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Abstract

Quantile regression is widely seen as an ideal tool to understand complex predictor-response relations.
Its biggest promise rests in its ability to quantify whether and how predictor effects vary across response
quantile levels. But this promise has not been fully met due to a lack of statistical estimation methods
that perform a rigorous, joint analysis of all quantile levels. This gap has been recently bridged by Yang
and Tokdar (2017). Here we demonstrate how their joint quantile regression method, as encoded in the R
package qrjoint, offers a comprehensive and model-based regression analysis framework. This chapter is
an R vignette where we illustrate how to fit models, interpret coefficients, improve and compare models,
and obtain predictions under this framework. Our case study is an application to ecology where we
analyze how the abundance of red maple trees depends on geological and geographical features of the
location. A complete absence of the species contributes excess zeros in the response data. We treat such
excess zeros as left censoring in the spirit of a Tobit regression analysis. By utilizing the generative nature
of the joint quantile regression model, we not only adjust for censoring but also treat it as an object of
independent scientific interest.

Keywords: joint quantile regression, nonparametric regression, Tobit Regression, censoring, excess zero,
semi-continuous, qrjoint, R Vignette.
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1 Introduction

Four decades ago, Roger Koenker and Gib Bassett showed how to formalize statistical inference using quantile
regression (Koenker and Bassett, 1978). Today quantile regression is widely recognized as a fundamental
statistical tool for analyzing complex predictor-response relationships, with a growing list of applications in
ecology, economics, education, public health, climatology, and so on (Burgette et al., 2011; Elsner et al., 2008;
Dunham et al., 2002; Abrevaya, 2002). In quantile regression (QR), one replaces the standard regression
equation of the mean E[Y | X| = By + XT3 with an equation for a quantile Qy (7 | X) = Bor + X 7T 3;, where
7 € (0,1) is a quantile level of interest and Q(7) denotes the 1007*" percentile. A choice of 7 = 0.5 results
in the familiar median regression, a robust alternative to mean regression when one suspects the response
distribution to be heavy tailed. But the real strength of QR lies in the possibility of analyzing any quantile
level of interest, and perhaps more importantly, contrasting many such analyses against each other with
fascinating consequences.

This strength of QR has also been its liability. Most modern scientific applications of QR involve a synthesis of
estimates obtained at several quantile levels. Estimates and p-values are pooled together to build a composite
picture of how predictors influence the response and to analyze how this influence varies from the center of
the response distribution to its tails. But such a synthesis is flawed! The composite picture is not based on a
single statistical model of the data. Instead, for each single quantile level in the ensemble, a new model has
been fitted, without sharing any information with models fitted at the other 7 values. It is entirely possible
that the quantile lines estimated at different quantile levels cross each other, thus violating basic laws of
probability. Additionally, due to a lack of information borrowing, estimated standard errors and p-values
may fluctuate wildly as functions of 7 (Tokdar and Kadane, 2012). This, at best, creates confusion and, at
worst, may encourage selective reporting!

A composite QR analysis can be formalized with the simultaneous equations

Qv (1| X) = Bo(r) + XT (1), 7€(0,1), (1)

where fy(7) and 8(7) = (B1(7),...,B,(7))T, are unknown intercept and slope curves. Because quantiles
are linearly ordered in their levels, estimation of Sy and § must be carried out under the “non-crossing’
constraint: Bo(11) + 27 B(11) < Bo(m2) + 2T B(72) for every 0 < 71 < 79 < 1, and, every z € X, where X is the
domain of the predictor vector X. A largely under-appreciated, simple observation is that the simultaneous
QR equations and the non-crossing constraint together offer a fully generative probability model for the
response

)

Y =po(U) + X" B(U), U|X~Unif(0,1), (2)
opening up the possibility of obtaining proper statistical inference on the intercept and slope curves by means
of a joint analysis.

Yang and Tokdar (2017) offer an estimation framework for the joint QR model (2), subject to the non-crossing
constraint, by introducing a bijective map of the intercept and slope curves to a new parameter ensemble



consisting of scalars, vectors and curves, all but one of which are constraint free. The likelihood score, as
a function of the new parameter ensemble, can be efficiently computed through numerical approximation
methods. Parameter estimation can then proceed according to either a penalized likelihood or a Bayesian
approach. An instance of the latter, where curve valued parameters are assigned Gaussian process priors,
is further investigated by Yang and Tokdar (2017) who establish that the resulting estimation method is
consistent and robust to moderate amount of model-misspecification.

To the best of our knowledge, Yang and Tokdar (2017) provide the only estimation framework that supports
quantile regression as a model-based inference and prediction technique in its full generality. Their reparame-
terization technique applies to any predictor dimension and to any arbitrarily shaped predictor domain X
that is convex and bounded. Both issues have proven major vexing points to the earlier attempts at a joint
QR analysis, e.g. He (1997); Dunson and Taylor (2005); Bondell et al. (2010); Reich et al. (2011); Tokdar
and Kadane (2012); Feng et al. (2015).

In this chapter we demonstrate that the joint quantile regression method of Yang and Tokdar (2017), as
implemented in the R package! qrjoint, offers a comprehensive, model-based, regression analysis toolbox. We
demonstrate how to fit models, interpret their coefficients, improve and compare models, and obtain predictions
under the joint quantile regression setup. Taking this modeling one step further, we show how utilizing the
censored-data options built into the qrjoint package can yield a interpretable yet distributionally-flexible
model for non-negative, continuous data with excess-zeroes. This latter extension fully exploits the generative
model interpretation (2) of joint quantile regression.

2 Excess-Zero Regression Analysis

Zero-inflation, or the frequent occurrence of zeroes, is common in ecological data. For instance, when counting
the number of species in a region, some regions may not have any of the target species, resulting in “zero”
records. Another example, one that will serve as case study here, involves measuring the basal area of trees
within a site. When trees are present, basal area is measured as a continuous, positive number, but when
trees are not present, a zero is recorded.

Tobit regression (Tobin, 1958) is commonly used to model censored data but can also be used to model data
with excess boundary zeroes. To do so, it uses a latent construct, namely y = o + Bx; + €;, € ~ N(0,0?)
with observables y; = max {y},0}. Under this assumption of normality, the mean 8y + X and variance
o? fully specify the response distribution. If the latent Tobit model is framed in terms of a joint quantile
regression it would be written as Qy.(7|X) = Bo(7) + X where 8y(7) = o®~!(7). That is, the normality
is captured in the 7-functional intercept by the normal inverse CDF, and all remaining variability in the
response quantiles is explained by 7-constant slopes and the design matrix X.

