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A B S T R A C T   

More than half of all streams globally are non-perennial, and thus dynamic due to their expanding and retracting 
nature. Field mapping in conjunction with observational data from gauges and/or in-situ loggers is a typical 
approach for studying non-perennial stream dynamics, but these approaches underrepresent their spatiotemporal 
variability. High-resolution distributed hydrological modeling promises to bridge this gap, thanks to advances in 
model physics, remote sensing, and computational power. As the first step towards this goal, we investigate the 
capability of distributed hydrologic modeling to capture stream dynamics in Upper Blue River Basin, OK. 
Coupled Routing and Excess STorage (CREST), a distributed hydrological model, is used to simulate spatio
temporally varied streamflow at 10-meter spatial resolution and daily time steps. USGS stream gauge data and in- 
situ state logger data are used to calibrate and validate the simulation at the watershed outlet and small 
headwater tributaries, respectively. Dynamic Surface Water Estimate (DSWE), a LANDSAT product is also 
compared with simulated water presence in high-order streams. Results show that the CREST model can capture 
low-moderate streamflow values at the watershed outlet with a log-NSE value over 0.7 in the validation period, 
while underestimating high flow values due to the daily time step. Also, the calibrated model can accurately 
estimate wet/dry status as monitored by in-situ state loggers in nine headwater catchments. The dynamic stream 
networks are mapped over 2510 stream segments using the CREST simulation. Non-perennial streams are the 
most dynamic in small headwater tributaries (contributing area <2 km2) and high-order streams are sustained by 
perennial flow. As hydrologic interpretation of the stream dynamics, the interannual and seasonal variability in 
rainfall and evapotranspiration is well reflected by the water occurrence in streams. Across various catchments, a 
consistent threshold behavior is found between drainage density and unit discharge, indicating the control of 
runoff generation on the flowing stream networks. The mapping also identifies differences in stream dynamics 
caused by heterogeneities in land cover and soil properties. Given the prevalence of dynamical streams world
wide, our analysis illustrates the potential for mapping them using distributed hydrologic models.   

1. Introduction 

Out of all of the Earth’s streams, non-perennial streams (those that 
do not continuously flow, Busch et al., 2020) comprise about half of the 
total stream length (Datry et al., 2014). These streams often reside in 
headwaters and extend/retract seasonally and during storm events (e.g., 
Jensen et al., 2017; Shaw, 2016). The frequency, timing, and duration of 
drying in non-perennial streams are particularly important for river 

ecosystems at multiple spatiotemporal scales (Allen et al., 2020; Larned 
et al., 2010; Walker et al., 1995). In spite of their ecological and hy
drological significance, the actively flowing stream networks and their 
spatiotemporal dynamics have received relatively little attention until 
recent years. Many field surveys have been conducted to investigate 
stream dynamics at seasonal and storm event scales (Durighetto et al., 
2020; Godsey and Kirchner, 2014; Goulsbra et al., 2014; Jensen et al., 
2019; Lovill et al., 2018; Meerveld et al., 2019; Peirce and Lindsay, 
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2015; Shaw et al., 2017; Whiting and Godsey, 2016; Zimmer and 
McGlynn, 2017). A common finding from these studies is that climate 
variabilities cause a major proportion the global stream networks to be 
dynamic. The non-perennial streams in headwaters play a major role in 
shaping the stream dynamics (Bishop et al., 2008), and thus need to be 
characterized with accuracy and spatiotemporal granularity. 

Compared with perennial streams, it is more challenging to charac
terize the non-perennial streams because of the distinct hydro- 
meteorologic settings, e.g. rainfall and evapotranspiration irregularity, 
soil and land cover heterogeneities (Niedda and Pirastru, 2014; Peleg 
et al., 2015). Most importantly, the sources of hydrological data are 
limited in coverage and spatial density. The primary source has been 
gauging data, but gauge stations are often spatially sparse and on 
perennial rivers close to urban areas (Benstead and Leigh, 2012; Datry, 
2012) rather than in headwaters where non-perennial streams are 
located (De Girolamo et al., 2015; Eng et al., 2016). In addition, various 
loggers can be deployed spatially to measure electrical conductivity 
(Chapin et al., 2014), water temperature (Constantz et al., 2001), and 
water level and/or the presence-absence of water (Bhamjee and Lindsay, 
2011; Vander Vorste et al., 2016). Time series data from the loggers can 
be used to track the movement of wetting and drying fronts (Bhamjee 
and Lindsay, 2011) and the persistence of surface waters in different 
reaches (Vander Vorste et al., 2016). 

Remote sensing is an emerging way to monitor non-perennial 
streams. Various remote sensing techniques have been used to mea
sure proxies for discharge (e.g., river height or width) from which to 
estimate flow regimes. Examples of these techniques are air- and space- 
borne measurements of surface velocity; radar altimeters to measure 

surface-water elevations; and measurements of wetted areas and bank 
heights to estimate flow volumes (Costa et al., 2013; Gleason and Smith, 
2014; Puckridge et al., 2000). However, most remote sensing techniques 
are best suited for large rivers and have limited utility for small head
water streams due to low spatial resolution and dense vegetation cover 
(Costigan et al., 2017). Out of the all remotely sensed data, satellite 
imagery has relatively high spatial resolution with vast spatial extent but 
low temporal frequency, which is insufficient for capturing the stream 
intermittency that can be temporally dynamic (Hamada et al., 2016). 

