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A B S T R A C T   

Rivers are among the most dynamic components in Earth’s terrestrial water cycle and provide critical ecosystem 
services. Yet, the spatiotemporal variability of river surface extents remains largely unquantified at the global 
scale. Satellite remote sensing provides a promising alternative to in-situ observations, which can enable a more 
comprehensive survey and systematic analysis of global rivers at fine spatial resolutions. The study examines the 
spatiotemporal variability of river surface extent globally and its natural driving factors, by combining the use of 
Landsat-based Global Surface Water (GSW) and Global River Widths from Landsat (GRWL) databases. In addition 
to examining the long-term mean river surface extent in various climate zones, we perform statistical analyses to 
correlate monthly times series of fractional river extent with the terrestrial water storage (TWS) components 
obtained from the Gravity Recovery and Climate Experiment (GRACE) satellite observation and the Global Land 
Data Assimilation System (GLDAS) model simulations. Results show that the spatiotemporal variability of water 
presence in rivers can be explained well via differentiating climate zones. The analysis also shows that 52.7% of 
the global maximum river extent is covered by water less than half of time. Changes of fractional river extent are 
found to be highly correlated with groundwater storage in low- and mid-latitudes, whereas snow melting 
dominates the river dynamics in high latitudes. By examining the extremes of fractional river extent, we found 
that the abrupt changes of fractional river extent are well linked to precipitation anomalies in the equatorial, 
arid, and warm temperate areas. This study offers an innovative perspective to study spatiotemporal dynamics of 
rivers by combining optical remote sensing (Landsat), gravimetry observations (GRACE), and land surface 
simulations; and it highlights the significant role of low-flow-generating processes (snow melting, infiltration, 
and recharge-discharge) in controlling river dynamics in certain regions, which warrants future investigation.   

1. Introduction 

Rivers provide critical ecosystem services for human societies 
(Vörösmarty et al., 2010), including greenhouse gas exchange with the 
atmosphere, water purification, flood mitigation, and hydropower 
generation (Bastviken et al., 2011; Raymond et al., 2013; Tang et al., 
2009). As one of the most dynamical components in terrestrial water 
cycle, rivers expand and retract seasonally and at the synoptic scale 
following storm events (Jensen et al., 2017; Shaw, 2016). The spatio
temporal variabilities of surface water in rivers continuously interact 

with hydrological, ecological, and geomorphological processes (Gleason 
and Smith, 2014; Van Dijk et al., 2016; Yamazaki et al., 2012; Yang 
et al., 2019). Therefore, a thorough understanding of riverine dynamics 
in responses to environmental factors is vital for ensuring the continued 
provision of freshwater ecosystem services (Mueller et al., 2016; 
Sichangi et al., 2016; Tarpanelli et al., 2018), especially under the 
ongoing changes in the Earth’s climate, land use/cover, and human 
water use (Abbott et al., 2019). 

In terms of water quantity, the characterization of river dynamics has 
traditionally been built upon streamflow observations from in-situ 
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gauges (Gudmundsson et al., 2019), but more recently using the 
emerging remote sensing technologies (Hou et al., 2020). Proxies for 
discharge include air- and space-borne measurements of surface veloc
ity; radar altimeters to measure surface-water elevations; space-borne 
measurements of gravity fluctuations to estimate streamflow; and 
measurements of surface water extent to derive hydrological persistence 
(Allen and Pavelsky, 2018; Gleason and Smith, 2014; Pavelsky, 2014; 
Tourian et al., 2017). As one of the most successful missions by the 
National Aeronautics and Space Administration (NASA), Landsat has 
been collecting multispectral images of the Earth at a 30-m spatial res
olution for the past 37 years since 1984 (Wulder et al., 2016). Based on 
Landsat archive, researchers have produced several global scale esti
mates of surface water extents using high performance and cloud-based 
computing platform such as Google Earth Engine (Gorelick et al., 2017). 
For instance, Yamazaki et al. (2014) developed the Global Width 
Database for Large Rivers using Shuttle Radar Topography Mission 
Water Body Data. A more refined product, Global River Widths from 
Landsat (GRWL), was produced by Allen and Pavelsky (2018) for rivers 
wider than 30 m. Yang et al. (2020) produced the Multi-temporal China 
River Width dataset, the first 30-m multi-temporal river width dataset 
for China during 1990–2015, which includes estimates under both 
seasonal fluctuations and dynamic inundation frequencies. Pekel et al. 
(2016) generated the Global Surface Water (GSW) dataset by using 3 
million Landsat scenes, which essentially indicates whether surface 
water was present at any location of interest from Mar/1984 to Dec/ 
2020 on monthly basis. 

For interpretation and attribution of river dynamics, streamflow 
monitored by gauges has been the primary source because of the long 
temporal coverage (Fekete et al., 2015). Numerous studies have inves
tigated the trends and climatic variabilities of streamflow at (sub)con
tinental scales (e.g., Hammond et al., 2020; Hodgkins et al., 2017; 
Tananaev et al., 2016) and the global scale (Gudmundsson et al., 2019) 
using gauge observations of streamflow. However, the validity of such 
analyses is compromised by the heterogeneous nature of gauge obser
vations in terms of spatial density, data quality, and record length. For 
instance, significant imbalance of in-situ streamflow observations exists 
between developed and developing regions. Moreover, river discharge 
has rarely been studied in relation with other terrestrial water storage 
(TWS) components (e.g., Reager et al., 2014; Gao et al., 2021b) whose 
estimates have become increasingly available via remote sensing (Save 
et al., 2016), land surface simulation, and data assimilation (Rodell 
et al., 2004). 

