, we present a multi-physics design
optimization framework for structural battery. The objective of the optimization framework is to
change the geometrical features and material types of the constituents in a composite lamina to
maximize the allowable charging current for a constant rate of charging. In this optimization
framework, three sets of inequality constraints are defined to keep the structural battery
lightweight, and make sure that the amount of induced stress and generated heat due to the
intercalation process remains small. We have also considered several design parameters such as
geometrical features of the composite lamina, volume fractions of fibers and LiFePOj, particles, and
material types of constituents. The proposed framework includes a gradient-based design
optimization method with the ability to perform the optimization process under any source of
uncertainty in the material properties, manufacturing process, operating conditions, etc. It also
contains a Bayesian design optimization scheme to select the best candidate for the materials of the
constituents in a structural battery. We also develop an analytical sensitivity analysis of several
electrochemical/thermal/structural response metrics with respect to a few geometrical and material
design parameters of a composite lamina. The results show that by using the proposed
optimization framework, we are able to maximize the allowable charging current for a constant
rate of charging in the optimized solution compared to the considered reference designs while
satisfying all of the prescribed constraints. Furthermore, we increase the design reliability of
structural battery by at least 45% compared to the deterministic optimized solution. Finally, we
find the optimized material types for the fiber and matrix in a structural battery.

Nomenclature

Symbol Description

L Length of composite lamina

W Width of composite lamina

] Thickness of composite lamina

Ce Relative lithium-ion concentration in the fiber
t Time

Dy Diffusion coefficient

Y1 Coeftficient of intercalate activity

re Radius of species ¢

o Maximum possible concentration of lithium-ion inside the fiber
i Local current density

F Faraday’s constant

I Current in each fiber

Lam Current in the lamina

ng Number of fibers
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Time for charging/discharging of the battery
Electrochemical capacity of species ¢
Total mass of species ¢

Thickness of coating

Volume fraction of species ¢

Stored energy

Inflow energy

Outflow energy

Energy generation

Resistance of species ¢

Temperature

Weighted average of specific heat

Ton conductivity of species ¢

Number of concentric circles in species ¢
Displacement

Strain

Swelling coefficient

Modulus of elasticity of species ¢
Poisson’s ratio

Coeftficient of thermal expansion of species
Stress

Bulk modulus of species ¢

Shear modulus of species ¢

Objective function

Vector of design parameters

Lower bound for the design parameter d;
Upper bound for the design parameter d;
Vector of inequality constraints
Elasticity tensor

Vector of random variables

Response function

PC coefficient

Polynomial basis functions

Total number of coefficients in the PCE
Mathematical expectation

Quadrature points

Probability density function of the independent random variable
Weight of quadrature points

Number of quadrature points
Probability space

Level of variability

Standard deviation

Number of constraints

Level of reliability

Probability of failure

Heaviside function

Number of Monte Carlo samples
Reference temperature

Volume of species ¢

1. Introduction

R Pejman et al

One of the major hindering factors in the development of electric vehicles is that the specific energy of the
batteries is low. To put it in illustration, as it is shown in figure 1(a), the share of battery in the total mass of a
typical electric vehicle such as Tesla Model S is about 28.6%, while the share of mass for the source of energy
(fuel) in a fairly common gasoline car such as Honda Civic is only about 3.3% [1]. Thus, this is a critical issue
for designers that are trying to make electric vehicles as efficient and lightweight as possible. There are two
different approaches to tackle this problem. One approach is enhancing the specific energy of batteries as
most of the research groups are currently working on. An alternative approach that we are looking into in
this study is to take advantage of multifunctional materials enabling us to combine several functions [2-11],
which can potentially lead to a significant reduction in the mass of electric vehicles as it is discussed in [12].
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Recently, a class of fiber-reinforced composite (FRC) materials, namely structural battery composites
(SBCs) is developed, with the ability to harvest electrical energy in the form of chemical energy while
simultaneously provides mechanical integrity in a structural system [13-20]. For instance, as it is shown in
figure 1(b), SBC can be introduced in different parts of an electric vehicle, e.g. doors, hood, roof, etc. And as
it is discussed in [12], introducing SBC in electric vehicles has the potential to reduce both the mass of
vehicle’s structure and the required amount of battery for that vehicle. These materials are quite promising,
but they are still in their early stages of development, and further studies are required for their advancements.
The need to fulfill multifunctionality in SBC results in intrinsically conflicting physical property demands.
SBC simultaneously requires to provide mechanical integrity and harvest electrical energy, which in general
can be conflicting demands [21]. Moreover, electrochemical cyclings generate heat and we need to protect
the SBC from overheating. The design of SBC plays a key role in creating a trade-off between these
conflicting physical property demands. Thus, one of the most important areas of research on SBC is
developing a rigorous multi-physics design optimization approaches, as it is the topic of our current study.

There are two different general designs for SBC (a) laminated [13, 15, 18] and (b) three-dimensional
(3D) [19, 20] battery architecture. In the laminated battery, each lamina has a different function. They serve
as electrodes, separators, or collectors. In 3D battery architecture, carbon fibers are used as both negative
electrode and reinforcement. Moreover, each carbon fiber is coated with a lithium-ion conductive and
electrically insulating solid polymer electrolyte, which works as both electrolyte and separator layer. By
adding a specific type of particles (e.g. LiFePOy,) to the polymer matrix, it is possible to make it a positive
electrode in the battery cell. We concentrate on 3D battery structure in this study as schematically shown in
figure 1(c).

A multi-physic model is required to model the mechanical, thermal, and electrochemical processes that
happen during the charging and discharging of SBC. Several studies are presented in the literature on
modeling the internal stresses in SBC due to electrochemical cyclings [22-26]. There are also few studies on
modeling the damage induces by these internal stresses [27-29]. Moreover, Carlstedt et al performed a
parametric study on the effects of the state of charge on the elastic properties of 3D structural battery
composites [30]. However, these studies did not consider the thermal process that occurs in SBC. Carlstedt
et al recently addressed this issue by presenting a semi-analytic approach to model the mechanical, thermal,
and electrochemical processes under the galvanostatic condition (i.e. constant current charge/discharge
cycles) in a structural battery [31].

There are very few studies in the literature on presenting a design optimization framework for SBC [21].
As one of the few studies in this area, Lee ef al proposed a multi-objective topology optimization approach to
optimize the microstructure of a structural battery electrolyte. They found the material distribution of the
structural battery electrolyte that maximize ionic conductivity and minimize compliance. However, their
approach only considers structural electrolyte instead of the entire structural battery. Thus, there is an
absolute need in the literature to present a multi-physics design optimization framework for SBC. Asp and
Greenhalgh in their recent book chapter [32] mentioned the lack of enough studies in the literature on the
design aspect of SBC.

In this study, we consider a structural battery that includes carbon fibers coated with poly(methoxy
polyethylene glycol (350) monomethacrylate) and bi-continuous polymer matrix reinforced with LiFePO,
and carbon black (CB) particles. Our goal is to provide a design optimization framework for a structural
battery. We aim to maximize the allowable charging current for a constant rate of charging within the
structural battery while three sets of inequality constraints are defined on the maximum allowable mass,
temperature, and stress in a structural battery (see figure 1(e)). In the proposed optimization framework, we
consider several design parameters such as geometrical features of the composite lamina (length, width, and
thickness of composite lamina, and thickness of coating), volume fractions of fibers and LiFePO, particles,
and material types of fiber and matrix.

Various design optimization methodologies can be used to optimize the material and geometrical
features of a structural battery such as gradient-based and non-gradient-based approaches. In this study, we
use the gradient-based design optimization method to optimize the geometrical features of a structural
battery. Note that the gradient-based design optimization method is a widely-used approach in the design
community [33-36]. There are also various methods that we can use to optimize the type of materials for the
constituents in a structural battery. Among them, we select the Bayesian design optimization approach,
which is a non-gradient based method. Bayesian design optimization approach shows promising potential
for the optimization problems dealing with categorical design variables such as material type.

