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Abstract

Context Understanding how spatial pattern changes
with scale can provide insights into its relationship
with ecological processes. In riverine landscapes,
spatial pattern could scale differently from other well-
studied landscapes because of their dendritic form.
Objectives The objectives of this study were (1) to
assess how spatial pattern of hydrogeomorphic habitat
patches (HGP) change with spatial extent, grain size,
and thematic resolution, and (2) to quantify how
spatial pattern in river networks varies across the
contiguous United States (CONUS).

Methods We identified hydrogeomorphic patches
in river networks located in different ecoclimatic
domains. We then quantified spatial pattern within
each river network using a suite of landscape metrics
and investigated scaling relationships for each
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component of scale. We also assessed whether water-
shed area, river network length, and drainage density
were related to spatial pattern among river networks
and explored regional differences in the hydrologic,
geomorphologic, and climatic variables that differen-
tiate HGP types.

Results When predictable, scaling relationships
within river networks followed either linear, logarith-
mic, or power functions. Among river networks,
spatial pattern was related to total network
length, catchment area and drainage density. Rarely
were HGP types in different networks characterized by
the same suite of hydrologic, geomorphologic and
climatic variables.

Conclusions In riverine landscapes, there are a
variety of relationships between spatial pattern and
scale. The scaling functions we present can provide a
concise description of scale dependency in these
landscapes and improve our ability to synthesize
information across scales.

Keywords Hydrogeomorphic patches - Scaling -

Landscape pattern analysis - Riverine ecosystems -
Dendritic networks - Spatial pattern
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Introduction

Spatial pattern is closely linked to ecological pro-
cesses but the relationship depends on the scale of
investigation (Wiens 1989; Wu et al. 2002; Jackson
and Fahrig 2015). Spatial pattern changes with scale
and scaling functions concisely describe these changes
(Wu et al. 2002; Simové and Gdulové 2012). Within
rivers and streams, spatial pattern of aquatic habitats is
an important feature governing ecological processes
(Thorp et al. 2006; Thoms et al. 2018; Erds and Lowe
2019). However, riverine ecosystems are structurally
different from terrestrial landscapes and require dif-
ferent metrics to quantify spatial pattern within them
(Williams et al. 2013; Thoms et al. 2018). Investigat-
ing how these metrics change with scale can provide
insights into linkages between spatial pattern and
ecological processes in riverine ecosystems (Jackson
and Fahrig 2015; Qiu et al. 2019).

Spatial pattern is typically quantified using land-
scape metrics that measure the composition (i.e.
diversity) or configuration (i.e. spatial arrangement)
of habitat patches (McGarigal et al. 2012). Scale can
include multiple components (Wu and Li 2006; Turner
and Gardner 2015), but most often it refers to spatial
extent, the area under investigation, or spatial grain,
the finest resolution used for analysis (e.g. pixel size or
linear unit; Wiens 1989; Wu and Li 2006; Cushman
et al. 2010). A third component of scale, thematic
resolution, refers to the level of detail that differen-
tiates landscape components. For example, land cover
classification maps are often represented as nested
hierarchies where increasing thematic resolution
reveals a greater number of subordinate land cover
classes (Buyantuyev and Wu 2007; Simovd and
Gdulova 2012; Qiu et al. 2019).

Each component of scale can influence landscape
metrics differently and, in some instances, these
effects are predictable (Wu et al. 2002; Buyantuyev
and Wu 2007; Xu et al. 2020). For example, landscape
metrics that represent absolute values of spatial
pattern, such as mean size or distance between
landscape components, should increase monotonically
with spatial extent and decrease with spatial grain and
thematic resolution (Baldwin et al. 2004; Simové and
Gdulova 2012). Similarly, landscape metrics that
quantify diversity should increase when novel land-
scape components are encountered at larger spatial
extents or unveiled by increased thematic detail
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(Turner et al. 1989; Simové and Gdulova 2012). They
should also decrease with coarsening grain because
small or rare landscape components disappear (Turner
et al. 1989; Simovéa and Gdulova 2012). Changing
scale can also cause metrics to display either staircase-
like or chaotic patterns, making them less pre-
dictable (Wu et al. 2002; Simové and Gdulové 2012).

