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Abstract
Population sizes of endemic songbirds on Kaua‘i have decreased by an order of magnitude over the past 10–15 years to 
dangerously low numbers. The primary cause appears to be the ascent of invasive mosquitoes and Plasmodium relictum, 
the agent of avian malaria, into elevations formerly free of introduced malarial parasites and their vectors. Given that these 
declines in native bird populations appear to be continuing, last resort measures to save these species from extinction, such as 
conservation breeding, are being implemented. Using 200–1439 SNPs from across the genome, we assessed kinship among 
individuals, levels of genetic variation, and extent of population decline in wild birds of the two most critically endangered 
Kaua‘i endemic species, the ‘akikiki (Oreomystis bairdi) and ‘akeke‘e (Loxops caeruleirostris). We found relatively high 
genomic diversity within individuals and little evidence of spatial population genetic structure. Populations displayed genomic 
signatures of declining population size, but individual inbreeding coefficients were universally negative, likely indicating 
inbreeding avoidance. Diversity within the founding conservation breeding population largely mirrored that in the wild, 
indicating that genetic variation in the conservation breeding population is representative of the wild population and suggest‑
ing that the current breeding program captures existing variation. Thus, although existing genetic diversity is likely lower 
than in historical populations, contemporary variation has been retained through high gene flow and inbreeding avoidance. 
Nonetheless, current effective population size for both species was estimated at fewer than 20 individuals, highlighting the 
urgency of management actions to protect these species.
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Introduction

The contemporary rate of biodiversity loss, with extinction 
rates 1000 times higher than background rates (Pimm et al. 
2014), has been unparalleled since the mass extinction of 
non-avian dinosaurs (Jablonski 1986). Species declines 
and extinctions may occur due to external forces such as 
environmental catastrophes or emerging infectious dis‑
eases (Lande 1993; Spiller et al. 1998; Courchamp et al. 
2006; Prowse et  al. 2013), demographic stochasticity 
(Shaffer 1983; Lande 1988; Wootton and Pfister 2013; 
Mashayekhi et al. 2014), genetic processes such as adap‑
tive diversity loss or fixation of deleterious mutations 
(Lande 1994, 1998; Palkopoulou et al. 2015; Rogers and 
Slatkin 2017), or the interaction of these forces (Robert 
2011). External forces are often the most straightforward 
to document, but it is also important to understand how 
these processes influence demographics and genetics of 
declining species.

With changes in climate and other anthropogenic 
effects, emerging infectious diseases are a primary driver 
of global biodiversity loss (La Marca et al. 2005; Lips 
et al. 2006; Smith et al. 2006). Because climatic variables 
can influence pathogen vector abundance and in turn path‑
ogen distribution (Padilla et al. 2017), climate is likely to 
influence population dynamics of host species susceptible 
to infectious diseases (Samuel et al. 2015). The interaction 
between infectious diseases and climate is complex (Paull 
et al. 2012; Mordecai et al. 2017), and their combined 
influence on genetic variation of declining species is less 
well understood. Especially vulnerable are island species, 
which are threatened by introduced predators and patho‑
gens, and often require specialized habitats or specific 
climatic regimes (Fortini et al. 2015; Glad and Crampton 
2015; Harter et al. 2015; Liao et al. 2015).

Hawaiian honeycreepers (Passeriformes: Fringillidae: 
Carduelinae), which are endemic to the Hawaiian Islands, 
have experienced population declines and extinctions since 
humans arrived on the islands in approximately 1000 C.E. 
(Kirch 2011). These declines accelerated in the late nine‑
teenth century, likely due to introduced avian pox virus 
and introduced predators, and in the twentieth century 
honeycreeper populations began to crash (Foster et al. 
2004; Camp et al. 2009; Gorresen et al. 2009). Plasmo-
dium relictum, the causative agent of avian malaria that 
was introduced by the 1940s (Fisher and Baldwin 1947) 
and the previously introduced mosquito vectors (Culex 
quinquefasciatus) were historically restricted by tem‑
perature to low elevations. As a result of climate warm‑
ing (Diaz et al. 2011), mosquitoes have expanded their 
elevational range so that bird populations are within the 
range of malaria-infected mosquitoes for most of the year 

(Atkinson et al. 2014). This expansion has contributed to 
the extinction of several avian species and pushed most 
remaining honeycreeper species to the brink of extinction 
(Paxton et al. 2016, 2018). On Kaua‘i in particular, avian 
species no longer have high-elevation refuge from malaria 
(Atkinson et al. 2014). The past decade has witnessed the 
near complete collapse of the native bird community on 
Kaua‘i, and several endemic species have likely gone 
extinct (Paxton et al. 2016). Particularly alarming are the 
population declines and range contractions of two Kaua‘i 
endemic species: the ‘akeke‘e (Loxops caeruleirostris, 
98% decline from 2000–2012) and the ‘akikiki (Oreomys-
tis bairdi, 71% decline from 1981 to 2012; Paxton et al. 
2016). These population crashes directly correspond to 
the ascent of introduced malaria and its invasive mosquito 
vector Cx. quinquefasciatus to even the highest elevations 
on the island (Atkinson et al. 2014), in part due to the 
influence of warming temperatures on disease dynamics 
(Samuel et al. 2011), and potentially to the replacement 
of a warm-adapted mosquito lineage by a cold-adapted 
lineage (Fonseca et al. 2006).

