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Cutin and suberin are hydrophobic lipid biopolyester
components of the cell walls of specialized plant tissue and
cell-types, where they facilitate adaptation to terrestrial
habitats. Many steps in their biosynthetic pathways have been
characterized, but the basis of their spatial deposition and
precursor trafficking is not well understood. Members of the
GDSL lipase/esterase family catalyze cutin polymerization, and
candidate proteins have been proposed to mediate
interactions between cutin or suberin and other wall
components. Comparative genomic studies of charophyte
algae and early diverging land plants, combined with
knowledge of the biosynthesis, trafficking and assembly
mechanisms, suggests an origin for the capacity to secrete
waxes, as well as aliphatic and phenolic compounds before the
first colonization of true terrestrial habitats.
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Introduction

Since their evolution from aquatic algal ancestors, approx-
imately 500 million years ago, plants have colonized
almost every terrestrial habitat; in the process profoundly
affecting the planet’s geochemical composition, atmo-
sphere, and ecology [1]. This terrestrialization was
enabled by evolution of the ability to assemble macro-
molecules into complex cell wall architectures that pro-
vide biomechanical support and regulate water flux both
within the plant corpus and with the external

environment. Indeed, arguably the most crucial evolu-
tionary innovation that allowed the emergence of embry-
ophytes was the capacity to deposit hydrophobic barriers
at the cell surface, thereby providing a means to limit
transpiration or uncontrolled water absorption.

The core scaffolding of two types of these specialized cell
wall layers is provided by the lipid polyesters cutin and
suberin, which are both non-covalently associated with a
diverse range of lipids that are broadly referred to as waxes.
A third type of hydrophobic but non-lipidic polymer, lignin,
is not discussed in detail here and readers are referred to
recent reviews [2—4]. Cutin forms the bulk of the plant
cuticle, which is synthesized by epidermal cells and coats
the surfaces of aerial organs. In this regard, cutin and waxes
collectively play a central role in restricting water loss, as
well as other functions, such as providing protection against
pathogens and preventing organ fusion during organ devel-
opment [5-8]. A cuticle was also recently reported as being
presenton the surface of the root cap and lateral roots, where
it has similar protective and barrier functions as the canoni-
cal cuticles of aerial organs [9°]. The other major polyester,
suberin, also limits water movement and is deposited in the
root endodermis, the periderm of roots and tubers and seed
coats, as well as in abscission zones and damaged tissues,
where it has a protective sealing role [10-12]. Despite
similarities in their functions and properties, cutin and
suberin are typically described as chemically related, but
distinct, polymers, and differences in their composition and
patterns of spatial accumulation within the apoplast are
generally cited as distinguishing features.

This review compares the mechanisms, by which these
lipidic plant polyesters are synthesized and undergo
extracellular (sensu stricto extraprotoplasmic) assembly,
and examines their evolutionary origins in the green plant
lineage. Such information can help clarify structural and
functional differences between cutin and suberin biopo-
lymers, but also highlights how this distinction is becom-
ing increasingly blurred.

Cutin and suberin: twin biopolyesters with
similar compositions and partly shared
synthetic pathways . ..

Cutin and suberin consist of functionalized saturated and
non-saturated fatty acids, fatty alcohols, hydroxycinnamic
acids and glycerol (Figure 1a), which are linked by ester-
bonds into complex matrices. The proportions and

www.sciencedirect.com

Current Opinion in Plant Biology 2020, 55:11-20


mailto:jr286@cornell.edu
http://www.sciencedirect.com/science/journal/13695266/55
https://doi.org/10.1016/j.pbi.2020.05.004
https://doi.org/10.1016/j.pbi.2020.01.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pbi.2020.01.008&domain=pdf
http://www.sciencedirect.com/science/journal/13695266