When monitoring approaches have only limited data for a location of 
interest at some discontinuous time steps, modeling approaches can 
provide high spatiotemporal granularity and predict/simulate scenarios 
in response to changing environmental conditions, such as global 
change and water extraction for human uses. The key to successful 
simulation of non-perennial streams firstly depends on the capability of 
model structure to represent transition from low to zero flow regime, or 
the discontinuities in the flow regime (Azarnivand et al., 2020a; Cam
porese et al., 2014, 2019). Also, the water balance should be calculated 
integrating various catchment storges, i.e. streams, soils and ground
water (Azarnivand et al., 2020b). Lumped models are explored in many 
studies (e.g., Cipriani et al., 2014; Ivkovic et al., 2014; Ye et al., 1997) 
because of the easy of application, low data requirement, few parame
ters, and good performance at the catchment outlet. For example, the 
widely-used Soil Water Assessment Tool (SWAT, Gassman et al., 2007) 
accounts for precipitation, evapotranspiration, surface runoff, infiltra
tion, lateral flow, and percolation and has been successful in modeling 
and also projecting flow intermittency under natural, current, and future 
conditions (e.g., Chahinian et al., 2011; Tzoraki et al., 2016; Brown 

Fig. 1. Maps of the relative location in US, digital elevation model with stream networks, land cover, soil types of the upper blue river basin (UBRB). (For inter
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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et al., 2015). In comparison, distributed hydrological modeling receives 
spatially refined geographical data, meteorologic forcing and tracks or 
outputs models fluxes (streamflow, infiltration, evapotranspiration) and 
states (soil moisture, groundwater levels). In recent studies on non- 
perennial streams, increasing attention is given to distributed models 
that integrate surface and sub-surface water by solving multiple 
nonlinear dynamics (Fatichi et al., 2016). For example, the CATHY 
(Catchment Hydrology) model has been applied in intermittent or 
ephemeral catchments to investigate afforestation (Azarnivand et al., 
2020a), water balance complexities due to heterogeneous land use 
(Dean et al., 2016), and hydrologic response to rainfall frequency 
(Azarnivand et al., 2020b). Also, the model MIKE SHE was used to study 
water and salt dynamics of intermittent catchments (Daneshmand et al., 
2019, 2020). As commonly pointed out in these studies, distributed 
models are well-suited for natural catchments (Fatichi et al., 2016) as 
the heterogeneous, dynamic water movements across surface and sub
surface layers are dealt with in an integrated continuum. 

However, these few modeling studies of non-perennial streams/ 
tributaries mostly focus on small-sized headwater catchments. The 
limited spatial scale does not fully cover the stream dynamics across 
various stream orders. Meanwhile, previous studies on stream dynamics 
mostly reply on monitoring approaches via fixed gauges, loggers, and 
field surveys, which is limited by the logistical challenges, spatial den
sity, temporal frequency of the collected data (e.g., Bhamjee and Lind
say, 2011; Godsey and Kirchner, 2014; Jensen et al., 2019; Peirce and 
Lindsay, 2015). To bridge this gap, we use high-resolution process-based 
distributed hydrologic modeling over a relatively large catchment to 
provide streamflow estimates of high spatial density and temporal fre
quency as the base of mapping stream dynamics. The combination of 
high spatial resolution and large scale enables a comprehensive view of 
numerous small non-perennial headwater tributaries as well as the high- 
order perennial streams. Moreover, stream gauge and state logger data 
are used for calibrating and validating model outputs to improve model 
performance at various stream orders. The feasibility of satellite images 
in detecting stream dynamics is also explored. 

The overarching goal is to provide a-priori estimates and hydrologic 
interpretations of the stream dynamics across non-perennial and 
perennial tributaries using high-resolution distributed modeling. The 
study aims to answer the following research questions: 1) As indicators 
of stream dynamics, can the model simulation capture flow values in 
high-order large streams, and wet/dry status in low-order non-perennial 
streams? 2) In spite of their inherent limitations, whether and how can 
satellite imagery products and in-situ state loggers be utilized in hy
drologic modeling as calibration/validation sources? 3) How do the 
actively flowing networks vary in space and time in response to seasonal 
wetting and drying? 

The paper is organized as follows. Section 2 describes the study area, 
data used in this study, model configuration, and methodology. Section 
3 presents the results of hydrologic performance, comparison of CREST 
and satellite imagery, validation using in-situ state loggers, mapping of 
dynamic streams, as well as discussion on the results. Section 4 con
cludes the study and proposes future directions. 

2. Methodology 

2.1. Study area 

The study area is the headwaters of the Blue River Basin, or the 
Upper Blue River Basin (hereafter, UBRB) located in Southeastern 
Oklahoma with a drainage area of 483 km2. Typical of a continental 
climate, the region experiences occasional extremes of temperature and 
precipitation. Severe weather including tornadoes and thunderstorms 
occur in the region as a result of interactions between cold and warm air 
masses. The mean annual precipitation, temperature, and snow per
centages are 1116 mm, 16.4 ◦C, and 8.2% from 1980 to 2020 according 
to National Climate Data Center’s archive of global historical weather 

and climate data (https://www.ncdc.noaa.gov/cdo-web/search). The 
blue river basin features a dry period from May to September, and a wet 
period in March and April in terms of runoff (Li et al., 2012). The po
tential evapotranspiration in the dry period is higher than in the wet 
period by a factor of 3 (Li et al., 2012). Also, storms have higher intensity 
but shorter durations in the dry period than in the wet period, but the 
total storm depths are comparable in the two periods (Li et al., 2012; 
Tian et al., 2012). As shown in Fig. 1, the dominant land cover is 
grassland, followed by pasture/hay and deciduous forest, according to 
National Land Cover Database (https://www.mrlc.gov/data/nlcd-2011 
-land-cover-conus-0). The dominant soil types are loam and silty clay 
loam according to Soil Survey Geographic Database (https://data.nal. 
usda.gov/dataset/soil-survey-geographic-database-ssurgo). The water
shed is slightly hilly with elevation ranging from 180 to 409 m above sea 
level, with an average of 340 m. The baseflow in UBRB is sustained by 
discharge from the Arbuckle Simpson aquifer. During wet years, the 
main stem of UBRB has been reported to be perennial all the way to its 
headwater (Smith et al., 2004). 

