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Abstract

Context Understanding how spatial pattern changes

with scale can provide insights into its relationship

with ecological processes. In riverine landscapes,

spatial pattern could scale differently from other well-

studied landscapes because of their dendritic form.

Objectives The objectives of this study were (1) to

assess how spatial pattern of hydrogeomorphic habitat

patches (HGP) change with spatial extent, grain size,

and thematic resolution, and (2) to quantify how

spatial pattern in river networks varies across the

contiguous United States (CONUS).

Methods We identified hydrogeomorphic patches

in river networks located in different ecoclimatic

domains. We then quantified spatial pattern within

each river network using a suite of landscape metrics

and investigated scaling relationships for each

component of scale. We also assessed whether water-

shed area, river network length, and drainage density

were related to spatial pattern among river networks

and explored regional differences in the hydrologic,

geomorphologic, and climatic variables that differen-

tiate HGP types.

Results When predictable, scaling relationships

within river networks followed either linear, logarith-

mic, or power functions. Among river networks,

spatial pattern was related to total network

length, catchment area and drainage density. Rarely

were HGP types in different networks characterized by

the same suite of hydrologic, geomorphologic and

climatic variables.

Conclusions In riverine landscapes, there are a

variety of relationships between spatial pattern and

scale. The scaling functions we present can provide a

concise description of scale dependency in these

landscapes and improve our ability to synthesize

information across scales.
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Introduction

Spatial pattern is closely linked to ecological pro-

cesses but the relationship depends on the scale of

investigation (Wiens 1989; Wu et al. 2002; Jackson

and Fahrig 2015). Spatial pattern changes with scale

and scaling functions concisely describe these changes

(Wu et al. 2002; Šı́mová and Gdulová 2012). Within

rivers and streams, spatial pattern of aquatic habitats is

an important feature governing ecological processes

(Thorp et al. 2006; Thoms et al. 2018; Er}os and Lowe

2019). However, riverine ecosystems are structurally

different from terrestrial landscapes and require dif-

ferent metrics to quantify spatial pattern within them

(Williams et al. 2013; Thoms et al. 2018). Investigat-

ing how these metrics change with scale can provide

insights into linkages between spatial pattern and

ecological processes in riverine ecosystems (Jackson

and Fahrig 2015; Qiu et al. 2019).

Spatial pattern is typically quantified using land-

scape metrics that measure the composition (i.e.

diversity) or configuration (i.e. spatial arrangement)

of habitat patches (McGarigal et al. 2012). Scale can

include multiple components (Wu and Li 2006; Turner

and Gardner 2015), but most often it refers to spatial

extent, the area under investigation, or spatial grain,

the finest resolution used for analysis (e.g. pixel size or

linear unit; Wiens 1989; Wu and Li 2006; Cushman

et al. 2010). A third component of scale, thematic

resolution, refers to the level of detail that differen-

tiates landscape components. For example, land cover

classification maps are often represented as nested

hierarchies where increasing thematic resolution

reveals a greater number of subordinate land cover

classes (Buyantuyev and Wu 2007; Šı́mová and

Gdulová 2012; Qiu et al. 2019).

Each component of scale can influence landscape

metrics differently and, in some instances, these

effects are predictable (Wu et al. 2002; Buyantuyev

andWu 2007; Xu et al. 2020). For example, landscape

metrics that represent absolute values of spatial

pattern, such as mean size or distance between

landscape components, should increase monotonically

with spatial extent and decrease with spatial grain and

thematic resolution (Baldwin et al. 2004; Šı́mová and

Gdulová 2012). Similarly, landscape metrics that

quantify diversity should increase when novel land-

scape components are encountered at larger spatial

extents or unveiled by increased thematic detail

(Turner et al. 1989; Šı́mová and Gdulová 2012). They

should also decrease with coarsening grain because

small or rare landscape components disappear (Turner

et al. 1989; Šı́mová and Gdulová 2012). Changing

scale can also cause metrics to display either staircase-

like or chaotic patterns, making them less pre-

dictable (Wu et al. 2002; Šı́mová and Gdulová 2012).

Riverine landscapes include components of the

Earth’s surface that are influenced by a river, including

aquatic habitats in the river, and riparian corridors and

floodplains that occur alongside them (Fausch et al.

