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SSyynnooppssiiss
OOppttiimmiizzaattiioonn--bbaasseedd  kk--ssppaaccee  ssaammpplliinngg  ppaatttteerrnn  ddeessiiggnn  oofftteenn  iinnvvoollvveess  tthhee  JJaaccoobbiiaann  mmaattrriixx  ooff  nnoonn--uunniiffoorrmm  ffaasstt  FFoouurriieerr  ttrraannssffoorrmm
((NNUUFFFFTT))  ooppeerraattiioonnss..  PPrreevviioouuss  wwoorrkkss  rreellyyiinngg  oonn  aauuttoo--ddiiLLeerreennttiiaattiioonn  ccaann  bbee  ttiimmee--ccoonnssuummiinngg  aanndd  lleessss  aaccccuurraattee..  TThhiiss  wwoorrkk  pprrooppoosseess  aann
aapppprrooxxiimmaattiioonn  mmeetthhoodd  uussiinngg  tthhee  rreellaattiioonnsshhiipp  bbeettwweeeenn  eexxaacctt  nnoonn--uunniiffoorrmm  DDFFTT  ((NNDDFFTT))  aanndd  NNUUFFFFTT,,  ddeemmoonnssttrraattiinngg  iimmpprroovveedd  rreessuullttss
ffoorr  tthhee  ssaammpplliinngg  ppaatttteerrnn  ooppttiimmiizzaattiioonn  pprroobblleemm..

IInnttrroodduuccttiioonn
There is growing interest in learning k-space sampling patterns for MRI using stochastic gradient descent optimization approaches [1-3]. For non-
Cartesian sampling patterns, reconstruction methods typically involve non-uniform FFT (NUFFT) operations [4]. A typical FFT method involves
frequency domain interpolation using Kaiser-Bessel kernel values that are retrieved by nearest-neighbor look-up in a \nely tabulated kernel [5]. That
look-up operation is not diLerentiable w.r.t. the sampling pattern, complicating auto-diLerentiation routines for back-propagation (gradient descent)
for sampling pattern optimization. This paper describes an e&cient and accurate approach for computing approximate gradients with respect to the
sampling pattern for learning k-space sampling patterns.

MMeetthhooddss
Here we consider the MRI measurement model: , where  is the acquired data,  is the image. System matrix

 has entries  for  and  where  denotes the image dimensions.
 is the  vector representation of the non-Cartesian sampling pattern. Usually  is approximated by a NUFFT [4]. In

the current setting, \eld inhomogeneity is not considered.
With recent advances of auto-diLerentiation software such as TensorFlow and PyTorch, stochastic gradient descent has found wide application in
the MRI community, including training reconstruction networks, optimization of RF pulses [6] and sampling patterns [1-3].
For sampling pattern optimization problem, usually the loss function has the following form, considering a single training example (or mini-batch)
for simplicity:

where  corresponds to a diLerentiable reconstruction algorithm with parameters  and  is the ground truth image. The update w.r.t loss
function  usually involves gradients w.r.t. NUFFT operations. Previous methods [3] use the chain-rule and auto-diLerentiation, which can be
potentially slow and inaccurate because of the interpolation operation. Here we investigate a diLerent approach where we analyze on paper the
gradient using the exact (slow) Fourier transform expression (NDFT) and then implement that gradient expression using NUFFT approximations.
FFoorrwwaarrdd  ooppeerraattoorr: For ,  because  is a linear operator. For the th column of ,

The summation is equal to the product of the th row of  with . Thus, the  Jacobian for the partial derivative of  w.r.t.  is
. For e&cient computation, we approximate  by a NUFFT operator, and the Jacobian calculation is

accomplished by simply applying the NUFFT operation to .

AAddjjooiinntt  ooppeerraattoorr: Similar to the forward operator,  and .

FFrraammee  ooppeerraattoorr: Combining the forward and adjoint operator and using the product rule yields  and

. Again, as a fast approximation, we replace each  here with a NUFFT operator.

