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More than half of all streams globally are non-perennial, and thus dynamic due to their expanding and retracting
nature. Field mapping in conjunction with observational data from gauges and/or in-situ loggers is a typical
approach for studying non-perennial stream dynamics, but these approaches underrepresent their spatiotemporal
variability. High-resolution distributed hydrological modeling promises to bridge this gap, thanks to advances in
model physics, remote sensing, and computational power. As the first step towards this goal, we investigate the
capability of distributed hydrologic modeling to capture stream dynamics in Upper Blue River Basin, OK.
Coupled Routing and Excess STorage (CREST), a distributed hydrological model, is used to simulate spatio-
temporally varied streamflow at 10-meter spatial resolution and daily time steps. USGS stream gauge data and in-
situ state logger data are used to calibrate and validate the simulation at the watershed outlet and small
headwater tributaries, respectively. Dynamic Surface Water Estimate (DSWE), a LANDSAT product is also
compared with simulated water presence in high-order streams. Results show that the CREST model can capture
low-moderate streamflow values at the watershed outlet with a log-NSE value over 0.7 in the validation period,
while underestimating high flow values due to the daily time step. Also, the calibrated model can accurately
estimate wet/dry status as monitored by in-situ state loggers in nine headwater catchments. The dynamic stream
networks are mapped over 2510 stream segments using the CREST simulation. Non-perennial streams are the
most dynamic in small headwater tributaries (contributing area <2 km?) and high-order streams are sustained by
perennial flow. As hydrologic interpretation of the stream dynamics, the interannual and seasonal variability in
rainfall and evapotranspiration is well reflected by the water occurrence in streams. Across various catchments, a
consistent threshold behavior is found between drainage density and unit discharge, indicating the control of
runoff generation on the flowing stream networks. The mapping also identifies differences in stream dynamics
caused by heterogeneities in land cover and soil properties. Given the prevalence of dynamical streams world-
wide, our analysis illustrates the potential for mapping them using distributed hydrologic models.
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1. Introduction

Out of all of the Earth’s streams, non-perennial streams (those that
do not continuously flow, Busch et al., 2020) comprise about half of the
total stream length (Datry et al., 2014). These streams often reside in
headwaters and extend/retract seasonally and during storm events (e.g.,
Jensen et al., 2017; Shaw, 2016). The frequency, timing, and duration of
drying in non-perennial streams are particularly important for river
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ecosystems at multiple spatiotemporal scales (Allen et al., 2020; Larned
et al., 2010; Walker et al., 1995). In spite of their ecological and hy-
drological significance, the actively flowing stream networks and their
spatiotemporal dynamics have received relatively little attention until
recent years. Many field surveys have been conducted to investigate
stream dynamics at seasonal and storm event scales (Durighetto et al.,
2020; Godsey and Kirchner, 2014; Goulsbra et al., 2014; Jensen et al.,
2019; Lovill et al., 2018; Meerveld et al., 2019; Peirce and Lindsay,
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Fig. 1. Maps of the relative location in US, digital elevation model with stream networks, land cover, soil types of the upper blue river basin (UBRB). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2015; Shaw et al.,, 2017; Whiting and Godsey, 2016; Zimmer and
McGlynn, 2017). A common finding from these studies is that climate
variabilities cause a major proportion the global stream networks to be
dynamic. The non-perennial streams in headwaters play a major role in
shaping the stream dynamics (Bishop et al., 2008), and thus need to be
characterized with accuracy and spatiotemporal granularity.

Compared with perennial streams, it is more challenging to charac-
terize the non-perennial streams because of the distinct hydro-
meteorologic settings, e.g. rainfall and evapotranspiration irregularity,
soil and land cover heterogeneities (Niedda and Pirastru, 2014; Peleg
et al., 2015). Most importantly, the sources of hydrological data are
limited in coverage and spatial density. The primary source has been
gauging data, but gauge stations are often spatially sparse and on
perennial rivers close to urban areas (Benstead and Leigh, 2012; Datry,
2012) rather than in headwaters where non-perennial streams are
located (De Girolamo et al., 2015; Eng et al., 2016). In addition, various
loggers can be deployed spatially to measure electrical conductivity
(Chapin et al., 2014), water temperature (Constantz et al., 2001), and
water level and/or the presence-absence of water (Bhamjee and Lindsay,
2011; Vander Vorste et al., 2016). Time series data from the loggers can
be used to track the movement of wetting and drying fronts (Bhamjee
and Lindsay, 2011) and the persistence of surface waters in different
reaches (Vander Vorste et al., 2016).

Remote sensing is an emerging way to monitor non-perennial
streams. Various remote sensing techniques have been used to mea-
sure proxies for discharge (e.g., river height or width) from which to
estimate flow regimes. Examples of these techniques are air- and space-
borne measurements of surface velocity; radar altimeters to measure