Joint quantile regression is also capable of both capturing the probability of atomic zero-measurements and
modeling the remaining positive, continuous response distribution. Like the Tobit model, it captures the
zeroes via a censored-data or latent-truth construct; however, unlike Tobit, it is not limited by an assumption
of normality. In fact, it makes no assumption about the distributional form of the response distribution and
has only two other modeling assumptions: 1) data can be explained as linear combinations of covariates
expressed in the design matrix X, which incorporates any desired interactions or non-linearities (e.g. via
splines); and 2) observations are independent of each other.

Other quantile regression methods (Powell, 1986; Portnoy, 2003) are capable of distribution-free estimation
in the presence of excess-zeroes; however, these other methods estimate regression quantiles independently
and, lacking a comprehensive model specification to capture dependence between regression quantiles, they
only make adjustments for and do not actually model the probability of atomic-zero.

We demonstrate how to use the qrjoint package on tree basal area data from the U.S. Forest Service. Tobit
regression models are included, both as a stepping-stone to understanding censored joint quantile regression
and as a foil to the more flexible joint quantile regression.

Thttps://CRAN.R-project.org/package=qrjoint
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Red Maple Basal Areas

Figure 1: Red maple basal areas for 608 sites in Masachusettes, Connecticut, and Rhode Island. Those with
no red maple trees, i.e. baRedMaple of zero, are displayed in black.

3 Case Study Data and Objective

The U.S. Forest Service tracks the biomass of hundreds of species of trees on thousands of plots of land
throughout the United States. We consider a subset of data from the Forest Inventory Analysis composed of
608 unmanaged and forested sites in Massachusetts, Connecticut, and Rhode Island?.

library(qrjoint) # For joint quantile regression fitting
library(ggplot2)  # For plotting results
library(gridExtra) # For arranging stde-by-side plots
data(redmaple)

dat <- redmaple

While tree counts and cumulative basal area (ft2/acre) are recorded on hundreds of species, we focus on basal
area for a single species, the red maple tree (Acer rubrum). Red maple is common among the 608 sites with
59 sites (9.7%) having no red maple trees (i.e. basal area equals zero) and the remaining sites having median
basal area of 4.7 ft/acre. A histogram of all basal areas from the sample can be seen in Figure 1.

In addition to basal area, several covariates are available for each site:

e elev. Elevation of site, measured in feet

e slope. Slope of site, measured in degrees

e aspect. Aspect of site, measured in degrees proceeding from North clockwise around a compass. For
sites with zero or near-zero slopes, aspect is recorded as 0. North is recorded as 360.

e region. EPA Level-1II geographical region

The first three covariates are continuous measures, and the fourth, region, is categorical. We desire to build
a model to understand the relationships between these explanatory variables and red maple basal areas.
More specifically, we would like to gain direct inference not only on the how the predictors affect the mean or
median response but also on how they affect the upper and lower quantiles of the response distribution.

2http://apps.fs.fed.us/fiadb-downloads/datamart.html
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4 Fitting Single-covariate Basal Area Models

For pedagogical reasons, we start with a model that uses a single covariate, elevation (elev), to predict red
maple basal area and compare to the more widely-recognized Tobit model. R’s AER package is used to obtain
maximum likelihood estimates for the Tobit model. Note that this tobit function sets the left limit of the
censored dependent variable to zero by default.

library (AER) # for Tobit regression fit

fit.tbl <- tobit(baRedMaple ~ elev, data = dat)

summary (fit.tb1l)

#>

#> Call:

#> tobit (formula = baRedMaple ~ elev, data = dat)

#>

#> Observations:

#> Total Left-censored Uncensored Right-censored
#> 608 59 549 0
#>

#> Coefficients:

#> Estimate Std. Error z wvalue Pr(>/z/)

#> (Intercept) 6.321077 0.462592 13.664 <2e-16 *x*

#> elev -0.003316  0.001864 -1.779 0.0752 .

#> Log(scale) 1.911352  0.030748 62.162 <2e-16 ***

# ——

#> Signif. codes: 0 '¥¥x' 0.001 '¥x' 0.01 '¥' 0.05 '.' 0.1 ' ' 1
#>

#> Scale: 6.762

#>

#> Gausstan distribution

#> Number of Newton-Raphson Iterations: 2

#> Log-likelihood: -1889 on 3 Df

#> Wald-statistic: 3.165 on 1 Df, p-value: 0.075246

4.1 Joint Quantile Regression Call

The grjoint package contains an eponymous function which performs a Bayesian parameter estimation of
the generative model (2). Posterior computation is done by with the help of Markov chain Monte Carlo
(MCMC) over an unconstrained parameter space that offers a complete reparameterization of the original
model. Likelihood score calculation is done by discretizing the quantile levels to a finite, dense grid of 7
values. The function-valued parameters of the model, which are assigned independent Gaussian process priors,
are approximated by closely related finite rank predictive processes Tokdar (2007); Banerjee et al. (2008).
See Yang and Tokdar (2017) for more technical details.

The grjoint function uses a data-formula specification similar to the 1m function from the stats package to
build the design matrix X. The function performs all necessary data centering so that inference may proceed
anywhere within the convex hull of the data predictor space. The default incr=0.01 provides estimates
over a 7-grid at 0.01 resolution, i.e. 0.01, 0.02, 0.03, ..., 0.98, 0.99, with slightly more dense grids in the
tails; the same grid is used in likelihood score computation. This resolution is sufficient for our needs. Also
sufficient is the default nknots=6, which dictates the number of knots used in the finite rank predictive process
approximation. One may consider increasing nknots to allow for more waviness or multimodality of the
response distribution. While the likelihood computation scales well in nknots, the overall MCMC may take
much longer to mix when a larger nknots is used. The total number of parameters (after reparameterization
and discretization) is (p+1)*(nknots+1) + 3, where p is the number of predictors (excluding intercept).



Several non-default options are employed in the code that follows for the basal-area model. We explain our
use of them here:

e FEzxcess Zero as Censoring. We repurpose the censoring argument to identify observations that are

truncated at zero. Within the vector, cens=2 indicates left censoring or left truncation and cens=0
indicates uncensored observations.

MCMC Initialization. The par="RQ" option allows us to initialize our regression coefficients in the
MCMC chain to be close to the traditional (7 independently estimated) quantile regression estimates.

“Base” Distribution. The fbase argument specifies a prior guess for the shape of the distribution at
the center of the covariate space. That prior guess will be deformed to match the actual shape of
the distribution; however, the estimated tails are designed to retain the decay behavior of the prior
guess. The options when modeling on the full real line, albeit truncated to the non-negative reals,
are "logistic" or "t". We use the "logistic" option because 1) we are primarily concerned with
estimation in the distribution’s bulk and do not desire to guarantee ¢-like, power decay in the tails and
2) because it runs slightly faster than the “t” option.

MCMC Sampling and Thinning. The nsamp argument tells us how many total samples to retain, while
thin designates how often to retain the MCMC sample. As the output objects can get large and the
MCMC chains can exhibit some autocorrelation, we choose to retain every 20** sample. After running
nsamp * thin = 500 * 20 = 10000 total observations, of which only 500 will be retained and displayed,
we pause to assess the state of the MCMC chain.

