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ABSTRACT: Single-ion conducting polymer electrolytes (SICPEs) have many advantages for solid-state battery applications, while
low conductivities remain the bottleneck for their practical applications. Herein, a strategy that can significantly improve the ionic
conductivity of SICPEs based on the concept of accelerated segmental dynamics was demonstrated by the evaluation of the thermal
property, rheological behavior, morphology analysis, molecular dynamics simulation, and conductivity performance. With both “soft”
poly(dimethylsiloxane) (PDMS) backbone and poly(ethylene glycol) (PEG) side chains, the obtained SICPE possesses faster
segmental relaxation and higher lithium-ion conductivity. With lithium “transference” number close to unity, the obtained SICPE
also shows excellent electrochemical stability against lithium metal electrodes. The clear relationship established between the
segmental dynamics of polymer electrolyte and its ionic conductivity should contribute to achieve a solid electrolyte with improved
ionic conductivity toward the next-generation solid-state battery.

KEYWORDS: single ion conducting, polymer electrolyte, “soft” structure, poly(dimethylsiloxane), segmental dynamics

■ INTRODUCTION

Solid-state batteries (SSB) are considered as the holy grail of
next-generation battery technology with higher energy density
and enhanced safety. To achieve this technological break-
through, solid electrolytes need to have ionic conductivity
close to that of current liquid electrolytes with good interfacial
stability.1−7 With their inherent design flexibility, nonflam-
mable, scalable membrane formation, and tunable mechanical
property, polymer electrolytes have emerged as one of the
most promising candidates for SSB.8−23 However, the
traditional lithium-salt-doped poly(ethylene oxide) (PEO)
usually suffers from low lithium-ion “transference” number
(tLi

+ < 0.4) that renders numerous problems, such as electrode
polarization, ion concentration gradient, and undesirable side
reactions.10 By covalently attaching anions to the polymer
backbone, single-ion conducting polymer electrolytes
(SICPEs) have been fabricated to resolve these prob-
lems.11,24−33 Simulation results showed that even with slightly
lower conductivity, SICPEs still provide higher power density
and enable faster charging in comparison to traditional liquid
electrolytes.34 Recent reports also demonstrated that single-ion
conductors suppress the dendrite growth on Li metal
electrodes, enabling stable and safe Li metal-based bat-
teries.24,26,27,35−41 However, the low ionic conductivity of

SICPEs in comparison to traditional liquid electrolyte remains
a bottleneck for their practical applications.11

Fabrication of weakly coordinating anions with a highly
delocalized negative charge is especially useful in improving the
ionic conductivity of SICPEs, and the approach mainly relies
on polymers with ionic-liquid-like monomers, backbone, or
s i de cha in s . 2 5 , 4 2− 4 4 Po l yan ions w i th su l fony l -
(trifluoromethanesulfonyl)imide structure (SO2-N

(−)-SO2-
CF3) are usually employed to synthesize SICPEs with high
ionic conductivity.11,36,45 Further improvement was also
reported by replacing one O group in the above structure
by a stronger electron-withdrawing group rendering a super-
delocalized polyanion.44 However, these homopolymers,
i n c l u d i n g l i t h i u m p o l y ( 4 - s t y r e n e s u l f o n y l ) -
(trifluoromethanesulfonyl)imide (LiPSTFSI),30,46 lithium
po l y 1 - [ 3 - (me t h a c r y l o y l o x y ) p r o p y l s u l o n y l ] - 1 -
(trifluoromethanesulfonyl)imide (LiPMTFSI),47 and lithium
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poly[(4-styrenesulfonyl)(trifluoromethyl(S-trifluoromethylsul-
fonylimino) sulfonyl)imide] (LiPSsTFSI),48 have high glass
transition temperature (Tg) and always suffer from very low
ionic conductivity at ambient temperature. Accelerating the
segmental dynamics by incorporation of low-Tg polymer
segments is an efficient way to improve the ionic conductivity
of SICPEs.25,30,48 Aside from physical blending, the current
research is mainly focusing on covalently grafting a SICPE
block to one or both sides of high-molecular-weight (MW)
PEO, or on copolymerization with the low MW PEO (Tg ∼
−60 °C).25,49,50 Matyjaszewski and co-workers also reported
homopolymer SICPEs with a PEO spacer between the single-
ion conducting units and the polymer backbone.51 There have
been numerous attempts on modifying the side chain, but only
a few attempts have been made on tuning the polymer
backbones of sulfonyl(trifluoromethanesulfonyl)imide-based
SICPEs,11,52,53 which may significantly influence segmental
dynamics.30