surface-water elevations; and measurements of wetted areas and bank
heights to estimate flow volumes (Costa et al., 2013; Gleason and Smith,
2014; Puckridge et al., 2000). However, most remote sensing techniques
are best suited for large rivers and have limited utility for small head-
water streams due to low spatial resolution and dense vegetation cover
(Costigan et al., 2017). Out of the all remotely sensed data, satellite
imagery has relatively high spatial resolution with vast spatial extent but
low temporal frequency, which is insufficient for capturing the stream
intermittency that can be temporally dynamic (Hamada et al., 2016).
When monitoring approaches have only limited data for a location of
interest at some discontinuous time steps, modeling approaches can
provide high spatiotemporal granularity and predict/simulate scenarios
in response to changing environmental conditions, such as global
change and water extraction for human uses. The key to successful
simulation of non-perennial streams firstly depends on the capability of
model structure to represent transition from low to zero flow regime, or
the discontinuities in the flow regime (Azarnivand et al., 2020a; Cam-
porese et al., 2014, 2019). Also, the water balance should be calculated
integrating various catchment storges, i.e. streams, soils and ground-
water (Azarnivand et al., 2020b). Lumped models are explored in many
studies (e.g., Cipriani et al., 2014; Ivkovic et al., 2014; Ye et al., 1997)
because of the easy of application, low data requirement, few parame-
ters, and good performance at the catchment outlet. For example, the
widely-used Soil Water Assessment Tool (SWAT, Gassman et al., 2007)
accounts for precipitation, evapotranspiration, surface runoff, infiltra-
tion, lateral flow, and percolation and has been successful in modeling
and also projecting flow intermittency under natural, current, and future
conditions (e.g., Chahinian et al., 2011; Tzoraki et al., 2016; Brown
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et al., 2015). In comparison, distributed hydrological modeling receives
spatially refined geographical data, meteorologic forcing and tracks or
outputs models fluxes (streamflow, infiltration, evapotranspiration) and
states (soil moisture, groundwater levels). In recent studies on non-
perennial streams, increasing attention is given to distributed models
that integrate surface and sub-surface water by solving multiple
nonlinear dynamics (Fatichi et al., 2016). For example, the CATHY
(Catchment Hydrology) model has been applied in intermittent or
ephemeral catchments to investigate afforestation (Azarnivand et al.,
2020a), water balance complexities due to heterogeneous land use
(Dean et al., 2016), and hydrologic response to rainfall frequency
(Azarnivand et al., 2020b). Also, the model MIKE SHE was used to study
water and salt dynamics of intermittent catchments (Daneshmand et al.,
2019, 2020). As commonly pointed out in these studies, distributed
models are well-suited for natural catchments (Fatichi et al., 2016) as
the heterogeneous, dynamic water movements across surface and sub-
surface layers are dealt with in an integrated continuum.

However, these few modeling studies of non-perennial streams/
tributaries mostly focus on small-sized headwater catchments. The
limited spatial scale does not fully cover the stream dynamics across
various stream orders. Meanwhile, previous studies on stream dynamics
mostly reply on monitoring approaches via fixed gauges, loggers, and
field surveys, which is limited by the logistical challenges, spatial den-
sity, temporal frequency of the collected data (e.g., Bhamjee and Lind-
say, 2011; Godsey and Kirchner, 2014; Jensen et al., 2019; Peirce and
Lindsay, 2015). To bridge this gap, we use high-resolution process-based
distributed hydrologic modeling over a relatively large catchment to
provide streamflow estimates of high spatial density and temporal fre-
quency as the base of mapping stream dynamics. The combination of
high spatial resolution and large scale enables a comprehensive view of
numerous small non-perennial headwater tributaries as well as the high-
order perennial streams. Moreover, stream gauge and state logger data
are used for calibrating and validating model outputs to improve model
performance at various stream orders. The feasibility of satellite images
in detecting stream dynamics is also explored.

The overarching goal is to provide a-priori estimates and hydrologic
interpretations of the stream dynamics across non-perennial and
perennial tributaries using high-resolution distributed modeling. The
study aims to answer the following research questions: 1) As indicators
of stream dynamics, can the model simulation capture flow values in
high-order large streams, and wet/dry status in low-order non-perennial
streams? 2) In spite of their inherent limitations, whether and how can
satellite imagery products and in-situ state loggers be utilized in hy-
drologic modeling as calibration/validation sources? 3) How do the
actively flowing networks vary in space and time in response to seasonal
wetting and drying?

The paper is organized as follows. Section 2 describes the study area,
data used in this study, model configuration, and methodology. Section
3 presents the results of hydrologic performance, comparison of CREST
and satellite imagery, validation using in-situ state loggers, mapping of
dynamic streams, as well as discussion on the results. Section 4 con-
cludes the study and proposes future directions.

2. Methodology
2.1. Study area

The study area is the headwaters of the Blue River Basin, or the
Upper Blue River Basin (hereafter, UBRB) located in Southeastern
Oklahoma with a drainage area of 483 km?. Typical of a continental
climate, the region experiences occasional extremes of temperature and
precipitation. Severe weather including tornadoes and thunderstorms
occur in the region as a result of interactions between cold and warm air
masses. The mean annual precipitation, temperature, and snow per-
centages are 1116 mm, 16.4 °C, and 8.2% from 1980 to 2020 according
to National Climate Data Center’s archive of global historical weather
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and climate data (https://www.ncdc.noaa.gov/cdo-web/search). The
blue river basin features a dry period from May to September, and a wet
period in March and April in terms of runoff (Li et al., 2012). The po-
tential evapotranspiration in the dry period is higher than in the wet
period by a factor of 3 (Li et al., 2012). Also, storms have higher intensity
but shorter durations in the dry period than in the wet period, but the
total storm depths are comparable in the two periods (Li et al., 2012;
Tian et al.,, 2012). As shown in Fig. 1, the dominant land cover is
grassland, followed by pasture/hay and deciduous forest, according to
National Land Cover Database (https://www.mrlc.gov/data/nled-2011
-land-cover-conus-0). The dominant soil types are loam and silty clay
loam according to Soil Survey Geographic Database (https://data.nal.
usda.gov/dataset/soil-survey-geographic-database-ssurgo). The water-
shed is slightly hilly with elevation ranging from 180 to 409 m above sea
level, with an average of 340 m. The baseflow in UBRB is sustained by
discharge from the Arbuckle Simpson aquifer. During wet years, the
main stem of UBRB has been reported to be perennial all the way to its
headwater (Smith et al., 2004).