We also want the proposed optimization framework to be able to consider any sources of uncertainty in
the material properties, geometrical features, operating conditions, etc during the optimization process. The
presence of uncertainty may result in a substantial deviation in the structural battery performance and can
potentially lead to a system failure. Hence, considering uncertainty during the design optimization process

3
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Figure 1. (a) Motivation: specific energy of the batteries is low. A comparison between the share of the source of energy in the
mass of a typical electric vehicle such as Tesla Model S and a regular gasoline car such as Honda Civic, (b) idea: introducing
structural batteries in different parts of electric vehicles to reduce the vehicle’s mass and the required amount of battery for an
electric vehicle, (c) schematic of a 3D-battery lamina, (d) proposed design optimization framework for structural battery in this
study, and (e) objective function, constraints, and design parameters considered in this study.

enables the designers to produce a reliable design, i.e. a design that satisfies the prescribed constraints even in
the presence of uncertainty in the material properties, manufacturing process, operating conditions, etc for
structural batteries. There are various approaches to integrate uncertainty into a design optimization process,
such as local expansion-based methods [37], simulation-based methods [38—41], most probable point-based
methods [42, 43], functional expansion-based methods [44—47], etc. The method of choice for this study is
the non-intrusive polynomial chaos expansion (PCE) approach, which is one of the members of functional
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expansion-based methods. We select this approach due to its fast convergence property, and its easy
implementation process. Indeed, the non-intrusive PCE method treats the simulation model as a black-box,
and we do not need to perform any modification to the existing deterministic approach.

The four parts of the proposed design optimization framework are shown in figure 1(d). To develop the
gradient-based design optimization part of the framework, we perform an analytic sensitivity analysis of
several response metrics such as the amount of produced charging current, temperature, mass, and stress in
the structural battery with respect to a few important design parameters such as length, width, and thickness
of composite, the volume fraction of positive electrode particles, the volume fraction of negative electrodes,
and also coating thickness. We then combine the gradient-based design optimization framework with the
non-intrusive PCE method to incorporate uncertainty. The non-intrusive nature of the proposed approach
allows for almost any source of uncertainty to be included virtually in the design optimization procedure.
For uncertainty quantification, we use the reliability-based design optimization (RBDO) method, in which
the main goal is producing a reliable design for a structural battery. By reliable design, we mean that we aim
to decrease the variation in the performance of the structural battery under different sources of uncertainty.
In this method, we efficiently and accurately approximate the statistical moments, failure probabilities, and
their sensitivities with respect to the design variables.

For the Bayesian design optimization scheme, we consider the material types of the polymer matrix and
fibers in addition to the volume fractions of positive electrode particles and negative electrodes as the design
parameters. Thus, we have both quantitative and qualitative design parameters. Bayesian optimization is a
global optimization approach in which a Gaussian process model is maintained for the objective function,
and the objective values are constantly being used to train the model [48].

The remainder of the paper is organized as follows: section 2 presents a multi-physics model for a
structural battery. In section 3, we propose the design optimization approaches and we develop the
sensitivity analysis of the response metrics with respect to the design parameters. In the last section, we solve
several numerical problems to highlight the unique features of the proposed framework, and we provide
some physical interpretation and discussions to give insights for the designers regarding the design of a
structural battery.

2. Multi-physics model

The core of this study is design optimization, which is an iterative process. Using a high fidelity model to
account for all of the complexity of a problem comes at the price of a high computational cost. Thus, using a
simplified or reduced-order model is a priority in most design optimization studies [21]. In particular, in this
study, we are interested in performing a transient study' on a multi-physics problem for the design
optimization of structural battery, which is a costly problem to solve. Thus, using a simplified model is quite
essential for us. Recently, a new semi-analytical multi-physics model is proposed and verified for structural
battery in [31]. They simplified the general multi-physics problem, which involves multiple coupled physical
phenomena, to develop a practical model for determining the internal stress state of the structural battery
during electrochemical cycling. In this study, we use the same model, but we slightly modify the way that we
solve the thermal and structural modules. For completeness, we provide the key concepts and notations
regarding this model in this section.

The schematic of the problem setup is shown in figure 2. A thin composite lamina with length (L), width
(W), and thickness (0) is considered. This structural battery follows the same technology as their
conventional lithium-ion batteries: matrix works as the cathode (positive electrode) and fibers as the anode
(negative electrode), and fiber coating plays two roles (a) separator layer and (b) electrolyte. During the
charging, lithium-ions shuttle from the cathode to the anode, leading to creating an electrical potential
difference between the electrodes. The opposite reactions during the discharging enable the battery to deliver
electrical power. Charging and discharging of structural battery causing volume changes in the electrodes as
well as generating heat in the structure. As a result, internal stress will be induced in the structural battery.
The objective of this multi-physics model is to predict the amount of induced stress, temperature change,
and lithium concentration change in the constituents during the charging cycles.

In this study, IMS65 and T800 carbon fibers are considered as the possible options to be used in the
structural battery. These intermediate modulus fibers have demonstrated very high electrochemical
capacities, which makes them a perfect choice for structural batteries. Fiber coatings are assumed to be made
of poly(methoxy polyethylene glycol (350) monomethacrylate) developed in [49]. Matrix is considered to be
made of bi-continuous polymer network proposed in [50]. Three bi-continuous polymers with different

1 Note that the battery is inherently a transient operating device, therefore we are required to perform a transient analysis on the multi-
physics problems solved in this study.
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Figure 2. (a) Schematic of structural battery lamina. Problem setups for (b) electrochemical, (¢) thermal, and (d) structural

modules.
Table 1. Chemical composition of matrix polymers.
Sample A(g) B (g) 1.0 M LiTES in EC : DMMP (g) DMPA (g)
A/0.65 1 0 0.65 0.01
AB/0.65 0.5 0.5 0.65 0.01
B/0.65 0 1 0.65 0.01

compositions are considered in this study and they are listed in table 1. The main components of these

polymers are bisphenol A dimethacrylate (A), bisphenol A ethoxylate dimethacrylate (B), dimethyl
methylphosphonate (97%) (DMMP), ethylene carbonate (99% anhydrous) (EC),

2,2-Dimethoxy-2-phenylacetophenone (DMPA), and lithium trifluoromethanesulfonate (LiTFES) (96%)

[50]. Matrix is reinforced with LiFePO, and carbon black (CB) particles.

The key assumptions of the multi-physics model used in this study are summarized as follows: (a)

galvanostatic cycling is assumed, i.e. constant current charge cycles; (b) perfect adhesion is assumed between

6
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fiber and coating as well as between the coating and matrix; (c) fibers are assumed to be transversely
isotropic, and coatings and matrix are considered to be isotropic; (d) small deformation is assumed, enabling
us to use linear elasticity; (e) the analysis is assumed to be one-way, i.e. the model only considers the effect of
volume changes and heat generation on stresses’; (f) the amount of generated heat within a structural
battery due to electrochemical cycling is assumed to be dominated by ohmic heat; and (g) as it has been
assumed in the previous studies [24, 28, 31], this model considers the diffusion coefficient of fiber to be
constant during electrochemical cycling for simplicity. Similar to the previous studies [31], one of the
limitations of this model is related to not considering the mass transport in the electrolyte. In the future
studies, we aim to extend the model to account for this limitation.

Three physics of structural, thermal, and electrochemical are involved in this problem. In sections
2.1-2.3, we discuss the governing equations and the proposed solutions for each one of these physics.