With the Landsat datasets, we can now resolve the aforementioned 
compromise by quantifying river water extent with high spatial reso
lution, uniform spatiotemporal coverage, and relatively long record. In 
this study, we focus on the spatiotemporal variabilities of remotely- 
sensed, global river extent via combined usage of the two Landsat- 
based datasets, i.e., GSW and GRWL. We also offer an innovative 
perspective on global river analysis through the relationship of river 
water with other TWS components, e.g., groundwater, soil water, and 
snow water equivalent. The estimates of TWS components are based on 
the Gravity Recovery and Climate Experiment (GRACE) datasets and 
GRACE-assimilated land surface model simulations. Our goal here is to 
examine the dynamics of surface water in rivers and to investigate the 
natural driving factors via 1) examining the long-term average presence 
of surface water in rivers of various climate zones globally, 2) examining 
the correlation of monthly fractional river extent (FracSA) with TWS 
components in world’s major river basins, and 3)linking abrupt changes 
in FracSA with precipitation anomalies (i.e. wet and dry events) using an 
event coincidence analysis. The paper is organized as follows: Section 2 
describes data used in this study and methodology, Section 3 presents 
the results and discussion, and Section 4 concludes the study and pro
poses future directions. 

2. Data and methods 

Our methodology starts with defining an examination extent for 
global rivers, which should ideally encompass the full range of vari
ability due to various factors, e.g., shifts of river channels over time and 
channel widening/narrowing during floods/droughts. We utilize the 
monthly history product of Global Surface Water (GSW) dataset (Pekel 
et al., 2016) which consists of three values, i.e., water, no water, and no 
observation at 30-m resolution. Within a 30-year period from Jan/1985 
to Jan/2015, the union of all ‘water’ pixels in the GSW monthly history 
product is taken and referred to as ‘max_extent’ hereafter. Max_extent 
essentially masks all the locations ever detected as water over the whole 
examination period. In concept, max_extent is identical to the GSW 
maximum extent product except for the shorter period (30 years) here in 
our analysis, compared to the full-range product (37 years) in GSW. We 
then use the GRWL river centerline to extract river extent from max_
extent based on connectivity to the river centerline, meaning isolated 
water bodies not connected to the centerline are excluded. This 
approach is similar to how rivers are masked in Allen and Pavelsky 
(2018). We also exclude reaches that cross lakes/reservoirs (with attri
bute ‘lakeFlag’ being one) from the GRWL centerlines. A large search 
distance of 25,000 m is used to examine connectivity to river centerlines, 
which is to ensure the full widths of large rivers or anabranching/ 
braided rivers are covered. In addition, we address the cases of rivers 
widening and touching permanent lakes and/or large reservoirs, by 
unmasking the max_extent with the global dataset HydroLAKES (Mess
ager et al., 2016) (https://hydrosheds.org/page/hydrolakes). Fig. 1 il
lustrates the resulted maximum river extent with an example in Lena 
River (65◦N, 125◦E) along with the GSW monthly history product in 
June of 2005. It can be found that this method can effectively distinguish 
river extents from non-river water bodies (the numerous isolated pools) 
and include the anabranching/braided reaches surrounding the islands 
and bars. Also, the union of ‘water’ pixels in 360 frames (12 frames/year 
× 30 years) of GSW monthly history product removes potential ‘no 
observation’ artifacts in each frame (Fig. 1B). Therefore, we believe the 
finalized maximum river extent provides a very reasonable boundary for 
our further analyses to calculate water presence only related to “rivers”. 

2.1. Long-term mean surface water presence 

The long-term mean surface water presence (SWP) is also quantified 
based on the monthly GSW water history dataset. Within the finalized 
maximum river extent, surface water presence (SWP) is calculated as the 
fraction of time when surface water is present in the total period. We use 
two calculation schemes to account for SWP on monthly and yearly 
bases, respectively. At a given 30-m pixel, the month-based SWP is 
produced using the equation below: 

SWP =
∑

WD
/ ∑

VO (1)  

where WD is water detection; and VO is valid observation which in
cludes WD and no-water detection. Calculation based on Eq. (1) is 
performed for each of the 12 months over the 30-year period and the 
arithmetic mean of the twelve values is then taken as the long-term 
mean SWP. Instead of the ratio between the total WD and VO over the 
30 years, the arithmetic mean of the monthly SWP reduces the effect 
from the uneven observations among different months. Such calculation 
of month-based SWP is identical to that of water occurrence in GSW 
(Pekel et al., 2016), but applied to a shorter period (30 years) than the 
full 37 years in GSW. 

Alternatively, a year-based SWP is calculated by dividing the number 
of years with at least one WD by the number of years with at least one 
VO. Month-based and year-based SWP are first calculated at each pixel 
and then areal-averaged to represent each river reach. HydroBASINS 
level 7 reaches/catchments (Lehner and Grill, 2013) (https://hydrosh 
eds.org/page/hydrobasins) are used for the areal-averaging because 
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the DEM-based catchments can naturally divide river extent at conflu
ences. The Google Earth Engine’s parallel processing libraries enable the 
pixel-wise calculation of long-term mean surface water presence (Azzari 
and Lobell, 2017; Donchyts et al., 2016). 