2.2. Crest model

2.2.1. Model overview

One young family of models called the Coupled Routing and Excess
Storage (CREST) was initially developed in 2010 (Wang et al., 2011)
with a series of improvements later made on model physics, parameter,
and software (Xue et al., 2013; Zhang et al., 2015). CREST is a distrib-
uted hydrological model resolving spatiotemporal water and energy
fluxes on a regular grid with user-defined resolution. The core compo-
nents of the CREST model include runoff generation, evapotranspira-
tion, surface routing, and sub-surface routing, which enable a three-
dimensional representation of water fluxes. In CREST model, precipi-
tation is first intercepted by canopy layer; infiltration and runoff are
then partitioned via the variable infiltration curve concept (Liang et al.,
1994; Zhao, 1995). While surface and subsurface water was routed using
the linear reservoir equations (Nash, 1957) or 1-D kinematic wave
approximation of the de Saint Venant Equation (Singh, 1997), water in
excess storages, including interception by the vegetation canopy and
subsurface storages in the soil layer, are subject to redistribution back to
the atmosphere via evapotranspiration. The water balance and grid-
based routing schemes are fully coupled at each time step to represent
interactions between atmospheric land surface and subsurface water. In
terms of parameterization, CREST enables the use of gridded model
parameter in regions where estimation of these values from remote
sensing data is possible. Vergara et al., (2016) have developed a-prior
distributed CREST parameter sets for the Contiguous United States,
which is adopted as initial parameter set for this study. A brief
description of CREST model parameters is provided in the Appendix.
CREST includes automatic calibration modules, i.e. the shuffled complex
evolution (Duan et al., 1992) and Differential Evolution Adaptive
Metropolis (DREAM, Vrugt et al., 2009). Another strength of CREST is
the compatibility with multiple datasets of remotely sensed meteoro-
logical forcing. Furthermore, CREST supports gridded output of model
states and fluxes like streamflow, soil moisture, surface runoff, and
subsurface runoff.

2.3. Data

2.3.1. Forcing and geographic data

The high-resolution (10 m) Digital-Elevation-Model (DEM) is ob-
tained from USGS Earth Explorer (https://earthexplorer.usgs.gov/) and
serves as the base for building CREST model. Previous studies identified
the lack of spatial characterization of hydro-meteorologic and
geographic conditions as a major challenge in modeling intermittent
streams (Costelloe et al., 2005). Therefore, the forcing data and model
parameters should sufficiently represent the full range of spatial vari-
ability of hydro-meteorologic conditions in the basin. For precipitation
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Fig. 2. A) Locations of in-situ state loggers signified by the black round markers and B) the raw conductivity time series measured as light intensity I (lux) along with

the processed wet/dry states; blank area means no data.

forcing, we used Multi-Radar-Multi-Sensor (MRMS) 1-hour gauge bias-
corrected radar precipitation accumulations (Q3GC_SHSR_1H).
Q3GC_SHSR_1H is the CoCoRaHS rain-gauge-corrected 1- hour radar
QPE accumulation using a three steps method, which has the temporal
resolution of 1 h and 1 km? spatial resolution (Zhang et al., 2016). The
potential evapotranspiration (PET) data used in this study were from
United States Geological Survey (USGS) Famine Early Warning Systems
Network (FEWS NET, https://earlywarning.usgs.gov/fews). The daily 1
by 1 arc-degree PET data were calculated from the Global Data Assim-
ilation System (GDAS) using the Penman-Monteith method (Verdin
et al., 2005). One U.S. Geological Survey (USGS) stream gauge (USGS
07332390) near the downstream outlet of UBRB, were selected to
validate and calibrate the hydrological modeling (Fig. 1).

2.3.2. Dynamic water surface estimate (DSWE)

The Landsat mission, the Landsat Archive, and on-going Landsat/
Sentinel data have enabled great progress in improving long-term
observation of inundation at continental and global scales (Pekel
et al., 2016). The newly released products by USGS, Dynamic Surface
Water Estimate (DSWE), has furthered the ability of this dataset to
detect inundation at subpixel level (Jones, 2019). For DSWE product
generation, each cloud-, cloud shadow-, and snow-free pixel in a given
scene is tested for the presence of standing surface water and classified
into either “not water” (NW) or separate “open water” (OW) and “partial
surface water” (OSW) classes (Jones, 2019). Specifically, a cell is clas-
sified as partially inundated if 20% of its area is covered by water,
suggesting detectability of a stream with water 6-meter wide in a 30-
meter DSWE cell (Jones, 2019). Therefore, in this study, we explore
the potential of DSWE as a validation source for a part of the stream

networks with the bank width over 5 m. We conduct field visits along the
main stem of UBRB and determine that streams with contributing area
over 100 km? are targets for comparison with CREST simulation. Below
this threshold, the streams get narrower than 5 m and are considered
beyond the detectability of DSWE. The raw DSWE data were obtained
from USGS Earth Explorer via https://earthexplorer.usgs.gov/. We treat
both OW and OSW classes as inundated pixels when compared with the
CREST simulation. The comparison is based on DSWE data on 44
selected days when cloud coverage was <10%.

Unlike the common usage of inundation maps to validate hydraulic
simulation, DSWE is used here to compare with hydrologic simulation,
which only outputs 1-D streamflow rather than 2-D inundation extent or
water depth. Therefore, simulation (CREST) and observation (DSWE)
are only compared over a series of 10-meter channel cells (with
contributing area over 100 km?). In addition, several preprocessing
steps on the raw DSWE dataset are explored, as detailed in the Appendix.
The DSWE data are downscaled from 30-meter to 10-meter resolution
based on ‘nearest neighbor’, prior to comparison with the CREST
simulation.