Herein, we introduce a novel SICPE with both a “soft”
polymer backbone and side chain that provides accelerated
segmental dynamics. Compared to traditional “rigid” polymer
backbones, such as poly(methyl methacrylate) (PMMA), the
soft poly(dimethylsiloxane) (PDMS) (Tg ∼ −120 °C)
backbone exhibits much faster segmental dynamics (shorter
relaxation time) and hence higher conductivity (6 orders of
magnitude improvement). Further cografting with PEO side
chains results in the SICPEs with further accelerated segmental
dynamics that provides significantly improved conductivity in

c ompa r i s o n t o t h e s t a t e - o f - t h e - a r t s u l f o n y l -
(trifluoromethanesulfonyl)imide-based SICPE.

■ RESULTS AND DISCUSSION

The detailed synthesis procedures are included in the
Supporting Information. The lithium 1-[3-(methacryloyloxy)
propylsulfonyl]-1-(trifluoromethanesulfonyl)-imide (MPA Li+)
monomer was synthesized with chemical structure verified by
1H nuclear magnetic resonance (1H NMR) and 19F NMR
spectrum (Figures 1a and S1). The PDMS-based SICPEs, i.e.,
PDMS-g-MPA Li+ or PDMS-g-MPA Lix

+/PEGMEMAy, were
synthesized by chemical grafting of MPA Li+ or cografting with
a varied molar ratio of poly(ethylene glycol) methyl ether
methacrylate (PEGMEMA) on (mercaptopropyl)-methylsilox-
ane (PDMS-SH) via a thiol-ene reaction (Scheme 1a top).
Poly(MPA Li+) was synthesized as the control to evaluate the
influence of accelerated segmental dynamics on the single-ion
conductivity of PDMS-based SICPEs. Poly(MPA Li+) and
poly(MPA Lix

+/PEGMEMAy) were synthesized by reversible
addition fragmentation chain-transfer (RAFT) polymerization
of the same monomers (Scheme 1a bottom). The molar ratio
of monomers to RAFT-CTA was chosen specifically to have a
comparable number of functional units per molecule, i.e.,
degree of polymerization (DPn), with PDMS-based SICPEs.
Their chemical structures were verified by 1H NMR and
Fourier transform infrared (FT-IR) spectroscopy. The absence
of proton signals between 5.5 and 6.6 ppm corresponding to
the alkene group in the 1H NMR spectra of all SICPEs

Figure 1. (a) 1H NMR spectra of MPA Li+ monomer, PDMS-g-MPA Li+, and poly(MPA Li+) in DMSO. (b) FT-IR spectra of poly(MPA Li+),
PDMS-g-MPA Li+, PDMS-g-MPA Li10

+ /PEGMEMA30, and poly(MPA Li10
+ /PEGMEMA30). (c) SAXS−WAXS profiles of PDMS-g-MPA Li+,

PDMS-g-MPA Lix
+/PEGMEMAy, and PDMS-g-MPA Na10

+ /PEGMEMA30.
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demonstrated the complete removal of free monomers from
the obtained polymers (Figures 1a, S2, and S3). As illustrated
by the IR spectra of PDMS-g-MPA Li+ and PDMS-g-MPA Lix

+/
PEGMEMAy, the strong peak at 796 cm−1 corresponding to
the deformation mode of Si−O−Si,54 and the absence of a
peak at 2550 cm−1 corresponding to the stretching mode of S−
H bond suggested the complete conversion of thiol units
(Figures 1b and S4). This point could also be proven by the
equal integrals of the peaks at 0.5−0.7 ppm (−CH2−

connected to silicon) and 4.1−4.3 ppm (−CH2− adjacent to
ester units) in the 1H NMR spectrum. For PDMS-g-MPA Lix