Riverine landscapes include components of the
Earth’s surface that are influenced by a river, including
aquatic habitats in the river, and riparian corridors and
floodplains that occur alongside them (Fausch et al.
2002; Ward et al. 2002; Thorp et al. 2006). These
systems are characterized by “hydrogeomorphic
patches” (hereafter “HGP”) which can be identified
as river reaches that share similar hydrologic, geo-
morphologic, and climatic conditions (Thoms and
Parsons 2002; Thorp et al. 2006, 2008; Williams et al.
2013). The composition and configuration of HGPs
can characterize the physical structure of entire river
networks (Williams et al. 2013; Thoms et al. 2018),
influence species diversity patterns (Maasri et al.
2019) and ecosystem processes (Hadwen et al. 2010;
Thorp et al. 2010; Collins et al. 2018).

Previous efforts to characterize river networks by
their HGPs have focused on a small number of river
networks at different scales (Collins et al. 2014;
Thoms et al. 2018; Maasri et al. 2019). Since scale
dependency is common, this could mask important
relationships between spatial pattern and ecological
processes (Jackson and Fahrig 2015). Although scal-
ing functions provide an accurate way to predict
changes in spatial pattern of HGPs, these functions
may vary geographically because river networks are
embedded in biomes that vary in their climate,
hydrology and geomorphology (Dodds et al.
2015, 2019). Systematic evaluations of the factors
that differentiate HGP types, their spatial pattern and
scaling relationships across multiple riverine land-
scapes could uncover potential generalities in scale
dependencies (Wu et al. 2002; Shen et al. 2004;
Buyantuyev and Wu 2007).

Here, we investigate scale dependency of spatial
pattern using 18 river networks in the contiguous
United States (hereafter “CONUS”). We identified
HGPs by similarities in climate, hydrologic, and
geomorphic variables and adapted several landscape
metrics to quantify their configuration and composi-
tion. Within each river network we evaluated scaling
functions that best describe the relationship between
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the landscape metrics and three components of scale.
Then, among networks, we investigated the role of
river network size and topology in driving variation in
spatial pattern and determined if the suite of hydro-
logic, geomorphic and climatic variables used to
differentiate HGP remains consistent across biomes.

Methods
Study sites

We chose a single river network in each of the
National Ecological Observation Network (NEON;
https://www.neonscience.org/) ecoclimatic domains
in the CONUS (Fig. 1; Hargrove and Hoffman 2004).
Ecoclimatic domains were delineated using multi-
variate geographic clustering of nine climate variables
(Hargrove and Hoffman 2004). Where possible, we
used a NEON aquatic or terrestrial site to locate a
suitable river network within each ecoclimate domain.
We handpicked sites in the Southern Pacific domain
(17) to represent a Mediterranean climate (NEON
stream sites in the domain 17 are in the Sierra Nevada
mountains, with similar climate to other NEON sites),
and in the Prairie Peninsula domain (06) due to
restrictions in the availability of High Resolution
National Hydrography Dataset (NHDHR) at the time
of the study (Viger et al. 2016; Moore et al. 2019). We
also selected two sites in the Ozarks complex (08) and
omitted the Atlantic Neotropical domain (04) because
of its relatively small spatial coverage in the CONUS
(Fig. 1).

We delineated river networks by associating each
site to a digital flowline in the NHDHR and navigating
downstream to until reaching a catchment area closest
5,000 km® (range = 364.12 and 5,733.06 km?; Strah-
ler Stream Order > 5). We extracted all flowlines
draining the catchment from the NHDHR and recon-
ditioned them into valley and reach segments. We
define a valley segment as a section of the river
between a headwater and confluence, or two conflu-
ences. Valley segments < 1 km were classified as a
single reach while valley segments > 1 km were split
into reaches of equal length. River reaches typically
ranged between 0.5 and 1 km and served as our spatial
unit of replication for each river network (1,154 < n
< 13,222; Table 1).