Both the ‘akeke‘e and the ‘akikiki are listed as Critically 
Endangered by the International Union for the Conservation 
of Nature (IUCN; BirdLife International, 2018a, b), Endan‑
gered by the U.S. Fish and Wildlife Service (USFWS 2010), 
and of Greatest Conservation Need by the State of Hawai‘i 
(Hawai‘i Division of Forestry and Wildlife 2015). ‘Akikiki 
are estimated to number ~ 450 individuals and occupy ~ 25 
km2 of habitat; ‘akeke‘e are estimated to number ~ 1160 and 
occupy ~ 40 km2 (Paxton et al. 2020). Both species are cur‑
rently restricted to the remote interior high elevation ‘ōhi’a 
(Metrosideros polymorpha, Myrtaceae) forests in the Nā Pali 
Forest Reserve and Alaka‘i Wilderness Preserve (Fig. 1), 
which has long been a refuge from mosquito-borne avian 
diseases because temperatures were historically too low for 
mosquito and parasite development. However, mean tem‑
peratures on Kaua‘i have risen in the last several decades 
(Fortini et al. 2015; Atkinson et al. 2014), allowing the 
incursion of mosquitoes and malaria into this former refuge 
(Atkinson et al. 2014) and threatening the survival of these 
avian species in the absence of intervention.

Given the catastrophic declines documented in ‘akeke‘e 
and ‘akikiki populations and the lack of means to control 
mosquitoes across the landscape, two key conservation 
strategies are gaining knowledge about the distribution and 
degree of genetic variation in the species and establishing 
conservation breeding populations for each species. As a 
critical element of the ‘akeke‘e and ‘akikiki conservation 
management programs, egg collections were initiated in 
2015 by the state and San Diego Zoo Wildlife Alliance 
to establish a conservation breeding (also known as cap‑
tive propagation, captive breeding, ex situ management, or 
managed care) population for each species. The ultimate 
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goal of conservation breeding programs is to ensure spe‑
cies survival (Rodrigues 2006; Farhadinia et al. 2020), 
and in several well-known species these programs likely 
have been the primary or only factor preventing extinction 
(e.g., California condor (Gymnogyps californianus), black-
footed ferrets (Mustela nigripes), ‘alalā (Corvus hawaiien-
sis), whooping cranes (Grus americana), Butchard et al. 
2006, Santymire et al. 2014). The viability, productivity, 
and success of a conservation breeding population depends 
largely on the genetic diversity of the founding individuals 
and how well it represents the neutral and adaptive genetic 
variation contained in wild populations. Maximizing the 
degree of genetic diversity and the extent of outbreeding 
in a conservation breeding population minimizes the risk 
of inbreeding depression that occurs due to the unmask‑
ing of deleterious recessive alleles and reduces the risk of 
mortality from the expression of lethal equivalents (Ralls 

et al. 1988; Roelke et al. 1993). Moreover, species’ persis‑
tence in the wild is likely affected by the degree of genetic 
diversity contained in wild populations (Palkopoulou et al. 
2015). Therefore, genomic methods provide a powerful 
means to assess the patterns of neutral and adaptive diver‑
sity within and among individuals (Cassin-Sackett et al. 
2019b). Here, in the first study to characterize the genetics 
of ‘akeke‘e and ‘akikiki, we assess the kinship and genetic 
diversity of wild individuals and those that were used to 
initiate the conservation breeding population for each spe‑
cies. Our goals were to (1) characterize the degree and dis‑
tribution of genetic variation in wild populations of each 
species, (2) evaluate whether their genomes show evidence 
of recent declines, and (3) determine the genetic charac‑
teristics and inbreeding levels of the initial conservation 
breeding population of each species, including whether 

Fig. 1   Map of Kaua‘i study area and field sites, with tan outline 
(extending across approximately 40 km2) encompassing the geo‑
graphic range of both ‘akeke‘e and ‘akikiki, which occurs at the 

highest elevations on the island. PIH = Pihea, KWK = Kawaikōī, 
UUK = Upper Kawaikōī, MOH = Mohihi, HPK = Halepa‘akai
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these populations adequately represent the genomic vari‑
ation currently present in the wild.

Materials and methods

Sampling

For wild birds, we sampled from five sites where ‘akeke‘e 
and ‘akikiki occur in the higher elevations of Kaua‘i 
(Fig. 1). Field sites were as follows: Pihea (PIH), Kawaikōī 
(KWK), Upper Kawaikōī (UUK), Mohihi (MOH), and 
Halepa‘akai (HPK). Mist nets were set intermittently from 
2012 to 2018 in the canopy, both actively (i.e., with audio 
playback targeting each species separately) and passively 
(without playback). In addition, some samples from wild 
birds were obtained from fieldwork in the region dating 
back to the mid-1990s. Wild birds were banded and blood 
was collected as described elsewhere (Atkinson et  al. 
2014); wild samples included 32 ‘akeke‘e and 52 ‘akikiki. 
For the conservation breeding populations, eggs were 
collected from nests from 2015 to 2018 in UUK, MOH 
and HPK, the locations with the highest density of birds. 
Behavioral clues were used to find nests, and eggs were 
collected 10–15 days after the clutch was completed. To 
reduce the risk of inbreeding in the conservation breeding 
population, color band patterns and plumage differences 
were used to avoid collecting from the same pair more than 
once. All eggs (1–4 per nest) from sampled nests, which 
were accessed by ladder, were collected to encourage the 
pair to lay an additional clutch. Eggs were transported to 
a conservation breeding facility for subsequent artificial 
incubation and hand rearing aviculture. All individuals in 
the conservation breeding population for this study were 
collected from the wild (i.e., none were F1 offspring of 
founding individuals). As of late 2018 (when our analyses 
were conducted), these populations included 10 ‘akeke‘e 
and 46 ‘akikiki founding individuals; a subset of these 
individuals with blood samples with sufficiently high DNA 
quantity and quality were included in this manuscript.