2002; Ward et al. 2002; Thorp et al. 2006). These

systems are characterized by ‘‘hydrogeomorphic

patches’’ (hereafter ‘‘HGP’’) which can be identified

as river reaches that share similar hydrologic, geo-

morphologic, and climatic conditions (Thoms and

Parsons 2002; Thorp et al. 2006, 2008; Williams et al.

2013). The composition and configuration of HGPs

can characterize the physical structure of entire river

networks (Williams et al. 2013; Thoms et al. 2018),

influence species diversity patterns (Maasri et al.

2019) and ecosystem processes (Hadwen et al. 2010;

Thorp et al. 2010; Collins et al. 2018).

Previous efforts to characterize river networks by

their HGPs have focused on a small number of river

networks at different scales (Collins et al. 2014;

Thoms et al. 2018; Maasri et al. 2019). Since scale

dependency is common, this could mask important

relationships between spatial pattern and ecological

processes (Jackson and Fahrig 2015). Although scal-

ing functions provide an accurate way to predict

changes in spatial pattern of HGPs, these functions

may vary geographically because river networks are

embedded in biomes that vary in their climate,

hydrology and geomorphology (Dodds et al.

2015, 2019). Systematic evaluations of the factors

that differentiate HGP types, their spatial pattern and

scaling relationships across multiple riverine land-

scapes could uncover potential generalities in scale

dependencies (Wu et al. 2002; Shen et al. 2004;

Buyantuyev and Wu 2007).

Here, we investigate scale dependency of spatial

pattern using 18 river networks in the contiguous

United States (hereafter ‘‘CONUS’’). We identified

HGPs by similarities in climate, hydrologic, and

geomorphic variables and adapted several landscape

metrics to quantify their configuration and composi-

tion. Within each river network we evaluated scaling

functions that best describe the relationship between
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the landscape metrics and three components of scale.

Then, among networks, we investigated the role of

river network size and topology in driving variation in

spatial pattern and determined if the suite of hydro-

logic, geomorphic and climatic variables used to

differentiate HGP remains consistent across biomes.

Methods

Study sites

We chose a single river network in each of the

National Ecological Observation Network (NEON;

https://www.neonscience.org/) ecoclimatic domains

in the CONUS (Fig. 1; Hargrove and Hoffman 2004).

Ecoclimatic domains were delineated using multi-

variate geographic clustering of nine climate variables

(Hargrove and Hoffman 2004). Where possible, we

used a NEON aquatic or terrestrial site to locate a

suitable river network within each ecoclimate domain.

We handpicked sites in the Southern Pacific domain

(17) to represent a Mediterranean climate (NEON

stream sites in the domain 17 are in the Sierra Nevada

mountains, with similar climate to other NEON sites),

and in the Prairie Peninsula domain (06) due to

restrictions in the availability of High Resolution

National Hydrography Dataset (NHDHR) at the time

of the study (Viger et al. 2016; Moore et al. 2019). We

also selected two sites in the Ozarks complex (08) and

omitted the Atlantic Neotropical domain (04) because

of its relatively small spatial coverage in the CONUS

(Fig. 1).

We delineated river networks by associating each

site to a digital flowline in the NHDHR and navigating

downstream to until reaching a catchment area closest

5,000 km2 (range = 364.12 and 5,733.06 km2; Strah-

ler Stream Order[ 5). We extracted all flowlines

draining the catchment from the NHDHR and recon-

ditioned them into valley and reach segments. We

define a valley segment as a section of the river

between a headwater and confluence, or two conflu-

ences. Valley segments\ 1 km were classified as a

single reach while valley segments[ 1 km were split

into reaches of equal length. River reaches typically

ranged between 0.5 and 1 km and served as our spatial

unit of replication for each river network (1,154 B n

B 13,222; Table 1).

Hydrologic, geomorphologic and climatic

variables

Hydrologic, geomorphologic and climatic variables

were extracted or derived for each river reach from

several GIS datasets and used to identify HGPs within

the river networks (Table 2; Williams et al. 2013;

Thoms et al. 2018; Maasri et al. 2019). Mean annual

air temperature (̊C) and precipitation (mm) were

obtained from the PRISM Climate Group

(1981–2010; https://prism.oregonstate.edu/normals/).

Whole soil erodibility factor (kw) and pH values we

obtained from the Digital General Soil Map of U.S.

which supersedes the State Soil Geographic

(STATSGO) dataset (1:250,000-scale, https://

websoilsurvey.nrcs.usda.gov/) and classified as low

(kw\ 0.25, pH\ 6.5), medium (0.25 B kw\ 0.4,

6.5 B pH\ 8.5) and high (kw C 0.4, pH C 8.5).

Depth to bedrock (cm) was obtained from Shangguan

et al. (2017). Values for each variable were extracted

from the appropriate raster dataset at the midpoint of

each reach.