Hydrologic, geomorphologic and climatic
variables

Hydrologic, geomorphologic and climatic variables
were extracted or derived for each river reach from
several GIS datasets and used to identify HGPs within
the river networks (Table 2; Williams et al. 2013;
Thoms et al. 2018; Maasri et al. 2019). Mean annual
air temperature (C) and precipitation (mm) were
obtained from the PRISM Climate Group
(1981-2010; https://prism.oregonstate.edu/normals/).
Whole soil erodibility factor (kw) and pH values we
obtained from the Digital General Soil Map of U.S.
which supersedes the State Soil Geographic
(STATSGO) dataset (1:250,000-scale, https://
websoilsurvey.nrcs.usda.gov/) and classified as low
(kw < 0.25, pH < 6.5), medium (0.25 < kw < 04,
6.5 < pH < 8.5) and high (kw > 0.4, pH > 8.5).
Depth to bedrock (cm) was obtained from Shangguan
et al. (2017). Values for each variable were extracted
from the appropriate raster dataset at the midpoint of
each reach.

We also used the digital elevation model provided
with the NHDHR to determine the elevation (cm) of a
reach and to quantify a suite of geomorphologic
attributes (Table 2, Figure S1). In brief, we established
digital transects extending perpendicular from each
river reaches’ midpoint to measure valley-side slope,
valley width, and valley floor width, used points at the
inlet and outlet of the valley segment to measure
valley slope, and the endpoints of a reach to measure
channel sinuosity and mean meander length.

Hydrogeomorphic patch identification

Hydrogeomorphic patches (HGP) were identified
using agglomerative hierarchical clustering on hydro-
logic, geomorphic and climatic variables (Table 2,
Borcard et al. 2018). This approach successively
groups individual river reaches into larger classes
based on their similarity (Thoms et al. 2018; Maasri
et al. 2019). At the lowest level of the hierarchy, each
river reach is an individual class while at the highest
level, all reaches are combined into a single class. We
used Gower’s dissimilarity index to measure pairwise
associations and Ward’s minimum variance to create
hierarchically nested groupings (Borcard et al. 2018;
Maasri et al. 2019). We objectively identified the
optimal number of HGP types for each network using
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«Fig. 1 Representative spatial patterns of hydrogeomorphic Spatial pattern analysis
patches within 4 river networks. Different colors correspond to

distinct hydrogeomorphic patch types. Center shows river . . .
network locations used in the analysis. Boundaries demarcate We quantified the spatial pattern using four landscape

NEON ecoclimate domains: NRTH = Northeast; MDAT = metrics that measure the composition or configuration
Mid-Atlantic; STHS = Southeast; GRTL = Great Lakes; of HGP (McGarigal et al. 2012). To measure compo-
PRRP = Prairie Peninsula; APCP = Appalachian Cumberland sition, we combined adjacent stream reaches of the
Plateau; OC-2 = Ozarks Complex-2; OC-1 = Ozarks Complex- .
1;  NRTP = Northern Plains; CNTP = Central  Plains; same HGP type and counted the uninterrupted
STHP = Southern  Plains;  NRTR = Northern  Rockies; segments as total number of patches (TP). In addition,
STHR = Southern  Rockies; ~ DSRS = Desert ~ Southwest; we calculated the Shannon Diversity index (SHDI) for
GRTB = Great  Basin;  PCFN = Pacific  Northwest; each network. The SHDI is commonly used to
PCFS = Pacific Southwest .
measure landscape heterogeneity and has recently
been applied to riverine landscapes (O’Neill et al.
1988; Turner et al. 1989; Thoms et al. 2018).
the maximum average silhouette width (Borcard et al. Following Thoms et al (2018), we calculated SHDI as:
2018). Silhouette width is a metric of group similarity
at each partition of the dendrogram and the maximum SHDI = — Zpi Inp;
average width corresponds to the partition with the
greatest degree of separation among subordinate
groups. We used the “daisy” function to generate
distance matrices, the “agnes” function for agglom-
erative hierarchical clustering and the “silhouette”
function to conduct the silhouette analysis (Maechler
et al. 2019.

where p; is the proportional length of the ith hydro-
geomorphic patch relative to the total length of the
river network.