In this study, we separately examine the long-term SWP in different 
climate types. In doing so, we use Köppen-Geiger climate classifications 
(http://koeppen-geiger.vu-wien.ac.at/) (Kottek et al., 2006) based on 

five main climates: equatorial, arid, warm temperate, snow, and polar. 
The sub-categories enable a more refined view according to the pre
cipitation and temperature of that region. Fig. 2A to 2C show maps of 
climate zones defined by the three categories: main, precipitation, and 
temperature climates, respectively. 

Fig. 1. Example of A) the maximum river extent (blue) extracted maximum surface water extent (green) using the GRWL centerline (red) with a search distance of 
25,000 m, and B) the GSW monthly history product masked by the maximum river extent in June of 2005. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 2. Global view of A) main climate zones, B) precipitation climate zones, C) temperature climate zones and D) area of maximum river extent in 35 large river 
basins. Labels in D) signify basin ID. Note in C) temperature classification is not applied to the equatorial climates. 
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2.2. Correlation analysis with terrestrial water storage components 

As a dynamic component in TWS, river water should covary with 
other TWS components by some lags at various spatial and temporal 
scales. Here, we define the fractional river extent (FracSA) as the ratio of 
‘water’ pixels over valid observations (sum of ‘water’ and ‘no-water’ 
pixels) within the maximum river extent mask, as showcased in Fig. 1B. 
FracSA is used instead of the actual water-covered area because the 
Landsat observations are spatially discontinuous including ‘no obser
vation’ pixels (Fig. 1B). The monthly FracSA is produced using the GSW 
monthly water history product for the world’s largest 35 river basins 
(Fig. 2D), whose boundaries are obtained from the total runoff inte
grating pathway (TRIP) database (Oki and Sud, 1998). The lead/lag 
correlation analysis is then conducted between the monthly FracSA and 
the TWS along with its components, including plant canopy surface 
water (CanopInt), root zone soil water (SoilMoist_RZ), snow water 
equivalent (SWE), and groundwater storage (GWS). Basic information of 
the 35 river basins is summarized in Table 1. 

The TWS anomaly is based on the 5th generation (RL05) Mascons 
product provided by the Center for Space Research (Save et al., 2016). 
This GRACE product is a recently-released local solution developed to 
minimize the common north-south striping error and spherical har
monic noise. These datasets are provided at monthly intervals and at 
0.5◦ × 0.5◦ resolution from April 2002 to December 2016 and can be 
used without post-processing (http://www2.csr.utexas.edu/grace) 
(Save et al., 2016). 

GLDAS is a suit of land surface models that output land surface states 
and fluxes using parameters obtained/derived from satellite observa
tions, ground observations, and (re)analyses (Rodell et al., 2004). The 
recently released version 2.2 of GLDAS is well-suited to be utilized along 
with the GRACE dataset, because GLDAS 2.2 products currently include 
data assimilation from the GRACE from 2003 to present. Based on mass 

balance in GLDAS-v2.2, TWS is the sum of GWS, SoilMoist_RZ, SWE, and 
CanopInt. The daily GLDAS products are acquired from https://hydro1. 
gesdisc.eosdis.nasa.gov/data/GLDAS/GLDAS_CLSM025_DA1_D.2.2/. 
The raw data are then spatially averaged over the TRIP basins, tempo
rally averaged, and converted to the monthly anomalies. The analysis is 
conducted over the period from February 2003 to January 2015. Lagged 
correlation is calculated between the anomaly times series of TWS 
storages and FracSA with the former preceding the latter by 0 to 6 
months. 

2.3. Linking FracSA with hydrologic extremes 

Previous studies have demonstrated strong links between hydrologic 
inputs and TWS using correlation analysis (Crowley et al., 2006; Frap
part et al., 2013) and also with respect to hydrologic extremes like floods 
and droughts (Sun et al., 2017). The statistical evidence reported in 
these studies are essentially driven by the mass balance relationship 
where change in TWS equals to precipitation minus evapotranspiration 
minus surface runoff. In this study, we also explore the relationship 
between abrupt changes of FracSA and precipitation anomalies. 

One major challenge in Landsat datasets is that they are less repre
sentative of the extreme streamflow than the average values due to the 
spatiotemporal discontinuity (Allen et al., 2020). As a work-around, we 
conduct an event coincidence analysis (Sun et al., 2017) to link the 
timings of abrupt changes in FracSA, represented by break points in 
FracSA time series, and precipitation anomalies based on standard 
precipitation index (SPI). By doing so, we equate the timings of wet/dry 
FracSA events with FracSA break points (BPs), i.e., the time when an 
interruption or abrupt change is made. This approach was originally 
applied on TWS anomaly times series (Sun et al., 2017), including an 
empirical mode decomposition (EMD), a break point detection, and 
finally an event coincidence analysis. The three steps are briefly 

Table 1 
Summary of basic information for the 35 major global river basins.  