We also used the digital elevation model provided

with the NHDHR to determine the elevation (cm) of a

reach and to quantify a suite of geomorphologic

attributes (Table 2, Figure S1). In brief, we established

digital transects extending perpendicular from each

river reaches’ midpoint to measure valley-side slope,

valley width, and valley floor width, used points at the

inlet and outlet of the valley segment to measure

valley slope, and the endpoints of a reach to measure

channel sinuosity and mean meander length.

Hydrogeomorphic patch identification

Hydrogeomorphic patches (HGP) were identified

using agglomerative hierarchical clustering on hydro-

logic, geomorphic and climatic variables (Table 2,

Borcard et al. 2018). This approach successively

groups individual river reaches into larger classes

based on their similarity (Thoms et al. 2018; Maasri

et al. 2019). At the lowest level of the hierarchy, each

river reach is an individual class while at the highest

level, all reaches are combined into a single class. We

used Gower’s dissimilarity index to measure pairwise

associations and Ward’s minimum variance to create

hierarchically nested groupings (Borcard et al. 2018;

Maasri et al. 2019). We objectively identified the

optimal number of HGP types for each network using
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the maximum average silhouette width (Borcard et al.

2018). Silhouette width is a metric of group similarity

at each partition of the dendrogram and the maximum

average width corresponds to the partition with the

greatest degree of separation among subordinate

groups. We used the ‘‘daisy’’ function to generate

distance matrices, the ‘‘agnes’’ function for agglom-

erative hierarchical clustering and the ‘‘silhouette’’

function to conduct the silhouette analysis (Maechler

et al. 2019.

Spatial pattern analysis

We quantified the spatial pattern using four landscape

metrics that measure the composition or configuration

of HGP (McGarigal et al. 2012). To measure compo-

sition, we combined adjacent stream reaches of the

same HGP type and counted the uninterrupted

segments as total number of patches (TP). In addition,

we calculated the Shannon Diversity index (SHDI) for

each network. The SHDI is commonly used to

measure landscape heterogeneity and has recently

been applied to riverine landscapes (O’Neill et al.

1988; Turner et al. 1989; Thoms et al. 2018).

Following Thoms et al (2018), we calculated SHDI as:

SHDI ¼ �
X

pi ln pi

where pi is the proportional length of the ith hydro-

geomorphic patch relative to the total length of the

river network.

To measure the configuration of HGP within each

network we calculated the mean distance separating

HGP types (mean patch distance, MPD) and used the

dendritic connectivity index (DCI) to measure the

bFig. 1 Representative spatial patterns of hydrogeomorphic

patches within 4 river networks. Different colors correspond to

distinct hydrogeomorphic patch types. Center shows river

network locations used in the analysis. Boundaries demarcate

NEON ecoclimate domains: NRTH = Northeast; MDAT =

Mid-Atlantic; STHS = Southeast; GRTL = Great Lakes;

PRRP = Prairie Peninsula; APCP = Appalachian Cumberland

Plateau;OC-2 = Ozarks Complex-2;OC-1 = Ozarks Complex-

1; NRTP = Northern Plains; CNTP = Central Plains;

STHP = Southern Plains; NRTR = Northern Rockies;

STHR = Southern Rockies; DSRS = Desert Southwest;

GRTB = Great Basin; PCFN = Pacific Northwest;

PCFS = Pacific Southwest

Table 1 Characteristics of the river networks used in this study

Site NEON domain name Degrees

latitude

Degrees

longitude

Stream

order

Catchment area

(km2)

Total length

(km)

Reaches

(#)