Even this simple model may take a minute or two to run.

set.seed(11111)
fit.qrjl <- qrjoint(baRedMaple ~ elev, data=dat, cens=ifelse(dat$baRedMaple==0,2,0),

par="RQ", fbase="logistic", nsamp = 500, thin = 20)

#> Initial lp = -3226.81

#> iter = 1000, lp = -1783.68 acpt = 0.21 0.12 0.16 0.16 0.07
#> iter = 2000, lp = -1784.07 acpt = 0.13 0.24 0.14 0.11 0.28
#> iter = 3000, lp = -1782.49 acpt = 0.13 0.15 0.16 0.18 0.22
#> iter = 4000, lp = -1782.23 acpt = 0.12 0.13 0.13 0.11 0.19
#> iter = 5000, lp = -1778.64 acpt = 0.11 0.14 0.16 0.13 0.14
#> iter = 6000, lp = -1778.55 acpt = 0.17 0.15 0.13 0.19 0.16
#> iter = 7000, lp = -1784.54 acpt = 0.16 0.17 0.13 0.12 0.16
#> iter = 8000, lp = -1784.02 acpt = 0.12 0.15 0.16 0.11 0.15

#> dter = 9000, lp = -1781.3 acpt =
#> ater = 10000, lp = -1782.77 acpt
#> elapsed time: 49 seconds

0.13 0.14 0.15 0.16 0.13
= 0.16 0.12 0.15 0.15 0.17

4.2 MCMC Progress and Convergence Assessment

The output prints, on the fly, the log posterior value at initialization and subsequently prints updates to the
log posterior after each 10% of total iterations completed. The MCMC calculation utilizes a blocked adaptive
Metropolis sampler (Andrieu and Thoms, 2008) that places the model parameters into p+4 overlapping
groups. At each update, acceptance rates for each block of the adaptive metropolis sampler are also printed.
Having not changed the default acpt.target option, we are looking for each block to approach the default
acceptance target of 0.15, which they are beginning to. The final line of output gives the total run time.

The summary function provides insight into the convergence of the MCMC sampler. The more.details=TRUE
option gives additional diagnostic plots. The suite of plots created by the summary call are shown in Figure 2.

summary (fit.qrjl, more.details=TRUE)
#> WAIC.1 = 3550.2 , WAIC.2 = 3550.29
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Figure 2: MCMC diagnostics for qrjoint model fit

In Figure 2, the “Fit trace plot” shows that the chain has moved away from its initial values and may be
coming closer to a stable state. Here and in the subplot labeled “Mixing over GP scaling”, we are looking
for “fuzzy caterpillar” plots indicating good mixing, as is typical in evaluating MCMC trace plots. The GP
scaling plot shows, for each 3; curve, how much correlation exists between its values at quantile levels 0.1
apart. These proximity parameters are sampled from a discrete set of values over a fixed range, so if we see
posterior mass building at either an upper or lower boundary we may need to adjust the hyper parameters
for 1lam to cover a better range of values. The red lines show prior 95% credible intervals on the proximity
parameters.

The “Convergence diagnosis” subplot displays p-values from Geweke tests for convergence. The diagonal
line represents a Benjamini-Hochberg adjustment for multiple-testing across parameters (controlling false
discovery rate at 10%). Seeing parameters with p-values below the diagonal blue line, as we do here, is one
indication that the MCMC chain needs to run longer. The “Parameter correlation” subplot gives a heat-map
of the correlation among model parameters.

We use the update function to add an additional 500 draws to our sample. The sampler maintains the
thinning rate (every 20" observation) specified in the original qrjoint call.

fit.qrjl <- update(fit.qrjl, nadd=500)

summary (fit.qrjl, more.details=TRUE)
#> WAIC.1 = 3550.71 , WAIC.2 = 3550.75
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Figure 3: Updated MCMC diagnostics for qrjoint model fit

The MCMC diagnostic plots run on the extended chain, shown in Figure 3, look better. The summary
function prints two versions of the Watanabe Akaike Information Criterion, which can be used to compare
models (lower WAIC indicates a better fit).

It is possible to run multiple MCMC chains and assess convergence with associated multi-chain diagnostics,
e.g. Gelman and Rubin, although we do not do so here. In the qrjoint call, setting par equal to a numeric
vector of length equal to the total number of model parameters can override par’s supported options and
directly specify desired MCMC starting values.

To recap, 20000 total MCMC iterations have been run using the qrjoint and update functions, and 1000 of
those samples have been retained. We will use the auxiliary functions’ default burn-in rates of burn.perc=0.5
to obtain posterior summaries (medians, 95% credible intervals, etc.) from the second set of 500 retained
samples.
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Figure 4: Coeflicient estimates and 95-percent intervals across quantile levels for simple basal area model

5 Interpreting Quantile Regressions

5.1 Coefflicient Plots

The coef function returns posterior samples for intercept and slope parameters at all quantile levels matching
the 7-grid used in model fitting. It also returns, as estimates, posterior medians and the end points of the
95% posterior credible intervals of those parameters. By default, the coef function also plots the regression
coefficients across 7. We suppress plotting in favor of constructing our own plots that also contain the
estimated Tobit parameters (Figure 4).

tau <- round(fit.qrjl$tau.gl[fit.qrjléreg.ix],2)
coef.qrjl <- coef(fit.qrjl, nmc = 500, plot = FALSE)
beta.qrjl <- coef.qrjl$beta.est

finite <- !(tau%in%c(0,1))

p <- dim(beta.qrj1) [2]

beta.tbl <- array(NA, dim(beta.qrjl), dimnames=dimnames(beta.qrjl))
beta.tbl[,"Intercept","b.med"] <- gnorm(tau, fit.tbl$coef[1], fit.tbl$scale)
for (i in 2:p){

beta.tbl[,i,"b.10"] <- confint(fit.tbl)[i,"2.5 %"]

beta.tbl[,i,"b.med"] <- fit.tbl$coef[il

beta.tbl[,i,"b.hi"] <- confint(fit.tb1)[i,"97.5 %"]
}

varname <- dimnames(coef.qrjl$beta.samp)$beta
par (mfrow=c(1,2))
for(i in 1:p){
getBands(coef.qrjl$beta.samp[,i,], xlab=bquote(tau), ylab=bquote(beta~.(varnamel[i])), bty='n"')
abline (h=0)
matlines(tau[finite], beta.tbl[finite,i,], col="blue", lty=c(2,1,2), lwd=1.5)
if(i==1) legend("topleft", c("Joint","Tobit"), col=c("red","blue"), lty=1, lwd=2, bty='n')
}
par (mfrow=c(1,1))

The estimates and intervals at 7 = 0.5 correspond to median regressions, whereas those at 7 = 0.8 correspond
to the 80" percentile regression, and so on. When looking at these plots, three types of comparisons are



useful. We illustrate by interpreting the elev plot.