2.2. Crest model 

2.2.1. Model overview 
One young family of models called the Coupled Routing and Excess 

Storage (CREST) was initially developed in 2010 (Wang et al., 2011) 
with a series of improvements later made on model physics, parameter, 
and software (Xue et al., 2013; Zhang et al., 2015). CREST is a distrib
uted hydrological model resolving spatiotemporal water and energy 
fluxes on a regular grid with user-defined resolution. The core compo
nents of the CREST model include runoff generation, evapotranspira
tion, surface routing, and sub-surface routing, which enable a three- 
dimensional representation of water fluxes. In CREST model, precipi
tation is first intercepted by canopy layer; infiltration and runoff are 
then partitioned via the variable infiltration curve concept (Liang et al., 
1994; Zhao, 1995). While surface and subsurface water was routed using 
the linear reservoir equations (Nash, 1957) or 1-D kinematic wave 
approximation of the de Saint Venant Equation (Singh, 1997), water in 
excess storages, including interception by the vegetation canopy and 
subsurface storages in the soil layer, are subject to redistribution back to 
the atmosphere via evapotranspiration. The water balance and grid- 
based routing schemes are fully coupled at each time step to represent 
interactions between atmospheric land surface and subsurface water. In 
terms of parameterization, CREST enables the use of gridded model 
parameter in regions where estimation of these values from remote 
sensing data is possible. Vergara et al., (2016) have developed a-prior 
distributed CREST parameter sets for the Contiguous United States, 
which is adopted as initial parameter set for this study. A brief 
description of CREST model parameters is provided in the Appendix. 
CREST includes automatic calibration modules, i.e. the shuffled complex 
evolution (Duan et al., 1992) and Differential Evolution Adaptive 
Metropolis (DREAM, Vrugt et al., 2009). Another strength of CREST is 
the compatibility with multiple datasets of remotely sensed meteoro
logical forcing. Furthermore, CREST supports gridded output of model 
states and fluxes like streamflow, soil moisture, surface runoff, and 
subsurface runoff. 

2.3. Data 

2.3.1. Forcing and geographic data 
The high-resolution (10 m) Digital-Elevation-Model (DEM) is ob

tained from USGS Earth Explorer (https://earthexplorer.usgs.gov/) and 
serves as the base for building CREST model. Previous studies identified 
the lack of spatial characterization of hydro-meteorologic and 
geographic conditions as a major challenge in modeling intermittent 
streams (Costelloe et al., 2005). Therefore, the forcing data and model 
parameters should sufficiently represent the full range of spatial vari
ability of hydro-meteorologic conditions in the basin. For precipitation 
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forcing, we used Multi-Radar-Multi-Sensor (MRMS) 1-hour gauge bias- 
corrected radar precipitation accumulations (Q3GC_SHSR_1H). 
Q3GC_SHSR_1H is the CoCoRaHS rain-gauge-corrected 1- hour radar 
QPE accumulation using a three steps method, which has the temporal 
resolution of 1 h and 1 km2 spatial resolution (Zhang et al., 2016). The 
potential evapotranspiration (PET) data used in this study were from 
United States Geological Survey (USGS) Famine Early Warning Systems 
Network (FEWS NET, https://earlywarning.usgs.gov/fews). The daily 1 
by 1 arc-degree PET data were calculated from the Global Data Assim
ilation System (GDAS) using the Penman-Monteith method (Verdin 
et al., 2005). One U.S. Geological Survey (USGS) stream gauge (USGS 
07332390) near the downstream outlet of UBRB, were selected to 
validate and calibrate the hydrological modeling (Fig. 1). 

2.3.2. Dynamic water surface estimate (DSWE) 
The Landsat mission, the Landsat Archive, and on-going Landsat/ 

Sentinel data have enabled great progress in improving long-term 
observation of inundation at continental and global scales (Pekel 
et al., 2016). The newly released products by USGS, Dynamic Surface 
Water Estimate (DSWE), has furthered the ability of this dataset to 
detect inundation at subpixel level (Jones, 2019). For DSWE product 
generation, each cloud-, cloud shadow-, and snow-free pixel in a given 
scene is tested for the presence of standing surface water and classified 
into either “not water” (NW) or separate “open water” (OW) and “partial 
surface water” (OSW) classes (Jones, 2019). Specifically, a cell is clas
sified as partially inundated if 20% of its area is covered by water, 
suggesting detectability of a stream with water 6-meter wide in a 30- 
meter DSWE cell (Jones, 2019). Therefore, in this study, we explore 
the potential of DSWE as a validation source for a part of the stream 

networks with the bank width over 5 m. We conduct field visits along the 
main stem of UBRB and determine that streams with contributing area 
over 100 km2 are targets for comparison with CREST simulation. Below 
this threshold, the streams get narrower than 5 m and are considered 
beyond the detectability of DSWE. The raw DSWE data were obtained 
from USGS Earth Explorer via https://earthexplorer.usgs.gov/. We treat 
both OW and OSW classes as inundated pixels when compared with the 
CREST simulation. The comparison is based on DSWE data on 44 
selected days when cloud coverage was <10%. 

Unlike the common usage of inundation maps to validate hydraulic 
simulation, DSWE is used here to compare with hydrologic simulation, 
which only outputs 1-D streamflow rather than 2-D inundation extent or 
water depth. Therefore, simulation (CREST) and observation (DSWE) 
are only compared over a series of 10-meter channel cells (with 
contributing area over 100 km2). In addition, several preprocessing 
steps on the raw DSWE dataset are explored, as detailed in the Appendix. 
The DSWE data are downscaled from 30-meter to 10-meter resolution 
based on ‘nearest neighbor’, prior to comparison with the CREST 
simulation. 

2.3.3. In-situ logger data 
For the small headwater tributaries, we monitored wet/dry status at 

9 sites in UBRB using modified Onset HOBO Pendant© loggers that 
measured stream temperature and conductivity at 30-minute intervals 
(STIC loggers, Chapin et al., 2014). Conductivity provides a reliable 
means to estimate drying status by displaying a range of higher values 
when wet and lower or zero signal when dry. At each stream, we 
deployed 5 loggers for redundancy in protective PVC housing at 
different points along a reach by securing them to the streambed using 

Fig. 2. A) Locations of in-situ state loggers signified by the black round markers and B) the raw conductivity time series measured as light intensity I (lux) along with 
the processed wet/dry states; blank area means no data. 
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embedded rebar and zipties. As shown in Fig. 2A, nine monitored rea
ches drain various contributing areas (from 0.7 to 68 km2) and belong to 
different tributaries. This arrangement spanned a range in hydrology 
and was designed to capture various wetting/drying patterns of streams 
within the watershed. We deployed loggers for one year from November 
2019 to 2020 to ensure measurements included both rainy and dry 
seasons. 