12 Physiology and metabolism

Figure 1
(@ i/\/\/\/\/\/\/\/\ FARS Ho/\/\/\/\/\/\/\/\»{’4~ \
'1-?2?5 C18 acid C18-C22 alcohol
)k/\/\/\/\/\/\/\ \FAFH 4
FAE
\ C16 acid (KCS2/20)
)k/\/\/\/ww
C18:1 acid CYP86A
1/2/4/8
ﬁpasm
CYP77A47?
O)L/\/\/\/W\/\/\/‘[m] FAR? ..
’ : C18-C22 diol .
epoxy C18 acid CYP77A4%2
EH1 HTH?/ CYP77A6
CYP86A2?
i 3L °“] Hok/\/\/\/t/\/\/\/”‘
midchain-di-OH C18 acid w,midchain-di-OH C16 acid
Endoplasmic reticulum
N /@/\)k CYP98 Q/\)k > OMT?
glycerol "
\Cytosol p-coumaric acid caffeic acid ferulic acid smaplnlc aC|
(®) Cuticle  CUST cus2?
BDG?
Phase separation?
| Cell Wall
Plasma membrane ? | ABCG2/6/20 ABCG1/2/6/20 ABCG11/13/32 ?T
DCR?
[°\] O)K/\/\/ ¢ DJLNV
aliphatic hydroxycinnamate oo, 2-MAG 3-phosphate g > MAG

N Necon 4 o ~~~. 44— Endoplasmic
o reticulum
S ©-OH aliphatic o ’
Hydroxycinnamoyl-CoA Glycerol 3-phosphate

Cytosol T FACT/ \
DCF/
PAT5/7 PAT4/6/
o ASFT ¢ o 2 / 6/8

cOAs)k/\/\/

Fatty-acyl-CoA

Current Opinion in Plant Biology

Cutin and suberin biosynthesis (a) Summary of known cutin and suberin monomers, based on in vitro chemical depolymerization of the extracted
macromolecular complexes, highlighting the subcellular sites of their biosynthesis. Structural changes between steps are shown in red. Fatty acids
are first synthesized in the plastid, conjugated to acyl-CoA by the long chain acyl-CoA synthetases LACS1, -2 and -4, and then traffic to the
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compositions of these monomers differ substantially
between species, and even among organs within the same
species. Cutin is mainly composed of derivatives of C16
and C18 fatty acids, with one or more hydroxyl, mid-chain
epoxide and end-chain carboxyl functional groups. Like
cutin, suberin is mainly derived from long-chain aliphatic
acids (>C16); however, it is generally described as having
higher proportions of fatty alcohols, hydroxycinnamic
acids and glycerol, compared with cutin [13].

The biosynthetic pathways of both cutin and suberin
aliphatic and aromatic monomers have been extensively
studied, mostly in Arabidopsis thaliana, and much of the
genetic framework has been resolved (Table 1). The
initial lipid precursors of both cutin and suberin are
C16:0, C18:0 and C18:1 fatty acids, which are synthesized
in the plastid and traffic to the endoplasmic reticulum
[14]. Here, they can undergo further modifications
(Figure 1a): aliphatic chain elongation by the fatty acid
elongase (FAE) enzyme complex, of which B-ketoacyl-
CoA synthase (KCS) has definitively been related to
suberin formation [10]; reduction of carboxyl groups to
alcohols by fatty acyl-CoA reductase (FAR); and hydrox-
ylation by cytochrome P450 enzymes (CYP86, CYP77) or
epoxide hydrolase (EH). For additional information, see
legend for Figure 1. In most cases, it is not currently
known whether individual enzymes in these families are
specifically involved in either cutin or suberin synthesis,
or whether they contribute to both. However, following
monomer biosynthesis, some of the subsequent steps to
generate cutin or suberin lipid precursors are known to
involve different enzymes from the same superfamily,
but which have distinct mechanisms of action (Figure 1b).
One example is the glycerol-3-phosphate acyltransferase
(GPAT) enzymes, which convert fatty acid monomers to
2-monoacylglycerides (2-MAGs). GPAT4, GPAT6 and
GPATS enzymes are involved in cutin precursor forma-
tion and catalyze a dephosphorylation reaction during
condensation between glycerol and fatty-acyl co-A
chains. In contrast, this dephosphorylation reaction is
absent from GPAT5 and GPA'T7 activities during suberin
precursor synthesis [15]. Both classes of MAG precursors
are transported across the plasma membrane by ATP-
binding cassette transporter subfamily G proteins
(ABCGs), but again by different protein family members,
resulting in the deposition of cutin and suberin building
blocks in the apoplast [16].