NRTH Northeast 42.1491 - 72.6214 6 1764.45 2375.43 3747

MDAT Mid-Atlantic 38.94293 - 78.1905 7 4153.86 6522.36 10,313

STHS Southeast 31.1785 - 84.4741 6 2741.97 2299.17 3293

GRTL Great Lakes 46.87233 - 89.3254 8 3480.89 5332.66 12,018

PRRP Prairie Peninsula 42.81041 - 94.4454 6 5080.37 4058.4 5183

APCP Appalachian Cumberland

Plateau

35.92358 - 83.5851 7 976.07 2747.48 6817

OC-1 Ozarks Complex-1 33.03368 - 87.6057 5 459.18 777.57 1222

OC-2 Ozarks Complex-2 33.88835 - 95.9396 6 1753.77 3002.11 4510

NRTP Northern Plains 46.68421 - 100.788 5 558.5 845.8 1154

CNTP Central Plains 40.03608 - 101.53 5 4419.07 3877.19 5406

STHP Southern Plains 32.86007 - 97.5002 6 4989.64 8845.51 13,223

NRTR Northern Rockies 44.99472 - 110.576 7 5733.06 7352.96 10,921

STHR Southern Rockies 40.26525 - 104.877 7 2345.82 4610.43 10,562

DSRS Desert Southwest 33.63354 - 111.659 6 497.81 1113.26 1718

GRTB Great Basin 40.43697 - 112.385 6 1851.59 2959.47 3937

PCFN Pacific Northwest 45.71767 - 121.79 7 582.89 2276.95 7897

PCFS Pacific Southwest 36.35155 - 121.209 6 364.12 1304.21 2554
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connectivity between HGP types (Cote et al. 2009).

DCI is based on the probability that an organism can

cross a boundary separating one patch from another:

DCI ¼
Xn

i¼1

Xn

j¼1

cij
li
L

lj
L
� 100

where cij is probability that an organism can traverse a

boundary separating patch i and j, l is the length of

patch and L is the total length of the network. The

index is multiplied by 100 to scale the value between 1

and 100. This index assumes boundaries do not occupy

space in the network such that when cij ¼ 1 (i.e.

complete boundary permeability), DCI ¼ 1 (Cote

et al. 2009). Because we expected the connectivity

between two HGPs depends on the distance separating

them, we modified DCI as:

DCIk ¼
Xn

i¼1

Xn

j¼1

ckikj
lki
Lk

lkj
Lk

� 100

where k indexes HGP type. We consider ckikj equiv-

alent to the probability that an organism can travel the

distance separating patch i and j of type k. Here,

dispersal distance of an organism, X; is a random

variable with a probability distribution,X� expðk).
We parameterize the probability density function

using themedian maximum parent–offspring dispersal

distance for riverine fishes (i.e.k = 1/12 km, Comte

and Olden 2018). Thus, for a parent fish living in patch

i of type k, ckikj reflects the probability that the

offspring of that fish can travel distance,X, to patch j.

Accordingly, DCIk generally increases when larger

HGP types are separated by smaller watercourse

distances. We used mean DCIk to aggregate patch-

scale connectivity values to the entire river network.

Table 2 Hydrologic, geomorphic and climatic variables and data sources used to identify hydrogeomorphic patches

Variable Description Source

Elev Elevation at reach midpoint NHDPlusHR: https://www.usgs.gov/core-science-systems/ngp/

national-hydrography/nhdplus-high-resolution

Ann. Precip Mean annual precipitation (1981–2010) PRISM Climate Group: https://prism.oregonstate.edu/

Ann. Temp Mean annual temperature (1981–2010)

Erosion

Factor

Whole Soil Erosion factor (kw) measures

susceptibility of soil to erosion

SSURGO: https://websoilsurvey.nrcs.usda.gov/

Soil pH Soil pH

Bedrock

Depth

Depth of soil or regolith covering bedrock Soil Grids

http://globalchange.bnu.edu.cn/

Valley

Width

Width of the catchment perpendicular to the

river channel

Derived for this study from NHDPlusHR: https://www.usgs.gov/

core-science-systems/ngp/national-hydrography/nhdplus-high-

resolutionValley Floor

Width

The lateral extent of a flood reaching a depth 4

times bankfull depth*

Valley Floor

Ratio

Ratio between valley floor width and valley

width

Valley Slope Slope between upstream and downstream

points of a valley

Valley Side

Slope

Mean of the slope between the river and

ridgeline on either side of the channel

Channel

Sinuosity

Ratio of the channel distance to straight line

distance of a reach

Channel

Slope

Slope between upstream and downstream

points of a reach

Mean

Meander

Length

Mean channel distance separating two

sequential meanders

*Bankfull depth estimated from upstream catchment area (Bieger et al. 2015)
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R-code

We provide example R-code to identify HGPs and

calculate landscape metrics at https://github.com/

dkopp3/HydrogeomorphicPatches. We reconditioned

NHDHR flowlines, identified reaches, sampling

points, and transects using the ‘‘create module’’. We

assigned hydrogeomorphic variables to each reach

using the ‘‘attribute module’’ and preformed the

cluster analysis using the ‘‘cluster module’’. Finally,

landscape metrics were calculated using the ‘‘land-

scape metrics’’ module.