2.3.3. In-situ logger data

For the small headwater tributaries, we monitored wet/dry status at
9 sites in UBRB using modified Onset HOBO Pendant© loggers that
measured stream temperature and conductivity at 30-minute intervals
(STIC loggers, Chapin et al., 2014). Conductivity provides a reliable
means to estimate drying status by displaying a range of higher values
when wet and lower or zero signal when dry. At each stream, we
deployed 5 loggers for redundancy in protective PVC housing at
different points along a reach by securing them to the streambed using
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Table 1
List of statistical metrics used in this study.
Statistic Metrics Equation Value Range Perfect Value Unit
Evaluation Correlation coefficient (CC) ZN—l (Sn _ g) (On _ 5) —00, 1 1 N/A
Using cc = - 2 2
USGS \/ S (8.~ 5) \/ S (0:-0)
Streamflow
Observation Relative bias (RB) RB — 1IN Sn— O % 100 —00, 00 0 %
NZn=1" 0,
Log Nash-Sutcliffe coefficient efficiency N (1og(S.) — log(0,))? —c0, 1 1 N/A
} LogNSE = 1 Zn:l((’g( ) — log( n))
(log-NSE) N 2
S (1og(0n) — 10g((0))
Evaluation Precision Precision — TP 0,1 1 N/A
Using " TP+ FP
DSWE and In-situ Recall Recall = _TP 0,1 1 N/A
Loggers TP + FN
88 F1 1 2% Precision x Recall 0,1 1 N/A
el " Precision + Recall
FalseAlarm Ratio _ 0,1 0 N/A
FAR = tp - 1p

* Variables: n and N are index and total number of samples; S represents simulated flow rate from CREST while O is the observed flow rate from USGS stream gauges.
The ~ sign means the averaging operator. TP means number of true positives; FP means number of false positives; FN means number of false negatives, and TN means

number of true negatives.

embedded rebar and zipties. As shown in Fig. 2A, nine monitored rea-
ches drain various contributing areas (from 0.7 to 68 kmz) and belong to
different tributaries. This arrangement spanned a range in hydrology
and was designed to capture various wetting/drying patterns of streams
within the watershed. We deployed loggers for one year from November
2019 to 2020 to ensure measurements included both rainy and dry
seasons.

We inferred drying state changes of the loggers using a nonpara-
metric change point analysis (nCPA) of the variation (as the standard
deviation) in conductivity measurements over each day of the deploy-
ment (Matteson and James, 2014). This eliminated the need for human
interpretation of a large range of conductivity values, and standardized
signal interpretation across all loggers as daily variation was consis-
tently higher during wet days compared to dry days. We retained esti-
mated change points between wet and dry transition periods (permuted
p-value < 0.1), and time increments between change points were
assigned either wet (1) or dry (0) status based on the mean conductivity
of that increment. This allowed us to estimate drying status of each
logger at a 1-day temporal resolution. The nCPA for each logger time-
series was run with the ecp package (James and Matteson, 2013)
using the divisive hierarchical estimation algorithm with 999 permu-
tations. From the five loggers at each site, the one with the most com-
plete record (least null values) is chosen to represent the site. Fig. 2B
shows the time series of conductivity and processed wet/dry status. It
can be found that the signal processing can reasonably distinguish
transitions between wet and dry status at all nine sites.

2.4. Crest model setup

The CREST model for UBRB is set up over 10-meter grids at daily
time steps. One reason for using daily time steps is to offset the
computational cost due to the high spatial resolution, long simulation
period, and need for calibration. In addition, the future application of
the stream dynamics estimates, which are to be linked with ecological/
biological variables, determines that the most relevant temporal reso-
lution is also daily. To this end, the hourly MRMS radar data is aggre-
gated to a daily amount. The available MRMS Q3GC_SHSR_1H products
span 06/01/2015 to 10/13/2020, which confines the simulation period
of this study.

Two calibrations are conducted using the downstream USGS stream
gauge data and in-situ logger data, respectively. The a-priori distributed
parameter sets are adopted as the default, initial values for the cali-
bration. When calibrating gridded parameters in CREST, a multiplica-
tion factor on the parameter matrix is varied and calibrated in each
iteration, which retains the spatial pattern of the parameter grids. The

model is first calibrated against observed streamflow at USGS gauge
using CREST’s built-in automatic DREAM calibration module. The
objective function is set to minimize the logarithmic Nash-Sutcliffe co-
efficient (Table 1) for better capturing low-moderate flow values. It
should be noted that log-NSE can only be used for positive flow values
thus fits better for evaluation in a perennial reach, which is the case in
this study. The calibration is done by varying all CREST parameters
(Table Al in Appendix) over the period from 06/01/2015 to 12/31/
2018. The observed flow over the remaining period from 01/01,/2019 to
10/13/2020 is used for validation. The aim of the first calibration is to
assure overall water balance and flow routing in UBRB is captured by the
model. To further capture the wet/dry dynamics at the nine headwater
sites, the following second calibration finetunes two already calibrated
routing parameters UNDER and ALPHAO (Table A1) within a tight range
of multiplier (0.8 to 1.2) over the period from 11,/09/2019 to 10/13/
2020. UNDER and ALPHAOQ are chosen for calibration because they
respectively determine the surface and sub-surface flow velocities in the
overland cells. Thus, the routing in larger downstream channels is
insensitive to the variation of UNDER and ALPHAO within the tight
range. The objective function herein is set to maximize the widely-used
F1 score (Table 1), which is essentially a multi-objective function
combining the precision and recall metrics (Table 1, Powers, 2020).
Note that the F1 score is not a built-in objective function in CREST, thus
this second calibration is achieved by externally coupling CREST and the
SCEUA calibration algorithm (Duan et al., 1992). We also design a three-
fold cross validation to examine the model performance at different
potential catchments. The split of loggers for calibration and validation
considers even proportions of wet and dry values in each fold. After
assuring similar performances from the three scenarios, we select the
calibrated parameters from the scenario with the best evaluation metrics
for the final simulation.

With the calibrated parameters, the model is warmed up from 06/
01/2015 to 12/31/2015 using observed forcing data. Simulation then
starts on 01/01/2016 and finishes on 10/13/2020. Table 1 summarizes
the statistics used to calibrate, validate, and evaluate the hydrologic
performance at the USGS gauge location and in-situ logger sites.