Cutin and suberin assembly and evolution Philippe et al. 13

Another feature of the precursor biosynthesis involves the
action of BAHD-type acyltransferases that link hydroxy-
cinnamic acids to w-hydroxy fatty acids or w-alcohols in
the cytosol for the synthesis of suberin (FACT, ASFT) or
cutin (DCF) precursors [17,18]. However, several other
key steps in the synthesis of these phenolic precursors, as
well as their mechanisms of export, have yet to be
characterized (Figure 1b).

. . . but distinct spatial patterns of

accumulation

While the intracellular biosynthetic pathways have been
relatively well defined, far less is known about processes
that determine cutin and suberin polymerization and dis-
tribution. One of the key features that is cited as differen-
tiating cutin and suberin is the spatial pattern of localization
of the polymer within the apoplast, and specifically with
respect to the polysaccharide cell wall. Suberin is typically
described as accumulating adjacent to the plasma mem-
brane, often appearing in transmission electron microscopic
images in the form of lamellae [19] (Figure 1b). It has been
proposed that the monomer composition, and particularly
the high phenolic content, of suberin is responsible for its
lamellate structure and macromolecular organization [11].
However, a causal relationship between monomer compo-
sition and spatial patterns of cutin or suberin deposition has
yet to be demonstrated, and another study has suggested
that phenolic content is nota major determinant of lamellae
formation [20]. It is also notable that studies of the cuticle
substructures of hundreds of plant species have revealed
examples of lamellate, reticulate, or amorphous architec-
tures, and some outer epidermal cuticles have distinct
layers [21]. Attempts to associate specific chemical features
with these classes of cuticle organization, including anal-
yses of intracuticular wax composition and cutin polymeric
structure, have not provided conclusive results [22].

Suberin is likely polymerized immediately after cell
export, whereas cutin monomeric units must traverse
the cell wall to the cell surface before polymerization
(Figure 1b). The mechanistic basis of this monomer
trafficking is a key question in plant cell wall biology,
and has yet to be resolved. It is often suggested that lipid
transport proteins (L'TPs) act as chaperones to mediate
the movement of both cutin monomers and waxes across
the hydrophilic wall to its outer surface (e.g. Ref. [23]).
However, while this possibility cannot be excluded, in the

(Figure 1 Legend Continued) endoplasmic reticulum (ER). The biosynthesis of the phenolic monomers that are incorporated into cutin or suberin
includes the conversion of p-coumaric-CoA to caffeic derivatives by CYP98 [50], and likely includes enzymatic reactions that also contribute to
lignin biosynthesis through the generation of ferulic acid and sinapinic acid [2-4]. Biosynthetic enzymes localized in the ER are indicated in blue,
and those in the cytosol in purple. Enzymes specifically related to cutin or suberin biosynthesis that have yet to be characterized are shown with a
question mark. Monomers that are particularly abundant in cutin or suberin are indicated with yellow and red ellipses, respectively, while »-OH
C16-C26 acid (orange ellipse) is abundant in both. Red parentheses indicate elongation of the carbon chain (number of carbons is specified in
compound name) and black parentheses indicate variation in different functional groups at that molecular location. (b) Key steps in the
biosynthesis and export of cutin and suberin precursors and in their extracellular trafficking and assembly. The polysaccharide cell wall is shown
in green, together with glycans extending into the cutinized or suberized layers. Dashed lines on the compound structures indicate extended
aliphatic chains. Uncharacterized enzymes or steps are shown with a question mark.
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Table 1