Upon first capture (for wild birds) or after fledging (for 
birds in managed care; hereafter ‘managed’), birds were 
fitted with a unique combination of color bands and/or a 
Federal bird band with a unique identifier. For wild birds, 
approximately 50 µL of blood was collected via brachial 
venipuncture in heparinized capillary tubes, while for 
birds in managed care, approximately 20 µL of blood was 
collected via jugular venipuncture. Blood was then trans‑
ferred to Queen’s Lysis buffer to preserve the DNA and 
shipped on dry ice for storage in the Smithsonian Cryo-
Collection at the National Zoo in Washington, D.C.

DNA preparation and sequencing

DNA was extracted from blood with a DNeasy Blood & 
Tissue kit (Qiagen, Hilden, Germany) and sheared using a 
Qsonica Q800R (Newton, CT); libraries were constructed 
on sheared DNA using KAPA library preparation kits 
(Kapa Biosystems, Wilmington, MA). Each sample was 
dual indexed with unique adapters, and following library 
prep, low-cycle number PCRs were run in duplicate or trip‑
licate and pooled to minimize carryover of PCR artifacts. 
Post-PCR libraries were subsequently pooled in groups of 
eight samples and then hybridized for 24–48 h to a custom-
designed and filtered (Arbor Biosciences, Ann Arbor, MI) 
set of 40,000 oligonucleotide baits targeting single nucleo‑
tide polymorphisms (SNPs) distributed randomly across 
non-repetitive portions of the genome (Cassin-Sackett 
et al. 2019a). Baits were designed using the genome of the 
Hawai‘i ‘amakihi (Chlorodrepanis virens; Callicrate et al. 
2014), which diverged from ‘akeke‘e 2.47 million years 
ago (mya) and from ‘akikiki 4.73 mya (Lerner et al. 2011), 
corresponding to approximately 1.2 million generations for 
‘akeke‘e and 2.3 million generations for ‘akikiki (Hammond 
et al. 2015). After hybridization, pools were combined and 
size-selected with a Pippin Prep (Sage Science, Beverly, 
MA) prior to sequencing. Libraries were sequenced on 
150 bp paired-end runs on an Illumina HiSeq at Johns Hop‑
kins University or Brigham Young University.

SNP filtering and processing

Reads were tr immed using Tr immomatic 0.36 
(Bolger et  al. 2014) with the following parameters: 
ILLUMINACLIP:NexteraPE-PE.fa:2:30:10, LEADING:3, 
TRAILING:3, SLIDINGWINDOW:4:20, MINLEN:36. 
Trimmed reads were subsequently aligned to the ‘amakihi 
genome (Callicrate et al. 2014) using BWA-MEM 0.7.17 
(Li 2013). Reads with MAPQ < 20 were removed from 
the alignments using SAMtools 1.6. (Li et al. 2009)), and 
mismatch rates were calculated using the edit distance in 
SAMtools 1.11. PCR duplicates were marked using Picard 
2.9.4 MarkDuplicates (Broad Institute, http://​broad​insti​tute.​
github.​io/​picard). Reads were realigned around indels using 
the Genome Analysis Toolkit (GATK) 3.7.0 IndelRealigner 
(McKenna et al. 2010). Single nucleotide variants and small 
indels were called for each species using the GATK Hap‑
lotypeCaller; non-variant sites were not included in down‑
stream analysis. Variants within the baited regions were 
extracted using VCFtools 0.1.15 (Danecek et al. 2011), and 
filtered for depth (DP ≥ 4) and quality in GATK (ReadPos‑
RankSum ≥ -8.0, MQRankSum ≥ -12.5, FS ≤ 60.0, QD ≥ 2.0) 
and minor allele frequency (maf ≥ 0.01) in VCFtools 
0.1.15. Removing sites with low minor allele frequency 
aims to eliminate SNPs generated from sequencing error; 

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
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the number of remaining SNPs after applying these filters 
was 16,778 for ‘akeke‘e and 22,482 for ‘akikiki. We also 
filtered for missingness in VCFtools (individuals missing 
data at > 95% of loci were removed; in the remaining data‑
set we retained loci genotyped in at least 80% or 100% of 
individuals, depending on whether the analysis allowed for 
missing data). Due to our interest in specific individuals, 
particularly in the conservation breeding populations, we 
prioritized retaining individuals over retaining loci even 
when samples from those individuals were of poor quality 
(leading to higher missing data). Nonetheless, to ensure our 
results were not artifactual, we also repeated some analyses 
with an idealized dataset containing more loci and fewer 
individuals (see Supplementary Materials for details). 