To measure the configuration of HGP within each
network we calculated the mean distance separating
HGP types (mean patch distance, MPD) and used the
dendritic connectivity index (DCI) to measure the

Table 1 Characteristics of the river networks used in this study

Site NEON domain name Degrees Degrees Stream Catchment area Total length Reaches
latitude longitude order (kmz) (km) #)
NRTH Northeast 42.1491 — 72.6214 6 1764.45 2375.43 3747
MDAT Mid-Atlantic 38.94293 — 78.1905 7 4153.86 6522.36 10,313
STHS  Southeast 31.1785 — 84.4741 6 2741.97 2299.17 3293
GRTL  Great Lakes 46.87233 — 89.3254 8 3480.89 5332.66 12,018
PRRP  Prairie Peninsula 42.81041 — 94.4454 6 5080.37 4058.4 5183
APCP  Appalachian Cumberland  35.92358 — 83.5851 7 976.07 2747.48 6817
Plateau

OC-1  Ozarks Complex-1 33.03368 — 87.6057 5 459.18 777.57 1222
OC-2  Ozarks Complex-2 33.88835 — 95.9396 6 1753.77 3002.11 4510
NRTP  Northern Plains 46.68421 — 100.788 5 558.5 845.8 1154
CNTP  Central Plains 40.03608 — 101.53 5 4419.07 3877.19 5406
STHP  Southern Plains 32.86007 — 97.5002 6 4989.64 8845.51 13,223
NRTR Northern Rockies 44.99472 — 110.576 7 5733.06 7352.96 10,921
STHR  Southern Rockies 40.26525 — 104.877 7 2345.82 4610.43 10,562
DSRS  Desert Southwest 33.63354 — 111.659 6 497.81 1113.26 1718
GRTB  Great Basin 40.43697 — 112.385 6 1851.59 2959.47 3937
PCFN  Pacific Northwest 45.71767 — 121.79 7 582.89 2276.95 7897
PCFS  Pacific Southwest 36.35155 — 121.209 6 364.12 1304.21 2554
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Table 2 Hydrologic, geomorphic and climatic variables and data sources used to identify hydrogeomorphic patches

Variable Description Source
Elev Elevation at reach midpoint NHDPlusHR: https://www.usgs.gov/core-science-systems/ngp/
national-hydrography/nhdplus-high-resolution
Ann. Precip  Mean annual precipitation (1981-2010) PRISM Climate Group: https://prism.oregonstate.edu/
Ann. Temp  Mean annual temperature (1981-2010)
Erosion Whole Soil Erosion factor (kw) measures SSURGO: https://websoilsurvey.nrcs.usda.gov/
Factor susceptibility of soil to erosion
Soil pH Soil pH
Bedrock Depth of soil or regolith covering bedrock Soil Grids
Depth http://globalchange.bnu.edu.cn/
Valley Width of the catchment perpendicular to the  Derived for this study from NHDPlusHR: https://www.usgs.gov/
Width river channel core-science-systems/ngp/national-hydrography/nhdplus-high-
Valley Floor The lateral extent of a flood reaching a depth 4 ~ resolution
Width times bankfull depth*
Valley Floor Ratio between valley floor width and valley
Ratio width

Valley Slope Slope between upstream and downstream

points of a valley

Valley Side  Mean of the slope between the river and

Slope ridgeline on either side of the channel
Channel Ratio of the channel distance to straight line
Sinuosity distance of a reach
Channel Slope between upstream and downstream
Slope points of a reach
Mean Mean channel distance separating two
Meander sequential meanders
Length

*Bankfull depth estimated from upstream catchment area (Bieger et al. 2015)

connectivity between HGP types (Cote et al. 2009).
DCI is based on the probability that an organism can
cross a boundary separating one patch from another:

DCI = zn;ic,];—:%* 100
i=1 j=

where c;; is probability that an organism can traverse a
boundary separating patch i and j, [ is the length of
patch and L is the total length of the network. The
index is multiplied by 100 to scale the value between 1
and 100. This index assumes boundaries do not occupy
space in the network such that when ¢; =1 (ie.
complete boundary permeability), DCI =1 (Cote
et al. 2009). Because we expected the connectivity
between two HGPs depends on the distance separating
them, we modified DCI as:

@ Springer
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where k indexes HGP type. We consider ¢y, equiv-
alent to the probability that an organism can travel the
distance separating patch i and j of type k. Here,
dispersal distance of an organism, X, is a random
variable with a probability distribution,X ~ exp(/).
We parameterize the probability density function
using the median maximum parent—offspring dispersal
distance for riverine fishes (i.e.A = 1/12 km, Comte
and Olden 2018). Thus, for a parent fish living in patch
i of type k, ciy, reflects the probability that the
offspring of that fish can travel distance,X, to patch j.
Accordingly, DCI; generally increases when larger
HGP types are separated by smaller watercourse
distances. We used mean DCI; to aggregate patch-
scale connectivity values to the entire river network.