2.5. Investigation of stream dynamics

In previous field survey studies, statistical analyses were often
conduced on attributes of the active flowing networks, like stream
length, discharge, number of flow origins, and connectivity (e.g., Datry
et al., 2016; Godsey and Kirchner, 2014; Jensen et al., 2017). Botter and
Durighetto (2020) recently developed a more versatile tool for charac-
terizing flowing stream network. As of this study, the primary objective
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Table 2
Summary of the statistical evaluations of model calibration, validation, rising
limb, and falling limb of the observed hydrograph.

Hydrograph Count CC RB (%) Log-NSE
Calibration 1095 0.79 -18.9 0.87
Validation 652 0.69 -27.7 0.73
Rising Limb 464 0.79 —46.4 0.74
Falling Limb 1212 0.74 -11.6 0.85

in mapping dynamic streams is to seek hydrologic interpretation based
on CREST simulation. Therefore, we select simple metrics of spatio-
temporal variability of the stream water in first-level statistical analysis.
First, based on the daily wet dry maps of all 10-meter pixels in the
simulation domain, the average presence of water in the streams is
quantified by a single metric called water occurrence (WO) via Eq. (1):

WD
wo = =P

S SD M

where WD is water detections representing occasions (days here) with
water present and SD represents simulated days. For each pixel in CREST
model domain, the WDs are simply regarded as days with positive

streamflow values.

Second, drainage density is used to measure the spatial extent of
actively flowing streams across catchments of various sizes, which is
defined as the total length of flowing streams per unit area of the
catchment. To investigate the relationship between flowing stream
length and streamflow, we examine drainage density in relation with
unit discharge which is the streamflow at the most downstream stream
segment of a catchment divided by the catchment area.

3. Results and discussion
3.1. Hydrologic simulation

Fig. 3A shows the simulated and observed hydrographs in log scale.
Based on hydrograph shape, the low simulated and observed streamflow
values show good match, while the high values are underestimated.
Fig. 3B and C show the comparison via scatter plot and flow duration
curves of simulated and observed streamflow, respectively. Similarly,
flow values below 10 m%/s are well captured, as indicated by scatters
aligning well with the lower part of the diagonal and close match of flow
duration curves near the tails. The log-NSE value of 0.79 (maximized
objective function) in Table 2 indicates a satisfactory calibration
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Fig. 4. A) True positives (TP) and false positives (FP) between the comparison of CREST and DSWE in streams with contributing area over 100 km? on the 44 cloud
free days, B) probability density functions of false alarm rate (FAR) of the CREST compared with raw DSWE and DSWE after two preprocessing steps, alignment with

stream cells and gap removal.

Table 3
Summary of three-fold cross validation using in-situ logger data.
Folds  Loggers for Loggers for Scores
calibration validation R
Precision  Recall F1
1 1,2,3,4,7,8 5,6,9 0.991 0.986 0.988
2 3,4,5,6,8,9 1,2,7 0.986 0.97 0.978
3 1,2,56,7,9 3,4,8 0.992 0.985 0.989

performance. Considering various metrics, the model performance in
the calibration period is slightly better than in the validation period. The
underestimation of high values also causes the overall bias to be nega-
tive. As indicated by the log-NSE values (Table 2), the model perfor-
mance is better on falling limb than on the rising limb of the hydrograph.
This consistently reflects the better performance on low flow values, as
receding limbs span more time than rising limbs and include more low
flow values.

3.2. Comparison with DSWE

Fig. 4A shows the binary comparisons between CREST simulation
and preprocessed DSWE in streams with contributing area great than
100 km?. The comparison only results in two cases, TP, and FP, as these
streams are simulated to be perennial by the CREST model. It can be
found that the detection of water by DSWE in the main stem (contrib-
uting area > 300 km?) is unstable with discontinuous segments; and
water-covered pixels in the two upstream tributaries are even more
sporadic. This is due to the narrow stream width, which reduces to
around 5 m just upstream of the confluence and possibly reaches the

limit of DSWE’s detectability. The only exceptions occurred on 02/15/
2017 and 01/04/2019, corresponding to high flow values observed at
the downstream USGS gauge (Fig. 3A). The high flow causes streams to
become wider and detectable by the DSWE. Fig. 4B shows that pre-
processing reduces the false positive rate to around 0.5 by essentially
filling the discontinuous patches (removing FP cases) in the main stem.
In summary, DSWE fails to detect flowing streams narrower than 10 m
and inconsistently detect water presence in channels around 15-meter
wide.

3.3. Validation using In-Situ loggers

The results of validating metrics for the threefold cross validation
using in-situ loggers are presented in Table 3. All three scenarios result
in very high precision, recall, and F1 values. The three folds show
equally high scores, indicating the three separately calibrated models
can perform comparably on the testing datasets. This illustrates the
model’s ability to perform well with an unseen dataset in potentially a
different headwater catchment.

3.4. Stream dynamics mapping

Fig. 5A shows the monthly time series of areal-averaged precipita-
tion and PET of UBRB over the 4-year period. There is a noticeable
interannual change in precipitation across the four years with year 2018
being the wettest. Seasonal variation is also evident where spring
(March, April, and May) has the most precipitation followed by either
summer (June, July, and August) or fall (September, October, and
November) and then winter (December, January, and February). Also,
summer months feature hot and dry days with high PET values (Fig. 5B).
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Fig. 6. Water occurrence calculated based on CREST simulation in 2510 stream segments for the four years and four seasons.

As a result of both precipitation and PET, the soil moisture shows clear
seasonal pattern with highest soil moisture occurring in winter followed
by spring and fall; soils are dry in summer with a soil moisture value
nearly half of that in winter (Figs. 5C and 7).