Comparisons to zero. Tobit’s slope estimates are constant for all parts of the response distribution. Because
the 95% confidence interval bands contain zero, the Tobit regression might lead us to conclude that elev
is not linearly related to baRedMaple. The 95% intervals from the qrjoint fit, however, do have non-zero
coefficients. The positive bands in the 7-region of (0.1, 0.4) means that an increase in elevation is associated
with increased basal areas, but only for those low-to-mid quantile levels. When we consider the upper
quantiles, i.e. 7 > 0.8, an increase in elevation is actually associated with a decrease in red maple basal areas.
These interpretations are similar to traditional interpretations of a regression model; however, here we are
able to make inferential claims for all parts of the response distribution and not just for the mean or median.

Comparisons between quantile levels, 7. The increasingly negative slopes for elev across 7 in the joint
quantile regressions illustrate a differential effect of elevation on basal area at different places in the response
distribution. The lower quantile levels have positive slopes, whereas the upper quantile levels have negative
slopes. This likely reflects a fanning of the data with larger variance at small elev values and smaller variance
at large elev values. In this way, quantile regression can capture heterogeneity of variance. Tobit, with its
flat slopes across 7, is not capable of capturing heterogeneity of variance or other types of differential effects.

Comparisons between methods. Finally, a visual comparison of interval estimates between methods at any
given 7 shows overlap or concordance between the joint quantile regression and the Tobit regression in parts
the lowest decile and for 7 in (0.4,0.95).

5.2 Quantile Line Plots

It may be instructive in this single-variate case to plot the regression lines for a few 7 values.

# Retrieve subset of tau-fitted lines

tau.use <- round(c(0.01, 0.05, seq(0.1,0.9,by=.1), 0.95,0.99),2)

tau.factor <- factor(tau.use, levels=rev(tau.use))

betal <- beta.qrjill[which(tau %in%tau.use),,"b.med"]

betal <- data.frame(Level=factor(rownames(betal),levels=levels(tau.factor)), betal)

# Use quantile-fitted coefficients to add ablines to scatterplot of data

p-dat <- ggplot() + geom_point(data=dat, aes(x=elev, y=baRedMaple), col="#999999") +
ylab("Red Maple Basal Area")

p.dat + geom_abline(data=betal, aes(slope=elev, intercept=Intercept, col=Level))

Figure 5 shows that approximately 1% of the observations lie above the 0.99 quantile line, about 50% of the
observations lie above the 0.5 line, etc. Note that the regression lines do not cross within the range of the
elev covariate, i.e. they obey the monotonicity constraint. Here the heterogeneity of variance across elev is
visible, and it makes sense that regression slopes generally progress from positive to negative slopes as 7,
the quantile level, is increased. Some lines extend below zero because the plotted lines are estimates for the
latent or non-truncated model.

The above comparisons were made for didactic purposes. Prior to interpreting coefficients, an assessment of
the model assumptions is warranted.

6 Assessing Model Assumptions and Making Improvements

After the assumption of independence, joint quantile regression has only one other assumption: all effects
can be explained as linear combinations of the design matrix X. The Tobit model additionally assumes
that the latent responses are normally distributed with constant variance across all observations. A first
instinct may be to turn to “residual” diagnostics for evaluation of these model assumptions, where residuals
are traditionally defined as the difference between an observed value and its predicted mean. Diagnostics
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Figure 5: Quantile regression lines

based on residuals may be sufficient when the (assumed) response distribution can be summarized by its
mean, as in the case of the Tobit model; however, they are insufficient for joint quantile regression, which
outputs a conditional prediction that is an entire response distribution.

With estimated quantile functions available for the Tobit model and the joint quantile regression model,
diagnostics based on the probability integral transform are possible for both models. If the models are
appropriate, the estimated quantile levels for the observations, 7, = Q‘l(yi|xi), should follow a uniform
distribution.

6.1 Obtaining Estimated Quantile Levels

Under the Tobit model, 7,, for y; > 0 is estimated using the normal CDF, ®((y; — 2;3)/6). Under the joint
quantile regression model, 7, = Qfl(yﬂxz) The summary function carries out this inverse calculation by
interpolating the estimated quantile lines between 7-grid points. For either model, if y; = 0 then 7,, can be
taken as a random draw from Unif(0,Q~1(0|z;)). Estimated quantile levels for each observation and each
draw of the MCMC sampler can be retrieved from the summary function for grjoint. The function that
follows obtains the quantile levels, corrects them under censoring (or in this case under zero-truncation), and
summarizes them across posterior draws. We demonstrate, using the “Summary” option.

# Function to summarize posterior draws of tau_Y. When fit includes censored values,

# left-censored tau_Y are replaced with draw from Unif(0, tau_Y) and right censored tau_Y
# are replaced with draw from Unif(tau_Y,1)

#

# Inputs

# fit: qrjoint fit object

# plot: If TRUE, plot produces a histogram and qq-plot comparing to uniform distribution
# mcmc: Character string describing how to summarize over posterior draws. Uptions are

# "Summary" - takes mean of tau over posterior draws

11



# "One" - returns tau at a single random MCMC iteration
# "Many" - returns tau at all MCMC iterations

modfit.qrjoint <- function(fit, burn.perc=0.5, mcmc="Summary"){
invisible(capture.output(ql <- summary(fit, plot.dev=FALSE)$ql))
cens <- fit$cens; nsamp <- ncol(ql)
gl <- ql[, 1l:nsamp > nsamp * burn.perc]
if (mcme=="Summary") {
MCMC <- apply(ql, 1, mean)
if(!'is.null(cens))q{
MCMC [cens==2] <- runif (sum(cens==2),0, MCMC[cens==2])
MCMC[cens==1] <- runif(sum(cens==1), MCMC[cens==1], 1)
}
}
if (mcmc=="0ne"){
MCMC <- gl[,sample(1l:ncol(ql),1)]
if(lis.null(cens)){
MCMC [cens==2] <- runif (sum(cens==2),0, MCMC[cens==2])
MCMC[cens==1] <- runif(sum(cens==1), MCMC[cens==1], 1)
}
}
if (mcmc=="Many") {
if (!is.null(cens)){
gl[cens==2,] <- runif(length(ql[cens==2,]),0, qllcens==2,])
gl[cens==1,] <- runif(length(qll[cens==1,]1), qllcens==1,], 1)

}
MCMC <- gl
}
invisible (MCMC)

}

set.seed(22222) # Censoring corrections perform stochastic operation

dat$pfit.qrjl <- modfit.qrjoint(fit.qrjl, mcmc="Summary")

dat$pfit.tbl <- pnorm(dat$baRedMaple, mean=predict(fit.tbl), sd=summary(fit.tbl)$scale)
dat$pfit.tbl[dat$baRedMaple==0] <- runif (sum(dat$baRedMaple==0),0,dat$pfit.tbl[dat$baRedMaple==0])

We store them in the data frame containing the original data for convenience when assessing assumptions of

linearity.