Genes involved in cutin and suberin formation as described in Arabidopsis thaliana. Numbers represent the number of orthologs in a given species for the corresponding A. thaliana
gene. O. tauri, Ostreoccocus tauri; C. variabilis, Chlorella variabilis; C. reinhardtii, Chlamydomonas reinhardtii; K. flaccidum, Klebsormidium nitens; C. braunii, Chara braunii; S.
muscicola, Spirogloea muscicola; M. endlicherianum, Mesotaenium endlicherianum; P. margaritaceum, Penium margaritaceum; M. polymorpha, Marchantia polymorpha; P. patens,
Physcomitrella patens; S. moellendorffii, Selaginella moellendorffii; A. filiculoides, Azolla filiculoides; G. montanum, Gnetum montanum; A. trichopoda, Amborella trichopoda; O. sativa,
Oryza sativa

. . s & &2 ¢ § % & g ¢ ® ¥ & 8§ § & &5 o ¢
Gene family Gene name  GenelD Function IS § ¢ o 9 5 _ftE § o 5 3 § § O g ©w &
S S 8 § 3 3 S E 3 § § &
° I E < 6 < g 3
S @ £ £
= 3 3
?
Biosynthesis
Long chain acylCoA LACS1 AT2G47240 3 1 C [8]
synthetase LACS2 AT1G49430 2::?2:;22%“50“ 2 1 1 ¢ 8]
LACS4 AT4G23850 1 2 2 1 2 1 2 1 4 1 2 3 1 3 C [55]
BketoacyICoA KCS2 AT1G04220 Fatty acid e|0ngase 1 1 2 S [1 0]
synthase KCS20 AT5G43760  complex 1 S [10]
Fatty acylCoA FAR1 AT5G22500 } 6 7 S [10]
reductase FAR4 e o Skl el 11 s [0
FARS5 AT3G44550 reduction 1 s [0
Cytochrome P450 CYP86B1 AT5G23190 2 6 5 14 2 1 10 5 2 1 S [10]
CYP86A1 AT5G58860 1 1 S [10]
CYP86A2 ATAG00360  w-hydroxylase C [8]
CYP86A4 AT1G01600 C [8]
CYP86A8 AT2G45970 (¢} [8]
CYP77A6 AT3G10570  Inchain hydroxylase 1 (6} [8]
Glycerol-3- GPAT4 AT1G01610 1 o] [8]
phosphate acylCoA  GPAT6 AT2G38110 4 7 8 8 3 3 6 C [8]
transferase GPAT8 AT4G00400  Synthesis of 2-MAGs (6} [8]
GPAT5 AT3G11430 3 3 1 1 1 S [10]
GPAT7 AT5G06090 S [10]
BAHD FACT AT5G63560 CaffeoylCoA 3 S [10]
acyltransferase acyltransferase
family protein ASFT AT5G41040  FeruloylCoA 1 1 8 1 17 2 4 4 5 S [10]
DCF AT3G48720 acyltransferase 1 5] 1 C [8]
DCR AT5G23940  Cutin precursor 5 1 2 1 2 C [407
synthesis
(speculative)
None HTH AT1G72970 Diacid synthesis 1 3 3 2 1 2 1 2 (6} [8]
(speculative)
«/BHydrolase EH1 AT3G05600 Epoxide hydrolase 2 1 1 (¢} [56]
superfamily protein  BDG1 AT1G64670 1 2 © 8]
Unknown
BDG3 AT4G24140 1 1 3 1 1 1 2 (¢} [32]
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Table 1 (Continued)