+/
PEGMEMAy and poly(MPA Lix

+/PEGMEMAy), with fixed
peak intensity at 1320 cm−1 (SO rocking mode), the
relatively higher intensity of the peak at 2880 cm−1 (C−H
stretching mode from PEGMEMA) demonstrated the
increased PEGMEMA content in the polymers following the
increased feed ratio of PEGMEMA to MPA Li+ (Figure S4b).
In their 1H NMR spectra, both MPA Li+ and PEGMEMA have

Scheme 1. (a) Synthesis of a PDMS Backboned SICPEs via Thiol-Ene Reaction and Methyl Methacrylate Backbones SICPEs
via Reversible Addition Fragmentation Chain-Transfer (RAFT) Polymerization. (Note: PDMS-g-MPA Li+/PEGMEMA Refers
to Both MPA Li+ and PEGMEMA, Which Were Chemically Grafted on PDMS Backbone.) (b) Included Cartoons of SICPEs
Demonstrate the Relative Flexibility of Their Backbone and Side Chain. (c) Snapshots of Simulation Cells Containing a
Coarse-Grained Model Representing Flexible-Backbone PDMS-g-MPA Li10

+ /PEGMEMA30 and Rigid-Backbone Poly(MPA
Li10

+ /PEGMEMA30)
a

aThe color-coding scheme is used to show the main chain (blue beads), grafted side chains (silver beads for neutral grafted chains and orange
beads for negatively charged chain ends), and lithium ions (green beads).

Table 1. Summary of Thermal Property and Conductivity of SICPE

Tg (°C)
a

DSC rheometer BDS Td,5% (°C)a σ at 30 °C (S/cm)

poly(MPA Li+) 152.8 150.1 226.9 <10−15

PDMS-g-MPA Li+ 31.8 34.8 30.6 271.0 5.9 × 10−15

PDMS-g-MPA Li15
+ /PEGMEMA25 −46.7 −48.5 −51.2 331.7 2.6 × 10−6

PDMS-g-MPA Li10
+ /PEGMEMA30 −55.2 −57.8 −59.2 325.1 4.2 × 10−6

PDMS-g-MPA Li7
+/PEGMEMA33 −60.2 −64.4 −62.8 340.3 2.7 × 10−6

poly(MPA Li10
+ /PEGMEMA30) −45.5 −44.5 −49.6 326.3 4.6 × 10−7

PDMS-g-MPA Na11
+ /PEGMEMA29 −51.4 −53.4 −52.2 335.4 9.1 × 10−7

poly(MPA Na11
+ /PEGMEMA29) −37.7 −34.8 −38.7 328.2 1.61 × 10−7

aThis parameter implies the temperature when the weight loss of samples is 5%.
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a common peak between 4.1 and 4.3 ppm corresponding to the
−CH2− adjacent to ester units, whereas the −CH2CH2− units
connected with −SO2− in the MPA Li+ show two separate
peaks between 2.1−2.3 and 3.1−3.3 ppm. The calculated mole
ratios of PEGMEMA over MPA Li+ based on the integration
values of these peaks are slightly higher than their feed ratios,
which may be explained by the relatively higher reactivity of
PEGMEMA than MPA Li+ during the polymerization process.
Poly(MPA Li+) possesses a high Tg value of 152 °C and

hence a very low Li+ conductivity, which is out of the
measurement range at 30 °C (<10−15 S/cm) and is only 3.9 ×
10−14 S/cm at 100 °C (Table 1). The first acceleration of
segmental dynamics is achieved by changing the rigid PMMA
backbone to a soft PDMS backbone. First, the PDMS-g-MPA
Li+ shows a much better thermal stability in comparison to that
obtained for poly(MPA Li+) perhaps due to the absence of a
trithiocarbonate bond in RAFT-CTA (Figure S5a).12,55,56