ID Name Drainage Area (km2) Maximum River Area (km2) Major Climate Type Tailored Period Mean Observation Rate 

1 AMAZON 6,108,480 82,879 Equatorial 1985–2015 54% 
2 CONGO 3,710,250 18,103 Equatorial 2000–2015 47% 
3 MISSISSIPPI 3,244,560 23,740 Warm Temperate 1985–2015 69% 
4 OB 2,965,730 59,320 Snow 2000–2015 33% 
5 PARANA 2,998,410 50,579 Warm Temperate 1985–2015 77% 
6 NILE 2,888,270 5633 Arid 2000–2015 74% 
7 YENISEY 2,588,220 24,535 Snow 2000–2015 28% 
8 LENA 2,342,790 29,213 Snow 2000–2015 29% 
9 NIGER 2,110,740 12,056 Arid 2000–2015 64% 
10 AMUR 1,867,270 29,536 Snow 2000–2015 51% 
11 CHANGJIANG 1,823,410 19,951 Warm Temperate 2000–2015 66% 
12 MACKENZIE 1,679,780 9509 Snow 1985–2015 33% 
13 VOLGA 1,383,890 14,449 Snow 2000–2015 46% 
14 ZAMBEZE 1,296,430 9007 Warm Temperate 1990–2015 64% 
15 LAKEEYRE 1,241,960 6582 Arid 1990–2015 94% 
16 NELSON 1,049,830 2954 Snow 1985–2015 49% 
17 ST-LAWRENCE 873,250 3401 Snow 1985–2015 57% 
18 MURRAY 1,065,410 1424 Arid 1990–2015 85% 
19 GANGES 1,026,950 24,229 Warm Temperate 1990–2015 60% 
20 ORANGE 994,350 725 Arid 1990–2015 70% 
21 INDUS 966,691 15,424 Arid 2000–2015 80% 
22 CHARI 895,085 1818 Equatorial 2000–2015 62% 
23 ORINOCO 954,701 14,595 Equatorial 2000–2015 63% 
24 TOCANTINS 858,704 9298 Equatorial 1985–2015 67% 
25 YUKON 847,109 8655 Snow 2000–2015 31% 
26 DANUBE 804,912 3740 Warm Temperate 2000–2015 57% 
27 MEKONG 798,977 28,280 Equatorial 2000–2015 71% 
28 CUBANGO 789,009 384 Arid 1990–2015 67% 
29 HUANGHE 783,467 5648 Arid 2000–2015 67% 
30 EUPHRATES 759,092 11,848 Arid 2000–2015 71% 
31 JUBBA 735,993 320 Arid 2000–2015 64% 
32 COLUMBIA 720,785 2272 Warm Temperate 1985–2015 57% 
33 BRAHMAPUTRA 654,169 33,471 Polar 2000–2015 71% 
34 KOLYMA 636,512 8889 Snow 2000–2015 26% 
35 COLORADO 623,896 1622 Arid 1985–2015 78%  
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introduced as follows. 

2.3.1. Empirical mode decomposition (EMD) 
EMD is a sifting process that retrieves zero-mean, oscillatory modes 

called intrinsic mode functions (IMFs) from a time series. The EMD is 
necessary for aiding the subsequent BP analysis due to the following 
challenges. First, FracSA extremes might occur irregularly, meaning the 
wet events show high intensity and short duration whereas dry events 
feature slow onset and longer duration. Second, the FracSA extremes can 
mix with seasonal and/or long-term trends. The traditional BP detection 
relies on an assumed existence of an underlying seasonal cycles, which is 
not always true; and the removed seasonal cycles might consequently 
amplify or weaken the extremes. 

Compared to the more commonly used wavelet analyses, EMD is 
entirely data-driven and decomposes a time series without prior 
knowledge about the time series (Wu and Huang, 2004). EMD algo
rithms are described in greater detail in (Huang et al., 1998). The out
puts of EMD are several IMFs and a residual term, which sum to exactly 
the original time series. This study adopts EMD similarly to Sun et al. 
(2017), where the ensemble EMD by (Wu and Huang, 2004) is used to 
avoid mode mixing and then the critical frequency associated with 
known floods and droughts is used to facilitate the break point detection. 

2.3.2. Break point (BP) detection 
Following the EMD, an BP detection algorithm, breaks for additive 

season and tend (BFAST), is used (Verbesselt et al., 2010). One impor
tant input of BFAST is the minimum interval between two adjacent BPs, 
which is determined based on the critical frequency detected in the EMD 
analysis. The R package, BFAST, is used (Verbesselt et al., 2010). 

2.3.3. Event coincidence analysis 
We then use event coincidence analysis (ECA) to quantify the match 

of timings between precipitation anomalies and abrupt FracSA changes. 
For precipitation anomalies, standard precipitation index (SPI) is 
calculated based on the precipitation forcing fields in GLDAS v2.1 
(meteorological fields are not currently included in GLDAS v2.2) 
available from January 2000 to present, which are from the dis
aggregated Global Precipitation Climatology Project (GPCP) V1.3 Daily 
Analysis. Monthly SPI time series is calculated from basin-averaged 
rainfall cumulated over 3 months (i.e. SPI3) using the R package SPEI 
(Vicente-Serrano et al., 2010). We use a threshold of 1(−1) to represent 
floods (droughts) of moderate severity. 

ECA is nonparametric and only requires knowledge of the timing of 
events. Given two binary event time series, ESA and ESB, ECA counts 
how often events in those two series co-occur, within a user-defined 
sliding window ∆T. The sliding window ∆T is used to accommodate 
irregularity in event concurrence times. For the purpose of this study, we 
use a so-called precursor coincidence rate, as defined below 

rp =
1

NA

∑NA

i=1
H

(
∑NB

j=1
I[0,ΔT]

(
tA
i − tB

j

)
)

(2)  

where NA(NB) is the number of events; tA (tB) is event occurrence time; H 
is the Heaviside step function; and I[0,∆T] is an indicator function that 
equals to 1 when the argument falls within the interval [0, ∆T] and 
0 otherwise. If ESA represents FracSA event series and ESB represents SPI 
anomaly series, then rp measures the fraction of FracSA events that are 
preceded by at least one SPI anomaly. For the FracSA, times of abrupt 
changes (BPs) are used to form event series. Sliding windows of six 
months are attempted (Eq. 2) in ECA calculations between FracSA and 
SPI. We use the R package CoinCalc for ECA analysis (Siegmund et al., 
2017). 