6.2 Assessing Overall Fit

A PP-plot may be used to compare the estimated quantile levels to their equivalent uniform probabilities.

p-qqtbl <- ggplot() + geom_qq(aes(sample=dat$pfit.tbl), distribution=stats::qunif) +
ylab("actual") + ggtitle("Tobit Model") + geom_abline(intercept=0, slope=1)

p-qqqrjl <- ggplot() + geom_qq(aes(sample=dat$pfit.qrjl), distribution=stats::qunif) +
ylab("actual") + ggtitle("Joint QR Model") + geom_abline(intercept=0, slope=1)

grid.arrange(p.qqtbl, p.qqqrjl, ncol=2)
In Figure 6, the joint quantile regression lies close to the forty five degree line, showing similarity to a

uniform distribution and indicating good aggregate model fit, while the Tobit model is decidedly non-uniform,
indicating a poor fit.
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Figure 6: Estimated quantile-level plots for assessing overall model fit

6.3 Assessing Linearity

The estimated quantile levels, 7,,, also provide a way to diagnose design matrix misspecification and assess
the assumption of linearity. At any given X, we expect the estimated quantile levels to be uniform. Therefore
plotting a covariate against 7,, and looking at any vertical cross section, the estimated data quantile levels
should be uniform within the swath.

We illustrate two options for quantile-level diagnostic plots using the joint quantile regression model. Scatter
plots with mean-trend gam/loess lines are illustrative for diagnosing potential non-linearities; trend lines
should lie close to a horizontal line at the constant value of 1/2. Violin plots, which cut the continuous
variables into quantile bins (here deciles) and then display kernel density estimates within each bin, can also
assist in diagnosing non-linearity. These violin plots should look uniform or blocky within each bin.

library(dplyr) # for binning into deciles

glplot <- function(data, x, y, plot=TRUE){
if (is.numeric(datal[,deparse(x)]1)){
data$bin <- factor(ntile(datal[,deparse(x)],10)) # bin numeric
p.s <- ggplot(data, aes_q(x, y)) + geom_point() + geom_smooth(se=F, method="loess")
p-v <- ggplot(data, aes_q(quote(bin), y)) + geom_violin() + xlab(paste("Decile bins of",x))
} elsed{
p.s <- ggplot(data, aes_q(x, y)) + geom_point()
p.v <- ggplot(data, aes_q(x, y)) + geom_violin()}

yax <- list(ylim(0,1), ylab("Estimated quantile level"))
if(plot) {grid.arrange(p.s + yax, p.v + yax, ncol=2)} else{
invisible(arrangeGrob(p.s + yax, p.v + yax, ncol=2))
}
}

glplot(dat, x=quote(elev), y=quote(pfit.qrjil))
As seen in Figure 7, the estimated data quantile levels plotted against elev show slight non-linearity; for
low elevations the mean trend line bows upward, away from zero, and the violin plot is somewhat top-heavy.

The bowing downward at high elevations is likely driven by a few outlying-in-z elevation values and not a
systematic departure from uniformity. The mostly-uniform densities in decile bins 9 and 10 help to confirm
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Figure 7: Covariate by estimated data quantile-levels plots for assessing linearity assumption

this.

While the information in these two plots is similar, the violin plots can be helpful for consolidating sparse
regions of the covariate space, e.g. with outlying elev values, or for spreading out dense regions. Overall,
the mean trend-line for elev does not depart egregiously from 0.5. Lacking some physically-justified motive
for a non-linear elevation effect, some might reasonably elect to keep this covariate in its linear form. For
illustration, we modify the design matrix by including a third-order b-spline for elev.

6.4 Model Improvement

Using the quantile-level diagnostic plots of the previous section, we deduced that elevation’s effect on red
maple basal areas may not be linear and that our model might be improved by a b-spline transformation.
As was mentioned previously, the linear model can be compared to the spline model using WAIC, which is
calculated in qrjoint’s auxiliary summary function.

library(splines) # for b-splines

set.seed(33333)

fit.qrj2 <- qrjoint(baRedMaple ~ ns(elev,3), data=dat, cens=ifelse(dat$baRedMaple==0,2,0),
par="RQ", fbase="logistic", nsamp = 2000, thin = 20)

summary(fit.qrj2, plot.dev=FALSE)
#> WAIC.1 = 3531.35 , WAIC.2 = 3530.85

The spline-model run-time is longer both because of the increase in number of predictors and because more
iterations were needed to reach convergence; however, it seems to pay off. The WAIC has decreased from
~ 3550 to = 3531, indicating an improved fit with the elev spline. Also, the quantile-level plots have less
bowing near zero as can be seen in Figure 8. If the the non-linear effect of elev were of specific interest,
additional degrees of freedom could be added to the b-spline basis until the practitioner is satisfied with the
uniformity of quantile-level plots or until WAIC indicates over-fitting. As our specific interest lies in the
multiple regression model, we leave off further model modifications for now.

set.seed(44444)
dat$pfit.qrj2 <- modfit.qrjoint(fit.qrj2, mcmc="Summary")
glplot(dat, x=quote(elev), y=quote(pfit.qrj2))
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Figure 8: Covariate by estimated data quantile-levels plots after including b-spline

7 Prediction and Interpreting Predicted Responses

7.1 Quantiles for Positive Reals

We may desire to apply our fitted model to obtain predictions for a new data set. When doing this, it
is important to remember that the joint quantile regression fit is only guaranteed to provide non-crossing
quantile planes within the convex hull of the data upon which the model is fit. The code that follows uses
the predict function to produce quantile line plots similar to those originally made using coef.

# Define new dataset and perform prediction

pred.grid <- seq(min(dat$elev) ,max(dat$elev), length=50)
dat.new <- data.frame(elev=pred.grid, baRedMaple=999)
predl <- predict(fit.qrjl, newdata=dat.new)

dimnames (predl) <- list(elev=pred.grid, Level=tau)

library(reshape) # for melting from wide to long for ggplot

predl.long <- melt(predi[,tau %in)tau.usel)

predl.long$lev <- factor(predl.long$Level,levels=levels(tau.factor))

p-dat + geom_line(data=predl.long, aes(x=elev, y=value, col=Lev, group=Lev)) +
coord_cartesian(ylim=c(0,43)) + labs(col="Level")

Alternately, we could build a new X matrix and get predictions through the matrix multiplication X 5. This
method is preferred when predicting on the spline model because it guarantees that the b-splines bases over
the new data are the same bases upon which the regression is fit.