2.1. Electrochemical module

In this section, we solve the governing equation associated with the electrochemical module. We consider a
cylindrical coordinate, where r is the radial coordinate, 6 is the angular (hoop) coordinate, and z is the
longitudinal coordinate as shown in figure 2(a). Lithium-ions diffuse into each fiber during the intercalation
process, and the change in the relative lithium concentration of the fiber can be described by the Fick’s
second law of diffusion,

oc;

En [ Df G (1)

where Cy is the relative lithium-ion concentration in the fiber, ¢ is time, Dy is the diffusion coefficient, and ~
is the Laplace operator. Since the length of fibers in the z-direction are much larger than the other
characteristic dimensions of fiber, the diffusion can be considered in-plane, i.e. only function of r and 6.
Moreover, if the fiber is undamaged, the lithium-ion concentration in the fiber does not change in the 0
direction, thus, the Laplace term becomes ~ | 1 gr r% [

The problem setup for the electrochemical module is shown in figure 2(b). To solve (1), two boundary
conditions and one initial condition are needed. For the initial condition, we assume that at time zero, the

lithium concentration in the fiber is zero,
Cor,t] 04 0. )
For the first boundary condition, we consider a zero lithium-ion flux at the fiber’s center,
VCy)r| 0,14 0, (3)

where V is the gradient operator (i.e. V | % ). To present the second boundary condition, we need to
consider one more assumption, in which, we neglect the lithium-lithium interactions inside the fiber leading

to approximation Zﬁﬁ?g ~ 0, where v is the coefficient of intercalate activity. Under this assumption, the

second boundary condition can be written as [28, 52, 53]
i
— Do VCy)r [ re,tH 7 (4)

where r¢ is the fiber radius, ¢ is the maximum possible concentration of lithium-ion inside the fiber, 7 is

the local current density, and F is the Faraday’s constant. Local current density can be computed as

i[ I/)2mreL+where I; is the current in each fiber and 27r(L is the circumferential area of fiber. The current
in each fiber is equal to I [ Ljzm/ns, where L,y is the amount of current in the lamina and n¢ is the number of
fibers. The amount of current in the lamina can be computed as follows:

Ilam[ mln{ Mg, pmp}crateu (5)

where Ciy is the time for charging/discharging of the batteryand fand | are electrochemical capacities of
fiber and particle, respectively. m¢ and 11, are the total mass of fibers and particles within the matrix,
respectively. An analytical solution for (1)—(4) is provided in [54] and can be written as

irg Dyt ]0 A 9’4— —th)\n2
C —0.25: ——: —— I | 6
f)r, t"'[ CODfF r% 2 )\2]0 A + ) rfz /a ( )

2 Indeed, based on the experimental observations in [51], the model assumes that mechanical stresses would not affect the electrochemical
capacity and current flow within the battery cell.

~N
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where ¥ [ r/rp, ris the radial distance from the fiber’s center, J; is the zero-order Bessel’s function of the first
kind, and )\, is the nth root of J;(\).

2.2. Thermal module

In the thermal module, we use a one-dimensional heat generation model based on the thermal energy
balance. The problem setup is shown in figure 2(c). We write the thermal energy balance for each cell that
consists of one fiber, it is coating, and it is surrounding matrix. The radius of the coating (r.) is equal to the
summation of the radius of fiber (r¢) and the thickness of coating (J.). And the radius of matrix () can be
computed as )ry, [ 7¢/+/fr+ where fy is the fiber volume fraction in the lamina. We consider a control volume
around this cell, so the first law of thermodynamic can be written as:

OEs - OB  OFou = OEg (7)

3t[ ot ot~ ot’

where Ey is the stored energy, E, is the energy generation, and E;, and E,y are inflow and outflow terms of
energy transport across the control surfaces.

In terms of boundary conditions, we assume an adiabatic heat transfer condition for structural battery
lamina and its surroundings, i.e. (OE;, /0t [ 0and OEyy/Jt[ 0). This assumption is motivated by the fact
that the amount of heat generated by each cell is the same and since the thermal conductivity of the
surrounding polymer matrix is low, the amount of heat transfer between the cells is very small [31].
Moreover, each laminae will be stacked in a laminate, and they need to be protected against moisture and
oxygen. Thus, further insulation will be required in the final application. As a result, the heat transfer
between the battery cells and the surrounding will be further limited.

The second boundary condition is the presence of an ohmic heat generation rate. Under the assumption
that Ohm’s law is applicable, the ohmic heat generation rate can be computed as Qohm /9t [ Rcenl%;, where
Reer and I are the resistance and current of the cell, respectively. We assume that the chemical reactions
heat generation rates are negligible in comparison with the ohmic heat generation rate. Hence,

OEg /0t | Rceulzeu. Equation (7) can be simplified as follows for the thermal response of each cell

oT
mceuC;VgE [ RealZg, (8)

where m1 is the mass of the cell, T is the temperature, and cZVg is the weighted average of specific heat and
can be calculated as

5

v 1
Al H MyCp, s 9)

m
tot n=1

where m1,, is the total mass, and n corresponds to the nth phase (fiber, coating, matrix, LiFeP, particles, and
carbon black particles).

R can be computed as the sum of the resistance of the paths in the fiber (Ry), coating (R.), matrix (Rp),
and carbon black particles (R,). These resistances are given by the following equations’,

L
R 10
£ s (10)
R.| M (11)
2mLs,
R [ In))re: 0.5)r, — reHfret (12)
m 27 Lsy, '
1)
e 1
Rcb[ zrmLst7 ( 3)

where s. and s, are the ion conductivity of the coating and matrix, respectively, and s¢ and s, are the
electrical conductivity of the fiber and carbon black particles, respectively. The variation of resistances due to
volume changes during charging is assumed to be negligible. Note that as it is shown in [50], sc and s, are a

3 For further details regarding derivation of resistances in the constituents, readers are referred to [31].

8
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function of temperature. We will present the respective equations of them for materials used in this study in
section 4. Hence, R is a function of temperature. We rearrange (8) as

/T]+1 AT L)t —ti+
T

- (14)
Rcell Meell vag ’

i
where j corresponds to the time step j. This is a nonlinear equation, and we solved it by taking advantage of
fzero function in MATLAB [48].

2.3. Structural module
The problem setup for the structural module is shown in figure 2(d). We aim to find the stress distributions
in the fiber, coating, and matrix caused by heat generation and volume change of constituents. We consider
the same cell as the one described in section 2.2, which contains a fiber, it is coating, and it is surrounded
matrix. This axisymmetric problem has a semi-analytical solution by using the concentric cylinder (CC)
model proposed in [30, 55]. As it is shown in figure 2(d), we divide the constituents into (M [ Iy
: M. N,y,) concentric circles, where Ny, N, and N,,, are the number of concentric circles in fiber, coating,
and matrix, respectively.

Navier equation for axisymmetric problem (u [ u,)r-e,) can be written as [56]

dPu,  Vdu, [
drr " rdr 12 ’

(15)

where e, is the unit vector in radial direction and u, is the radial displacement. The solution of (15) for each
concentric circle k can be written as

Ak
u’r‘[ A’l‘r: =2 (16)
r

where A¥ and A% are constants to be determined for each concentric circle k € ]1,91 .
The strain-displacement relations are given by

k
k [ 6“7 k i (17)

c or’ % | r’

r

where £k and 5 are radial and hoop strains for each concentric circle k, respectively. Generalized plain strain
condition is assumed for this problem, i.e. €, [ €, [ const.