Kinship

We removed Z chromosome variants using VCFtools 0.1.15; 
no baits targeted chromosome W. We included only bial‑
lelic SNPs for kinship estimation. Final datasets for kinship 
analysis consisted of matrices with individuals missing 
fewer than 95% of loci and loci genotyped in at least 80% of 
individuals. Bootstrapped kinship analysis (100 bootstrap 
replicates) using maximum likelihood estimation of identity 
by descent was performed in SNPRelate 1.14.0 (Zheng et al. 
2012) in R 3.5.0 (R Core Team 2018) using kinshipUtils 
(Campana, M.G.: https://​github.​com/​campa​nam/​kinsh​ipUti​
ls) following Cortes-Rodriguez et al. (2019). We pruned 
SNPs in linkage disequilibrium using a threshold of 0.2 for 
the absolute value of the correlation coefficient (|r|).

Population structure and diversity

Population structure was assessed in several ways. First, 
we estimated the number of ancestral populations using 
three replicate runs in ADMIXTURE 1.3 (Alexander et al. 
2009), allowing K to vary from 1 to 20. Second, we inferred 
ancestry coefficients of each individual in Structure 2.3.4 
(Pritchard et al. 2000; Hubisz et al. 2009), assuming cor‑
related allele frequencies and allowing admixture. We per‑
formed three replicate runs consisting of 250,000 burn-in 
and 1,000,000 iterations. We allowed K to vary from 1 
to 8 and ensured convergence among runs with the same 
assumed K. Next, we tested for isolation by distance by per‑
forming a Mantel test on linearized FST against the log of 
geographic distance in the vegan package (Dixon 2003) for 
R. Finally, using a dataset with no missing data, we used the 
vegan package to perform a Principal Coordinate Analy‑
sis (PCoA) with Prevosti’s Distance method. A PCoA was 
preferred over Principal Component Analysis because both 
datasets were characterized by more SNP sites than indi‑
viduals (Rohlf 1972).

We used VCFtools to estimate several diversity metrics 
within species: (1) inbreeding coefficients for each indi‑
vidual, (2) mean relatedness of an individual to each other 
member of the population, and (3) nucleotide diversity (π, 
Nei and Li 1979) in non-overlapping 1-million base pair 
bins within species (these larger than typical bins were used 
because of the small number of genotyped  loci). In addi‑
tion, we performed an AMOVA on each species in the ade4 
package (Dray and Dufour 2007) for R, assuming two hier‑
archical population clusters: the lowest-level cluster sepa‑
rated all sampling locations and the higher cluster grouped 
HPK separately from the remaining sampling sites, a divi‑
sion consistent with geography (Fig. 1). We calculated indi‑
vidual genome-wide observed heterozygosity (Ho)  across 
sites using the adegenet package (Jombart 2008) for R and 
expected heterozygosity (He) as measured by gene diversity 
in Genepop (Rousset 2008). Finally, we calculated pair‑
wise FST values between sampling sites using the Weir and 
Cockerham method in the adegenet package in R. Due to the 
observed distribution of sequencing depth in ‘akikiki loci 
(Figure S2), we repeated diversity analyses after removing 
loci with a depth greater than the mean plus two standard 
deviations (see Supplementary Materials).

Next, we aimed to assess whether the population in man‑
aged care adequately represents genomic variation in the 
wild. First, we compared the three diversity metrics above 
between wild and managed populations. Second, we con‑
structed median joining networks to visualize the propor‑
tion of the network covered by managed individuals. To do 
so, we generated a fasta alignment file from each filtered 
vcf using SNiPlay (Dereeper et al. 2015) and constructed a 
median joining network (Bandelt et al. 1999) for each spe‑
cies in the pegas v. 0.14 (Paradis 2010) R package. We then 
plotted the networks to determine whether individuals in 
managed care were found throughout the network.

Detection of bottlenecks

Because both species have suffered dramatic population 
declines in recent years, we used several approaches to test 
whether we could detect genetic signatures of bottlenecks. 
First, we examined the degree of heterozygosity excess rela‑
tive to expectations based on allelic diversity at each site 
(Cornuet and Luikart 1996). We calculated both He and Ho 
in the Genepop package for R and conducted a sign test with 
95% confidence intervals (Cornuet and Luikart 1996) using 
the BSDA package (Arnholt and Evans 2017) for R. Sec‑
ond, we used VCFtools to calculate Tajima’s D in 5 million 
base pair bins. Third, we used GADMA (Genetic Algorithm 
for Demographic Analysis, Noskova et al. 2020) to explore 
demographic history separately in each species, assum‑
ing a single population and allowing for up to four time 
intervals (i.e., where each interval was allowed a different 