3. Results and discussion 

3.1. River SWP results 

We find that 52.7% (22.2%) of global river extent has areal-averaged 
month-based (year-based) SWP values less than 50% (Fig. 3). Across the 
latitudes, river area is spatially concentrated between 30 N and 60 N. 
The longitudinal distribution of river area generally reflects the distri
bution of land. As expected, year-based SWP is greater than month- 
based SWP, as a year is counted as having water if at least one month 
having water present. The latitudinal profiles of both SWP estimates 
show that the river water is most frequently present at higher latitudes of 
north hemisphere and near the equator. The high SWP of rivers near 60S 
is not as significant due to their small spatial extent. 

Furthermore, SWP and maximum river area vary in different climate 
zones categorized based on 1) main climate types, 2) precipitation, and 
3) temperature (Fig. 4). The SWP metrices indicate the average temporal 
behavior of rivers while the maximum river area represents the spatial 
distribution of rivers under different climates. Across the three types of 
climate zone classifications, the month-based and year-based SWP share 
similar spatial patterns indicating the robustness of both metrices. This 
also implies the inter-annual variabilities are probably more dominant 
than intra-annual variabilities in most rivers globally. For the main 
climate zones, the snow and polar areas feature the highest SWP with the 
other climate zones showing equally lower SWP. As opposed to rain 
storms, snow-melting generates low, gradually-varied streamflow that 
sustains over a long period of time. For precipitation climate zones, river 
area shows larger range of variabilities than SWP. Fully humid areas 
have the largest river area globally followed by winter dry, monsoonal, 
steppe, desert and summer dry areas. In contrast, the rivers in desert 
climates have limited river area and the rarest presence. For temperature 
climate zones, hot areas in general show lower SWP (Fig. 4E) and 
smaller river area (Fig. 4F) than cold area, according to the description 
of temperature climate zones in (Kottek et al., 2006). The polar areas see 
high SWP but minimal river extents, as most surface water is frozen all 
year long. Note that temperature classification is not applied to the 
equatorial climate (Kottek et al., 2006), as shown in Fig. 2C. In sum
mary, the distribution of long-term mean SWP and river area across 
climate zones reflect the effects of various hydro-meteorologic processes 
like snow melting, precipitation, and evapotranspiration. 

3.2. Correlation analysis results 

Prior to the correlation and event coincidence analysis, we first 
examine the quality of Landsat observations in TRIP basins. Fig. 5 shows 
that the coverage of Landsat observations improved and became steady 
at different points in time for different basins, i.e., 1985 for Amazon, 
around 2000 for Nile and 1990 for Zambeze. Therefore, we accordingly 
tailored the examination period for each basin in the correlation and 
event coincidence analyses (Table 1), so that most basins except for 
those in the cold areas (due to polar nights) end up with fair (> 50%) 
mean observation rate (percentage of observed out of the total number 
of pixels). 

Fig. 6A to 6D show the optimal correlations along with the corre
sponding lags between FracSA and TWS, GWS, SoilMoist_RZ, and Can
opInt, respectively. Note that only the results with statistical significance 
are shown (p value <0.05). Overall, correlations of FracSA with TWS 
and the three components share similar spatial pattern where the value 
is relatively low at high latitudes (>60 N) but high in low- and mid- 
latitudes (60S to 60 N) with small lags. The correlation of FracSA with 
TWS is fair, with 17 basins reaching above 0.5 and 7 basins above 0.7; 
and 13 (5) out of the 17 (7) basins are in low- and mid-latitudes. The 
results for GWS and SoilMoist_RZ are similar with 17 and 20 basins 
showing correlation above 0.5 with FracSA, respectively. Typical ex
amples are the Ganges (#13) and Brahmaputra (#33) where correla
tions of FracSA vs GWS, SoilMoist_RZ, and CanopInt are equally high (≥
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0.8) at small lags (≤2 months). The hydrologic regime in this region is 
dominated by the Indian monsoon, which is concentrated in the summer 
months and amounts to 60–90% of the annual precipitation (Forootan 
et al., 2016). This highly seasonal, intense hydrologic inputs might be 
the cause for the three storages to highly co-vary. In majority of the 
basins (25 out of 35), the optimized lags of FracSA behind GWS are the 
smallest followed by SoilMoist_RZ and then CanopInt, with most ex
ceptions having statistically insignificant CanopInt results, including OB 
(# 4), Yenisey (#7), Lena (#8), Changjiang (#12), 25 Yukon (#25), and 
Colorado (#35). Such patterns indicate how recharge-discharge process 
affects river dynamics — throughfall infiltrates into soils, then 

percolates into aquifers and finally discharges at rivers. However, in 
these 25 basins, the lags of FracSA behind CanopInt are not always the 
largest (as they should be in the recharge-discharge process) but some
times equal to lags of FracSA behind SoilMoist_RZ, e.g., Orange (#20), 
Tocantins (#24), and Cubano (#28). One potential cause is that only 
part of CanopInt is involved in the recharge-discharge process with the 
remaining portion contributing to rivers as surface runoff. Also, the 
monthly timestep may be too coarse to differentiate variabilities in 
SoilMoist_RZ and CanopInt especially when the infiltration processes 
occur at a higher rate. The correlation results for SWE are not shown due 
to lack of Landsat observations in winter months when most of SWE 