Using four years of daily streamflow grids output, we map the water
occurrence over the 2510 stream segments in UBRB for the four years
and the four seasons (Fig. 6). Table 4 summarizes mean annual and
seasonal water occurrence conditioned on contributing area for small

headwater catchments. Streams with contributing area over ~5 km?
appear to have flow over 77% of the time during the four years. Smallest
tributaries in the headwater catchments (contributing area < 0.2 kmz)
are mostly non-perennial with active flow for 78% percent of the time. In
terms of stream length, 18% the total 1145 km of stream length stays
perennial during the four years. Across the seasons, streams show the
highest water occurrence in the spring followed by fall, summer, and
winter. This can be explained by the seasonal variability of precipitation
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Table 4
Summary of stream intermittency metrics of headwater tributaries conditioned
on drainage area.

Water Occurrence Contributing Area (km?)

<0.2 0.2 ~0.5 05~1 1~2 2~5

Years 2016 0.78 0.80 0.79 0.82 0.82
2017 0.73 0.75 0.74 0.77 0.77
2018 0.81 0.83 0.82 0.85 0.85
2019 0.79 0.80 0.79 0.83 0.83
Seasons Spring 0.72 0.79 0.87 0.93 0.94
Summer 0.57 0.66 0.78 0.87 0.90
Fall 0.65 0.73 0.83 0.90 0.92
Winter 0.57 0.64 0.74 0.83 0.88

and PET as shown in Fig. 5A. In terms of precipitation, the wettest season
is spring (3.8 mm/d), followed by summer (3.33 mm/d), fall (3.15 mm/
d), and winter (1.88 mm/d). Summer features high PET (5.7 mm/d),
offsetting the intense but infrequent precipitation (Li et al., 2012), and
resulting in overall lower runoff, as compared to fall with an averaged
PET of only 2.9 mm/d. This effect is also evident in storage dynamics of
the watershed as shown by the monthly time series of soil moisture in
Fig. 5C. The high PET reduces antecedent soil moisture ahead of storm
events and further decreases the overland runoff generation. In contrast,
low PET in winter makes the soil moisture higher than in any other
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season (Fig. 5C and Fig. 7) despite the lowest precipitation. This causes
the water occurrence of streams in winter season to be only slightly
smaller than that in the summer season.

Fig. 7 shows the seasonally averaged soil moisture simulated by
CREST, where two areas (outlined) with different hydrologic responses
are selected to illustrate the heterogeneous effects of geographical
properties on stream dynamics. Fig. 8A and 8B show the monthly mean
areal water occurrence and soil moisture for the two areas, respectively.
In all seasons but summer, soil moisture in Area B is higher than in Area
A. In Area B, the dramatic drop of soil moisture in summer also coincides
with the sudden decrease of water occurrence, as seen in August 2016,
July 2018 and July 2019. Such discrepancy in the hydrologic response is
due to the different soil and land types of the two areas, as shown in
Fig. 1. Area A features a more impervious surface plus sandy soils which
hold low soil water content, whereas Area B is a naturalized catchment
with clayey soils of high water-holding capacity. In summer, limited
evapotranspiration occurs in the Area A due to its impervious coverage.
The soil moisture in Area A is thus less sensitive than in Area B (Fig. 8B).
Fig. 8C and D show the monthly composition of surface and subsurface
runoff in Area A and B, respectively. The dotted lines mark the 50%
value, and no color signifies months without rainfall input. It can be
found that the different land cover and soil properties cause Area A and
Area B to be dominated by surface and subsurface runoff, respectively.
The higher proportion of surface runoff in Area A could also be the
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25% -27%

28% - 30%
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40% - 42%
43% - 45%
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Fig. 7. Time-averaged soil moisture calculated based on CREST simulation in Spring (A), Summer (B), Fall (C) and Winter (D) from 2016 to 2019.
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reason for the overall higher water occurrence. Although subsurface
runoff dominates in Area B, a few switches in the runoff generation
mechanism can be found in summer when surface runoff composition
gets above 50%. Such switches coincide with lowest soil moisture
values, since whatever small amount of infiltration is stored as soil water
instead of running off. In terms of land cover and soil types, Area B is
representative of the whole UBRB (Fig. 1), suggesting a large fraction of
the watershed is as sensitive as Area B and likely to experience similar
seasonal switches in runoff generation mechanism.

We also examine the relationships between streamflow and drainage
density in 16 selected catchments, as shown in Fig. 9. The selection in-
corporates three levels of catchments sizes (10 to 20, 50 to 60, and near
120 km?) and assures that catchments are independent within each level
and spread evenly over the UBRB. Across the three levels, drainage
density, as plotted in Fig. 9A to C, increases roughly as power functions
of unit discharge below some threshold values (about 102 mm/d) and
plateaus beyond the threshold. In log-log scale, the values below the
threshold are also fitted to linear relationships for each individual
catchment. The fitted relationships show strong statistical significance
as indicated by the high R? (coefficient of determination) values
(Table 5). For basins of various sizes, the log-log slope k values

10

(exponent in the power-law relationships) are similar (0.31 to 0.4) while
the log-log intercepts (b) range from 0.91 to 1.23. Variability in
drainage density at a given unit discharge (the spread along the vertical
direction) reduces with increasing catchment size as tributaries merge at
confluences and form larger streams.

3.5. Discussion

Both streamflow in high-order streams and wet/dry status in head-
water tributaries are automatically calibrated in this study. Automatic
calibration scheme allows multi-objective cost functions and is appro-
priate/necessary for intermittent catchments (Azarnivand et al., 2020b),
like the F1 score used for calibration using in-situ logger data. The un-
derestimation of high flow values by the CREST model is mainly due to
the daily simulation time step (Fohrer et al., 2001). During high flow
events (flooding), the timing and magnitude of flood peaks are sensitive
to the temporal distribution of rainfall. Because of the non-linearities in
the water balance and routing processes, the daily average rainfall in-
tensity diffuses any sub-daily variabilities and is too coarse for simu-
lating streamflow during floods. Also, in overland routing scheme
(kinematic wave), travel time from one grid cell to next downstream
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Table 5

Summary of the catchments in which scaling relationship between drainage
density and unit discharge is examined; k is the scaling exponent; b is the
intercept in log-scale; and R is the coefficient of determination.