# Get beta from coef, X from predict on spline object, prediction from matriz mult
library(splines)

beta2 <- coef(fit.qrj2)$beta.est

splines <- ns(dat$elev,3)

Xnew2 <- cbind(1,predict(splines, dat.new$elev))

pred2 <- Xnew2/*Jt(betal2[,,"b.med",drop=TRUE])

dimnames (pred2) <- list(elev=pred.grid, Level=tau)

pred2.long <- melt(pred2[,tau %in)tau.usel)

# Plot quantile lines using continuous gradient for tau
our.palette <- hcl(h=seq(375,55,length=9), 1=65, c=100)
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s.lev <- scale_color_gradientn(limits=c(0,1), colors=our.palette)
p.quants <- p.dat + coord_cartesian(ylim=c(0,43)) + s.lev +
geom_line(data=pred2.long, aes(x=elev, y=value, col=Level, group=Level))

The first plot of Figure 9, created from the code above, shows that even when there is more than one predictor,
e.g. in this case three b-spline bases, the quantile planes do not cross.

7.2 Probability of Zero

We may also desire to know the probability of having no red maple trees at a given site. These probabilities are
equivalent to the probability of censoring (truncation) and can be obtained under the joint modeling context.
Using the conditional quantile predictions for some x at every MCMC draw, we obtain 79 = Q~1(0|x)), the
quantile level corresponding to when the conditional quantile equals zero, by linear interpolation between
estimated grid points. Summarizing these values across draws produces posterior intervals for the probability
of having zero basal area at a site with given covariates, P(zero). In this case with all predictors derived
from a single covariate, we are able to aggregate into one plot the effects of the three elev b-splines on the
probability of zero using the code that follows.

nsamp <- 500

coef2 <- coef(fit.qrj2, reduce=FALSE, nmc=nsamp)$beta.samp

tauplus <- round(fit.qrj2$tau.g,8)

# Probability of zero with error bars across elev

Q2 <- sapply(l:nsamp, function(f) Xnew2)*)t(coef2[,,f]), simplify="array")

tau0 <- apply(Q2,c(1,3), function(f) approx(f, tauplus,0)$y)

prob0 <- as.data.frame(t(apply(tau0, 1, quantile, prob=c(0.025, 0.5, 0.975))))

probO$elev <- pred.grid

p-pO <- ggplot(probO, aes(x=elev)) + geom_line(aes(y="50%")) +
geom_ribbon(aes(ymin="2.5%", ymax="97.5% ), alpha=0.3) + ylab("P(zero)") +
geom_hline(yintercept=mean(dat$baRedMaple==0))

grid.arrange(p.quants, p.p0, ncol=2)

In the output plot (second plot of Figure 9), we compare the zero probability bands to the sample prevalence of
zeroes, displayed as a black horizontal line. Bands that are fully above (or fully below) the sample prevalence
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indicate an increase (or decrease) in zero-probability for values in that range of elev. Here we conclude that
lower elevations are less likely to have red maple trees.

While estimating a given quantile or probability of zero is straightforward for any single observation’s set of
covariates, creating multiple-regression analogs of the plots in Figure 9 using two or more covariates is more
difficult. The functional-3-coefficient plots and the quantile-level diagnostic plots translate seamlessly from a
single-covariate setting to a multiple-regression setting.

8 Fitting Multiple-Regression Basal Area Models

8.1 Model Terms, Transformations, and Interactions

The four covariates that we are interested in exploring simultaneously in a multiple, quantile regression
setting are elev, region, aspect, and slope. Before starting, we compile a list of notes and questions to
address during modeling:

e Dealing with Directional Covariates. The covariate aspect is radial or wrapping in nature, with values
360 and 1 being adjacent degree measurements. A common way to treat radial data is to include
both cos and sin bases. This transformation makes aspect less unit-interpretable (i.e. slope can
no longer be interpreted as “a one unit increase in degrees corresponds to a x unit increase in basal
area...”) but more interpretable in terms of cardinal directionality. For these data, a cos transformation
measures southerliness-to-northerliness (-1 to 1 respectively), while a sin transformation measures
westerliness-to-easterliness (-1 to 1 respectively). Depending on sun and shade tolerance, some trees
prefer north or south, east or west facing slopes. Do red maple trees?

e Partially Deterministic Relations Between aspect and slope. On a related note, a site cannot face a
direction unless it is sloped. The aspect covariate records “0” for many sites that have zero or near-zero
slopes. To prevent these values from influencing the directional effect of aspect, an indicator value can
be added to let flat sites have their own adjusting intercept.

e Interaction Effect. One may well suspect some interaction between slope and aspect. For instance,
the east-westerly effect on red maple basal areas may be different for moderately sloped sites than for
steeply sloped sites. Is an interaction necessary for describing the quantiles of red maple basal areas?

e Categorical Covariate Encoding. The EPA Level-I1I region variable transcends state boundaries to
categorize sites into roughly similar geophysical regions. In these data, there are only three regions:
the Atlantic Coastal Pine Barrens (13 sites), the Northeastern Coastal Zone (393 sites), and the
Northeastern Highlands (202 sites). These regions may stand as rough proxy for soil covariates such as
sand, rock, or clay composition, which are not included in the data but which one might imagine be
related to tree growth for a given species. By default, R will use the Atlantic Coastal Pine Barrens as a
reference category and code the other two regions using indicator variables.

o Dependence Between Region and Elevation. Finally, the variables region and elev are highly related
(see Figure 10), having different-though-overlapping ranges of elevation per region. It would be interesting
to know if both variables are needed in the regression model or if the effect of region on red maple
basal areas subsumes the need for an elev effect or vice versa.

We create a model that includes all covariates along with the necessary transformations and interactions to
test for the effects listed.

set.seed(55555)

fit.qrj3 <- grjoint(baRedMaple ~ slope*(I(cos(aspect*pi/180)) + I(sin(aspect*pi/180))) +
I(aspect==0) + region + elev, data=dat, cens=ifelse(dat$baRedMaple==0,2,0),
par="RQ", fbase="logistic", nsamp = 2000, thin = 20)

summary (fit.qrj3, more.details=TRUE)
#> WAIC.1 = 3455.15 , WAIC.2 = 3455.95
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The plots of Figure 11 give us some confidence that the MCMC sampler is converging and that we are able
to continue with our model diagnostics.

dat$pfit.qrj3 <- modfit.qrjoint(fit.qrj3, mcmc="Summary")

p-9ll <- glplot(dat, x=quote(slope), y=quote(pfit.qrj3), plot=FALSE)
p.9ql2 <- glplot(dat, x=quote(elev), y=quote(pfit.qrj3), plot=FALSE)
p-ql3 <- glplot(dat, x=quote(aspect), y=quote(pfit.qrj3), plot=FALSE)
p-ql4 <- qglplot(dat, x=quote(region), y=quote(pfit.qrj3), plot=FALSE)

grid.arrange(p.qll, p.ql2, p.ql3, p.ql4, ncol=1)