Fig. 3. Month-based (A) and year-based (B) long-term surface water presence of global river reaches (HydroBASINS level 7 reaches) from 1985 to 2015. In the maps, 
pixel values encompassed by maximum river extent are averaged over HydroBASINS level 7 catchments to represent SWP of the corresponding reaches. Only reaches 
with positive maximum river extent are shown. Plots show the latitudinal and longitudinal profiles of SWP and maximum river extent using bin width of 1◦. 
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change (increase) occurs. 
To further corroborate the correlation analysis, we investigate the 

differential time series of TWS storages and FracSA, which is the current 
month value minus the previous month value. Latitudinal profiles of 
zonally averaged differential TWS storages and differential FracSA are 

examined for the four seasons (Fig. 7). The latitudinal profile of differ
ential TWS closely follows that of differential GWS except for high lat
itudes where SWE is critical. The highest and the lowest values of 
differential TWS and GWS are mainly centered on 15 N and 15S. Lat
itudinal profiles of differential TWS and GWS also largely agree with 

Fig. 4. Surface water presence and area of maximum river extent in main climate zones (A, B), precipitation climate zones (C, D) and temperature climate zones 
(E, F). 
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differential FracSA expect for in the high latitudes. This analysis allows 
us to partly see the effect of SWE on FracSA: SWE begins contributing to 
TWS near 40 N during December–January-February; followed by a 
subsequent drop in SWE/TWS values during spring (MAM) as snowpack 
melts, infiltrates into the soils, recharges the groundwater, and increases 
the FracSA (north of 45 N). 

3.3. Event coincidence analysis (ECA) results 

The aim of EMD is to facilitate BP detection by identifying the critical 
frequency associated with floods/droughts. This frequency then de
termines the minimal interval as an important input for subsequent BP 
detection. Across all 35 basins, IMF2 resembles an annual cycle with an 
averaged mean period (separation between any two highs or lows) of 
9.7 months. IMF3 is at a biennial scale (averaged mean period = 23 
months). Fig. 8 shows FracSA anomaly time series along with their IMF3 
in four example basins. In Amazon, IMF3 shows cyclic patterns and 
correspond with droughts in 2005 (Chen et al., 2009) and 2010 (Frap
part et al., 2013), dry year 2007 (Frappart et al., 2013), extreme flood in 
2009 (Chen et al., 2010), and austral summer in 2011 (Espinoza et al., 
2013) and 2013 (CRED, 2017) (https://public.emdat.be/). Unlike 
Amazon, the Mississippi basin shows signs of non-stationarity in the 
FracSA anomaly series, with a consistently dry period before year 2008 
and a wet period from 2008 to 2011. The extreme flood in 2011 (Reager 
et al., 2014) and extreme drought in 2012 (Hoerling et al., 2014) are 
clearly identifiable from IMF3. The drought-ending wet event in 2008 

and wet year 2013 can also be found (CRED, 2017). The Zambeze basin 
is known for the strong annual cyclic pattern in its TWS (Ahmed et al., 
2014), which can be discerned from the shape of IMF3. We can clearly 
identify a wet event in 2003 that separates the prolong drought from 
2002 to 2005 (Winsemius et al., 2006), followed by a wet event in 2006; 
afterwards the basin enters a period when wet and dry events occurred 
alternately on an annual basis. In the Murray Darling basin, the ending 
of the prolonged drought in 2010 can be seen (Leblanc et al., 2012); the 
wet events in 2012 and 2014–2015, and dry year 2011 can also be 
identified (CRED, 2017). Overall, EMD can accommodate irregularity of 
FracSA extremes and the resulted IMF3 align well with known floods/ 
droughts. 

As a result of the BP detection, the short-term trends comprise of 
periods separated by abrupt changes (BPs), as shown in Fig. 9. In 
Amazon, the severe droughts in 2005 and 2010 are noticeable from the 
very low SPI values, which also correspond to two downward trends of 
FracSA (Fig. 9A). One can also tell the 2006 wet year, as indicated by the 
high SPI, interrupted the downward trend started by the 2005 drought, 
which was however immediately followed by another dry year 2007 
(Frappart et al., 2013). These event series create a sequence of sharp 
rising and declining trends. Another example can be found for the 
extreme flood in 2009 (Chen et al., 2010) followed by the extreme 
drought in 2010 (Maeda et al., 2015), creating a steep downward trend. 
Short-term trends often start and/or end with sudden jumps, for 
instance, the positive jumps related to 2009 and 2011. 

For the Mississippi River basin, the most discernable event is the 

Fig. 5. Time series of data composition of Global Surface Water monthly history product (water, no water, and no observation) in the maximum river extent for three 
example basins, A) Amazon, B) Nile, and C) Zambeze. 
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severe Central U.S. flash drought in 2012 (Hoerling et al., 2014) as 
indicated by both the low SPI and the sharp declining trend of FracSA 
(Fig. 9B). BPs and SPI anomalies can also be associated with the extreme 
Midwest flood in 2011 (Reager et al., 2014) and the flood at the 
beginning of 2008. It should be noted that hurricane-related wet year 
2005 is only detected by SPI but not by FracSA BPs. A possible reason 
can be that the BP detection fails to differentiate mixed signals from BPs 
and persistent, seasonal components which are in this case the regular 
annual cycles from 2000 to 2008. 