Level Name Contributing Area (km?) k b R?

1 1-A 11.6 0.32 0.94 0.85
1-B 11.7 0.32 0.95 0.96
1-C 13.2 0.36 1.10 0.96
1-D 14.4 0.40 1.20 0.87
1-E 16.6 0.34 1.02 0.90
1-F 17.6 0.35 1.05 0.94
1-G 19.3 0.40 0.97 0.90
1-H 19.1 0.40 1.23 0.92
1-1 20.5 0.38 1.11 0.91
1-J 23.6 0.34 0.95 0.87
1-K 24.6 0.37 0.91 0.90

2 2-A 56.4 0.38 1.00 0.91
2-B 55.6 0.33 0.95 0.88
2-C 58 0.37 1.05 0.80

3 3-A 119.3 0.38 1.04 0.91
3-B 119.9 0.37 1.03 0.85

11

shortens with increasing unit discharge. During floods, the daily time
step is at a larger scale than the travel time between 10-meter grid cells.
Such effect also propagates downstream, causing the translated volume
to reduce at higher order streams. The underestimation of high flow has
not been widely reported by other modeling studies that investigate
intermittent catchments using also daily timestep, probably due to the
relatively small catchment size and short channel length (e.g., Niedda
and Pirastru, 2014; Pierini et al., 2014; Camporese et al., 2014; Dean
et al., 2016). In comparison with distributed models, lumped models
could deal with this issue with flexibility, for instance, by using
duration-specific unit hydrographs. However, the trade-off is the
inability to simulate streamflow at any point within the catchment like
the distributed models.

The interannual and seasonal variabilities of the rainfall and PET are
well reflected in stream dynamics in UBRB (Fig. 6). The role of rainfall
intensity and frequency have been demonstrated to be vital for stream
dynamics in intermittent catchments by previous studies (Azarnivand
et al., 2020a, Dean et al., 2016). The contrast of water occurrence in
summer and fall indicates mutual effects of rainfall, PET, and soil



S. Gao et al.

moisture on runoff generation. Interestingly, the seasonality in forcings
is strong enough to switch runoff generation mechanism in headwater
tributaries across wet and dry periods (Fig. 8D), which is also revealed
by previous studies on the blue river basin (Li et al., 2012; Tian et al.,
2012). The heterogeneity in catchment characteristics cause distinction
in water occurrence of head tributaries (Fig. 8), via the distribution of
surface and subsurface runoff. This strengthens the significance of
antecedent catchment wetness prior to rainfall events in driving
streamflow in intermittent catchments, as also reported in previous
studies (Viola et al., 2014; Niedda and Pirastru, 2014).

Although not fully exposed in the UBRB, the CREST model lacks
representation of certain physical processes at fine spatial resolution (e.
g. 10 m), which might become issues in other study areas. For instance,
in low-yielding basins in the western U.S., additional abstraction storage
needs to be included to represent ground surface depression and soil
shrinkage cracks. In terms of groundwater, the CREST model adopts a
conceptual bucket module to represent the recharge and discharge of
groundwater, in which groundwater flow is assumed to be parallel to the
surface topography. The bucket concept is also widely used in other
distributed hydrologic and land surface models (Niu et al., 2011) as a
simplification of the highly heterogeneous and nonlinear groundwater
flow process, because an explicit representation of these processes is
currently limited by the lack of information on bedrock topography
(Camporese et al., 2019) and the difficulty to assign spatially and
vertically distributed parameters (Maneta et al., 2008). Also, this
assumption exempts the assignment of boundary conditions because
groundwater is assumed to move only within the watershed boundary
free from influence of surrounding hydraulic heads. However, there
would be issues when the extent of underlying aquifer significantly ex-
ceeds the watershed boundary or when surface flow originates in
aquifer-fed springs.

The scaling relationships between drainage density and unit
discharge have been reported in studies based on field mapping (Godsey
and Kirchner, 2014; Gregory and Walling, 1968). Due to the low fre-
quency of mapping and logistical challenges, the mapped stream net-
works are subject to issues like low statistical significance, limited
spatial coverage of mapped networks in complex terrain, and influences
from stochastic factors (e.g., debris and sediment collected by tree falls).
As demonstrated in this study, hydrologic modeling here confirms and
augments the power-law relationship of strong statistical significance by
continuously generating data at high resolution over a large spatial
scale. The scaling relationships plateau at some threshold discharge
values, representing entirely active stream networks at high flow con-
ditions. The existence of some plateau is reasonable because it physically
represents the geomorphic channel networks, i.e., the branching net-
works of topographic features. Nonetheless, the plateaus, which corre-
spond to the size (total length) of stream networks, are limited by the
resolution of topographic data (DEM). In other words, the total length of
streams could have exponentially increased and allowed the power-law
relationship to extend further, had the model been simulated over finer
grids, e.g., using 1-meter DEM. To certain extent, the plateau also jus-
tifies the underestimation of high flow by the CREST model, as stream
dynamics is demonstrated to be only sensitive to discharge at low-
moderate flow conditions.

4. Conclusions

In this study, we demonstrate the capability of distributed hydrologic
modeling to capture the stream dynamics in upper Blue River basin, OK.
The fully-distributed CREST model is established over 10-meter grids
using distributed geographic data, forcing data, and parameters of fine
resolution. The high spatial resolution of the simulation enables us to
decipher dynamics in refined stream networks with the averaged
contributing area of individual stream segment being <0.2 km? The
large spatial scale of study area exceeds most of existing studies and
allows us to examine the stream dynamics across a wide range of stream
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orders and catchment sizes and potentially capture effects from heter-
ogenous catchment characteristics. To achieve desired model perfor-
mance at various stream orders, we deploy in-situ state loggers at nine
headwater tributaries as an additional calibration/validation source to
the USGS stream gauge. We also explore the utility of LANDSAT product
DSWE in capturing water presence in high-order channels. Output
streamflow grids are lastly used to map actively flowing stream net-
works at daily time step. The mapped stream networks are interpreted
hydrologically using the gridded output from the CREST model. The
major findings are summarized as follows.