With the hydrophilic MPA Li+ grafted on a hydrophobic
PDMS backbone, there are no defined peaks observed in the
small-angle X-ray scattering (SAXS) and wide-angle X-ray
scattering (WAXS) spectra of PDMS-g-MPA Li+ (Figure 1c).
Combined with the presence of only one Tg in the measured
temperature range of differential scanning calorimetry (DSC),
it suggests the absence of microphase separation between
PDMS backbone and grafted side chains (Figure S6a). The
absence of phase separation is important for efficient

acceleration of the segmental dynamics via a soft backbone
effect. The segmental relaxation time for PDMS-g-MPA Li+ at
different temperatures was estimated from a master curve by
rheological measurement and plotted in Figure 2c, whose
detailed procedure is included in the Supporting Information.
Unfortunately, no reliable rheological results were obtained for
poly(MPA Li+) due to its rigid structure, which makes it
impossible to directly compare the segmental relaxation time
between FPDMS-g-MPA Li+ and poly(MPA Li+). However,
the significant drop in Tg (∼120 °C) suggests faster segmental
dynamics at the same temperature (Figure S6a). The
conductivity of SICPEs was measured by broadband dielectric
spectroscopy (BDS) over a broad temperature range. As all
studied SICPEs show similar responses in the real part of the
conductivity (σ′) spectrum, the σ′ spectrum of PDMS-g-MPA
Li+ is included as an example in Figure 2d and the detailed
analysis procedure is included in the Supporting Information.
For SICPEs, the conductivity is determined by both
concentration and mobility of the free ions. Since lithium
ions have relatively weak electrostatic interaction with the
bulky TFSI anion, partially dissociated lithium ions could still
transform through ion hopping even when the side chain is
frozen. Therefore, the ionic conductivity is decoupling from
the segmental relaxation for poly(MPA Li+). With no phase
separation observed between the polymer backbone and side
chains for PDMS-g-MPA Li+, the flexible PDMS backbone

Figure 2. Master curves of storage modulus G′ (solid) and loss modulus G″ (empty) for (a) PDMS-g-MPA Li+ at 60 °C and (b) PDMS-g-MPA
Lix

+/PEGMEMAy and poly(MPA Li10
+ /PEGMEMA30) at −45 °C. (c) Estimation of their segmental relaxation times vs 1000/T. (d) Real part of

conductivity (σ′) for PDMS-g-MPA Li+ from 110 to −10 °C. Conductivity vs 1000/T of (e) PDMS-g-MPA Li+ and poly(MPA Li+), (f) PDMS-g-
MPA Li+, PDMS-g-MPA Lix

+/PEGMEMAy, and poly(MPA Li10
+ /PEGMEMA30). The data points of segmental relaxation time and conductivity

were fitted by the VFT equation above Tg and the Arrhenius equation below Tg (solid lines). The segmental relaxation time and conductivity at the
chosen temperature (0 °C in (c), 100 °C in (e), and 30 °C in (f)) are marked with a dashed line. The list of symbols: PDMS-g-MPA Li+ (black
box), poly(MPA Li+) (red box), PDMS-g-MPA Li15

+ /PEGMEMA25 (green circle open), PDMS-g-MPA Li10
+ /PEGMEMA30 (blue circle open),

PDMS-g-MPA Li7
+/PEGMEMA33 (pink circle open), and poly(MPA Li10

+ /PEGMEMA30) (wine circle solid).

ACS Applied Energy Materials www.acsaem.org Article

https://dx.doi.org/10.1021/acsaem.0c02079
ACS Appl. Energy Mater. 2020, 3, 12540−12548

12543

http://pubs.acs.org/doi/suppl/10.1021/acsaem.0c02079/suppl_file/ae0c02079_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsaem.0c02079/suppl_file/ae0c02079_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsaem.0c02079/suppl_file/ae0c02079_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsaem.0c02079/suppl_file/ae0c02079_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsaem.0c02079/suppl_file/ae0c02079_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsaem.0c02079?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.0c02079?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.0c02079?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.0c02079?fig=fig2&ref=pdf
www.acsaem.org?ref=pdf
https://dx.doi.org/10.1021/acsaem.0c02079?ref=pdf


would cause relatively dense packing of MPA Li+ side chains
and accelerate the transport of lithium ions efficiently. As the
dynamics of lithium ions are strongly coupled with segmental
dynamics for PDMS-g-MPA Li+ in our system,57 the ionic
conductivity of PDMS-g-MPA Li+ is more than 6 orders of
magnitude higher than that of in poly(MPA Li+) (3.9 × 10−14