https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution
https://prism.oregonstate.edu/
https://websoilsurvey.nrcs.usda.gov/
http://globalchange.bnu.edu.cn/
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplus-high-resolution

Landscape Ecol (2021) 36:2781-2794

2787

R-code

We provide example R-code to identify HGPs and
calculate landscape metrics at https://github.com/
dkopp3/HydrogeomorphicPatches. We reconditioned
NHDHR flowlines, identified reaches, sampling
points, and transects using the “create module”. We
assigned hydrogeomorphic variables to each reach
using the “attribute module” and preformed the
cluster analysis using the “cluster module”. Finally,
landscape metrics were calculated using the “land-
scape metrics” module.

Statistical analysis

Within each river network we evaluated how HGP
spatial patterns change with spatial extent, spatial
grain, and thematic resolution. In rivers, spatial extent
is represented by watershed area, or the surface area
contributing runoff to a river channel during precip-
itation events. We changed spatial extent by randomly
identifying sub-networks at 10 km? increments of
increasing catchment area (Fig. 2). We assessed
between 25 and 234 values of spatial extent depending
on the size of the network. We manipulated the spatial
grain of a stream network by increasing the minimum
channel length represented in the network (Fig. 2).
Each interval coarsened or “pruned” the river net-
work, to provide a range of 24 to 94 values of spatial
grain in our analysis. Finally, we manipulated the
thematic resolution by decreasing the level of dissim-
ilarity among HGP types beginning at the level
specified by the silhouette analysis (i.e. 4-8 HGP
types) up to 30 HGP types for each network (Fig. 2).

We visually inspected the scaleograms for each
river network prior to fitting linear, power, and
logarithmic functions. This allowed us to classify a
relationship as “predictable”, if the functions could
provide a reasonable approximation for the data, or
“unpredictable” if the relationship was better charac-
terized by staircase-like patterns or behaved erratically
(Wu et al. 2002). For predictable relationships, we fit
each function to the data and used the coefficient of
determination (i.e. R?) to identify the strongest
relationship (Riiegg et al. 2016).

We used a regression analysis to test whether river
network length, total catchment area or drainage
density explained variation in spatial pattern among
river networks in different ecoclimatic regions.

Network length is the total length of streams in a
network; catchment area is the surface area that
contributes overland runoff to a river network; and
drainage density is the network length divided by the
catchment area. Similar to above, we fit linear, power,
and logarithmic models to each pairwise combination
of spatial pattern and river network characteristic and
evaluated the best fit model using the coefficient of
determination.

To investigate which variables were most important
in differentiating HGP types within river networks we
used an Analysis of Similarity (ANOSIM) followed by
Similarity Percentage Analysis (SIMPER) (Harris
et al. 2009; Thoms et al. 2018; Oksanen et al. 2019).
ANOSIM confirmed a statistical difference among
HGP types within each river network and SIMPER
identified the single variable that was most dissimilar
for each pairwise combination. We used the aggre-
gated list of variables for each river network to
describe the suite of climatic, hydrologic, and geo-
morphic variables that contribute most to the differ-
entiation of HGP types for each river network.

Results

Effects of scale on spatial pattern of HGP depended on
the component of scale and the landscape metric
(Fig. 3). For composition metrics, we found a loga-
rithmic function consistently explained the relation-
ship between Shannon diversity index (SHDI) and
spatial extent in five river networks (R? range: 0.61—
0.77, Table S1). The relationship between SHDI and
spatial grain on the other hand, often followed a
staircase-like pattern and was not reasonably repre-
sented by simple functions we considered in our
analysis (Figure S2). Total patches (TP) had a
consistently strong linear relationship with spatial
extent in 12 stream networks (R2 > 0.93) and fol-
lowed a power relationship with spatial grain in three
networks (R2 > (0.93, Table S1). Finally, thematic
resolution was almost perfectly related to both SHDI
(R* > 0.98) and TP (R? > 0.96) by either, logarithmic
or power functions (Fig. 3).