The fibers are assumed to be transversely isotropic, and the coatings and matrix are considered to be
isotropic. Hook’s law for fibers (k € |1,9%; ) can be written as

k_ gkck _ ok ok 1 vy v
5r_6rcf_ar [ ﬁ”r‘ﬁ%‘ﬁam (18)
r r z
1 vk vk
k ok ok - k 0k k
g9 — BpCr — ap T " 9—E*rk r—ﬁ Z (19)
T r Z

E_ghCk_ ok T 1o vh o v (20)
er— -« —o0, — =0, — oy,

z z~f z E]Z< z EI; r Elr(
where (¥, 85, and (3% are the swelling coefficients of fiber in the radial, hoop, and longitudinal directions for
concentric circle k, respectively. EX and EX are the radial and longitudinal modulus of elasticity of concentric
circle k. Poisson’s ratio in rf and zr planes are shown with v,y and v,,, respectively. o/r‘, o/é, and ai‘ are the
coefficients of thermal expansion in the radial, hoop, and longitudinal directions for concentric circle k,
respectively. ~ T is temperature change, and o, 0y, and o, are the components of stress in radial, hoop, and
longitudinal directions, respectively.

We can write the Hook’s law for coatings and matrix as follows (k € |9%;: 1,91 ):

1
ek — ok T ﬁ)af—uk)algz ok (21)
_ 1
eo—ay” T[ g)o6 —vors or+; (22)
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1
k k- k kK oky k. _k
e;—a, T ﬁ)az — Vo, optk (23)
In order to solve these equations and find the stress, strain, and displacement components, we need to
find 291: 1 unknowns, which includes 91 values for A’f, I values for A’z‘ , and the constant £,. Hence, we
need 291: 1 boundary conditions. For the first boundary condition, we can consider a zero displacement at
the symmetry axis of the fiber,

uy)r[ 0+ o. (24)

Continuity needs to be satisfied on the interfaces between the concentric circles for displacement and stress,
which provides 291 — 2 equations,

k k+1 k k+1
u et w et o)nt o nek (25)
The outer boundary is considered to have a zero radial stress,

oM rmH 0. (26)

Since generalized plain strain is assumed, the strain in the longitudinal direction needs to result in a zero
average longitudinal stress in the same direction,

oo | r;H

1

%
/ ro.dr| 0. (27)
Tk

—1

N
k=
Hence, we have 291: 1 unknowns and 291: 1 equations. This system of equations can be written as

Ax[ b, (28)

where A is the matrix of coefficients with dimension )291: 1 x 291: 14 x is the vector of unknowns
including A, A%, and ¢, for k € ]1,91 with dimension )29: 1 x 1+4and b is the vector of known values
with dimension )290: 1 x 14

We should also emphasize that in the computation of (21)—(23) for the particle reinforced matrix, we
need to use the effective thermal expansion coefficient (v, cfr) and effective modulus of elasticity (E,, ¢f) as
suggested in [57, 58]

ap — ay 1 fo  1—1p
Omett | Qpfp: am)l —fp+ ) —): , (29)
met | apfp i am)1 =Ty Kip — K% Kion,eft K, Ky
9K,y £t G
Eppetf | g (30)
3I<m,eff . Gm,eff
where f,, is the volume fraction of particles within the matrix. o, and a, are the thermal expansion
coefficient of matrix and particle, respectively. K, and Kj, are the bulk modulus of matrix and particle,
respectively. K, f is the effective bulk modulus and it can be computed as
K, — Ky 93K, : 4G
Km,eff[ Ko 3)I<P 4(’;—9 3mK I?—ﬁ;p ) (31)
p- m = 3)Kp — Kty
and G, «f is the effective shear modulus given by
Gmet| Gm: o (32)
et L 6 () (K 2Gi)

Gp—Gun * 5Gu(3K,+4Gy)

where G, and G, are the shear modulus of matrix and particle, respectively. We verify the presented
multi-physics analysis module by comparing the results of our code with COMSOL in appendix A.

3. Design optimization frameworks

The proposed design optimization framework can perform (a) deterministic gradient-based optimization,
(b) gradient-based design optimization under uncertainty, and (c) Bayesian optimization. The flow chart
showing the steps in each one of these three schemes is shown in figure 3. In sections 3.1-3.3, the details of
the steps in each one of these schemes are presented.

10



10P Publishing Multifunct. Mater. 4 (2021) 024001 R Pejman et al

[ Preprocessing Module ]

y

e
. Preprocessing Module Update Input
Yes
gissegz;ﬁ?e: — for Uncertainty Parameters Based on |«
Y Quantification Quadrature Point i

- J

1

Transient Analysis to
Compute Objective and
Constraints Values

e N
Bayesian Preprocessing Module N

(imizati
O%clhme:rznae‘l’on for Bayesian l
' Optimization )
l Sensitivity Analysis

Gradient-based e A K N
Transient Analysis to

(" Transient Analysis to ) Compute Objective and <
» Compute Objective and \__ Constraints Values Are there
L Constraints Values ) ‘ More
‘ p N Quadrature
Update Gaussian Points?
Sensitivity Analysis Process Model Y,

i ‘ NO

(" Construct PCEs for )

- 4 Maximize the Obiecti d
Update Design Acquisition Function Const jec t“l]f ant‘
___ Parameters to Find the Next onstraint Functions

\__ Sampling Point ) \__and their Gradients )

(" Perform Statistical
Analysis and Compute
Objective and Gradients
Values for RBDO
\_ Scheme J

YES

Converged?

Converged?

YES NO
Conver gcd?

|
a

—’t DONE

Figure 3. Flow chart of the proposed design optimization framework in this study.

3.1. Gradient-based design optimization
A deterministic design optimization problem can be formulated as

min 6,
d
suchthat =b; <d; <ubj, j[ 1,2,...,n4
g0, (33)

where 0 is the objective function, d is the vector of design parameters, Ib; and ub; are the lower and upper
bounds for the design parameter d;, respectively, and g is the vector of inequality constraints. In this study,
the objective is to maximize the allowable charging current (Ij,,) for a constant rate of charging (minimize
—Liam) while there are constraints on the maximum value of mass, generated temperature, and induced stress
in the battery.

In this scheme, we perform an analytic sensitivity analysis of the objective function and constraints with
respect to the design parameters. Six different quantitative design parameters are considered for this scheme,
including length, width, and thickness of structural battery, the thickness of coating, volume fraction of fiber,

11
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and volume fraction of particles within the matrix. We have also considered four response metrics of current,
mass, stress, and temperature.

The sensitivity of current and mass with respect to any of the design parameters can explicitly be found.
Here, we present the sensitivity of the stress with respect to design parameter d;. Without loss of generality,
we can write Hook’s law for the component p of the stress vector for the concentric circle k at the end of the
charging process as

Upk [ Cququ’ (34)

where C is elasticity tensor. For conciseness, we show (34) as o [ Ce.
Taking the derivative of equation (34) with respect to the design variable d; yields

do - OC)E) )i )y,
dd; od;

€)%)dj4 Q) di+Cp) di T)dj+

(35)
0g)x)di+a)di+ Cy)di+ T)d; —H—
C)E)T)di+ G+ ’
od;
All of the terms in the right-hand side of (35) can be computed explicitly except We can expand
follows:
ad, Ox* od; ~ 0T dd; " 9Cy;od; da 8d

where x* is a column vector that only includes A%, A%, and .9, and Cy is the concentration at the end of
charging for concentric circle k, i.e. Cf) rk—i— All of the terms in (36) can explicitly be found except aT and a"

We used finite difference to compute term due to nonlinear nature of (14). To compute S 4> We can take
the derivative of (28) with respect to the design variable d; as follows:

O0A Jx . Jb

Note that %" is actually part of column vector a d , which obtained for concentric circle k. We rearrange the
terms in (37) as

ox [ ob  0A (38)
— [ = - —=x

od; - 0d;  0d;

Equation (38) can readily be solved for % - Thus, we can find ‘9’; and substitute it in (35) to calculate the
sensitivity of stress with respect to the de51gn parameter d;. Note that we have verified the accuracy of our
sensitivity analysis against the finite difference method.