S/cm vs 6.9 × 10−8 S/cm at 100 °C) (Figure 2e).
Though the single-ion conductivity was improved by 6

orders of magnitude after replacing the PMMA backbone with
PDMS one, the ionic conductivity of PDMS-g-MPA Li+ at
ambient temperature is far below that required for practical
applications in batteries. Therefore, in addition to the soft
backbone, we also performed side chain modification via
cografting the PEGMEMA monomer. With flexible PEGME-
MA side chains cografted on the PDMS backbone, PDMS-g-
MPA Li15

+ /PEGMEMA25 exhibits significantly accelerated
segmental dynamics with relaxation time shorter than 10−6 s
at 0°C, which is more than 8 orders of magnitude faster than
that of PDMS-g-MPA Li+ at the same temperature (>100 s,
Figure 2c). The segmental dynamics can be further accelerated
with an increasing molar ratio of PEGMEMA to MPA Li+. The
accelerated segmental dynamics was also confirmed by the
significantly reduced Tg value (Figure S6b). With an equal feed
ratio of PEGMEMA to MPA Li+ grafted on PDMS backbone,
the Tg of PDMS-g-MPA Li15

+ /PEGMEMA25 decreased to
−45°C. Increasing the feed ratio of PEGMEMA and MPA Li+

to two and three, the Tg of PDMS-g-MPA Li10
+ /PEGMEMA30

and PDMS-g-MPA Li7
+/PEGMEMA33 further decreased to

−55 and −60 °C, with the latter value being close to the Tg of
PEO. The high ratio of PEGMEMA inside the PDMS-g-MPA
Li7

+/PEGMEMA33 even results in a crystalline structure
observed only in the heating cycle of the DSC curves. The

crystallization was also observed in the rheology measurement,
where it caused failure of time-temperature-superposition
(TTS) in the construction of master curve at −40°C (Figure
2b).
Comparing with PDMS-g-MPA Li+, the ionic conductivity of

PDMS-g-MPA Lix
+/PEGMEMAy is increased by 9 orders of

magnitude due to the accelerated segmental dynamic via
cografting with PEGMEMA monomers (∼10−6 S/cm vs 6 ×
10−15 S/cm at 30 °C in Figure 2f). It is noteworthy that
although the segmental relaxation time of PDMS-g-MPA Li+

x/
PEGMEMAy decreases significantly with the increasing ratio of
PEGMEMA, the ionic conductivity is not always improved.
This is because the increased ratio of PEGMEMA will not only
accelerate segmental dynamics but also decrease the Li+

concentration at the same time. Therefore, the conductivity
would reach a maximum value only when the ratio between
PEGMEMA and MPA Li+, i.e., the ratio of ethylene oxide
group (EO) to Li+, reaches an optimal value. The relationship
between conductivity and ratio of EO/Li+ has been widely
studied for lithium-salt-doped PEO, and the optimal ratio may
be varied from 9 to 24 depending on the types of lithium
salt.58,59 The highest conductivity ∼ 4.3 × 10−6 S/cm at 30 °C
was reached in PDMS-g-MPA Li10

+ /PEGMEMA30 with EO/Li+

ratio ∼27:1. This single lithium-ion conductivity value is
several orders of magnitude higher than those achieved in
structures containing PEO in the backbone25,50 and half-order
higher than the reported sulfonyl(trifluoromethanesulfonyl)-
imide-based SICPEs with PEO block as side chains (Table
S1).47,60

With optimal EO/Li+ ratio, the copolymer of MPA Li+ and
PEGMEMA has been reported as one of the state-of-the-art
SICPEs with the highest lithium ionic conductivity.47 There-