We inferred drying state changes of the loggers using a nonpara
metric change point analysis (nCPA) of the variation (as the standard 
deviation) in conductivity measurements over each day of the deploy
ment (Matteson and James, 2014). This eliminated the need for human 
interpretation of a large range of conductivity values, and standardized 
signal interpretation across all loggers as daily variation was consis
tently higher during wet days compared to dry days. We retained esti
mated change points between wet and dry transition periods (permuted 
p-value < 0.1), and time increments between change points were 
assigned either wet (1) or dry (0) status based on the mean conductivity 
of that increment. This allowed us to estimate drying status of each 
logger at a 1-day temporal resolution. The nCPA for each logger time- 
series was run with the ecp package (James and Matteson, 2013) 
using the divisive hierarchical estimation algorithm with 999 permu
tations. From the five loggers at each site, the one with the most com
plete record (least null values) is chosen to represent the site. Fig. 2B 
shows the time series of conductivity and processed wet/dry status. It 
can be found that the signal processing can reasonably distinguish 
transitions between wet and dry status at all nine sites. 

2.4. Crest model setup 

The CREST model for UBRB is set up over 10-meter grids at daily 
time steps. One reason for using daily time steps is to offset the 
computational cost due to the high spatial resolution, long simulation 
period, and need for calibration. In addition, the future application of 
the stream dynamics estimates, which are to be linked with ecological/ 
biological variables, determines that the most relevant temporal reso
lution is also daily. To this end, the hourly MRMS radar data is aggre
gated to a daily amount. The available MRMS Q3GC_SHSR_1H products 
span 06/01/2015 to 10/13/2020, which confines the simulation period 
of this study. 

Two calibrations are conducted using the downstream USGS stream 
gauge data and in-situ logger data, respectively. The a-priori distributed 
parameter sets are adopted as the default, initial values for the cali
bration. When calibrating gridded parameters in CREST, a multiplica
tion factor on the parameter matrix is varied and calibrated in each 
iteration, which retains the spatial pattern of the parameter grids. The 

model is first calibrated against observed streamflow at USGS gauge 
using CREST’s built-in automatic DREAM calibration module. The 
objective function is set to minimize the logarithmic Nash-Sutcliffe co
efficient (Table 1) for better capturing low-moderate flow values. It 
should be noted that log-NSE can only be used for positive flow values 
thus fits better for evaluation in a perennial reach, which is the case in 
this study. The calibration is done by varying all CREST parameters 
(Table A1 in Appendix) over the period from 06/01/2015 to 12/31/ 
2018. The observed flow over the remaining period from 01/01/2019 to 
10/13/2020 is used for validation. The aim of the first calibration is to 
assure overall water balance and flow routing in UBRB is captured by the 
model. To further capture the wet/dry dynamics at the nine headwater 
sites, the following second calibration finetunes two already calibrated 
routing parameters UNDER and ALPHA0 (Table A1) within a tight range 
of multiplier (0.8 to 1.2) over the period from 11/09/2019 to 10/13/ 
2020. UNDER and ALPHA0 are chosen for calibration because they 
respectively determine the surface and sub-surface flow velocities in the 
overland cells. Thus, the routing in larger downstream channels is 
insensitive to the variation of UNDER and ALPHA0 within the tight 
range. The objective function herein is set to maximize the widely-used 
F1 score (Table 1), which is essentially a multi-objective function 
combining the precision and recall metrics (Table 1, Powers, 2020). 
Note that the F1 score is not a built-in objective function in CREST, thus 
this second calibration is achieved by externally coupling CREST and the 
SCEUA calibration algorithm (Duan et al., 1992). We also design a three- 
fold cross validation to examine the model performance at different 
potential catchments. The split of loggers for calibration and validation 
considers even proportions of wet and dry values in each fold. After 
assuring similar performances from the three scenarios, we select the 
calibrated parameters from the scenario with the best evaluation metrics 
for the final simulation. 

With the calibrated parameters, the model is warmed up from 06/ 
01/2015 to 12/31/2015 using observed forcing data. Simulation then 
starts on 01/01/2016 and finishes on 10/13/2020. Table 1 summarizes 
the statistics used to calibrate, validate, and evaluate the hydrologic 
performance at the USGS gauge location and in-situ logger sites. 

2.5. Investigation of stream dynamics 

In previous field survey studies, statistical analyses were often 
conduced on attributes of the active flowing networks, like stream 
length, discharge, number of flow origins, and connectivity (e.g., Datry 
et al., 2016; Godsey and Kirchner, 2014; Jensen et al., 2017). Botter and 
Durighetto (2020) recently developed a more versatile tool for charac
terizing flowing stream network. As of this study, the primary objective 

Table 1 
List of statistical metrics used in this study.  

Statistic Metrics Equation Value Range Perfect Value Unit 

Evaluation  
Using 

USGS 
Streamflow 
Observation 

Correlation coefficient (CC) 
CC =

∑N
n=1

(
Sn − S

)(
On − O

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

n=1

(
Sn − S

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
n=1

(
On − O

)2
√

−∞, 1 1 N/A 

Relative bias (RB) RB =
1
N

∑N
n=1

Sn − On

On
× 100  −∞, +∞ 0 % 

Log Nash-Sutcliffe coefficient efficiency  
(log-NSE) LogNSE = 1 −

∑N
n=1

(
log(Sn) − log(On)

)2

∑N
n=1

(
log(On) − log((O)