8.2 Assessing Model Assumptions

The uniformity across quantile-level plots (Figure 12) is sufficient that we feel confident in interpreting
these regression parameters; however, there may yet be some room for improvement. The elevation variable
is exhibiting similar bowing in its mean trend line as that seen in the single-variate, elevation regression.
Perhaps the model could be aided by reintroducing the b-spline for elevation? We register this modification
for future model iterations but first take a look at the coefficients from the model.

coef(fit.qrj3, nmc = 500, plot=TRUE, show.intercept=FALSE)

8.3 Interpreting Coefficients

The coefficients plots are show in Figure 13. A description of the effects follows:

o The reference intercept distribution (not plotted) corresponds to a Atlantic-Coastal-region, at-sea-level
site that has some directional aspect, yet is supposedly flat. Since this site only exists in theory, the
intercept is not worth interpreting.

o The indicator variable for aspect==0 is non-zero for most 7 and thereby performs an adjustment to the
reference intercept distribution. Without an interpretable reference intercept, this adjusted intercept
distribution will not be interpretable either.

e The two categorical region indicators have 95%-interval bands fully above zero for all 7; we can say
that a Northeastern region site has basal areas about 6 ft?/acre greater than an Atlantic Coastal site
with otherwise equivalent covariates.
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Figure 11: MCMC diagnostics for full qrjoint model, fit.qrj3

It seems that both region and elev have effects, because the slope function of elev is constant above
zero for all but the highest and lowest 7. For quantile levels with bands fully above zero, we would
conclude that increased elevation corresponds to greater red maple basal areas, at least within the
range of elev considered (0 ft to 682 ft). Although a coefficient of 0.004 seems small, the cumulative
effect over the sample range could amount to a 0.004*682 = 2.7 difference in basal areas. Contrasting
this positive, 7-flat effect to the effect found in the linear-elevation model, the quantiles in the upper
portion of the response distribution must be explained by some newly-included variable because we no
longer see negative coefficients for large 7.

The coefficient for slope shows a differential effect, growing increasingly negative as 7 increases. One
can conclude that steeper sites have smaller red maple basal areas (bands below zero for 7 greater than
about 0.3). The decreasing differential effect also points to a decrease in variance of basal area as slope
increases, i.e. heterogeneity of variance.

Neither the marginal cos nor sin effect for aspect is significantly different than zero. Perhaps we
should have anticipated this since these terms correspond to cardinal-direction effects when slope==0,
and as we said previously, aspect only has meaning when slope is non-zero. In future model iterations,
leaving these marginal variables out will have the effect of fixing them equal to zero.

The slope:sin(aspect) term has a negative coeflicient, pointing to an interaction between slope and
the West-East variable for quantile levels 7 > .3. We would like to understand this interaction better.
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Figure 13: Joint quantile regression coeflicients from full regression model

8.4 Understanding Marginal and Interaction Effects

To understand the direction and magnitude of an interaction effect we predict over a dataset in which the
interacting covariates have been varied over some interpretable range (being careful not to extrapolate out of
the convex hull created by the original data) and the remaining covariates have been fixed. Plots are then
made of the predicted quantiles across the varied covariates for select 7 to visualize their interaction effect.

This technique can also be used to plot a single variable’s marginal effect, but it is especially helpful when
trying to understand interactions.

To tease out the slope-by-aspect interaction, we vary slope between 0 and 50 degrees and aspect between
0 to 360 degrees, while arbitrarily fixing region=="NE Coastal" and elev==median(elev).

newdat <- expand.grid(slope=seq(0,50,by=5), aspect=seq(0,360,length=9) [-1],
elev=median(dat$elev), region=factor("NE Coastal", levels=levels(dat$region)),
baRedMaple=999)

newdat$cos <- round(cos(newdat$aspect*pi/180),2)

newdat$sin <- round(sin(newdat$aspect*pi/180),2)

pred3 <- as.data.frame(predict(newdata=newdat, fit.qrj3)) # default summary is posterior median
tau0 <- apply(pred3, 1,function(f) approx(f, seq(0,1,length=101), 0)$y)
pred <- cbind(newdat, pred3, tau0)
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# Makes nicer radial plots when O and 360 in data. Not true meaning of/prediction for aspect=0
pred.north <- pred[pred$aspect==360, ]

pred.north$aspect <- 0

pred <- rbind(pred.north, pred)

plotrad <- function(y, ylabel){
slp <- quote(slope); asp <- quote(aspect); gsin <- quote(sin); qcos <- quote(cos)

pl <- ggplot() + geom_line(data=pred, aes_q(x=asp, y, group=slp, col=slp)) +
scale_x_continuous (breaks=c(90,180,270,360))
p2 <- ggplot() + geom_line(data=pred, aes_q(x=asp, y, group=slp, col=slp)) + coord_polar() +
scale_x_continuous (breaks=c(45,90,135,180,225,270,305,360),
labels=c("NE","E","SE","S","SW","W","Nw","N"))
p3 <- ggplot() + geom_line(data=subset(pred, cos>=0), aes_q(x=qgsin, y, group=slp, col=slp)) +
geom_line(data=subset(pred, cos<=0), aes_q(x=gsin, y, group=slp, col=slp))
p4 <- ggplot() + geom_line(data=subset(pred, sin>=0), aes_q(x=qcos, y, group=slp, col=slp)) +
geom_line(data=subset(pred, sin<=0), aes_q(x=qcos, y, group=slp, col=slp))

tmp <- ggplot_gtable(ggplot_build(pl))  # Only print one gutide box
legend <- tmp$grobs[[which(sapply(tmp$grobs, function(x) x$name) == "guide-box")]]
addend <- list(theme(legend.position="none"), ylab(ylabel))

grid.arrange(arrangeGrob(pl + addend, p2 + addend, ncol=2, widths=c(4,5)),
arrangeGrob(p3 + addend, p4 + addend, legend, ncol=3, widths=c(4,4,1)))}

plotrad(quote(70.57), "Median basal area")

Figure 14 shows a suite of median regression plots, each intended to aid in interpreting the slope by radial
aspect interaction. Without adding error bars, which would make these already busy plots even more difficult
to interpret, these plots can only suggest the magnitude and direction of the effects on red maple basal areas:

In the first plot, by picking a particular slope we generally see that the median basal area is greater for
aspect near 270 (West) than it is for aspect near 90 (East); however, the differential is more pronounced
the steeper the slope of the site is. Another way to think of the interaction is that there are bigger decreases
in median basal areas when comparing an eastward facing 50-degree-sloped site to its mostly-flat counterpart
than there are when comparing a westward facing 50-degree-sloped site to its mostly-flat counterpart.