Gene family

Gene name

GenelD

Function

Cutin Synthase

CUST

Cus2

Dirigentlike protein

ESB1

AT3G04290

AT5G33370
AT2G28670

Polymerization of 2-
MAG monomers

Unknown

Secretion

ATP binding cassette
transporter family
protein

ABCG11
ABCG13
ABCG32
ABCG1
ABCG2
ABCG6
ABCG20

AT1G17840
AT1G51460
AT2G26910
AT2G39350
AT2G37360
AT5G13580
AT3G53510

Transport across the
plasma membrane

Regulation
Zinc Finger
transcription factor

WW domain protein

NFXL2

CFL1
ANL2

AP2 transcription
factor

SHN1
SHN2
SHN3

MYB transcription
factor

MYB16
MYB106
MYB9
MYB107
MYB41

Post-translational
regulation

HUB1
HUB2

AT5G05660

AT2G33510
AT4G00730
AT1G15360
AT5G11190
AT5G25390
AT5G15310
AT3G01140
AT5G16770
AT3G02940
AT4G28110

AT2G44950
AT1G55250

Total number of polyester related genes

Negative regulator
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absence of a mechanism to recycle the transport proteins
once they have deposited their lipid cargo, this would be
energetically expensive. Such a unidirectional movement
of transport proteins is particularly difficult to reconcile
with the large amounts of material needed for thick cuticles,
such as those of many fleshy fruits (e.g. cutin deposition up
to 200 mg m~%.day~' in apple fruit [24]). An alternative
explanation involves the migration of hydrophobic cutin
precursors and waxes through the hydrophilic environment
of the cell wall and their accumulation on the outer face as a
result of passive phase-separation (Figure 1b). Such a
physicochemical process has been associated with cell wall
self-assembly [25°,26,27] and may underlie many aspects of
extracellular matrix heterogeneity. In the case of suberin
and cutin monomers, the relative extent and rate of move-
ment within the apoplast may be influenced by other wall
components. For example, it has been proposed that cutin
polymerization is facilitated by stabilization involving

Figure 2

interaction with non-polar waxes, or with specific methyl-
ated and acetylated polysaccharides that become embed-
ded in the cutin matrix [28,29°°].

The assembly of lipid polyester scaffolding

"T'o date, cutin synthase 1 (CUS1), belonging to the GDSL-
lipase/esterase family, is the only enzyme known to be
involved in the polymerization step of plant polyesters
[30-32] (Figure 2). In vitro, CUS1 was reported to have high
selectivity toward cutin monomers in their 2-MAG precursor
form [33], and to generate linear polymers by transesterifica-
tion of the end-chain hydroxyl groups [30]. However, the
transesterification activity of CUS1 iz vivo was found, using
in situ chemical labeling, to occur at mid-chain hydroxyl
groups, as highlighted in CUS1 deficient tomato fruit [34°°].
"The basis of this discrepancy has yet to be resolved, but it
may reflect constraints on end chain transacylation that exist
in the unique environment of the cell wall-cuticle interface,
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Evolutionary emergence of cutin and suberin associated genes across the green plant lineage. Species were selected based on availability of full
genome sequences. Ot, Ostreoccocus tauri; Cv, Chlorella variabilis; Cr, Chlamydomonas reinhardtii; Kn, Klebsormidium nitens; Cb, Chara braunii;
Smo, Spirogloea muscicola; Me, Mesotaenium endlicherianum; Pm, Penium margaritaceum; Mp, Marchantia polymorpha; Pp, Physcomitrella
patens; Sm, Selaginella moellendorffii; Af, Azolla filiculoides; Gm, Gnetum montanum; At, Amborella trichopoda; Os, Oryza sativa. Numbers above
the tree refer to gene homologs found when using Arabidopsis thaliana genes known to be involved in cutin or suberin biosynthesis as queries
(see Table 1). Colors from white to dark brown represent a heatmap from 0 to 47 homologs found.
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where tomato CUSI1 has been shown to accumulate [30,31].
Itis notable that CUS1-deficient tomato fruit still form a thin
cuticle, indicating that other enzymes are involved and,
indeed, CUS1 is typically a member of a multi-member
cutin synthase-like clade within the GDSL-lipase/esterase
superfamily [32]. It is also possible that the branched struc-
ture of cutin results from the activities of multiple CUS
proteins acting simultaneously, or sequentially, to generate
complex three-dimensional architectures. Cutin polymeriz-
ing activity has been demonstrated iz vitro by CUSI proteins
from both angiosperms and the moss Physcomitrella patens
[32], indicating that the capacity to polymerize cutin is
ubiquitous in land plants and was likely an early evolutionary
adaptation.