)2  

−∞, 1 1 N/A 

Evaluation  
Using 

DSWE and In-situ 
Loggers 

Precision Precision =
TP

TP + FP  
0, 1 1 N/A 

Recall Recall =
TP

TP + FN  
0, 1 1 N/A 

F1 F1 =
2 × Precision × Recall

Precision + Recall  
0, 1 1 N/A 

FalseAlarm Ratio FAR =
FP

FP + TP  
0, 1 0 N/A 

* Variables: n and N are index and total number of samples; S represents simulated flow rate from CREST while O is the observed flow rate from USGS stream gauges. 
The ‾ sign means the averaging operator. TP means number of true positives; FP means number of false positives; FN means number of false negatives, and TN means 
number of true negatives. 
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in mapping dynamic streams is to seek hydrologic interpretation based 
on CREST simulation. Therefore, we select simple metrics of spatio
temporal variability of the stream water in first-level statistical analysis. 
First, based on the daily wet dry maps of all 10-meter pixels in the 
simulation domain, the average presence of water in the streams is 
quantified by a single metric called water occurrence (WO) via Eq. (1): 

WO =

∑
WD

∑
SD

(1)  

where WD is water detections representing occasions (days here) with 
water present and SD represents simulated days. For each pixel in CREST 
model domain, the WDs are simply regarded as days with positive 

streamflow values. 
Second, drainage density is used to measure the spatial extent of 

actively flowing streams across catchments of various sizes, which is 
defined as the total length of flowing streams per unit area of the 
catchment. To investigate the relationship between flowing stream 
length and streamflow, we examine drainage density in relation with 
unit discharge which is the streamflow at the most downstream stream 
segment of a catchment divided by the catchment area. 

3. Results and discussion 

3.1. Hydrologic simulation 

Fig. 3A shows the simulated and observed hydrographs in log scale. 
Based on hydrograph shape, the low simulated and observed streamflow 
values show good match, while the high values are underestimated. 
Fig. 3B and C show the comparison via scatter plot and flow duration 
curves of simulated and observed streamflow, respectively. Similarly, 
flow values below 10 m3/s are well captured, as indicated by scatters 
aligning well with the lower part of the diagonal and close match of flow 
duration curves near the tails. The log-NSE value of 0.79 (maximized 
objective function) in Table 2 indicates a satisfactory calibration 

Fig. 3. Comparison of simulated and observed streamflow values at the USGS gauge location via A) time series plot in log-scale (cyan markers show dates of the used 
DSWE data) , B) scatter plot in log–log scale, and C) flow-duration curve in log-scale. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Table 2 
Summary of the statistical evaluations of model calibration, validation, rising 
limb, and falling limb of the observed hydrograph.  

Hydrograph Count CC RB (%) Log-NSE 

Calibration 1095  0.79 −18.9  0.87 
Validation 652  0.69 −27.7  0.73 
Rising Limb 464  0.79 −46.4  0.74 
Falling Limb 1212  0.74 −11.6  0.85  
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performance. Considering various metrics, the model performance in 
the calibration period is slightly better than in the validation period. The 
underestimation of high values also causes the overall bias to be nega
tive. As indicated by the log-NSE values (Table 2), the model perfor
mance is better on falling limb than on the rising limb of the hydrograph. 
This consistently reflects the better performance on low flow values, as 
receding limbs span more time than rising limbs and include more low 
flow values. 

3.2. Comparison with DSWE 

Fig. 4A shows the binary comparisons between CREST simulation 
and preprocessed DSWE in streams with contributing area great than 
100 km2. The comparison only results in two cases, TP, and FP, as these 
streams are simulated to be perennial by the CREST model. It can be 
found that the detection of water by DSWE in the main stem (contrib
uting area > 300 km2) is unstable with discontinuous segments; and 
water-covered pixels in the two upstream tributaries are even more 
sporadic. This is due to the narrow stream width, which reduces to 
around 5 m just upstream of the confluence and possibly reaches the 

limit of DSWE’s detectability. The only exceptions occurred on 02/15/ 
2017 and 01/04/2019, corresponding to high flow values observed at 
the downstream USGS gauge (Fig. 3A). The high flow causes streams to 
become wider and detectable by the DSWE. Fig. 4B shows that pre
processing reduces the false positive rate to around 0.5 by essentially 
filling the discontinuous patches (removing FP cases) in the main stem. 
In summary, DSWE fails to detect flowing streams narrower than 10 m 
and inconsistently detect water presence in channels around 15-meter 
wide. 

3.3. Validation using In-Situ loggers 

The results of validating metrics for the threefold cross validation 
using in-situ loggers are presented in Table 3. All three scenarios result 
in very high precision, recall, and F1 values. The three folds show 
equally high scores, indicating the three separately calibrated models 
can perform comparably on the testing datasets. This illustrates the 
model’s ability to perform well with an unseen dataset in potentially a 
different headwater catchment. 

3.4. Stream dynamics mapping 

Fig. 5A shows the monthly time series of areal-averaged precipita
tion and PET of UBRB over the 4-year period. There is a noticeable 
interannual change in precipitation across the four years with year 2018 
being the wettest. Seasonal variation is also evident where spring 
(March, April, and May) has the most precipitation followed by either 
summer (June, July, and August) or fall (September, October, and 
November) and then winter (December, January, and February). Also, 
summer months feature hot and dry days with high PET values (Fig. 5B). 

Fig. 4. A) True positives (TP) and false positives (FP) between the comparison of CREST and DSWE in streams with contributing area over 100 km2 on the 44 cloud 
free days, B) probability density functions of false alarm rate (FAR) of the CREST compared with raw DSWE and DSWE after two preprocessing steps, alignment with 
stream cells and gap removal. 

Table 3 
Summary of three-fold cross validation using in-situ logger data.  

Folds Loggers for 
calibration 

Loggers for 
validation 

Scores 

Precision Recall F1 

1 1, 2, 3, 4, 7, 8 5, 6, 9  0.991  0.986  0.988 
2 3, 4, 5, 6, 8, 9 1, 2, 7  0.986  0.97  0.978 
3 1, 2, 5, 6, 7, 9 3, 4, 8  0.992  0.985  0.989  
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As a result of both precipitation and PET, the soil moisture shows clear 
seasonal pattern with highest soil moisture occurring in winter followed 
by spring and fall; soils are dry in summer with a soil moisture value 
nearly half of that in winter (Figs. 5C and 7). 