This interaction plays out in the second, radial plot by having near-circles (no directional effect) for near-flat
slopes, but then relatively bigger basal areas for westerly facing sites as slope increases.

In the third plot, the interaction shows up as differently-sloped lines or “rings” for different slope values
across the sin(aspect) variable.

The fourth plot does not show differently-sloped marginal “rings” across cos (aspect) because that interaction
effect is nonsignificant.

Here we arbitrarily picked the median quantile for illustration. If we were interested in the interaction effect
on the 99" percentile we could use the code below to get a similar set of plots.

plotrad(quote(70.997), "99th percentile basal area")

8.5 Understanding Effects on Probability of Zero

Perhaps more interesting than looking at additional 7-predicted quantiles would be to see the effect of the
covariates on the probability of having zero basal area. These can be found as extensions of the marginal or

22



Median basal area
N @
Median basal area
TN 9
=
=z
=
m

Sw SE
0- S
90 180 270 360
aspect
[ I
- — =
<
8- s =
3 3
e} o]
c 2- c 30
8 8
3 8 20
= = 10
1 -
0
O o 1 1

10 -05 00 05 10
sin

Figure 14: Marginal predicted medians over varying slope and aspect

interaction predictions from the previous section. We illustrate using the slope by trig-transformed aspect
interaction, repurposing our custom function for use on the zero probabilities.

For a “quick-and-dirty” approximation, we find the zero-probabilities by interpolation over the already-
summarized pred3 array. To include error bands around our zero-probabilities, we would need to back
up a step and get predicted values for each iteration of the MCMC sampler, interpolate to find the zero
probabilities, then summarize, as laid out in the “Interpreting Quantile Regressions” section.

plotrad(quote( tau0 ), "Prob(0)")

Directionally, the plots of Figure 15 seem to tell a similar story to the median interaction plots; eastern-facing
sites are more likely to have zero basal areas than similarly-sloped westward-facing sites. We interpret these
cautiously though, lacking appropriate error bands to quantify our uncertainty and definitively declare the
probabilities different than the sample prevalence of zeroes.

8.6 Further Model Refinement and Comparison

By comparing WAIC, we see that the multiple-regression fit fit.qrj3 is a better fit than fit.qrj2 of the
simple-quantile regression section. Seeking an even better fit, we make several refinements to the multiple
regression model.
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Figure 15: Marginal predicted medians over varying slope and aspect

First, we add the b-spline on elevation that we used in the single-covariate model, hoping to straighten out
the quantile levels for that covariate. And second, we drop the marginal transformed aspect covariates from
the model. Usually, dropping a non-significant main-effect from a model when the interaction is significant
and retained is not advocated; however, in this application we have a scientific justification.

For related but slightly different reasons, dropping part of a radial transformation is not usually advocated;
however, in this application the covariate that corresponds to North-South direction does not show a significant
effect, and the inclusion of the East-West covariate could be justified under its own ecological moorings. We
compare models: one that has the non-significant cos(aspect) :slope effect retained and one that drops it
from the model.

library(splines)

set.seed (66666)

fit.qrj4 <- grjoint(baRedMaple ~ slope + slope:I(sin(aspect*pi/180)) + slope:I(cos(aspect*pi/180)) +
I(aspect==0) + region + ns(elev,3),
data=dat, cens=ifelse(dat$baRedMaple==0,2,0),
par="RQ", fbase="logistic", nsamp = 2000, thin = 20)

summary(fit.qrj4, plot.dev=FALSE)
#> WAIC.1 = 3446.18 , WAIC.2 = 3445.82
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library(splines)

set.seed(77777)

fit.qrjb5 <- qrjoint(baRedMaple ~ slope + slope:I(sin(aspect*pi/180)) + I(aspect==0) +
region + ns(elev,3), data=dat, cens=ifelse(dat$baRedMaple==0,2,0),
par="RQ", fbase="logistic", nsamp = 2000, thin = 20)

summary (fit.qrj5, plot.dev=FALSE)
#> WAIC.1 = 3442.22 , WAIC.2 = 3442.57

Here we see that the WAIC is improved by the addition of the elevation b-spline and by dropping the marginal
cos and sin effects. Also we see that WAIC improves slightly when cos(aspect) :slope is also dropped
from the model.

These models, fit on ~600 observations and <10 predictors, can each take 10 minutes or so to run, depending
on computing resources. Models run on ~2000 observations and a similar number of predictors can take
an hour to reach convergence and collect adequate samples from the MCMC chain. We see that model
building and comparison for joint quantile regression is possible on moderately sized datasets and yields rich,
interpretable, and distributional-free results; however, it requires some time commitment for computing and
interpretation. We suggest these methods to the practitioner who is willing to invest their time to achieve
such rich, distribution-free results but not to the casual user.

9 Conclusions and Final Remarks

In this chapter we have illustrated how joint quantile regression, as implemented in the qrjoint R package,
can be used to carry out a model-based regression analysis of a zero-inflated but otherwise-positive continuous
response. Joint quantile regression is able to model the continuous response distribution with few distributional
assumptions, making it more broadly applicable than Tobit regression. The censoring or latent-variable
construct is only appropriate for modeling excess-zero values when the same mechanisms that drive small-
response values also drive zero-response values. We believe that to be reasonable in the case of the basal area
case study.

We have shown how the quantile planes produced by the joint quantile regression obey the appropriate
monotonicity constraints, something that cannot be said for traditional quantile regression methods. We
have illustrated via a case study how to interpret the coefficient estimates obtained from a joint quantile
regression. We also introduced visual diagnostics based on the probability integral transform that allow us to
assess overall model fit and linearity assumptions, pointing us to areas where our design matrix could be
refined. These diagnostics are not available for independently estimated quantile regressions, and therefore
represent a valuable new tool for model refinement in the quantile regression context.

Additionally, by utilizing the generative nature of our joint quantile regression model, we not only adjust for
censoring but also make it a prominent inferential objective. For our case study, observing zero red maple
basal area can be a phenomenon of independent scientific interest. The probability of this event, measured
as 7o(x) = Q71(0|z) can only be calculated by inverting the quantile function Q(7|x) — which necessitates
obtaining non-crossing, joint estimation of the function at all quantile levels. Such estimates are hard to
obtain from an ensemble of single quantile level quantile regressions.

We have approached this problem primarily from the goal of inference on regression intercept and slopes,
viewed as unknown functions of the quantile level. However, we have also illustrated elementary tools for
prediction, including how-tos for estimating the probability of zero when data are left-truncated at zero. If
prediction were the primary goal, we could train models on a subset of data and compare observed basal areas
to the predictions on the held-out data. Comparison between qrjoint-fit models can be made on quantile
predictions by using the check-loss metric and/or on the probability of zero by maximizing the area under a
receiver-operating-characteristic curve, depending on what is the focus of prediction.
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