Statistical analysis

Within each river network we evaluated how HGP

spatial patterns change with spatial extent, spatial

grain, and thematic resolution. In rivers, spatial extent

is represented by watershed area, or the surface area

contributing runoff to a river channel during precip-

itation events. We changed spatial extent by randomly

identifying sub-networks at 10 km2 increments of

increasing catchment area (Fig. 2). We assessed

between 25 and 234 values of spatial extent depending

on the size of the network. We manipulated the spatial

grain of a stream network by increasing the minimum

channel length represented in the network (Fig. 2).

Each interval coarsened or ‘‘pruned’’ the river net-

work, to provide a range of 24 to 94 values of spatial

grain in our analysis. Finally, we manipulated the

thematic resolution by decreasing the level of dissim-

ilarity among HGP types beginning at the level

specified by the silhouette analysis (i.e. 4–8 HGP

types) up to 30 HGP types for each network (Fig. 2).

We visually inspected the scaleograms for each

river network prior to fitting linear, power, and

logarithmic functions. This allowed us to classify a

relationship as ‘‘predictable’’, if the functions could

provide a reasonable approximation for the data, or

‘‘unpredictable’’ if the relationship was better charac-

terized by staircase-like patterns or behaved erratically

(Wu et al. 2002). For predictable relationships, we fit

each function to the data and used the coefficient of

determination (i.e. R2) to identify the strongest

relationship (Rüegg et al. 2016).

We used a regression analysis to test whether river

network length, total catchment area or drainage

density explained variation in spatial pattern among

river networks in different ecoclimatic regions.

Network length is the total length of streams in a

network; catchment area is the surface area that

contributes overland runoff to a river network; and

drainage density is the network length divided by the

catchment area. Similar to above, we fit linear, power,

and logarithmic models to each pairwise combination

of spatial pattern and river network characteristic and

evaluated the best fit model using the coefficient of

determination.

To investigate which variables were most important

in differentiating HGP types within river networks we

used an Analysis of Similarity (ANOSIM) followed by

Similarity Percentage Analysis (SIMPER) (Harris

et al. 2009; Thoms et al. 2018; Oksanen et al. 2019).

ANOSIM confirmed a statistical difference among

HGP types within each river network and SIMPER

identified the single variable that was most dissimilar

for each pairwise combination. We used the aggre-

gated list of variables for each river network to

describe the suite of climatic, hydrologic, and geo-

morphic variables that contribute most to the differ-

entiation of HGP types for each river network.

Results

Effects of scale on spatial pattern of HGP depended on

the component of scale and the landscape metric

(Fig. 3). For composition metrics, we found a loga-

rithmic function consistently explained the relation-

ship between Shannon diversity index (SHDI) and

spatial extent in five river networks (R2 range: 0.61—

0.77, Table S1). The relationship between SHDI and

spatial grain on the other hand, often followed a

staircase-like pattern and was not reasonably repre-

sented by simple functions we considered in our

analysis (Figure S2). Total patches (TP) had a

consistently strong linear relationship with spatial

extent in 12 stream networks (R2[ 0.93) and fol-

lowed a power relationship with spatial grain in three

networks (R2[ 0.93, Table S1). Finally, thematic

resolution was almost perfectly related to both SHDI

(R2[ 0.98) and TP (R2[ 0.96) by either, logarithmic

or power functions (Fig. 3).

In general, scaling relationships for configuration

metrics were different from composition metrics

(Fig. 3). For example, scaling the modified dendritic

connectivity index (DCIkÞwith spatial extent followed
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linear, power, or logarithmic functions in 12 networks

(R2 range: 0.66–0.94) and scaling with thematic

resolution followed linear or power functions in 8

networks (R2 range: 0.69–0.92, Table S1).Whenmean

patch distance (MPD) was predictable, it also scaled

with extent and thematic resolution following linear,

power, or logarithmic functions. The effect of chang-

ing grain on DCIk were predictable in 6 networks

using linear functions (R2 range: 0.80–0.97) but was

unpredictable for MPD (Figure S2).