In general, scaling relationships for configuration
metrics were different from composition metrics
(Fig. 3). For example, scaling the modified dendritic
connectivity index (DCI} ) with spatial extent followed
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diversity index; TP = total number of patches, DCI = modified
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linear, power, or logarithmic functions in 12 networks
(R? range: 0.66-0.94) and scaling with thematic
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resolution followed linear or power functions in 8
networks (R2 range: 0.69-0.92, Table S1). When mean
patch distance (MPD) was predictable, it also scaled
with extent and thematic resolution following linear,
power, or logarithmic functions. The effect of chang-
ing grain on DCI; were predictable in 6 networks
using linear functions (R2 range: 0.80-0.97) but was
unpredictable for MPD (Figure S2).

Among river networks, spatial pattern was related
to network length, catchment area and drainage
density (Fig. 4). Catchment area and total length of
the network were positively associated with TP
(R* =0.29, P < 0.001; R? = 0.59, P < 0.001, respec-
tively), and MPD (R? = 0.80, P < 0.001; R* = 0.90,
P < 0.001, respectively). Total network length was
negatively associated with DCI, (R*=0.32,
P <0.05) and drainage density was negatively
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associated with SHDI (R = 0.24, P < 0.05) and MPD
(R* = 0.26, P < 0.05).

We identified between 4 and 8 HGP types in each
river network (ANOSIM global R range: 0.4, 0.95,
p < 0.001 for all networks; Table 3). Although the
suite of variables that differentiated HGPs were
generally different, many networks had at least a
single variable in common. For example, soil

Lakes; PRRP = Prairie Peninsula; APCP = Appalachian Cum-
berland Plateau; OC-2 = Ozarks Complex-2; OC-1 = Ozarks
Complex-1; NRTP = Northern Plains; CNTP = Central Plains;

STHP = Southern Plains; NRTR = Northern  Rockies;
STHR = Southern  Rockies; DSRS = Desert  Southwest;
GRTB = Great Basin; PCFN = Pacific Northwest;

PCFS = Pacific Southwest

erodibility was an important factor driving dissimilar-
ity between HGP types in 13 networks and valley-floor
ratio was important for 9 networks. Further, HGP
types that were characterized by similar variables were
often located in different ecoclimate regions (Table 3).
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Table 3 The hydrologic, geomorphologic and climate variables with the highest contribution to dissimilarity among hydrogeo-

morphic patch types within a river network

NEON HGP Global Erosion Valley- Ann. Soil Ann.  Mean Bedrock Elev Valley
Domain #) R* Factor Floor Precip pH  Temp Meander Depth Slope
Ratio Length

Northeast 4 0.50 X X X
Mid-Atlantic 4 0.67 X X X
Southeast 7 0.79 X X X X X X
Great Lakes 4 0.85 X X X
Prairie Peninsula 4 0.86 X X X
Appalachian 4 0.76 X X X

Cumberland

Plateau
Ozarks Complex-1 4 0.58 X X X X
Ozarks Complex-2 4 0.95 X X X
Northern Plains 6 0.91 X X X X
Central Plains 5 0.98 X X X
Southern Plains 4 0.88 X X X
Northern Rockies 4 0.59 X X X
Southern Rockies 6 0.83 X X X X X
Desert Southwest 5 0.95 X X X X
Great Basin 4 0.94 X X X
Pacific Northwest 4 0.70 X X X
Pacific Southwest 4 0.70 X X X

*Bankfull depth estimated from upstream catchment area (Bieger et al. 2015)

Discussion

Understanding scale dependencies in spatial patterns
can elucidate the operational scale underpinning its
relationship to an ecological process (Wu et al. 2002;
Jackson and Fahrig 2015). Increasingly, spatial pattern
is quantified within river networks to understand the
physical and ecological characteristics of the entire
ecosystem (Thoms et al. 2018; Maasri et al. 2019).
However, river networks under investigation can vary
in their spatial extent and spatial grain (Benstead and
Leigh 2012; Riiegg et al. 2016), and habitat patches
can be differentiated with increasing levels of detail
(Thoms et al. 2018). An explicit understanding of the
effects of scale on spatial pattern could increase
opportunities to synthesis information collected at
different scales or unmask important ecological rela-
tionships. We extended the framework developed by
Wu et al. (2002) and found scaling relationships in
river networks vary across a broad geographic area.
The effect of thematic resolution was most