Using four years of daily streamflow grids output, we map the water 
occurrence over the 2510 stream segments in UBRB for the four years 
and the four seasons (Fig. 6). Table 4 summarizes mean annual and 
seasonal water occurrence conditioned on contributing area for small 

headwater catchments. Streams with contributing area over ~5 km2 

appear to have flow over 77% of the time during the four years. Smallest 
tributaries in the headwater catchments (contributing area < 0.2 km2) 
are mostly non-perennial with active flow for 78% percent of the time. In 
terms of stream length, 18% the total 1145 km of stream length stays 
perennial during the four years. Across the seasons, streams show the 
highest water occurrence in the spring followed by fall, summer, and 
winter. This can be explained by the seasonal variability of precipitation 

Fig. 5. A) Monthly time series of mean-basin precipitation and PET of UBRB in 2016 to 2019, temporally averaged mean-basin B) precipitation and PET and C) soil 
moisture for the 12 months. Precipitation and PET are input forcing data, while soil moisture is a model state and an output from the CREST simulation. 

Fig. 6. Water occurrence calculated based on CREST simulation in 2510 stream segments for the four years and four seasons.  
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and PET as shown in Fig. 5A. In terms of precipitation, the wettest season 
is spring (3.8 mm/d), followed by summer (3.33 mm/d), fall (3.15 mm/ 
d), and winter (1.88 mm/d). Summer features high PET (5.7 mm/d), 
offsetting the intense but infrequent precipitation (Li et al., 2012), and 
resulting in overall lower runoff, as compared to fall with an averaged 
PET of only 2.9 mm/d. This effect is also evident in storage dynamics of 
the watershed as shown by the monthly time series of soil moisture in 
Fig. 5C. The high PET reduces antecedent soil moisture ahead of storm 
events and further decreases the overland runoff generation. In contrast, 
low PET in winter makes the soil moisture higher than in any other 

season (Fig. 5C and Fig. 7) despite the lowest precipitation. This causes 
the water occurrence of streams in winter season to be only slightly 
smaller than that in the summer season. 

Fig. 7 shows the seasonally averaged soil moisture simulated by 
CREST, where two areas (outlined) with different hydrologic responses 
are selected to illustrate the heterogeneous effects of geographical 
properties on stream dynamics. Fig. 8A and 8B show the monthly mean 
areal water occurrence and soil moisture for the two areas, respectively. 
In all seasons but summer, soil moisture in Area B is higher than in Area 
A. In Area B, the dramatic drop of soil moisture in summer also coincides 
with the sudden decrease of water occurrence, as seen in August 2016, 
July 2018 and July 2019. Such discrepancy in the hydrologic response is 
due to the different soil and land types of the two areas, as shown in 
Fig. 1. Area A features a more impervious surface plus sandy soils which 
hold low soil water content, whereas Area B is a naturalized catchment 
with clayey soils of high water-holding capacity. In summer, limited 
evapotranspiration occurs in the Area A due to its impervious coverage. 
The soil moisture in Area A is thus less sensitive than in Area B (Fig. 8B). 
Fig. 8C and D show the monthly composition of surface and subsurface 
runoff in Area A and B, respectively. The dotted lines mark the 50% 
value, and no color signifies months without rainfall input. It can be 
found that the different land cover and soil properties cause Area A and 
Area B to be dominated by surface and subsurface runoff, respectively. 
The higher proportion of surface runoff in Area A could also be the 

Table 4 
Summary of stream intermittency metrics of headwater tributaries conditioned 
on drainage area.  

Water Occurrence Contributing Area (km2) 

<0.2 0.2 ~ 0.5 0.5 ~ 1 1 ~ 2 2 ~ 5 

Years 2016  0.78  0.80  0.79  0.82  0.82 
2017  0.73  0.75  0.74  0.77  0.77 
2018  0.81  0.83  0.82  0.85  0.85 
2019  0.79  0.80  0.79  0.83  0.83 

Seasons Spring  0.72  0.79  0.87  0.93  0.94 
Summer  0.57  0.66  0.78  0.87  0.90 
Fall  0.65  0.73  0.83  0.90  0.92 
Winter  0.57  0.64  0.74  0.83  0.88  

Fig. 7. Time-averaged soil moisture calculated based on CREST simulation in Spring (A), Summer (B), Fall (C) and Winter (D) from 2016 to 2019.  
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reason for the overall higher water occurrence. Although subsurface 
runoff dominates in Area B, a few switches in the runoff generation 
mechanism can be found in summer when surface runoff composition 
gets above 50%. Such switches coincide with lowest soil moisture 
values, since whatever small amount of infiltration is stored as soil water 
instead of running off. In terms of land cover and soil types, Area B is 
representative of the whole UBRB (Fig. 1), suggesting a large fraction of 
the watershed is as sensitive as Area B and likely to experience similar 
seasonal switches in runoff generation mechanism. 

We also examine the relationships between streamflow and drainage 
density in 16 selected catchments, as shown in Fig. 9. The selection in
corporates three levels of catchments sizes (10 to 20, 50 to 60, and near 
120 km2) and assures that catchments are independent within each level 
and spread evenly over the UBRB. Across the three levels, drainage 
density, as plotted in Fig. 9A to C, increases roughly as power functions 
of unit discharge below some threshold values (about 10-2 mm/d) and 
plateaus beyond the threshold. In log–log scale, the values below the 
threshold are also fitted to linear relationships for each individual 
catchment. The fitted relationships show strong statistical significance 
as indicated by the high R2 (coefficient of determination) values 
(Table 5). For basins of various sizes, the log–log slope k values 

(exponent in the power-law relationships) are similar (0.31 to 0.4) while 
the log–log intercepts (b) range from 0.91 to 1.23. Variability in 
drainage density at a given unit discharge (the spread along the vertical 
direction) reduces with increasing catchment size as tributaries merge at 
confluences and form larger streams. 