3.2. Gradient-based design optimization under uncertainty
We extend the gradient-based design optimization scheme presented in section 3.1 to incorporate any sources
of uncertainty. To do so, we integrate the non-intrusive polynomial chaos expansion (PCE) method into the
proposed gradient-based scheme. We demonstrate our proposed scheme in the form of the reliability-based
design optimization (RBDO) method. Let’s consider a random variable vector & [ )&, ..., &N, + which
contains N random variables. Any response function Y)&+ i.e. the objective function or constraints, can be
expressed as a convergent series in terms of polynomials. This is due to our assumption on considering
independent random variables with finite variance, which is applicable to most physical processes.

The PCE of Y)&Hn a finite dimensional setting can be written as

N
Ve [ rivi)é+ (39)

i=0

where r; is the PC coefficients, 1); is the polynomial basis functions, and N.: 1 is the number of coefficients.
The polynomial basis functions are selected such that they would be orthogonal with respect to the
probability density functions of the random variables £. Legendre polynomials are used in this study to
satisfy the orthogonality criteria for the random variables [59]. Now that we know the form of basis
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functions in (39), we need to find N. and r;. N, [ N.: 1 is giving us the total number of coefficients in the
PCE and it can be obtained from the following equation

P! )Ns: p%
N[ 1: 1;[1 VO/%:O)NS. vH NG (40)
where Nj is the total number of random variables and p is the maximum order of polynomial ;. To compute
the coefficients r; efficiently, we implement a non-intrusive method. The central idea in this approach is to
find the value of response function Y at some smartly selected points, namely, quadrature points in the
probability space of the underlying random variables.
Using the Galerkin projection method, we can obtain the coefficients as

E]Yy;
Ely7 7

where E[.] is the mathematical expectation. The denominator of (41) can readily be computed since we know
the form of the basis functions,

(41)

I’i[

E; [ Ey, (42)

where 1);; is the univariate polynomial in each directions of &;, j[ 1,..., N;. An analytical form for the
numerator of (41) does not exist, hence, we estimate its value using the quadrature points, i.e.

B | [ newepee =] e e, (43)
q=1

where S(q) is the quadrature points, p)&-Hs the probability density function of the independent random
variable, w'@ is their respective weight, 114 is the number of quadrature points, and 2 is the probability space.
To efficiently selects the quadrature points, we use the Smolyak sparse grid construction, which is based on
the one-dimensional Kronrod-Paterson quadrature [60, 61].

The idea in the RBDO scheme is to obtain a reliable design with a probability of failure under a
predefined acceptable level. The RBDO formulation can be expressed as

nrhinE]H ¢ CpStd] ,
suchthat =b; <d; < ubj, j[ 1,2,....,n4

Pr[ Plg>0 <P j[ L2,...,n (44)

where Cy is a constant determining the level of variability, Std is the standard deviation, , is the number of
constraints, and 3 is a constant demonstrating the level of reliability. Pf[ P]g; > 0 is the probability of
failure and it can be defined as

Pr[ Plg>0 | /91 H)g)&-+p)€ HE, (45)

where H is the Heaviside function. Since the Heaviside function is not differentiable, we replace it with a
continuous smooth approximation as follows:

Pyl /Ql;)tanh>g)f|—<: 1<p)£%d£. (46)

where £ > 0 is a small number that controls the width of the 0 to 1 transition. We can compute (46) by
Monte Carlo sampling on (39), i.e. g))§+{~ 220 rih;) €+ Thus, we have Py | %520 where fg o is the

Msamples

number of samples that satisfies g; > 0 and #2gmples is the number of Monte Carlo samples.
By Monte Carlo sampling on (39), the response function’s mean and variance can readily be evaluated as

Nsamples

! Ve, (47)

i=1

E]Y |

Msamples
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Ngamples

eV E]Y £, (48)

1

E])Y—E]Yﬁ([

Msamples

where it is emphasized that these Y)€& ) 4realizations are efficiently obtained from the PCE of (39).

We also need to obtain the sensitivity of probabilistic measures such as means, variances, and failure
probabilities. These can be evaluated by developing PCEs for sensitivities analogous to what we did for the
random responses. The sensitivity of the response function with respect to the design parameters (d) can be
formulated as

OVE+.
54 [ Eobﬂbi)ﬁ-k (49)

where

(50)

(9)
I T )

By means of Monte Carlo sampling on (49), the sensitivity of mean and variance with respect to the
design parameters can be computed as

Hsamples JY é(i)
oY | _L 1T M (51)

od Msamples i od

=1

and

OE|)Y — E]Y £ mme\ Y )€V ([ pppy [ ;
L ad] ([ " 21 ?941 <_ g]dyzﬁ)&m_E]Y(’ o
samples

i=1

where we should emphasize that the realizations Y)£) +and )£ 4/0d are efficiently computed from their
PCE, equations (39) and (49).
The derivative of of the failure probability with respect to d is given by

namies Qg ) 1) _ <i>(({
o 1 11 g])ﬁ (\ 1 — tanh g’)i > (53)

od 2eNsamples P od

Note that the non-intrusive PCE implementation is substantially facilitated via parallel processing due to the
embarrassingly parallel nature of this method.

3.3. Bayesian optimization

In this study, we aim to use the Bayesian optimization (BO) scheme for the purpose of selecting the best
materials for the constituents. BO is a global optimization method that attempts to minimize the objective
function while satistying constraints for bounded design space. The design parameters can be a combination
of continuous and categorical parameters. BO keeps a Gaussian process model of the objective function, and
train this model through the optimization process by smartly selecting new points in the design space to
evaluate the objective function [48].

The design variables are polymer matrix material, carbon fiber material, the volume fraction of positive
electrode particles, and the volume fraction of fibers. Thus, we have both continuous and categorical design
parameters. The flowchart corresponding to this scheme is presented in figure 3. The optimizer constructs
the Gaussian process model and uses an acquisition function to train it through the optimization process.

BO scheme is much simpler to implement in comparison with the gradient-based scheme presented in
section 3.1. This is due to the fact that there is no need to perform sensitivity analysis since BO is a
non-gradient optimization scheme. However, BO gets computationally expensive when it needs to deal with
a problem that has many design parameters or many constraints.

14
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4. Material properties and simulation parameters

For the base model, we considered IMS65 as the carbon fiber, poly(methoxy polyethylene glycol (350)
monomethacrylate) as the coating, and AB/0.65 as the matrix which is reinforced with LiFePO, and CB
particles. We approximate the electrochemical capacity ( ) of IMS65 carbon fiber and LiFePO4 particles
based on the experimental data in [62, 63] as

£)CrareH 0.18585 — 0.07419 In) Crare+ for Crae € 0.08,6 , (54)
and
2)CrateH 0.1318 = 0.0112 In) Cpae+ for Craee €10.08,6 , (55)

respectively.
Using the experimental data provided in [64], we estimate the modulus of elasticity of IMS65 in the
longitudinal (E.y) and transverse (E,.r) directions as

E.5)Ce+ 300)1—0.1126 C (56)
and
E f)CeH 30)1: 1.5644 C+ (57)

respectively. The temperature-dependent modulus of elasticity of polymer coating (E.) and matrix (E,,) can
be obtained based on the experimental observations in [50, 65]

L 0.1)1 -0.0533)T— 25+  for T €]25,39

E)TH \ 0.001337% —0.109T: 2.26, for T €]39,41 (58)
{ 20, for T € 41,150
E,)T+ 2.95)10 41 —8.364)10 °4T: 0.765. (59)

We estimate the ion-conductivities of the coating (s.) and matrix (s,,) using the experimental data in [50]
se)TH s)1: 1.33)T—25-+ for T€]25,100 (60)

Sm)TH smo)l: 0.033)T—25-+; for T €]25,100, (61)

where s,,,0 and s, are constants equal to 1.9(10~*) and 5(10~°), respectively.
Maximum possible concentration of lithium-ion inside a fiber (cy) can be computed as

£)0.084p¢

7 (62)

Co[

where py is the density of fiber. The rest of the material properties of the constituents for the reference model
are listed in table 2. Simulation parameters for the reference model are also listed in table 3.