@ Springer

predictable for composition metrics while the effect
of spatial extent was most predictable for configura-
tion metrics. We also found that the effects of
changing spatial grain are least predictable, possibly
owing to the dendritic structure of river networks and
the method used to manipulate grain size (i.e. mini-
mum mapping unit). Importantly, this work demon-
strates that within riverine landscapes there are a
variety of scaling relationships for spatial pattern that
vary in their predictably, but among river networks,
spatial pattern is related to river network size or

typology.
Scaling relationships within riverine landscapes

We assessed how spatial patterns of HGP are
influenced by three different components of scale
and, similar to other landscapes, found that some
landscape metrics could change predictably (i.e.
following simple scaling functions). In general, we
found the effects of changing spatial extent were more
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predictable than the effects of changing grain size.
Indeed others have found that changing grain size is
more predictable (Wu et al. 2002; Wu 2004). These
differences could support the notion that the method
used to manipulate spatial grain influences the type of
scaling relationship (Shen et al. 2004; Turner and
Gardner 2015; Xu et al. 2020). For example, data
stored as raster images is commonly upscaled by
aggregating smaller pixels via majority rules (Wu and
Li 2006; Qiu et al. 2019). River networks on the other
hand, are represented as vector data because of their
dendritic structure. Accordingly, we manipulated
spatial grain by changing the minimum mapping unit
(i.e. iteratively pruning the river networks) such that
coarsening grain removed HGP types. Importantly,
our results suggest that scaling functions may be more
applicable to synthesizing studies that differ in their
spatial extent rather than the resolution of their
hydrography dataset (cf. Lehner et al. 2008; McKay
et al. 2012; Moore et al. 2019).

Effects of thematic resolution are expected to be
similar to those of spatial grain (Buyantuyev and Wu
2007). In general, we found that these effects were
more predictable than those of spatial grain for
composition metrics and less predictable for config-
uration metrics. The relationship between thematic
resolution and spatial pattern for the composition
metrics is unsurprising because increasing the number
of HGP types simultaneously increases richness and
fragmentation (i.e. larger patches are subdivided at
greater thematic resolution). Configuration metrics on
the other hand, were less predictable and often
behaved erratically. Indeed, changing thematic reso-
lution may combine, or separate, spatially distant
patches and lead to unpredictable scaling relationships
(Buyantuyev and Wu 2007).

Lotic ecosystems are known vary geographically as
a result of regional differences in climate and
geomorphology (Dodds et al. 2015, 2019) and we
found the predictably of spatial pattern scaling rela-
tionships generally differed among river networks.
However, we only included one river network for each
ecoclimate domain and could not ascertained whether
our scaling relationships are regionally consistent.
Indeed, Riiegg et al. (2016) documented that other
scaling relationships (i.e. width and depth and catch-
ment area) are geographically variable and investi-
gating the mechanisms driving apparent variation in

scaling relationships should be an avenue for future
research.

Spatial patterns among riverine landscapes

We found that variation in spatial pattern among
networks was related to catchment area, network
length and drainage density. Comparing the spatial
pattern among river networks could provide insights
into potential ecological differences. For example,
Shannon diversity index is commonly used in land-
scape ecology to measure the variety of physical
habitat types (i.e. spatial heterogeneity, O’Neill et al.
1988; Turner et al. 1989; Thoms et al. 2018). We
found that drainage density was negatively related to
SHDI. Given the tight coupling between HGP and
ecological processes (Harris et al. 2009; Thoms et al.
2018; Maasri et al. 2019), drainage density may also
explain ecological differences. Although the direction
of this relationship was surprising because increasing
drainage density can increase habitat complexity in
river networks (Benda et al. 2004; Fullerton et al.
2017). In our study, higher drainage density likely
resulted in stream reaches coming in closer proximity
to one another and thereby having similar hydrologic,
geomorphologic and climatic values. Interestingly,
this could suggest that hydrogeomorphic variables
may be more important for maintaining spatial
heterogeneity in less dense networks while tributaries
and confluence effects may be more important in
denser networks.