Figure 3. Electrochemical performance of PC-doped PDMS-g-MPA Li10
+ /PEGMEMA30. (a) Chronoamperometry (CA) response of the Li/Li

symmetric cell under 10 mV polarization voltage and electrochemical impedance spectroscopy (EIS) spectra before and after dc polarization
(inset). (b) Electrochemical stability of the Li/SS cell using the linear sweep voltammetry (LSV) from 1.0 to 6.0 V vs Li/Li+ with a sweep rate of 5
mV/s. (c) Voltage profile of the Li/Li symmetric cell subjected to elevated currents of 0.008, 0.016, 0.04, and 0.8 mA/cm2 (electrode diameter =
1.27 cm, surface area = 1.27 cm2), followed by lowering the current to 0.06 mA/cm2, for a series of lithium plating/tripping cycles. (d) Long-term
galvanostatic cycling test of the Li/Li symmetric cell at a constant current of 0.04 mA/cm2 up to 1100 h, and selected cycles around 500 and 1000
h.
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fore, poly(MPA Li10
+ /PEGMEMA30) was also synthesized as a

control, which has the same ratio of EO/Li+ and shows similar
thermal stability (Figure S5b). So, the flexible PDMS backbone
of PDMS-g-(MPA Li10

+ /PEGMEMA30) would result in faster
segmental dynamics than poly(MPA Li10

+ /PEGMEMA30). As
the PEO units would solvate lithium ions, the transportation of
lithium ions is strongly coupled with the motion of PEO side
chains. Therefore, the faster segmental dynamics of PDMS-g-
(MPA Li10

+ /PEGMEMA30) would allow faster lithium-ion
transport for coupled systems. So PDMS-g-(MPA Li10

+ /
PEGMEMA30) has an order higher conductivity at room
temperature. Compared with poly(MPA Li10

+ /PEGMEMA30),
the soft PDMS backbone makes the segmental dynamics of the
PDMS-g-MPA Li10

+ /PEGMEMA30 2 orders of magnitude faster
at the same temperature (10−7 s vs 10−5 s at 0 °C in Figure 2c).
This faster segmental dynamics corresponds to a 9 °C decrease
in Tg (−60.2 °C vs −51.4 °C in Figure S6b) and 1 order of
magnitude higher lithium conductivity at 30 °C (4.7 × 10−6 S/
cm vs 4.6 × 10−7 S/cm) than in poly(MPA Li10

+ /
PEGMEMA30) (Figure 2f). The accelerated segmental
dynamics enabled by softening the backbone was also
demonstrated by the mean square displacement (MSD) from
coarse-grained molecular dynamics simulations (Scheme 1c).
The computation results show that the dynamics of the
backbones and side chains of the coarse-grained model with a
soft backbone, representing PDMS-g-MPA Li10

+ /PEGMEMA30
are significantly faster than the more rigid model representing
poly(MPA Li10

+ /PEGMEMA30) (Figure S15a,b). As lithium-
ion diffusions are coupled with segmental dynamics for both
SICPEs, the accelerated polymer dynamics results in a faster
lithium-ion diffusion (Figure S15c), which emphasizes the
importance of a soft backbone to accelerate segmental
dynamics.
To further demonstrate the effect of accelerated segmental

dynamics on the conductivity of other SICPEs, single sodium
ion conducting polymer electrolytes have also been studied.
The PDMS-based polymer electrolytes, i.e., PDMS-g-MPA
Na11

+ /PEGMEMA29, along with the control poly(MPA Na11
+ /

PEGMEMA29) were synthesized and verified with 1H NMR
spectra and FT-IR (Figures S7 and S8). Similarly with Li+-
conducting SICPEs, the soft PDMS backbone leads to a faster
segmental dynamic in PDMS-g-(MPA Na11

+ /PEGMEMA29)
than that of in poly(MPA Na11

+ /PEGMEMA29) (8 × 10−6 s vs
6 × 10−2 s at −20 °C in Figure S10b). This faster segmental
dynamics also corresponds to a 13 °C lower Tg (−51 °C vs
−38 °C in Figure S9b) and 1 order of magnitude higher
sodium ion conductivity (10−6 S/cm vs 10−7 S/cm at 30 °C in
Figure S11). This demonstrates the potential of accelerated
segmental dynamics to improve the ionic conductivity of
polymer electrolytes with different counter ions, like zinc,61−63

magnesium,64 and aluminum,65 or charged units, like
(fluorosulfonyl)imide.33

The transference number (strictly speaking, transport
number tLi

+ ) was measured via the potentio-static polarization
method using a Li/Li symmetric cell.66 With propylene
carbonate (PC) as a plasticizer, the Tg of PDMS-g-MPA
Li10