https://github.com/campanam/kinshipUtils
https://github.com/campanam/kinshipUtils
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pattern of population growth). This approach generates a site 
frequency spectrum using SNPs, and performs simulations 
using the spectrum to infer demographic history beginning 
at the emergence of the species. Simulations were run using 
the moments scheme (Jouganous et al. 2017). Candidate 
models contained either three or four time intervals with 
linear, exponential or sudden population growth or decline 
in each interval. Models were run in triplicate and the best 
models (evaluated with log likelihood and Akaike Informa‑
tion Criterion) were visualized. The timing of the onset of 
each interval was inferred by the model, but because of the 
bias inherent in selecting sites for analysis that are known 
to be variable, we did not attempt to estimate precise tim‑
ing of any demographic events (e.g., population declines); 
rather, we were solely interested in patterns of population 
growth and decline as well as relative timing (e.g., old vs. 
recent). We repeated the analyses with different values of 
theta to ensure our results were robust to changes in this 
parameter. Fourth, we estimated historical trends in effective 
population size (Ne) over time using SNeP (Barbato et al. 
2015), which uses linkage disequilibrium to estimate Ne in 
the more recent past. Because changes in most run param‑
eters did not appreciably change the numerical estimates of 
Ne, we used the default settings for all parameters except 
the minimum distance between SNPs (set to minimum of 1 
base pair, thus using all SNPs in the calculations of LD) and 
the minimum allele frequency for inclusion in the analysis 
(set to minimum of 0.01). These parameter settings were 
designed to maximize the number of loci used in the calcula‑
tions. Finally, because SNeP may underestimate very recent 
and current Ne (Barbato et al. 2015), we estimated current 
effective population sizes in both species using the molecu‑
lar coancestry method implemented in NeEstimator v2.1 (Do 
et al. 2014) and generated jackknife confidence intervals. To 
validate these estimates, we repeated the analysis with the 
dataset containing no missing genotypes.

Results

Samples

Final post-filtering datasets included 37 ‘akeke‘e (29 wild, 
eight managed) and 64 ‘akikiki (36 wild, 28 managed) indi‑
viduals (Supplementary Tables S1–S2). Mismatch rates 
against the ‘amakihi reference averaged 1.94% for ‘akikiki 
(SD = 0.00091) and 1.5% for ‘akeke‘e (SD = 0.00056), con‑
sistent with the closer phylogenetic relationship between 
‘amakihi and ‘akeke‘e (Lerner et al. 2011). Because our 
aim was to maximize the number of individuals in the data‑
set, and several individuals had large proportions of missing 
data (e.g., six wild and three managed retained ‘akeke‘e, 
as well as four wild and eight managed retained ‘akikiki, 

were missing genotypes at > 90% of SNPs), datasets for 
kinship analyses and population structure (80% complete) 
contained 1021 (‘akeke‘e) and 1439 (‘akikiki) SNPs (Sup‑
plementary Tables S3–S5; resulting levels of missing data 
among individuals shown in Figure S1). The distribution of 
coverage depth of loci was similar before and after filtering 
was applied (Figure S2); mean coverage per site per indi‑
vidual in the filtered datasets was 65.8 in ‘akeke‘e and 62.0 
in ‘akikiki. Final datasets for PCoA did not permit missing 
data and included 218 (‘akeke‘e) and 246 (‘akikiki) SNPs; 
this dataset was also used for estimating demographic his‑
tory. Sequences are available on GenBank (BioProject 
PRJNA527134).

Kinship

Kinship values are based on the genetic similarity of indi‑
viduals, which usually reflects a close kin relationship (iden‑
tity by descent). Mean empirical kinship of all ‘akeke‘e 
individuals was 0.088 (range 0.003–0.215; Fig. 2, top left; 
Supplementary Tables S6–S7), and was similar in wild 
(0.095; 95% CI 0.092–0.098) and managed (0.075; 95% CI 
0.060–0.090) individuals. Mean kinship of all ‘akikiki indi‑
viduals was 0.065 (range 0.003–0.362; Fig. 2, bottom right; 
Supplementary Tables S8–S9), and was nearly identical in 
wild (0.066; 95% CI 0.063–0.068) and managed (0.066; 95% 
CI 0.062–0.069) individuals.

We examined eggs removed from the same nest, which 
we expected to be siblings or half siblings in the case of 
extra-pair mating (n = nine ‘akikiki pairs, one ‘akeke‘e pair 
and one ‘akeke‘e trio). In ‘akikiki, these pairings showed 
expected kinship levels (~ 0.25 for siblings), but in ‘akeke‘e 
the values were lower than expected for full or half siblings 
(i.e., ‘akeke‘e nestmates SB1, SB2 and SB3 all had pairwise 
kinships below 0.14). These low kinship values were not 
related to the quality or coverage of the sequence data—
instead, they may reflect extra-pair mating, intraspecific 
brood parasitism, or simply independent assortment (but 
likely a lower level than we found). The nestmate pairing 
kinship value was 0.141 for the single remaining ‘akeke‘e 
nest and averaged 0.204 (range 0.178–0.244) for ‘akikiki 
nests, a range expected for half or full siblings (especially 
given that independent assortment can cause high varia‑
tion in sibling kinship estimates relative to parent–offspring 
values).

Population structure and genetic diversity

For both species, coancestry analysis in ADMIXTURE 1.3 
indicated the highest support for a single ancestral popu‑
lation (K) containing all extant individuals (estimated by 
the lowest cross-validation error), with decreasing sup‑
port for each increase in number of ancestral populations. 
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Log-likelihood scores also supported a single population. 
However, for ‘akikiki, cross-validation errors were simi‑
lar for one, two and three ancestral populations. Structure 
results also indicated support for a single population in both 
species.