Among river networks, spatial pattern was related

to network length, catchment area and drainage

density (Fig. 4). Catchment area and total length of

the network were positively associated with TP

(R2 = 0.29, P\ 0.001; R2 = 0.59, P\ 0.001, respec-

tively), and MPD (R2 = 0.80, P\ 0.001; R2 = 0.90,

P\ 0.001, respectively). Total network length was

negatively associated with DCIk (R2 = 0.32,

P\ 0.05) and drainage density was negatively

Fig. 2 Schematic demonstrating the changing the scale of spatial extent (top), spatial grain (middle) and thematic resolution (bottom)

in river networks. Colors are a visual indication of changing scale from left to right. MSL = minimum stream length

Fig. 3 Proportion of river networks where spatial pattern

metrics follow simple scaling functions. SHDI = Shannon

diversity index; TP = total number of patches, DCI = modified

dendritic connectivity index (see text); MPD = mean patch

distance; LIN = Linear function ðy ¼ aþ bxÞ; LOG = Loga-

rithmic function ðy ¼ aþ blogxÞ; and PWR = Power Function

ðy ¼ axbÞ where x is the value of extent, grain, or thematic

resolution and y is the spatial pattern
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associated with SHDI (R2 = 0.24, P\ 0.05) andMPD

(R2 = 0.26, P\ 0.05).

We identified between 4 and 8 HGP types in each

river network (ANOSIM global R range: 0.4, 0.95,

p\ 0.001 for all networks; Table 3). Although the

suite of variables that differentiated HGPs were

generally different, many networks had at least a

single variable in common. For example, soil

erodibility was an important factor driving dissimilar-

ity between HGP types in 13 networks and valley-floor

ratio was important for 9 networks. Further, HGP

types that were characterized by similar variables were

often located in different ecoclimate regions (Table 3).

Fig. 4 Relationship between spatial pattern and catchment area,

total length and drainage density among river networks.

SHDI = Shannon diversity index; TP = total number of

patches, DCI = dendritic connectivity index; MPD = mean

distance between patches. Lines of best fit are drawn for

significant relationships (p\ 0.05). Hashed lines represent

power function ðy ¼ axbÞ and dotted lines represent linear

function (y ¼ aþ blogxÞ where x is the value of and catchment

area, total length or drainage density. NRTH = Northeast;

MDAT = Mid-Atlantic; STHS = Southeast; GRTL = Great

Lakes; PRRP = Prairie Peninsula; APCP = Appalachian Cum-

berland Plateau; OC-2 = Ozarks Complex-2; OC-1 = Ozarks

Complex-1; NRTP = Northern Plains; CNTP = Central Plains;

STHP = Southern Plains; NRTR = Northern Rockies;

STHR = Southern Rockies; DSRS = Desert Southwest;

GRTB = Great Basin; PCFN = Pacific Northwest;

PCFS = Pacific Southwest
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Discussion

Understanding scale dependencies in spatial patterns

can elucidate the operational scale underpinning its

relationship to an ecological process (Wu et al. 2002;

Jackson and Fahrig 2015). Increasingly, spatial pattern

is quantified within river networks to understand the

physical and ecological characteristics of the entire

ecosystem (Thoms et al. 2018; Maasri et al. 2019).

However, river networks under investigation can vary

in their spatial extent and spatial grain (Benstead and

Leigh 2012; Rüegg et al. 2016), and habitat patches

can be differentiated with increasing levels of detail

(Thoms et al. 2018). An explicit understanding of the

effects of scale on spatial pattern could increase

opportunities to synthesis information collected at

different scales or unmask important ecological rela-

tionships. We extended the framework developed by

Wu et al. (2002) and found scaling relationships in

river networks vary across a broad geographic area.

The effect of thematic resolution was most

predictable for composition metrics while the effect

of spatial extent was most predictable for configura-

tion metrics. We also found that the effects of

changing spatial grain are least predictable, possibly

owing to the dendritic structure of river networks and

the method used to manipulate grain size (i.e. mini-

mum mapping unit). Importantly, this work demon-

strates that within riverine landscapes there are a

variety of scaling relationships for spatial pattern that

vary in their predictably, but among river networks,

spatial pattern is related to river network size or

typology.

Scaling relationships within riverine landscapes

We assessed how spatial patterns of HGP are

influenced by three different components of scale

and, similar to other landscapes, found that some

landscape metrics could change predictably (i.e.

following simple scaling functions). In general, we

found the effects of changing spatial extent were more

Table 3 The hydrologic, geomorphologic and climate variables with the highest contribution to dissimilarity among hydrogeo-

morphic patch types within a river network

NEON

Domain

HGP

(#)

Global

R*

Erosion

Factor

Valley-

Floor

Ratio

Ann.