1. The hydrologic simulation at 10-meter spatial resolution and daily
temporal resolution using the CREST model performs well against
low/moderate observed flow, as indicated by a logarithmic NSE over
0.7 in the validation period. Due to the daily timestep, high flow
values are underestimated. At headwater tributaries, the calibrated
simulation can accurately capture wet/dry status, as compared with
in-situ logger records.

2. The 30-meter LANDSAT Dynamic Surface Water Estimate (DSWE)
products are insufficient to serve as validation source for water
presence even in high order streams after preprocessing is applied.
Due to limitation in resolution, the data only detect discontinuous
patches of water in 15-meter-wide streams and sporadic water
presence in 10-meter-wide streams.

3. Flowing stream networks are dynamic over the 4-year simulation
period in UBRB. At daily time step, the density of flowing stream
length scales as a power-law function of unit discharge below a
threshold value. Above the threshold, the whole networks become
active with flowing water. The existence of the threshold also jus-
tifies the underestimation of high flow values by the CREST, as
stream dynamics is sensitive only to low-moderate unit discharges.
The exponent of the power-law relationship i.e., change in drainage
density per change in unit discharge, stays consistent across catch-
ments of various sizes, indicating the existence of a central tendency
across the numerous streams in UTRB.

4. Mapping of water occurrence shows that streams are most dynamic
in the small headwater catchments. The interannual and seasonal
variabilities of precipitation and PET is well reflected by the water
occurrence in these small non-perennial tributaries. The distinction
in land cover and soil properties cause the runoff generation mech-
anism to differ among heterogenous headwater catchments, which
indicates the significance of antecedent catchment wetness prior to
rainfall events in driving streamflow in non-perennial catchments.

Compared with traditional field mapping approach in stream dy-
namics study, the modeling approach can generate data samples with
greater statistical significance, temporal frequency, and range. There-
fore, distributed hydrologic models should be utilized more to under-
stand controls on the sensitivity of the flowing stream networks to
changes in runoff. This study also reveals the need for future research
efforts, since hydrological modeling of intermittent streams is very much
constrained by the quantity and quality of observations needed to cali-
brate and validate the model outputs. Therefore, as a-priori estimates
from this study, the simulated output needs to be supplemented with
better datasets. Also models in general are only as good as our under-
standing of the physical processes that drive stream dynamics. The
representation of physical processes is also sensitive to model resolution.
At fine scales, additional processes need to be included and represent
complex nonlinear processes of runoff generation in low-yielding basins,
e.g. surface-groundwater interactions or local geological peculiarities
like karstic areas (Ye et al., 1997). Following this study, ongoing
research focuses on coupling CREST with land surface models to
represent springs fed by unconfined aquifers in arid and karstic basins.
Finally, as we are confident that the mapped dynamic stream networks
make sense hydrologically, a more in-depth future study focusing on
stream dynamics will follow to take advantage of the rich information in
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the CREST simulation using more complex statistical tools.
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Appendix

Preprocessing of DSWE

Preprocessing is conducted on DSWE prior to the validation
following the steps below. First, Digital Elevation Model (DEM) data in
CREST, like most of distributed hydrologic models, are filled to avoid

Table Al

Parameter  Category Min Max Brief Description

WM WaterBalance 5 250 Maximum soil water capacity
(depth integrated pore space) of
the model soil layer in
millimeters

B 0.1 20 Exponent of the variable
infiltration curve

M 0.01 5 Impervious area ratio

KE 0.001 1 Adjustment factor to PET grids

FC 0 150 Soil saturated hydraulic
conductivity in mm/hr

TH Routing 30 300 Threshold for how many cells

km? km? must drain into a cell for it to be

considered part of a river

UNDER 0.0001 3 Interflow flow speed multiplier

LEAKI 0.01 1 Amount of water leaking out of
the interflow reservoir at each
time step

ALPHA 0.001 3 Multiplier in the kinematic
equation Q = aAP for channel
cells

BETA 0.001 1 Exponent in the kinematic
equation Q = aAP for channel
cells

ALPHAO 0.001 5 Multiplier in the kinematic

equation Q = aAP for overland
cells
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water from being trapped locally. Ponds and potholes should thus be
excluded from validation. We automatically segment ponds from the
DSWE rasters using an algorithm traditionally applied in identifying rain
cells from radar images (Dixon and Wiener, 1993) and then filtering the
identified clusters of water-covered pixels considering their shape and
area. After fitting identified pixel clusters to ellipsoids, we exclude those
with ellipticity (ratio of minor axis over major axis) lower than 0.2 and
area above 9,000 m?. Next, we align the stream cells in DSWE rasters
with those in the CREST domain by nudging adjacent inundated DSWE
pixels into CREST streams while limiting the nudging distance to be 30
m (one DSWE pixel). This step is crucial because the CREST streamflow
output is 1-D, which means one stream cell and its adjacent overland
cells could have significantly different contributing area and stream
flow. Therefore, a DSWE water-covered pixel is paired (aligned) with a
nearby stream cell for the comparison. Lastly, the water-covered pixels
in DSWE can be discontinuous even after the alignment (Fig. A1), which
can be interpreted as isolated pools in small streams but are unlikely to
occur in high-order streams with persistent baseflow. Another cause for
the discontinuity is no-data stripes of unscanned pixels that cut through
stream networks and leave many no-data gaps. In order to quantify the
effect from the discontinuous features in higher-order streams, we fill
the gaps between two adjacent water-covered segments that are sepa-
rated by <90 m of flow distance (distance along streams) and have
drainage area over 300 km?2. With the preprocessing done, DSWE rasters
are resampled using nearest neighbor approach to 10-meter resolution
and then compared with CREST streamflow grids.
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