+ /PEGMEMA30 was further decreased to −113 °C (Figure
S12a) and conductivity at room temperature was improved by
1.5 orders of magnitude (∼1.0 × 10−4 S/cm at 30 °C in Figure
S12b). The obtained tLi

+ was determined to be 0.85 (Figure 3a),
which is comparable with other reported single-ion conducting
polymer electrolyte systems,26,50,52,67−73 and much higher than
a normal dual-ion polymer electrolyte systems with values of

around 0.37 (Table S1).74−80 The electrochemical stability of
the obtained SICPE was tested by linear sweep voltammetry
(LSV) using Li/stainless steel cell, as shown in Figures 3b and
S13. There is no obvious anodic current peak till 4 V for both
dry and PC-doped PDMS-g-MPA Li10

+ /PEGMEMA30, indicat-
ing their excellent electrochemical stability. To further evaluate
the stability of the obtained SICPE against lithium metal
electrodes, the Li/Li symmetric cell with the same PC-doped
PDMS-g-MPA Li10

+ /PEGMEMA30 electrolyte was assembled
and tested by performing galvanostatic stripping/plating
processes under various current densities. As illustrated in
Figure 3c, the voltage profile shows a stable response under
varied current densities. In addition, the long-term endurance
test for more than 1100 h was also performed (Figure 3d). The
overpotential is slightly decreasing at initial cycles, followed by
a gradual increase and eventually stabilizing after 30 h. This
slight variation at initial cycles is related to the reorganizing
process on the lithium metal surface before the final steady
state.27 No short circuit or other significant change was
observed in the long-term voltage profile. In addition, the cells
after the galvanostatic cycling test were disassembled in an
argon-protected glovebox, and no significant corrosion was
observed on the lithium metal electrode (Figure S14), thus
demonstrating a relatively stable solid electrolyte interface
(SEI) layer between the SICPE and lithium metal electrode
(Figure 3d).81

■ CONCLUSIONS
In this article, we demonstrated a strategy to significantly
improve the Li ionic conductivity of SICPEs based on the
concept of accelerated segmental dynamics in polymer design.
A series of SICPEs with both soft PDMS polymer backbone
and PEGMEMA side chains were synthesized by a one-pot
thiol-ene reaction. In comparison to the SICPE with a rigid
PMMA backbone, the SICPE with accelerated segmental
dynamics, i.e., PDMS-g-MPA Lix

+/PEGMEMAy, showed a
much faster segmental dynamics and several orders of
magnitude higher single-ion conductivity, with PDMS-g-MPA
Li10

+ /PEGMEMA30 achieving the lithium conductivity of 4.7 ×
10−6 S/cm at ambient temperature. Molecular dynamics
simulations conducted with the flexible-backbone PDMS-g-
MPA Li10

+ /PEGMEMA30 and the rigid-backbone poly(MPA
Li10

+ /PEGMEMA30) showed faster dynamics for all parts of
PDMS-g-MPA Li10

+ /PEGMEMA30, i.e., main chain, side chains,
and lithium ions, emphasizing the importance of accelerated
segmental dynamics enabled by softening the backbone. We
also demonstrate that the developed concept is able to improve
the conductivity of other SICPEs, e.g., single sodium ion
conducting polymer electrolyte. With transference number
around 0.85, the assembled Li/Li symmetric cell with PC-
doped SICPE, i.e., PDMS-g-MPA Li10

+ /PEGMEMA30, also
shows excellent electrochemical stability against lithium metal
electrodes. The present study demonstrates the clear relation-
ship between the segmental dynamic of SICPEs with their
ionic conductivity, and the concept of accelerated segmental
dynamics can also be applied to other types of polymer
electrolytes, contributing to achieve high-performance solid-
state electrolyte.
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