EExxppeerriimmeennttss: We validated the accuracy and speed of diLerent methods using two simple test cases:  and , where  is a cropped

Shepp–Logan phantom with random additional phase, and the sampling pattern is an undersampled radial trajectory. We compared three settings:
(1) auto-diLerentiation of NUFFT [7]. The table look-up operation is replaced by bi-linear interpolation to enable auto-diLerentiation, (2) auto-
diLerentiation of NDFT, and (3) our approximation. (2) is the accurate gradient of NDFT because the gradient calculation only involves one
exponential and one sum operation, with no accumulation error. Since NUFFT is only an approximation of NDFT, we cannot directly regard NDFT's
Jacobian as NUFFT's Jacobian. If the NUFFT operation is accurate enough, however, (2) can be a good approximation of NUFFT's Jacobian matrix.
We also applied (1) and (3) to the sampling pattern optimization problem. The optimization workgow is similar to the one described in [3].

RReessuullttss
One example of the validation experiment is shown in Figure 1 and 2. For the gradient w.r.t. the image , three methods yield similar results. While
for the kspace sampling pattern , the auto-diLerentiation has large deviance from the exact NDFT. If the phase of the complex-valued image  is
not purely random, the three methods still have similar results.
Table 1 compares the computation time. The CPUs and GPUs deployed are Intel Xeon Gold 6138 and Nvidia RTX2080Ti.
In Figure 3, our approximation leads to a learned trajectory consistent with intuition: sampling points should not be clustered or too distant from

1 1 2

1 2

y = A(ω)x + ε y ∈ ℂM x ∈ ℂN

A = A(ω) ∈ ℂM×N =aij e−ı ⋅ω⃗ i r ⃗ j ∈ω⃗ i ℝD ∈r ⃗ j ℝD D ∈ {1, 2, 3, . . . }
ω = [     … ]ω[1] ω[2] ω[D] M × d A

L(ω) = ‖ (A(ω)x) − x‖ ,fθ

(⋅)fθ θ x
L(ω)

x = A∂Ax
∂x A d ω

= = = {[ ]∂Ax
∂ω[d] il

∂[Ax]i
∂ω[d]

l

∂
∂ω[d]

l
∑
j=1

N

e−ı ⋅ω⃗ i r ⃗ j xj
−ı ,∑N

j=1 e−ı ⋅ω⃗ i r ⃗ j xjr [d]j

0,

i = l

 otherwise. 

i A x ⊙ r[d] M × M Ax ω[d]

= −ı diag{A(ω) (x ⊙ )}∂Ax
∂ω[d] r[d] A

x ⊙ r[d]

=∂ yA′

∂y A′ = ı diag{ } diag{y}∂ yA′

∂ω[d] r[d] A′

= A∂ AxA′

∂x A′

= −ı diag{A (x ⊙ )} + ı diag{ } diag{Ax}∂ AxA′

∂ω[d] A′ r[d] r[d] A′ A
∂ Ax‖‖A′ ‖‖2

2

∂ω[d]

∂ Ax‖‖A′ ‖‖2
2

∂x x

x
ω x

Firefox https://index.mirasmart.com/ISMRM2021/PDFfiles/0913.html

1 of 3 12/13/21, 4:12 PM



each other. We also compared the reconstruction quality of the two trajectories. The training and test set are from the fastMRI initiative [8] brain
dataset and the reconstruction algorithm is the non-Cartesian version of MoDL [9]. The quantitative reconstruction results also demonstrate
signi\cant improvement (average SSIM: 0.930 vs. 0.957).

CCoonncclluussiioonn
The proposed approximation method achieved improved speed and accuracy for the Jacobian calculation of the NUFFT operation. For further study,
\eld inhomogeneity should also be incorporated into the model.
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FFiigguurreess

Figure 1. The gradient w.r.t. . We denote auto-diLerentiation of NUFFT as auto-diL, exact NDFT as exact, and our approximation method as approx.
Three calculation methods achieve similar results.

Figure 2. The gradient w.r.t. . The proposed approximation better matches the gradient of the NDFT.
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Figure 3. The learned trajectories by diLerent methods. The initialization is an under-sampled radial sampling pattern.

Table 1. The comparison of computation time. Large size corresponds to a 320 320 image, and small stands for 40 40.× ×
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