The Zambeze River basin is characterized by the frequent precipi
tation variation as indicated by the 18 SPI anomalies (Fig. 9C). A 
drought started in 2002, intercepted by a wet event in 2003, and 
continued till 2005, followed by a 3-year wet period till 2008; after
wards, the basin enters a relatively stationary state with wet and dry 

events occurring almost biannually. In the Murray Darling basin, Aus
tralia’s millennium drought from 2001 to 2008 can be clearly identified 
by the long downward trend of FracSA (Fig. 9D). We can also tell the 
ending of this prolong drought from the sudden jump of FracSA caused 
by a significant wet event in 2010 (Leblanc et al., 2012). After 2011, the 
region encountered a sequence of alternating wet and dry events indi
cated by the SPI anomalies. In summary, the FracSA BPs and the SPI 
anomalies can be explained by the reginal hydrometeorology and 
associated with known wet/dry events. 

With BPs of FracSA detected, the coincidences between FracSA and 
SPI anomalies are quantified for each of the 35 river basins via ECA 
(Fig. 10). The precursor coincidence rates (rp in Eq. 2) measure the 
proximity in timings between the preceding (as much as six months) SPI 
anomalies and the FracSA BPs. The ECA results should be interpreted in 

Fig. 6. Maps of the 35 river basins colored 
by optimal lagged correlation of basin- 
averaged (A) terrestrial water storage 
(TWS), (B) groundwater storage (GWS), (C) 
root-zone soil water (SoilMoist_RZ), and (D) 
plant canopy surface water (CanopInt) vs 
fractional river extent (FracSA). Only corre
lation results with p values <0.05 are dis
played. Pie charts indicate lags (clockwise) 
between the TWS (components) and FracSA, 
which are normalized by 6 months. Zero-lags 
are shown as clear circles.   
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conjunction with the number of BPs, as more BPs imply higher statistical 
significance of ECA results. There are 23 basins with more than 6 BPs 
(0.4 BP/year), among which 17 basins show high (≥ 0.8) rp. Three basins 
show null coincidence values either due to statistical insignificance 
(Brahmaputra basin) or unavailable precipitation data (St-Lawrence and 
Jubba basins). Fifteen basins show perfect (rp = 1) coincidences, 
whereas Kolyma basin show rp below 0,5 (0.4). Overall, the ECA results 
show high coincidences between SPI anomalies and FracSA BPs in most 
of world’s large basins. However, one should be aware of the potential 
uncertainty associated with FracSA values in high-latitude basins during 
winter months due to the low observation rate of Landsat. 

3.4. Discussion 

At monthly scale, we find more than half (52.7%) of the global 

riverine area is covered by water less than half of the time. This finding 
should be interpreted and conditioned on our definition of the exami
nation extent, i.e., the maximum river extent, which is designed to cover 
all locations with water detected at least once during the examination 
period (1985 to 2015) and to encompass the full spectrum of river 
extent. Like streamflow, river extent is positively skewed in its temporal 
distribution, consisting of more small values than large values, which 
means the median river extent (corresponding to SWP ≥50%) should 
cover less than 50% of the maximum river extent. Interestingly, the 
year-based calculation favors the number of with-water years and causes 
river extent to be negatively skewed: only 22.2% of river extent is 
covered by water less than half of the time based on year-based SWP. 

The maximum river extent encompasses not only the riverine re
sponses to the hydro-meteorologic/hydro-climatic factors but also 
geomorphological processes. Fig. 11 illustrates the shift of rivers’ 

Fig. 7. Latitudinal profiles of zonally averaged differential TWS and its storage components (GWS, SoilMoist_RZ, CanopInt, and SWE) along with differential 
fractional river extent for the four seasons, March–April-May (MAM), June–July-August (JJA), September–October-November (SON), and December–January- 
February (DJF). 
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meandering pattern over time at three locations in Amazon basin. Across 
a twenty-year gap between 1994 and 2014, rivers in July of 2014 (green 
plus black area) appear to be very different from those in July of 1994 
(red plus black area). At all three locations, we see cases of increased 
channel sinuosity over time and cutoffs formed at the meandering neck. 
Although the geomorphological process is pronounced at local scale, 
calculation of FracSA of large river basins likely diffuses such effects. In 
fact, the FracSA values in Amazon at the two times are very similar, i.e., 
0.687 in 07/1994 and 0.702 in 07/2014, respectively. 

The findings of this study have implications on hydrologic modeling 
and forecasting of global rivers. The correlation analysis suggests that 
importance of low-flow-generating processes, e.g., snow-melting, infil
tration, and recharge-discharge. This can also be explained by the 
positively skewed nature of streamflow where low-moderate flow as the 
majority originates from groundwater and snowpack. In spite of the 
prevalence of these processes, they are not yet represented sufficiently 
by the state-of-the-art hydrologic models (Lin et al., 2019), especially in 
the subsurface layers. The challenges include the lack of information on 
bedrock properties and topography and the difficulty to assign spatially 
and vertically distributed parameters (Camporese et al., 2019). 