Precip

Soil

pH

Ann.

Temp

Mean

Meander

Length

Bedrock

Depth

Elev Valley

Slope

Northeast 4 0.50 X X X

Mid-Atlantic 4 0.67 X X X

Southeast 7 0.79 X X X X X X

Great Lakes 4 0.85 X X X

Prairie Peninsula 4 0.86 X X X

Appalachian

Cumberland

Plateau

4 0.76 X X X

Ozarks Complex-1 4 0.58 X X X X

Ozarks Complex-2 4 0.95 X X X

Northern Plains 6 0.91 X X X X

Central Plains 5 0.98 X X X

Southern Plains 4 0.88 X X X

Northern Rockies 4 0.59 X X X

Southern Rockies 6 0.83 X X X X X

Desert Southwest 5 0.95 X X X X

Great Basin 4 0.94 X X X

Pacific Northwest 4 0.70 X X X

Pacific Southwest 4 0.70 X X X

*Bankfull depth estimated from upstream catchment area (Bieger et al. 2015)
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predictable than the effects of changing grain size.

Indeed others have found that changing grain size is

more predictable (Wu et al. 2002; Wu 2004). These

differences could support the notion that the method

used to manipulate spatial grain influences the type of

scaling relationship (Shen et al. 2004; Turner and

Gardner 2015; Xu et al. 2020). For example, data

stored as raster images is commonly upscaled by

aggregating smaller pixels via majority rules (Wu and

Li 2006; Qiu et al. 2019). River networks on the other

hand, are represented as vector data because of their

dendritic structure. Accordingly, we manipulated

spatial grain by changing the minimum mapping unit

(i.e. iteratively pruning the river networks) such that

coarsening grain removed HGP types. Importantly,

our results suggest that scaling functions may be more

applicable to synthesizing studies that differ in their

spatial extent rather than the resolution of their

hydrography dataset (cf. Lehner et al. 2008; McKay

et al. 2012; Moore et al. 2019).

Effects of thematic resolution are expected to be

similar to those of spatial grain (Buyantuyev and Wu

2007). In general, we found that these effects were

more predictable than those of spatial grain for

composition metrics and less predictable for config-

uration metrics. The relationship between thematic

resolution and spatial pattern for the composition

metrics is unsurprising because increasing the number

of HGP types simultaneously increases richness and

fragmentation (i.e. larger patches are subdivided at

greater thematic resolution). Configuration metrics on

the other hand, were less predictable and often

behaved erratically. Indeed, changing thematic reso-

lution may combine, or separate, spatially distant

patches and lead to unpredictable scaling relationships

(Buyantuyev and Wu 2007).

Lotic ecosystems are known vary geographically as

a result of regional differences in climate and

geomorphology (Dodds et al. 2015, 2019) and we

found the predictably of spatial pattern scaling rela-

tionships generally differed among river networks.

However, we only included one river network for each

ecoclimate domain and could not ascertained whether

our scaling relationships are regionally consistent.

Indeed, Rüegg et al. (2016) documented that other

scaling relationships (i.e. width and depth and catch-

ment area) are geographically variable and investi-

gating the mechanisms driving apparent variation in

scaling relationships should be an avenue for future

research.

Spatial patterns among riverine landscapes

We found that variation in spatial pattern among

networks was related to catchment area, network

length and drainage density. Comparing the spatial

pattern among river networks could provide insights

into potential ecological differences. For example,

Shannon diversity index is commonly used in land-

scape ecology to measure the variety of physical

habitat types (i.e. spatial heterogeneity, O’Neill et al.

1988; Turner et al. 1989; Thoms et al. 2018). We

found that drainage density was negatively related to

SHDI. Given the tight coupling between HGP and

ecological processes (Harris et al. 2009; Thoms et al.

2018; Maasri et al. 2019), drainage density may also

explain ecological differences. Although the direction

of this relationship was surprising because increasing

drainage density can increase habitat complexity in

river networks (Benda et al. 2004; Fullerton et al.

2017). In our study, higher drainage density likely

resulted in stream reaches coming in closer proximity

to one another and thereby having similar hydrologic,

geomorphologic and climatic values. Interestingly,

this could suggest that hydrogeomorphic variables

may be more important for maintaining spatial

heterogeneity in less dense networks while tributaries

and confluence effects may be more important in

denser networks.