3.5. Discussion 

Both streamflow in high-order streams and wet/dry status in head
water tributaries are automatically calibrated in this study. Automatic 
calibration scheme allows multi-objective cost functions and is appro
priate/necessary for intermittent catchments (Azarnivand et al., 2020b), 
like the F1 score used for calibration using in-situ logger data. The un
derestimation of high flow values by the CREST model is mainly due to 
the daily simulation time step (Fohrer et al., 2001). During high flow 
events (flooding), the timing and magnitude of flood peaks are sensitive 
to the temporal distribution of rainfall. Because of the non-linearities in 
the water balance and routing processes, the daily average rainfall in
tensity diffuses any sub-daily variabilities and is too coarse for simu
lating streamflow during floods. Also, in overland routing scheme 
(kinematic wave), travel time from one grid cell to next downstream 

Fig. 8. Monthly time series of space–time-averaged (A) water occurrence, (B) soil moisture, and (C and D) fractional surface and subsurface runoff in Area A and B.  
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shortens with increasing unit discharge. During floods, the daily time 
step is at a larger scale than the travel time between 10-meter grid cells. 
Such effect also propagates downstream, causing the translated volume 
to reduce at higher order streams. The underestimation of high flow has 
not been widely reported by other modeling studies that investigate 
intermittent catchments using also daily timestep, probably due to the 
relatively small catchment size and short channel length (e.g., Niedda 
and Pirastru, 2014; Pierini et al., 2014; Camporese et al., 2014; Dean 
et al., 2016). In comparison with distributed models, lumped models 
could deal with this issue with flexibility, for instance, by using 
duration-specific unit hydrographs. However, the trade-off is the 
inability to simulate streamflow at any point within the catchment like 
the distributed models. 

The interannual and seasonal variabilities of the rainfall and PET are 
well reflected in stream dynamics in UBRB (Fig. 6). The role of rainfall 
intensity and frequency have been demonstrated to be vital for stream 
dynamics in intermittent catchments by previous studies (Azarnivand 
et al., 2020a, Dean et al., 2016). The contrast of water occurrence in 
summer and fall indicates mutual effects of rainfall, PET, and soil 

Fig. 9. Scaling relationships between drainage density and unit discharge in (A) level-1, (B) level-2, and (C) level-3 catchment; (D) map of the catchments on 
three levels. 

Table 5 
Summary of the catchments in which scaling relationship between drainage 
density and unit discharge is examined; k is the scaling exponent; b is the 
intercept in log-scale; and R2 is the coefficient of determination.  

Level Name Contributing Area (km2) k b R2 

1 1-A 11.6  0.32  0.94  0.85 
1-B 11.7  0.32  0.95  0.96 
1-C 13.2  0.36  1.10  0.96 
1-D 14.4  0.40  1.20  0.87 
1-E 16.6  0.34  1.02  0.90 
1-F 17.6  0.35  1.05  0.94 
1-G 19.3  0.40  0.97  0.90 
1-H 19.1  0.40  1.23  0.92 
1-I 20.5  0.38  1.11  0.91 
1-J 23.6  0.34  0.95  0.87 
1-K 24.6  0.37  0.91  0.90 

2 2-A 56.4  0.38  1.00  0.91 
2-B 55.6  0.33  0.95  0.88 
2-C 58  0.37  1.05  0.80 

3 3-A 119.3  0.38  1.04  0.91 
3-B 119.9  0.37  1.03  0.85  
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moisture on runoff generation. Interestingly, the seasonality in forcings 
is strong enough to switch runoff generation mechanism in headwater 
tributaries across wet and dry periods (Fig. 8D), which is also revealed 
by previous studies on the blue river basin (Li et al., 2012; Tian et al., 
2012). The heterogeneity in catchment characteristics cause distinction 
in water occurrence of head tributaries (Fig. 8), via the distribution of 
surface and subsurface runoff. This strengthens the significance of 
antecedent catchment wetness prior to rainfall events in driving 
streamflow in intermittent catchments, as also reported in previous 
studies (Viola et al., 2014; Niedda and Pirastru, 2014). 

Although not fully exposed in the UBRB, the CREST model lacks 
representation of certain physical processes at fine spatial resolution (e. 
g. 10 m), which might become issues in other study areas. For instance, 
in low-yielding basins in the western U.S., additional abstraction storage 
needs to be included to represent ground surface depression and soil 
shrinkage cracks. In terms of groundwater, the CREST model adopts a 
conceptual bucket module to represent the recharge and discharge of 
groundwater, in which groundwater flow is assumed to be parallel to the 
surface topography. The bucket concept is also widely used in other 
distributed hydrologic and land surface models (Niu et al., 2011) as a 
simplification of the highly heterogeneous and nonlinear groundwater 
flow process, because an explicit representation of these processes is 
currently limited by the lack of information on bedrock topography 
(Camporese et al., 2019) and the difficulty to assign spatially and 
vertically distributed parameters (Maneta et al., 2008). Also, this 
assumption exempts the assignment of boundary conditions because 
groundwater is assumed to move only within the watershed boundary 
free from influence of surrounding hydraulic heads. However, there 
would be issues when the extent of underlying aquifer significantly ex
ceeds the watershed boundary or when surface flow originates in 
aquifer-fed springs. 

The scaling relationships between drainage density and unit 
discharge have been reported in studies based on field mapping (Godsey 
and Kirchner, 2014; Gregory and Walling, 1968). Due to the low fre
quency of mapping and logistical challenges, the mapped stream net
works are subject to issues like low statistical significance, limited 
spatial coverage of mapped networks in complex terrain, and influences 
from stochastic factors (e.g., debris and sediment collected by tree falls). 
As demonstrated in this study, hydrologic modeling here confirms and 
augments the power-law relationship of strong statistical significance by 
continuously generating data at high resolution over a large spatial 
scale. The scaling relationships plateau at some threshold discharge 
values, representing entirely active stream networks at high flow con
ditions. The existence of some plateau is reasonable because it physically 
represents the geomorphic channel networks, i.e., the branching net
works of topographic features. Nonetheless, the plateaus, which corre
spond to the size (total length) of stream networks, are limited by the 
resolution of topographic data (DEM). In other words, the total length of 
streams could have exponentially increased and allowed the power-law 
relationship to extend further, had the model been simulated over finer 
grids, e.g., using 1-meter DEM. To certain extent, the plateau also jus
tifies the underestimation of high flow by the CREST model, as stream 
dynamics is demonstrated to be only sensitive to discharge at low- 
moderate flow conditions. 