Moreover, we expect the significance of low-flow-generating processes 
to be greater than what this study reveals, because the Landsat obser
vation can only capture rivers wider than 30 m, missing most non- 
perennial headwater streams (Palmer and Ruhi, 2018) whose dy
namics are even more dependent on low flow (Gao et al., 2021a). 
Finally, the correlation analysis demonstrates the precedence of TWS 
over FracSA in certain river basins. For instance, the correlation co
efficients between FracSA and TWS are 0.625 in Amazon with 3 months 
of lagging, 0.57 in Murray Darling with 3 months of lagging, and 0.72 in 
Kolyma with 2 months of lagging. This indicates potential predictability 
of the river water from GRACE observation with months of lead time. 
Reager et al. (2014) demonstrated the similar finding by correlating 
GRACE observation with gauge measurements to infer predictability of 
flood potential. 

4. Conclusions 

In this study, we examine the spatiotemporal dynamics of surface 
water in rivers based on Landsat observations and investigate the cor
responding natural driving factors. Through the combined usage of 

Fig. 8. Time series of the FracSA anomaly and its third intrinsic mode function (IMF3) for (A) Amazon, (B) Mississippi, (B) Zambeze, and (D) Murray Darling 
river basins. 
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Fig. 9. BPs detected in FracSA of (A) Amazon, (B) Mississippi, (C) Zambeze, and (D) Murray Darling river basins. Left axis: SPI (filled blue areas) and ± 1 SPI 
thresholds (horizontal blue lines); right axis: FracSA anomalies (thin gray line), BFAST trends (bold black line), breakpoints (vertical dotted line), confidence intervals 
(light gray shades). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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GRWL centerline vectors and GSW monthly history observation, we 
define an examination extent that covers the full variabilities of river 
dynamics over a 30-year period from 1985 to 2015. Within this 
maximum river extent, we first produce long-term mean surface water 
presence in global rivers and investigate the spatial patterns among 
various climate zones. We also offer an innovative perspective to study 
river dynamics by correlating the fractional river extent (FracSA) with 
TWS components extracted from the GRACE observation and the GLDAS 
simulation in world’s large river basins. Lastly, the extremes of FracSA 

are associated with precipitation anomalies via the event coincidence 
analysis (ECA), in which an EMD-aided BP-detection method is explored 
to identify the non-stationary and irregular FracSA extremes. The spe
cific findings of this study are summarized as follows:  

1. At monthly scale, 52.7% of global maximum river extent is covered 
by water less than half of the time (SWP < 50%). The spatiotemporal 
variability of river extent can be well explained via differentiating 
climate zones. Water in cold, high-latitude areas has high presence in 

Fig. 10. Precursor coincidence rates between BPs of FracSA and SPI anomalies for 35 river basins. Labels signify number of BPs in FracSA time series.  

Fig. 11. Examples of river channel shifts in Amazon based on GSW monthly history product in July of 1994 and July of 2014 at (A) -72.5◦, −3.4◦, (B) -70.8◦, −3.9◦, 
and (C) -68.5◦, −3.4◦. The colors are only shown for confined regions of the finalized maximum river extent as defined in this study. 
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numerous rivers due to the slow snow-melting process and low 
evapotranspiration. Rivers in arid climates feature rare presence and 
small surface extent due to low precipitation as sources and high 
evapotranspiration (temperature) as sinks.  

2. In world’s large river basins, fractional river extent (FracSA) is fairly 
correlated with Terrestrial Water Storage components (GWS, Soil
Moist_RZ, and CanopInt) in low- and mid-latitudes. The optimized 
lags in the correlation analysis indicate GWS precedes FracSA most 
closely, followed by SoilMoist_RZ and then CanopInt, which suggests 
strong controls of subsurface processes (infiltration and recharge- 
discharge) on river dynamics in low- and mid-latitudes. In high lat
itudes, the drop of SWE corresponds to the increases of GWS, Soil
Moist_RZ and FracSA in spring due to snow melting.  

3. The EMD-aided BP detection is adaptive and flexible in identifying 
FracSA extremes occurring at irregular intervals. The event coinci
dence of FracSA extremes with SPI anomalies shows precipitation as 
hydrologic inputs are potential driving factors for abrupt changes of 
FracSA in equatorial, arid, and warm temperate areas.  

4. The correlation analysis and ECA together demonstrate the roles of 
various hydrologic processes on flow regimes. Controlled by the 
subsurface runoff, groundwater and snow melting, the low-moderate 
flow regimes constitute significant portion of global river dynamics. 
The extremes in river dynamics (wet and dry events) are associated 
more with precipitation anomalies. High precipitation as the source 
of surface runoff generates large streamflow during floods, whereas 
extended no-rain periods leave rivers to dry during droughts. 

Although this study validates that hydrometeorological processes 
have first-order controls over river dynamics, the river basin scale likely 
dilutes other local factors. The areal averaging lessens the effects from 
geomorphological processes like change in river meandering pattern 
over time. Also, flow regulation, like damming and flow diversion, is 
very typical in arid regions with high water-stress where large per
centage of exploitable flow is often extracted for irrigation use 
(Vörösmarty et al., 2010). Hammond et al. (2020) demonstrated com
binations of climatic, physiographic and anthropogenic drivers emerged 
at regional scales affect non-perennial flow regimes across the Contig
uous United States. Therefore, future research is still needed to disen
tangle various anthropogenic and geomorphological factors on the river 
dynamics at local/regional scales. In addition, to better characterize and 
interpret the extremes in river dynamics, hydrologic and hydraulic 
simulations can fill the spatiotemporal gaps in the Landsat observations 
and explicitly attribute the extremes of river dynamics based on model 
fluxes and states. 
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