In addition to potential differences in enzyme activity,
divergent CUS genes have been associated with specific
biological roles. For example, the A. #haliana cus2 mutant
shows defects in the formation of petal nanoridges and a
decrease in cutin monomer content [35]. Similar abnor-
malities in petal nanoridges have been observed in other
mutants with deficiencies in known cutin biosynthesis
genes [36,37], suggesting that this phenotype may pro-
vide a means to identify less characterized cutin associ-
ated enzyme families. An example is the cuticle and
petal nanoridge ultrastructural defects in the A. #aliana
bdgl and bdg3 mutants, respectively, with mutations
encoding o/ hydrolase BODYGUARD proteins
[37,38]. The A. thaliana mutant defective in cuticular ridges
(der), affected in a BAHD acyltransferase family gene,
also shows defects in the cuticular organization [39]. The
polysaccharide cell wall-cuticle interface is disrupted in
both the bdgl [38] and der mutant [40°], suggesting that
the corresponding BDG and DCR proteins may play a
role in establishing cutin-polysaccharide interactions.
Although the activity of BDG has not been identified,
DCR may have a role in cutin precursor biosynthesis
following 2-MAG formation, as suggested by its intra-
cellular location, 7z vitro activity, and study of gpar6/dcr
double mutants [40°41].

Like cutin, suberin assembly requires enzymatic transes-
terification of its 2-MAG precursors. A mechanism of
suberin polymerization has yet to be identified, but given
the similarities in polymer structures, it probably involves
similar enzymes to those that catalyze cutin polymeriza-
tion. Accordingly, it seems likely that one, or more, of the
members of the large GDSL-lipase super family encodes
a suberin synthase, and strong candidates are apparent
among the GDSL genes whose expression coincides with
suberin deposition in various species. In this regard, it is
also notable that the cutinase CUTICLE DESTRUCT-
ING FACTOR 1 (CDEF1), which is also a member of
the GDSL-lipase superfamily, can depolymerize both
suberin and cutin 7z vive, further highlighting the struc-
tural similarity and shared associated enzymology of the
two polymer types [42,43].

Cutin and suberin assembly and evolution Philippe et al. 17

The specialization of extracellular
biopolymers through plant evolution

Another perspective of the relationship between cutin
and suberin, and the origins of these hydrophobic poly-
esters can be gained through studies of plant genomes
and gene family structures. These can allow inferences
regarding both the presence of specific mechanisms
underlying the synthesis, transport and polymerization
of cutin and suberin, but also their evolutionary trajec-
tories (‘T'able 1; Figure 2). The genomes of species that
span the transition of plants from exclusively aquatic
environments, to semi-aquatic aeroterrestrial habitats,
to true land plants, which require more robust hydro-
phobic barriers will likely be particularly informative
(Figure 2). These include Klebsormidium nitens [44] and
Chara braunii [45], representatives of two of the six
major lineages of charophyte algae, from which land
plants emerged. The two earlier diverging charophyte
algae, K. nitens and C. braunii, show minimal evidence of
cutin or suberin-related biosynthetic systems, suggest-
ing the absence of these polymers, although it has been
reported that K. nitens develops hydrophobic layers
consisting of wax-like lipids deposited on a glycoprotein
framework [46]. However, sequences of representatives
of the Zygnematophyceae [47,48°°], the sister charo-
phyte lineage to land plants, suggest that components of
the pathways leading to cutin and suberin formation
evolved before the first land plants (‘Table 1; Figure 2).
These algal species live at the margins of terrestrial and
aquatic habitats, and experience transient exposure to
desiccating conditions.