The principal coordinates analysis recovered groupings 
that were related to sampled locations, with one site, HPK, 
encompassing nearly all of the variation and most other 
sampling locations containing genetic diversity that also 
existed in HPK (Fig. 3). A second site, MOH, also con‑
tained some unique variation in both species, as did KWK 
in ‘akeke‘e. Mantel tests detected no isolation by distance 
in either species (p ≥ 0.5, Figure S3). The AMOVA did not 
recover significant genetic variance partitioned among sam‑
pling locations in ‘akeke‘e (0.33% of the variation, p = 0.19). 
However, in ‘akikiki, there was a small but significant 
amount of genetic variance partitioned among sampling 
locations (0.70% of the variation, p = 0.04). In both species, 
the remaining explained variation existed not among individ‑
uals but within individuals. In other words, individuals did 
not contain many unique SNPs that were not present in other 

individuals; instead, individuals were heterozygous at many 
SNPs. In line with this result, pairwise FST values between 
sites were low, particularly in akeke‘e (Table 1; ‘akeke‘e in 
bold text). No private alleles were detected within any sam‑
pling location in ‘akeke‘e; the frequency of private alleles 
in ‘akikiki was 0.17.

The mean nucleotide diversity (using all genotyped loci  
in 1 million base pair bins) in ‘akeke‘e was 1.61 × 10–6 and 
in ‘akikiki was 1.07 × 10–6, and was not significantly differ‑
ent between managed and wild individuals (Tables 2, S1). 
The mean inbreeding coefficient was negative in both spe‑
cies (‘akeke‘e − 0.478, ‘akikiki − 0.373, Table S1), and 
all individuals were characterized by negative inbreeding 
coefficients. Managed individuals had a slightly less-nega‑
tive (i.e., higher) inbreeding coefficient than wild individu‑
als, particularly in ‘akeke‘e (Table 2). Observed heterozy‑
gosity within individuals was high: 0.623 in ‘akeke‘e and 
0.543 in ‘akikiki.

Median joining networks showed that the populations 
in managed care largely represent existing genomic varia‑
tion (Fig. 4). Nonetheless, if additional egg collections are 

Fig. 2   Kinship matrixes 
showing estimated pairwise 
relatedness among ‘akeke‘e (top 
left) and ‘akikiki (bottom right) 
individuals. Darker shading 
represents higher kinship; trian‑
gles surround individuals in the 
conservation breeding popula‑
tion. The primarily light colors 
in pairwise relationships among 
individuals in the conservation 
breeding program (triangles) 
indicate the low degree of relat‑
edness among individuals
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deemed necessary, the networks indicate slightly under‑
represented regions of the genomic space that could be 
targeted to augment diversity in the managed population 

(e.g., left side of the ‘akeke‘e network). When plotting the 
median joining networks that included samples collected 
in the 1990s (insets in Fig. 4), the managed population of 
‘akeke‘e appears to miss a notable proportion of diversity. 
However, when plotting only the individuals that may still 
be alive, this pattern disappears. This suggests that extant 
wild ‘akeke‘e populations are missing some diversity that 
was present in the 1990s.

Detection of bottlenecks

Both species (with individuals pooled across sampling loca‑
tions) exhibited a marked excess of heterozygosity relative 
to expectations based on allelic diversity. In ‘akeke‘e, 89.5% 
of loci were characterized by higher heterozygosity than 
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Fig. 3   Principal Coordinates Analysis of (left) ‘akeke‘e genotypes from four sampled sites and (right) ‘akikiki genotypes from five sampled sites 
on the Alaka‘i Plateau

Table 1   Pairwise FST between sampling sites of ‘akeke‘e (upper tri‑
angle, in bold) and ‘akikiki (lower triangle)

The bold text is for ‘akeke‘e

HPK KWK UUK PIH MOH

HPK 0.00440 0.00549 0.01413
KWK − 0.00260 0.01207 0.00650
UUK 0.02069 0.04210 0.02285
PIH − 0.00133 − 0.01336 0.03814
MOH 0.01889 0.01918 0.03014 0.01661

Table 2   Mean relatedness 
among and diversity within 
wild individuals and managed 
individuals; statistics were 
calculated in VCFtools

‘All years’ refers to all sampled wild individuals including those sampled in the 1990s; ‘current’ refers to 
individuals sampled recently enough that the birds may still be alive (i.e., since 2014). This distinction 
was designed to evaluate the recent loss of diversity. Estimates may differ from whole-species estimates 
in Table  S1 due to the automatic exclusion of non-informative loci in data subsets (e.g., quality filtered 
managed AKEK comprised a dataset of only nine individuals). Sample sizes are as follows: AKEK wild 
all N = 29, AKEK wild current N = 12, AKEK managed N = 9, AKIK wild all N = 31, AKIK wild current 
N = 25, and AKIK managed N = 30

Statistic Species Wild
(all years)