Connectivity among HGPs in stream networks

could have implications for species diversity patterns

and meta-community dynamics (Cote et al. 2009;

Campbell Grant 2011). We found the modified

dendritic connectivity index varied among river net-

works and was negatively related to the total length of

the network. Since the total length of a river network

allows for longer watercourse distances separating two

HGPs, this relationship is somewhat unsurprising.

From an ecological perspective, this could suggest

dispersal limitation may be important in large river

networks (Tonkin et al. 2017; Schmera et al. 2018).

Still, we used the watercourse distance as a measure of

permeability and did not consider the concurrent

effects of any other barriers (e.g. dams and road

culverts, Cote et al. 2009). As such, the actual

connectivity between HGP types is likely more

complex than simple distances measures.
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Finally, the total number of patches and mean

distance separating them are absolute measurements

of spatial pattern that reflect degree of fragmentation

and isolation of HGP types, respectively. We found

river networks with greater total stream length had

more patches and greater distances separating them. If

HGP types are associated with asynchronous dynam-

ics, river networks withmore patches could potentially

have greater stability in their ecological processes

(Moore et al. 2015). Alternatively, the positive

association between stream length and mean patch

distance suggests dispersal may be limited in larger

networks. In general, quantifying spatial patterns in

river networks can concisely describe their character-

istics and potentially provide explanations for ecolog-

ical differences (Le Pichon et al. 2007; Datry et al.

2016; Thoms et al. 2018).

Hydrogeomorphic patch characteristics

Although the river networks we studied differed in the

suite of hydrologic, geomorphologic and climatic

variables that differentiated HGP types, some vari-

ables were common among them. For example, soil

erodibility was an important factor in all river

networks. If these locations receive relatively high

sediment loads from adjacent terrestrial environments

(Walling 1999), they could have distinct benthic

macroinvertebrate communities and by extension

ecological processes (Hubler et al. 2016). Rarely,

however did we find two networks share the same suite

of variables and intra- and inter-patch interactions are

likely important determinants of a HGP’s ecological

function (Wu and Loucks 1995; Thorp et al. 2006). A

logical next step would be to combine our approach

with biological monitoring data to investigate the

degree of biological similarity and the potential for

patch interactions.

Limitations and caveats

Hydrologic, geomorphologic and climatic character-

istics can be readily calculated with GIS-based

approaches (Williams et al. 2013; Thoms et al.

2018). For this study, we created a suite of scripts

using R (https://www.r-project.org/) to eliminate

dependencies on proprietary software (e.g. ArcGIS,

ESRI, Redlands, CA). We also designed these scripts

to depend exclusively on the High Resolution National

Hydrography Dataset to facilitate large scale, com-

parative analyses across the CONUS (Moore et al.

2019). However, the major limitation with this

approach is that it can take several weeks of processing

and is potentially limited to river networks\ 5,000

km2 because of computational demands. Further,

given the scale of our study it was not feasible to

ground-truth the accuracy the GIS-based variables.

Still, we followed a similar approach to others that

found GIS-derived variables can produce similar

results to empirical field-based measures (Thorp et al.

2008; Williams et al. 2013; Thoms et al. 2018).

The choice of the landscape metrics used to

quantify spatial pattern should be ecologically justi-

fied (Li and Wu 2004). There are literally hundreds of

landscape metrics and many respond differently to

scale (McGarigal et al. 2012; Šı́mová and Gdulová

2012). We found scaling relationships vary among

different river networks, but we only considered four

metrics. There are few landscape metrics that are

suitable for riverine landscapes (Le Pichon et al. 2007;

Datry et al. 2016; Er}os and Lowe 2019) and develop-

ing and evaluating a novel metrics will improve our

ability to describe general scaling laws for spatial

pattern in riverine landscapes.

Conclusions

Spatial pattern analysis can reveal complex linkages

between spatial pattern and ecological processes in

landscapes (Jackson and Fahrig 2015; Qiu et al. 2019).

Although spatial pattern is quantified within river

networks to understand ecological processes (Thorp

et al. 2006; Er}os and Lowe 2019), issues of scale

dependence can limit opportunities to synthesize

information collected at different spatial scales or

potentially mask important ecological relationships.

Scaling functions can provide concise descriptions of

the multiscaled characteristics of spatial pattern and

will improve our ability to detect the most appropriate

scale underpinning a linkage between spatial pattern

and ecological process in riverine ecosystems.
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