5. Results and discussion

In this section, we solve three numerical examples to demonstrate the capability of our proposed design
optimization framework, and we provide discussions regarding the obtained results.
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Table 2. Material properties of the reference model.
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Parameter Fiber Coating Matrix LiFePOy4 CB Reference
D¢ (m”s™") 107" — — — — [24]
E, (GPa) Equation (56) Equation (58) Equation (59) 125 — [23, 27, 50, 64, 65]
E, (GPa) Equation (57) Equation (58) Equation (59) 125 — (23, 27, 50, 64, 65]
Vi 0.45 0.3 0.3 0.28 — (24, 27, 28]
Vi 0.2 0.3 0.3 0.28 — (24, 27, 28]
B (1/Cp) 6.3x 1077 — — — — (62, 66]
Br (1/Cp) 3.2x 1072 — — — — (62, 66]
f 0.5 — — 0.5 0.12 —
p(grem™)  1.85 1 1 3.6 1.8 [31]
a; (1K™ —5.4x1077 2x107° 2x107° 107° 0 (67]
a (1K1 107° 2x107° 2%x107° 1073 0 [67]
o (JgrK™h) 071 1.67 1.67 0.45 071  [31]
s(Sem™h) 690 Equation (60) Equation (61) — 7 [50, 68]
I' (Ahgr™) Equation (54) — — Equation (55) — (62, 63]
Table 3. Simulation parameters for the reference model.
Parameter re (um) Oc (pm) L(cm) W(cm) d(cm) Crate (1/h) Tref (C)
Value 2.5 0.5 2.5 0.05 6 25
Table 4. Range of design parameters for Problem 1.
Design Parameter L (cm) W (cm) d (cm) fe dc (pm) fp
Range [4,20] [1,4] [0.01,0.1] [0.3,0.7] [0.1,0.5] [0.3,0.7]

5.1. Problem 1: design of geometrical features of structural battery (deterministic gradient-based
optimization approach)
We solve an illustrative example using a deterministic gradient-based design optimization scheme in this
section. The objective is to maximize the allowable charging current for a constant rate of charging within
the structural battery while three sets of inequality constraints are defined. First, we want the structural
battery to be lightweight, so we impose a constraint on the maximum allowable mass for the structural
battery. Second, we do not want the structural battery to overheat. Thus, a constraint is considered for the
safe maximum temperature in the structural battery. Finally, we impose a set of constraints on the maximum
acceptable value for stress components in the structural battery. Based on the application of structural
battery and designer’s decisions, these constraints values can be determined. As an illustrative example to
show how our proposed scheme works, we select the constraints to be mo, < 5 gr, T< 35 °C, and

|al.(k)| < 40 MPa, where 11,01 is the total mass of the structural battery and ai(k) is the ith component of stress

(i.e. 0,, 09, and o) in the concentric circle k. We need to emphasize that the proposed optimization method
is general and the inequality constraints can be considered to be any value. For this problem, we select these
values based on the recommended operating temperature for li-ion batteries, and the analysis performed in
the previous studies [24, 31].

Six different design parameters are considered for this problem. Length (L), width (W), and thickness (&)
of structural battery lamina, fiber volume fraction (f), coating thickness (d.), and particle volume fraction
(fp). The ranges of these design parameters are defined based on the values used in the previous studies
[22, 30, 31] (see table 4). Based on the convergence study on the required number of concentric circles for
fiber, coating, and matrix presented in appendix B, we select 100 circles for fiber, 20 for coating, and 20 for
matrix to conduct structural analysis.

Due to the non-convex nature of this problem, we create 20 random initial guesses and perform the
optimization process for them to find the optimized design, as shown in figure 4. For this example, all of
these twenty cases are converged to 0.997 (A). However, the optimized designs of them are different. As it is
explained in [69], it is quite common in the gradient-based optimization methods to have the same objective
value while the design parameters are different. Three cases out of these twenty cases are selected, and the
history plots of their objective function as well as their constraints are presented in the inset plots in figure 4.
Moreover, the values of their objective functions, their constraints, and their design parameters are listed in
table 5 for both their reference and optimized designs.
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Figure 4. Evolution of (a) Ijam, (b) m, (¢) T, and o (ry) during the optimization process of Problem 1. The inset figures show the
history plot of three selected cases out of twenty cases that the results of them are summarized in table 5.

Table 5. Results of three selected cases from twenty random initial designs for optimization Problem 1.

Case 1 Case 2 Case 3

Reference Optimized Reference Optimized Reference Optimized
Tiam (A) 0.441 0.997 0.094 0.997 0.574 0.997
m (gr) 2.92 5 0.84 5 5.57 5
T(°C) 32.38 34.92 27.23 30.17 27.43 34.71
o (r)) (MPa) 39.60 39.69 40.39 39.92 14.05 39.70
L (cm) 12 11.501 8 8.301 16 11.170
W (cm) 2.5 2.495 1.75 2.924 3.25 3.239
0 (cm) 0.05 0.0845 0.0325 0.1 0.0775 0.066
fe 0.5 0.699 0.35 0.699 0.6 0.699
Oc (um) 0.3 0.1 0.325 0.1 0.5 0.1
fp 0.5 0.7 0.35 0.7 0.6 0.699

To better understand the effect of each one of these design parameters on the values of objective function
and constraints in our six-dimensional design space, we perform a sensitivity analysis in a statistical
framework. Using Monte Carlo sampling, we select 1000 random points in our design space and we compute
the sensitivity of objective function and constraints with respect to each design parameter.

Figure 5 shows the probability of having a positive, negative, and zero gradient for Ij,,,, m, T, and o,)r¢+
with respect to the design parameters L, W, 6, f¢, d, and f,. It can be seen that having a larger lamina
(increasing L, W, and 0) results in rising the temperature, mass, and current, while it leads to a drop in the
stress. This behavior is consistent with the observed results in [31]. We need to emphasize again that the
optimizer wants to maximize the allowable charging current while there are constraints on the maximum
possible values for mass, temperature, and stress. Thus, increasing the lamina size would be beneficial for
maximizing the current and satisfying stress constraint, while it would have an adverse effect on satisfying
the mass and temperature constraints.

An increase in the fiber volume fraction results in a drop in the total mass and stress as shown in
figures 5(b) and (d). The reason for observing a reduction in the total mass by increasing the fiber volume
fraction is explained in appendix C. Moreover, a rise in the fiber volume fraction, based on the values of the
other parameters, may lead to either an increase or decrease in the current and temperature (see figures 5(a)
and (c)). Note that an increase in the fiber volume fraction would rise the fiber mass (#1¢) and decrease the
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Figure 5. The probability of having a positive, negative, and zero gradient for (a) Iam, (b) 1, (c) T, and (d) o (ry) with respect to
the design parameters d; for optimization Problem 1.

particle mass (171,). Thus, based on the value of min) g, ,m¢cf (5), the partial derivative of current with
respect to the fiber volume fraction can be positive or negative. Consequently, the change in the fiber volume
fraction may lead to either an increase or decrease in the temperature.

Coating thickness plays an important role in satisfying mass and temperature constraints. Indeed,
increasing the coating thickness would result in decreasing both the mass and temperature of the lamina as
shown in figures 5(b) and (c). But, a rise in the coating thickness might cause the current to decrease
(see figure 5(a)). And finally, figures 5(b) and (c) demonstrate that a rise in particle volume fraction would
increase total mass and temperature.