Wild (current) Managed

Relatedness AKEK 0.0161 0.0334 0.0519
AKIK 0.0194 0.0236 0.0192

Nucleotide diversity (π) AKEK 1.64 × 10–6 1.75 × 10–6 1.55 × 10–6

AKIK 1.16 × 10–6 1.17 × 10–6 1.03 × 10–6

Inbreeding coefficient (F) AKEK − 0.4853 − 0.4818 − 0.3631
AKIK − 0.3644 − 0.3652 − 0.3605
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expected (sign test p < 2.2e-16; median He – Ho = − 0.199), 
while in ‘akikiki, 73.9% of loci displayed higher heterozy‑
gosity than expected (sign test p < 2.2e-16; median He 
– Ho = − 0.065). Tajima’s D was strongly positive in both 
species (mean 1.81 in ‘akeke‘e, mean 2.15 in ‘akikiki; 
Table S1), consistent with population bottlenecks (Nei et al. 
1975; Gattepaille et al. 2013). GADMA indicated consistent 
support for exponential population decline in both species 
(Figure S4), with similar patterns in the models for each rep‑
licate run. Within replicates, visualizations indicated osten‑
sibly identical patterns of decline among all well-supported 
models, differing only in the relative timing of the onset of 
population size reduction. Replicate runs resulted in 1–15 
statistically indistinguishable (ΔAIC < 2) models; when 
there were multiple indistinguishable models, at least three 
were visualized to ensure inferences were consistent. In all 
‘akeke‘e models, the declines occurred over relatively long 
time intervals (estimated not in actual timing but duration of 
the existence of the species, on the order of the last 20–25% 
of the species’ existence; Figure S4). ‘Akikiki population 
decline occurred more rapidly and more recently (on the 
order of the last 4–9% of the species’ existence; Figure S4). 
Effective population sizes estimated in SNeP historically 
numbered in the tens of thousands, but exhibited trends of 
linear decline during the past several hundred generations in 
both species (Figs. 5, S4). Approximately 150 generations 
ago (generation time ~ 2 years), effective population sizes 
numbered in the thousands; in the last five generations, Ne 

fell from 79.5 to 10 in ‘akeke‘e and from 158 to 15.3 in 
‘akikiki (Figure S5). Because the number of bins used can 
influence the magnitude of inferred Ne in very recent time 
periods (Barbato et al. 2015), this number should be inter‑
preted with caution. Estimates of current effective popula‑
tion size from NeEstimator were similarly small: for data‑
sets allowing up to 20% missing data, Ne was estimated to 
be 18.5 (95% CI 15.4–21.8) in ‘akeke‘e and 13.4 (95% CI 
11.4–15.5) in ‘akikiki. Estimates were slightly higher with 
larger confidence intervals for datasets with no missing data 
(‘akeke‘e: 25.3, CI 13.0–41.4; ‘akikiki: 16.5, CI 11.0–23.1).

Discussion

Using multiple approaches, we explored the distribution of 
genetic variation in wild and founding conservation breed‑
ing populations of two endangered Hawaiian honeycreepers. 
We detected high heterozygosity, little to no spatial struc‑
ture among sampled locations, and genetic signatures of 
severe population declines in both species. We also found 
that individuals were not inbred, with a high proportion of 
variation contained within individuals and universally neg‑
ative inbreeding coefficients. The high levels of observed 
relative to expected heterozygosity in both species (e.g., 
5–10 × higher than in Hawai‘i ‘amakihi; Cassin-Sackett et al. 
2019a) are likely indicative of both recent severe population 
bottlenecks, which appear coincident with human settlement 

Fig. 4   Median joining networks of ‘akeke‘e (left) and ‘akikiki (right) 
genomic variation. Wild individuals are denoted in dark/purple cir‑
cles, managed individuals in light/green circles, and median vectors 
(unobserved intermediate branching nodes) in white circles; hash 
marks represent mutations. In both species, the main figure comprises 
potentially extant individuals, while the inset figure also contains 

individuals sampled in the 1990s. In ‘akeke‘e, the managed popula‑
tion captures most extant diversity but misses a small portion of exist‑
ing wild diversity (left side of network), while in ‘akikiki, managed 
individuals are present throughout the network. In ‘akeke‘e, some 
diversity was present in the 1990s that is not contained among extant 
individuals
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of the island, and of linkage disequilibrium between vari‑
able sites (as LD increases after bottlenecks). If disassor‑
tative mating occurs based on a few loci (e.g., the major 
histocompatibility complex, Juola and Dearborn 2012) in 
high LD with other loci, then high heterozygosity across 
the genome can persist for multiple generations after bot‑
tlenecks. Both species also showed evidence of long-term 
population declines (potentially due to climatic fluctuations 
or changes in island size; Figs. 4, S5). Kinship between nest‑
mates was generally in line with predictions, although a few 
hypothesized ‘akeke‘e siblings demonstrated lower related‑
ness than expected, suggesting potential intraspecific brood 
parasitism or multiple paternity. These scenarios support 
recent observations of multiple adults attending nests (L.H. 
Crampton, written communication, 2020). Finally, for both 
species the genetic diversity of founding individuals for the 
conservation breeding population is largely representative 
of what remains in nature.

The lack of genetic structure among sampled sites, along 
with high heterozygosity and negative inbreeding coeffi‑
cients, suggests that wild ‘akeke‘e and ‘akikiki move rel‑
atively freely among sampling locations and either avoid 
inbreeding, experience selection against inbred individuals, 
or both (Keller et al. 1994; Hemmings et al. 2012). As a 

result of the species’ apparent inbreeding avoidance and 
movement among sites, the egg collections to establish the 
conservation breeding populations appear to encompass 
existing genetic diversity (Sutton 2014) well for ‘akikiki 
and reasonably well for ‘akeke‘e, even without sampling all 
sites harboring individuals of these species. This conclusion 
is supported by the similarity in diversity measures between 
wild and managed individuals in both species (Table 2). 
Representation of wild genomic variation in captive ‘akeke‘e 
may be lower because the species occupies a larger por‑
tion of its range on the Alaka‘i Plateau relative to ‘akikiki 
(Behnke et al. 2016; Fricker et al. in press). Therefore, if 
additional egg collections are undertaken for ‘akeke‘e, 
attempts to sample eggs from individuals containing diver‑
sity that is not encompassed in the managed population 
(e.g., Fig. 4), if such nests can be found and accessed, will 
increase overall genetic diversity in the conservation breed‑
ing population. This strategy would amplify the probability 
of encapsulating all unique genetic variation and adding new 
unrelated founders to the managed population, thus maxi‑
mizing the long-term viability of both species. The strategy 
of avoiding pairings of individuals from the same nest can 
be used in conjunction with the kinship and network data 
presented here to maximize the amount of genetic variation 