4. Conclusions 

In this study, we demonstrate the capability of distributed hydrologic 
modeling to capture the stream dynamics in upper Blue River basin, OK. 
The fully-distributed CREST model is established over 10-meter grids 
using distributed geographic data, forcing data, and parameters of fine 
resolution. The high spatial resolution of the simulation enables us to 
decipher dynamics in refined stream networks with the averaged 
contributing area of individual stream segment being <0.2 km2. The 
large spatial scale of study area exceeds most of existing studies and 
allows us to examine the stream dynamics across a wide range of stream 

orders and catchment sizes and potentially capture effects from heter
ogenous catchment characteristics. To achieve desired model perfor
mance at various stream orders, we deploy in-situ state loggers at nine 
headwater tributaries as an additional calibration/validation source to 
the USGS stream gauge. We also explore the utility of LANDSAT product 
DSWE in capturing water presence in high-order channels. Output 
streamflow grids are lastly used to map actively flowing stream net
works at daily time step. The mapped stream networks are interpreted 
hydrologically using the gridded output from the CREST model. The 
major findings are summarized as follows.  

1. The hydrologic simulation at 10-meter spatial resolution and daily 
temporal resolution using the CREST model performs well against 
low/moderate observed flow, as indicated by a logarithmic NSE over 
0.7 in the validation period. Due to the daily timestep, high flow 
values are underestimated. At headwater tributaries, the calibrated 
simulation can accurately capture wet/dry status, as compared with 
in-situ logger records.  

2. The 30-meter LANDSAT Dynamic Surface Water Estimate (DSWE) 
products are insufficient to serve as validation source for water 
presence even in high order streams after preprocessing is applied. 
Due to limitation in resolution, the data only detect discontinuous 
patches of water in 15-meter-wide streams and sporadic water 
presence in 10-meter-wide streams.  

3. Flowing stream networks are dynamic over the 4-year simulation 
period in UBRB. At daily time step, the density of flowing stream 
length scales as a power-law function of unit discharge below a 
threshold value. Above the threshold, the whole networks become 
active with flowing water. The existence of the threshold also jus
tifies the underestimation of high flow values by the CREST, as 
stream dynamics is sensitive only to low-moderate unit discharges. 
The exponent of the power-law relationship i.e., change in drainage 
density per change in unit discharge, stays consistent across catch
ments of various sizes, indicating the existence of a central tendency 
across the numerous streams in UTRB.  

4. Mapping of water occurrence shows that streams are most dynamic 
in the small headwater catchments. The interannual and seasonal 
variabilities of precipitation and PET is well reflected by the water 
occurrence in these small non-perennial tributaries. The distinction 
in land cover and soil properties cause the runoff generation mech
anism to differ among heterogenous headwater catchments, which 
indicates the significance of antecedent catchment wetness prior to 
rainfall events in driving streamflow in non-perennial catchments. 

Compared with traditional field mapping approach in stream dy
namics study, the modeling approach can generate data samples with 
greater statistical significance, temporal frequency, and range. There
fore, distributed hydrologic models should be utilized more to under
stand controls on the sensitivity of the flowing stream networks to 
changes in runoff. This study also reveals the need for future research 
efforts, since hydrological modeling of intermittent streams is very much 
constrained by the quantity and quality of observations needed to cali
brate and validate the model outputs. Therefore, as a-priori estimates 
from this study, the simulated output needs to be supplemented with 
better datasets. Also models in general are only as good as our under
standing of the physical processes that drive stream dynamics. The 
representation of physical processes is also sensitive to model resolution. 
At fine scales, additional processes need to be included and represent 
complex nonlinear processes of runoff generation in low-yielding basins, 
e.g. surface–groundwater interactions or local geological peculiarities 
like karstic areas (Ye et al., 1997). Following this study, ongoing 
research focuses on coupling CREST with land surface models to 
represent springs fed by unconfined aquifers in arid and karstic basins. 
Finally, as we are confident that the mapped dynamic stream networks 
make sense hydrologically, a more in-depth future study focusing on 
stream dynamics will follow to take advantage of the rich information in 
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the CREST simulation using more complex statistical tools. 
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Appendix 

Preprocessing of DSWE 

Preprocessing is conducted on DSWE prior to the validation 
following the steps below. First, Digital Elevation Model (DEM) data in 
CREST, like most of distributed hydrologic models, are filled to avoid 

water from being trapped locally. Ponds and potholes should thus be 
excluded from validation. We automatically segment ponds from the 
DSWE rasters using an algorithm traditionally applied in identifying rain 
cells from radar images (Dixon and Wiener, 1993) and then filtering the 
identified clusters of water-covered pixels considering their shape and 
area. After fitting identified pixel clusters to ellipsoids, we exclude those 
with ellipticity (ratio of minor axis over major axis) lower than 0.2 and 
area above 9,000 m2. Next, we align the stream cells in DSWE rasters 
with those in the CREST domain by nudging adjacent inundated DSWE 
pixels into CREST streams while limiting the nudging distance to be 30 
m (one DSWE pixel). This step is crucial because the CREST streamflow 
output is 1-D, which means one stream cell and its adjacent overland 
cells could have significantly different contributing area and stream 
flow. Therefore, a DSWE water-covered pixel is paired (aligned) with a 
nearby stream cell for the comparison. Lastly, the water-covered pixels 
in DSWE can be discontinuous even after the alignment (Fig. A1), which 
can be interpreted as isolated pools in small streams but are unlikely to 
occur in high-order streams with persistent baseflow. Another cause for 
the discontinuity is no-data stripes of unscanned pixels that cut through 
stream networks and leave many no-data gaps. In order to quantify the 
effect from the discontinuous features in higher-order streams, we fill 
the gaps between two adjacent water-covered segments that are sepa
rated by <90 m of flow distance (distance along streams) and have 
drainage area over 300 km2. With the preprocessing done, DSWE rasters 
are resampled using nearest neighbor approach to 10-meter resolution 
and then compared with CREST streamflow grids. 
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