Thus, the conflicting behaviors explained in this section emphasizes the essence of performing a
systematic design optimization approach to simultaneously satisfying all the constraints and maximizing the
current’.

5.2. Problem 2: design of structural battery under uncertainty (RBDO)

In this section, we optimize the design of a structural battery by using the RBDO scheme, and we compare
the results with the deterministic (DET) approach to better understand the advantage of considering
uncertainty in the optimization procedure. As an illustrative example, we consider uncertainty in the coating
thickness (d.) and electrochemical capacity of particles ( ). We define an independent and uniform random
variable £ [ )&, 6+ where & [ 0.16]—1,1 and & [ 0.1 p]—1,1. The base model of the structural battery
presented in section 4 is considered as the reference design. In this optimization problem, we aim to
maximize the allowable charging current for a constant rate of charging while three sets of inequality
constraints are imposed to the optimization problem for the maximum allowable mass of 5 gr, temperature

4 Note that the results provided in this section are based on the assumptions that we considered in our multi-physics model, and as
explained in section 2, in the future, we aim to extend the proposed framework to incorporate a more comprehensive model.
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Table 6. Optimized designs of Problem 2.

Scheme L (cm) W (cm) 0 (cm) fr fp
DET 14.66 2.49 0.065 0.519 0.7
RBDO 14.29 1.96 0.085 0.529 0.682

Table 7. The effect of changes made by the optimizer in the design variables of the optimized design of the RBDO scheme compared to
the DET approach. The first row is the sign of change in the design variables from the optimized design of DET to the optimized design
of RBDO schemes( Ad; = di,pgpo — disper)-

AL<O0 AW <0 A6>0 Afp>0 Afp, <0
m + + - + +
T + 0 - + +
Uz(rf) - 0 —+ + 0

+: Positive effect on satisfying the constraints.

—: Negative effect on satisfying the constraints.

0: No effect on satisfying the constraints.

=: Either positive or negative effect on satisfying the constraints.

of 35 °C, and stress of 20 MPa. The design parameters are L, W, d, ff, and f,, and their ranges are similar to
the ranges defined in table 4.

For the RBDO scheme, we use Cy [ 0.1, and we consider the level of reliability to be at least 95%, i.e.

B[ 5( . We should emphasize that by 95% reliability, we mean that the optimized design should satisfy the
prescribed constraints on the maximum allowable mass, temperature, and stress in the structural battery for
at least 95% of the uncertainty scenarios. Without loss of generality, we select a polynomial of order 5 for our
PCE construction. We also consider the number of Monte Carlo samples to be 10 000 to estimate the
statistical moments of response functions. The values of the design parameters of the optimized designs
obtained from DET and RBDO schemes are presented in table 6.

We compute the sign of change in the design variables from the optimized design of DET to the
optimized design of RBDO schemes, as Ad; [ di,ggpo — diyper to understand the decisions made by the
optimizer to obtain a reliable design, i.e. a design that satisfies the prescribed constraints in the presence of
uncertainty (see table 7). We then use the results of figure 5 to interpret whether this increase or decrease in
the design variables is helpful or not for the optimizer to satisfy the constraints in the RBDO scheme. The
results show that the optimizer needs to consider a trade-off between the changes that it wants to make in the
design parameters to satisfy the constraints. For instance, the decrease in L is helpful to satisfy the constraints
on m and T for the uncertainty scenarios, while it adversely affects the process of satisfying the stress
constraint. An opposite behavior can be seen in the changes that the optimizer made in §. An increase in §
helps the optimizer to satisfy the stress constraint while it is not helpful in satisfying the mass and
temperature constraints.

Figure 6 compares the true probability density function (PDF)° of m, T, and o, )r¢+or the optimized
designs of the DET and the RBDO schemes. As it is summarized in table 8, the optimized design of the
RBDO scheme outperforms the optimized design of the DET optimization method in terms of having a
smaller mean value, standard deviation, and probability of failure. The probability of failure in satisfying the
mass, temperature, and stress constraints in the optimized design of DET is 51.65%, 50.47%, and 50.4%,
respectively. By using the RBDO scheme, we obtained a reliable design, in which the probability of failure for
all of the constraints is less than 5%.

5.3. Problem 3: design of constituents materials (Bayesian design optimization)

In the last problem, we aim to select the best materials for fibers and matrix from the pre-defined options to
maximize the allowable charging current for a constant rate of charging and satisfy the imposed constraints.
The constraints considered in this problem is exactly similar to the ones imposed in Problem 1. The design
parameters are the material of the matrix, the material of fibers, the volume fractions of positive electrode
particles, and the volume fraction of fibers.

> True PDF is plotted using ksdensity function in MATLAB for all 10* uncertainty scenarios. The PDF can be defined as }(a) =

;117 ]":] K (%) , where 1 is the number of data points, h is the bandwidth, a is the variable that we want to find its PDF, and K(.)

is the kernel smoothing function.
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Table 8. Summary of the statistical analysis results of Problem 2.

R Pejman et al

Metric Scheme E Std Py
m DET 5 0.036 51.65
RBDO 4.94 0.035 2.73
T DET 35.06 1.257 50.47
RBDO 33.24 1.039 5
o(rf) DET 20 1.112 50.40
RBDO 18.13 1.080 3.99
(a)
10 ; - - -
—DET = Failure
- = RBDO
8 B -— - b
/
I I .
= 6 ,
> |
at -
]
2t -
/
0 iy L
4.85 4.9 4.95 5 5.05 5.1
m (gr)
(b)
0.35 T T T T
— DET = Failure
0.3f|- = RBDO 1
0.25F 1
= 0.2F 4
a
~0.15} J -
1
0.1¢ ; .
0.05} ! 1
/
0 L
30 32 34 36 38 40
T (°C)
(©)
0.35 — T T T
- =) Failure
0.3 - -
0.25 J
= 0.2 ]
a
& 0.15 i
0.1 J
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0
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o,(rr) (MPa)
Figure 6. True PDF of (a) m, (b) T, and (c) o,(r¢) for the optimized designs of DET and RBDO schemes used for Problem 2. The
failure region, in which the constraint is violated, is indicated with the red shaded area.
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Figure 7. History Plot of the objective function of optimization Problem 3. The material types and design parameter values of 6
indicated points in the history plot (i.e. points P;—Pg) is also shown in the figure. The colors indicate the materials selected by the
optimizer.

Three types of common materials for polymer matrix in a structural battery, as explained in table 1, are
selected as the options for matrix material. These materials are named A/0.65, B/0.65, and AB/0.65. The
material properties of AB/0.65 are presented in section 4. The ion conductivity of material A/0.65 and B/0.65
can be approximated by (61) while using s, equal to 2.1(10~*) and 2(10~*), respectively [50]. Moreover, the
temperature-dependent modulus of elasticity can be approximated for material A/0.65 by E,,,) T+ 2.78
Y1072 — 6.768)10°4T: 0.701 and for material B/0.65 by E,,) T+ 4.55)107°>% — 10.541)10 4T
: 0.608 [50].

We consider two different types of carbon fibers (T800 and IMS65) as the options for fiber materials. The
material properties of IMS65 are presented in section 4. The electrochemical capacity of T800 can be
approximated by )CraeH 0.21366 — 0.07729 In) Crae+ for Craee €10.08,6 [62]. The density, heat
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capacity, and longitudinal thermal expansion coefficients are 1.8 gr cm 3, 0.75 (J grK—!), and —5.6(10~7)
(K™1), respectively [70]. The ion conductivity of T800 is 714 (S cm~!) [68]. For the fiber and particle
volume fractions, we assume a lower bound of 0.3 and an upper bound of 0.7 in the design space.