It is notable that cutin and suberin share biochemical
features with lignin, a ubiquitous phenolic biopolymer in
vascular land plants that is deposited in the secondary
walls of specific tissues and cell types. Like the cuticle,
appearance of lignin represents a major innovation in
land plant evolution, providing structural reinforcement
to allow protection against pathogens as well as forma-
tion of plant vascularization [49]. Although steps from
the lignin biosynthetic pathway and lignin-like
compounds have been identified in early diverging land
plants, true lignin evolved with the emergence of vas-
cular plants (Figure 3) [4]. However, the capacity
to synthesize and secrete phenolic compounds is
apparently a more ancient evolutionary innovation.
For example, the cuticle of the bryophyte P. patens
contains large amounts of the phenolic compound caffeic
acid, which is important for the function of its cuticle
[50,51], establishing an association in early land plants of
the pathways giving rise to the aliphatic and aromatic
moieties of cutin. However, notably, phenolic com-
pounds have also been detected in the cell walls of
several species of charophyte algae [52-54], suggesting
that synthesis and secretion of at least some of the
building blocks of all the major hydrophobic biopoly-
mers predated the emergence of plants onto land.
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Figure 3

% Cuticle development
/// Resistance to desiccation

oty o s
%
o Ty
e
Cell wall
e
e
() i
iy
? ? ? Plasma membrane,”
Phenolics Phenolics Phenolics Phenolics
Waxes Waxes Waxes

Functionalized fatty acids Functionalized fatty acids

Suberin specialization Lignin emergence
Rigidification

Epidermal cell /
Specialized cell

aa

Vascularization

Current Opinion in Plant Biology

Model of the evolution of extracellular hydrophobic biopolymers. Phenolic compounds are represented by hexagons, waxes by green lines and
functionalized fatty acids by orange lines. An archetypal alga and land plant are shown on the left and right, respectively.

The ‘ancestral’ extracellular hydrophobic biopolymers
likely involved the assembly of aliphatic precursors, with
a lower phenolic content, to form a cutin-like protective
layer, associated with an array of wax compounds, which
prevented desiccation during the colonization of increas-
ingly terrestrial habitats (Figure 3). This may then have
diverged to form denser, more rigid and protective phe-
nolic-rich suberin-like layers with additional cell wall
anchoring points. This in turn led to lignin-like polymers,
and subsequently true lignin composed almost exclu-
sively of phenolic compounds, which is deposited in
the secondary walls of vascular plants. The sequential
emergence of cutin and then suberin polymers is sup-
ported by studies of the GPAT family [15], and as
additional biosynthetic/assembly genes and protein activ-
ities are characterized similar information will likely
provide important insights into the emergence of hydro-
phobic biopolymers.

Conclusion

The idea of distinct suberin and cutin polymers with
unique compositions, patterns of distribution and func-
tions, arose from analyses of relatively few extant angios-
perms, which highlighted such differences, and these
became archetypes. However, as biochemical studies
have extended into a broader range of plant taxa, it has
become apparent that exceptions to canonical suberin and
cutin are not uncommon [8]. Indeed, the leaf and stem
cutin of A. thaliana, which has provided the experimental

model for most studies of cutin and suberin, is sometimes
described as being atypical, as is the recently identified A.
thaliana root cutin [9°]. It is clear that polyesters with
varying degrees of phenolic composition, monomer chain
lengths and spatial patterns of distribution are present in
different specialized cell wall types. However, it seems
likely that increasingly sensitive biochemical analyses,
extensive exploration of compositional diversity in many
more plant species, coupled with additional molecular
information, will continue to reveal ‘unusual’ examples of
these polyesters. Accordingly, canonical cutin and suberin
may represent points on a continuum that has, through
more than half a billion years of evolution, given rise to a
remarkable range of biopolymers. The relationship
between their structures, functions, and properties repre-
sents a fascinating area for future discovery.
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