Connectivity among HGPs in stream networks
could have implications for species diversity patterns
and meta-community dynamics (Cote et al. 2009;
Campbell Grant 2011). We found the modified
dendritic connectivity index varied among river net-
works and was negatively related to the total length of
the network. Since the total length of a river network
allows for longer watercourse distances separating two
HGPs, this relationship is somewhat unsurprising.
From an ecological perspective, this could suggest
dispersal limitation may be important in large river
networks (Tonkin et al. 2017; Schmera et al. 2018).
Still, we used the watercourse distance as a measure of
permeability and did not consider the concurrent
effects of any other barriers (e.g. dams and road
culverts, Cote et al. 2009). As such, the actual
connectivity between HGP types is likely more
complex than simple distances measures.
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Finally, the total number of patches and mean
distance separating them are absolute measurements
of spatial pattern that reflect degree of fragmentation
and isolation of HGP types, respectively. We found
river networks with greater total stream length had
more patches and greater distances separating them. If
HGP types are associated with asynchronous dynam-
ics, river networks with more patches could potentially
have greater stability in their ecological processes
(Moore et al. 2015). Alternatively, the positive
association between stream length and mean patch
distance suggests dispersal may be limited in larger
networks. In general, quantifying spatial patterns in
river networks can concisely describe their character-
istics and potentially provide explanations for ecolog-
ical differences (Le Pichon et al. 2007; Datry et al.
2016; Thoms et al. 2018).

Hydrogeomorphic patch characteristics

Although the river networks we studied differed in the
suite of hydrologic, geomorphologic and climatic
variables that differentiated HGP types, some vari-
ables were common among them. For example, soil
erodibility was an important factor in all river
networks. If these locations receive relatively high
sediment loads from adjacent terrestrial environments
(Walling 1999), they could have distinct benthic
macroinvertebrate communities and by extension
ecological processes (Hubler et al. 2016). Rarely,
however did we find two networks share the same suite
of variables and intra- and inter-patch interactions are
likely important determinants of a HGP’s ecological
function (Wu and Loucks 1995; Thorp et al. 2006). A
logical next step would be to combine our approach
with biological monitoring data to investigate the
degree of biological similarity and the potential for
patch interactions.

Limitations and caveats

Hydrologic, geomorphologic and climatic character-
istics can be readily calculated with GIS-based
approaches (Williams et al. 2013; Thoms et al.
2018). For this study, we created a suite of scripts
using R (https://www.r-project.org/) to eliminate
dependencies on proprietary software (e.g. ArcGIS,
ESRI, Redlands, CA). We also designed these scripts
to depend exclusively on the High Resolution National
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Hydrography Dataset to facilitate large scale, com-
parative analyses across the CONUS (Moore et al.
2019). However, the major limitation with this
approach is that it can take several weeks of processing
and is potentially limited to river networks < 5,000
km? because of computational demands. Further,
given the scale of our study it was not feasible to
ground-truth the accuracy the GIS-based variables.
Still, we followed a similar approach to others that
found GIS-derived variables can produce similar
results to empirical field-based measures (Thorp et al.
2008; Williams et al. 2013; Thoms et al. 2018).

The choice of the landscape metrics used to
quantify spatial pattern should be ecologically justi-
fied (Li and Wu 2004). There are literally hundreds of
landscape metrics and many respond differently to
scale (McGarigal et al. 2012; Simovéa and Gdulov4
2012). We found scaling relationships vary among
different river networks, but we only considered four
metrics. There are few landscape metrics that are
suitable for riverine landscapes (Le Pichon et al. 2007;
Datry et al. 2016; Erds and Lowe 2019) and develop-
ing and evaluating a novel metrics will improve our
ability to describe general scaling laws for spatial
pattern in riverine landscapes.

Conclusions

Spatial pattern analysis can reveal complex linkages
between spatial pattern and ecological processes in
landscapes (Jackson and Fahrig 2015; Qiu et al. 2019).
Although spatial pattern is quantified within river
networks to understand ecological processes (Thorp
et al. 2006; Erés and Lowe 2019), issues of scale
dependence can limit opportunities to synthesize
information collected at different spatial scales or
potentially mask important ecological relationships.
Scaling functions can provide concise descriptions of
the multiscaled characteristics of spatial pattern and
will improve our ability to detect the most appropriate
scale underpinning a linkage between spatial pattern
and ecological process in riverine ecosystems.
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