The history plot of the optimization Problem 3 is shown in figure 7. The optimizer selects T800 as the
material for fiber, B/0.65 as the material for matrix, fiber volume fraction equal to f¢ [ 0.552, and particle
volume fraction equal to f, [ 0.6985. We have selected six different points on the history plot, and their
corresponding design parameters are shown in figure 7.

The main reason that the optimizer prefers T800 over IMS65 for the carbon fiber is that for this problem
using T800 leads to an increase in the objective function (i.e. the allowable charging current). To explain this
behavior, we need to emphasize that for a constant Cy, the current is only correlated to min{ ¢my, ,m,},
i.e. [y occmin{ ¢myg, ,mp}, cf (5). For the obtained volume fractions of fiber and particles in the optimized
solution, the value of min{ ¢mg, pm,} for the cases that T800 and IMS65 are selected as the material for
fiberis pmpand my, respectively®. Since ,my is larger than ¢ of IMS65, the maximum value of the
current occurs when the optimizer selects T800 as the fiber material.

6. Conclusions

The structural battery is a new class of multifunctional materials that can harvest electrical energy while
providing mechanical integrity. These materials are in their early stages of development, and there is an
absolute need in the literature to provide design optimization frameworks for them to enhance their
capability and effectiveness. In this study, we present a multi-physics design optimization framework to
maximize the allowable charging current for a constant rate of charging in a structural battery by changing
the geometrical features and material types of the constituents in a composite lamina. In this optimization
framework, three sets of inequality constraints are defined to keep the structural battery lightweight, and
make sure that the amount of induced stress and generated heat due to the intercalation process remains
small. This framework contains a gradient-based design optimization scheme, which can perform the
optimization process under any source of uncertainty, as well as the Bayesian design optimization method
aimed to select the best candidate for the materials of the constituents in a structural battery. We employ the
non-intrusive polynomial chaos expansion (PCE) approach to quantify the uncertainty propagation. This
method facilitates the inclusion of almost any source of uncertainty in the design optimization process.

Design is an iterative process and often requires a simplified or reduced-order model to decrease the
computational burden. In particular, in this study, we need to perform a transient analysis on a multi-physics
problem which is a costly problem to solve. Thus, to reduce the computational burden, we take advantage of
a simplified and efficient semi-analytical model. To build our design optimization scheme, we develop an
analytical sensitivity analysis of several response metrics with respect to the considered design variables.
Moreover, for the uncertainty quantification, the non-intrusive PCE allows for using of parallel processing
due to its embarrassingly parallel nature leading to a reduction in the computational cost. The most
important findings of the study have been listed in the following points:

e The presented design optimization framework enables us to optimize the geometrical features of a
structural battery lamina as well as the material types of the constituents based on the applications and the
design’s requirements.

e Using the developed sensitivity analysis in the statistical framework, we investigate the effect of the
considered design parameters in this study such as geometrical features of the composite lamina and
volume fractions of fibers and LiFePO, particles on the considered response metrics including current,
temperature, mass, and stress.

o The results reveal that for the considered design space in the problem solved in this study, having a larger
composite lamina leads to an increase in the temperature, mass, and current, while it results in a drop in
the stress.

e By performing optimization under uncertainty, we increase the reliability of the optimized design, i.e. the
probability of satisfying the prescribed constraints in the presence of uncertainty, by at least 45% in
comparison with the deterministic optimized design.

6 Note that for the optimized solution the mass of fiber is n; = 1.5318 gr and the particle mass is 1, = 0.7737 gr. Moreover, for
Crate = 6 (1/h), we obtain I't = 0.0752 (Ah/gr) for T800, I'r = 0.0529 (Ah/gr) for IMS65, and I', = 0.1118 (Ah/gr).

22



10P Publishing

Multifunct. Mater. 4 (2021) 024001 R Pejman et al

Acknowledgments

The authors acknowledge the financial supports by a 2019 Career Development and a 2020 Faculty Summer
Research awards (Grant No. 284094) as well as the high-performance computing resources (PROTEUS: the
Drexel Cluster) at Drexel University. The authors would also like to thank the National Science Foundation
(Grant No. 2034108) for supporting this work.

Conflict of interest

There are no conflict of interests to declare.
Appendix A

We verify the analysis module used in this study by comparing the displacement and stress components
obtained from our Semi-Analytical Framework with a finite element model set up in COMSOL [71]. To do
so, we consider the base model introduced in section 4, and we create a 2D axisymmetric model in
COMSOL. The displacement along the symmetric axis is assumed to be zero, and the external surface is
considered to be free. The lithium concentration in the fiber is approximated by using a 1D axisymmetric
diffusion model, providing input to the structural module. The temperature change within the domain is
computed using (14), providing inputs for calculating the thermal strains. The generalized plane strain is
assumed for this problem, and the displacement and stress distribution is obtained at the end of the charging
step. Figure A1 demonstrates the comparison between the Semi-Analytical Framework and COMSOL. We
observe a perfect agreement between the results confirming the accuracy of our analysis module.

Note that as we mentioned in section 3.1, we have verified the accuracy of the gradient-based
optimization scheme used in this study by comparing the developed analytic sensitivity analysis against
finite-difference. We have also performed the optimization process from different initial designs to make sure
that the produced solutions are indeed optimized. Since the structural battery is a new concept and still in
the early stages of development, we currently do not have the capability to perform an experimental
validation for the proposed solutions, and we aim to extend our framework to incorporate experimental
validation in future studies.

Appendix B

To find the appropriate number of concentric circles for fiber, coating, and matrix, we perform a convergence
study using the material properties and simulation parameters of the base model presented in section 4 as it
is shown in figure B2. Based on the results, we select 100 circles for fiber, 20 for coating, and 20 for matrix.
Note that in this convergence study, ¢ [ 2.5 ym, . [ re—r¢[ 0.5 um,and 0y [ rm—1c [ 16/

Vs — 1o & 0.5 pum. Since the radius of fiber is five times larger than the thickness of coating and matrix, we
considered the number of circles in the fiber to be five times larger than the ones in the coating and matrix in
our convergence study to have uniformly spaced circles in the cell.

Appendix C

In this section, we mathematically prove that an increase in the fiber volume fraction in the considered
design space in Problem 1 of section 5.1 leads to a decrease in the total mass. We can compute the total mass
(myor) as follows:

mtot[ peVes pVer pmVm: Ppri PecbVeb, (C.1)

where pg, pe, pm ,Pp, pPeb are the densities of fiber, coating, matrix, LiFePOy particles, and carbon black
particles, respectively. Vi, V., Vi, , V},, Vi, are the volumes of fiber, coating, matrix, LiFePOy particles, and
carbon black particles, respectively.

Equation (C.1) can be expanded as

Mot [ pffthot . PcW)T’g - er_‘L: pm)l - ff‘l}l - fp - fch"i'vtut: pp)fp‘el - ff"vtot

(C.2)
¢ peb)ferHL — FrViors

where f, is the volume fraction of carbon black within the matrix and Vi is the total volume of lamina.
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Figure B2. Convergence study to obtain the appropriate number of concentric circles in each constituents.
The partial derivative of (C.2) with respect to f¢ is given by
Oy
aff [ PtViot pm)_l : fp © feotVior — pp)fp‘wtot - pcb)fcb‘gltot- (C.3)
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We can readily show that for the given material properties and simulation parameters in section 4, (C.3)

reduces to )0.754 — 2.6, WLJ. Hence, for f, > 0.29, g—’f’; will be a negative number. Since we considered

fp €1]0.3,0.7 in our design space, we observe that an increase in fiber volume fraction would lead to a drop
in the mass.
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