Fig. 5   Effective population 
size (Ne) over time as esti‑
mated in SNeP (Barbato et al. 
2015); plots show only the 
most recent 150 generations to 
facilitate visualization of recent 
trends. Triangle point is the 
estimate of current effective 
size inferred from NeEstimator 
(Do et al. 2014). Longer time 
scales are shown in Figure S5. 
Top: ‘akeke‘e, photo by Lucas 
Behnke; bottom: ‘akikiki, photo 
by Justin Hite
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within managed individuals relative to the available pool 
of diversity. Thus, managers can use genomic data to guide 
future breeding efforts (Galla et al. 2020), and these data 
may enable capturing a higher proportion of genetic vari‑
ation than strategies not informed by genomics. The high 
proportion of genetic diversity both within and among indi‑
viduals highlights the need to protect as many wild individu‑
als as possible (Muya et al. 2011).

The range of both ‘akeke‘e and ‘akikiki has been drasti‑
cally restricted in recent years, due to the combined forces 
of introduced predators, habitat disturbance from humans 
(Behnke et al. 2016), and the arrival of introduced mosqui‑
toes (Glad and Crampton 2015) and avian malaria (Atkinson 
et al. 2014) to high elevation forests as a result of climate 
change and the introduction of cold-adapted mosquitoes 
(Fonseca et al. 2006). With this range contraction, ongoing 
loss of genetic variation is expected in the absence of inter‑
vention (Frankham et al. 2002). In line with this prediction, 
we observed evidence of bottlenecks in both species, includ‑
ing heterozygosity excess and strongly positive Tajima’s D. 
Conservation actions should aim to protect and restore the 
wild populations in the way that best eliminates the cur‑
rent threats, which may include selecting existing or novel 
reintroduction and translocation destination sites (Fortini 
et al. 2017) that have high quality forest habitat and low 
abundance of mosquitoes. Large-scale mosquito and preda‑
tor control efforts should be considered (Liao et al. 2017), 
as reintroduction programs cannot succeed until the original 
threats are eliminated. Because these species each exist as 
single functional populations, they are vulnerable to stochas‑
tic extinction (Griffen and Drake 2008); thus, intervention 
measures such as establishing novel sites (e.g., Warren et al. 
2019) on higher elevation islands, such as Maui or Hawai‘i, 
may be warranted as a last resort to prevent extinction (Fric‑
ker et al. in press). Finally, continuing ongoing efforts to 
prioritize pairings of managed individuals from different 
nests and the least-related individuals (Fig. 2) will help to 
maintain maximum within-individual variation and reduce 
the risk of inbreeding depression. The extremely small effec‑
tive population sizes (< 20 birds) in both species reveal their 
vulnerability to mutational meltdown (Lynch et al. 1995; 
Bank et al. 2016) and underscore the importance of ongoing 
management to preserve existing genomic variation and to 
prevent these forest bird species from going extinct.

Population bottlenecks caused by species introduc‑
tions, climate change, and habitat modification can lead 
to diversity loss among populations due to genetic drift, 
which can erode adaptive variation—including alleles that 
may confer adaptation to these very selection pressures 
(Cassin-Sackett et al. 2019a). The high heterozygosity 
observed in ‘akeke‘e and ‘akikiki likely has both biologi‑
cal and technical origins. For instance, the combination 
of ascertainment bias (selecting only variable sites) and 

linkage disequilibrium resulting from bottlenecks results 
in high average heterozygosity. In addition, these species 
appear to avoid inbreeding (consistent with observations 
in many other species, e.g., Clutton-Brock 1989; Brouwer 
et al. 2011), which may slow the loss of genetic diver‑
sity within individuals. Despite the high levels of meas‑
ured diversity, a global loss of allelic variation is likely 
inevitable in populations that have experienced severe 
bottlenecks. Nonetheless, the high heterozygosity within 
‘akeke‘e and ‘akikiki suggests that inbreeding depression 
and homozygosity at lethal alleles are not imminent threats 
to these species; more pressing concerns are introduced 
avian malaria, introduced predators, and the possibility of 
environmental catastrophes (e.g., hurricanes). Thus, unless 
specific alleles conferring enhanced survival from malaria 
can be identified, the best breeding strategy is likely to 
continue to pair the least-related individuals.

Under novel selection regimes, such as those imposed 
by introduced species, native species may be pushed to the 
brink of extinction (Fortini et al. 2015). Other species on 
Kaua‘i, such as the ‘anianiau (Magumma parva), Kaua‘i 
‘amakihi (Chlorodrepanis stejnegeri), ‘apapane (Himati-
one sanguinea) and i‘iwi (Drepanis coccinea), have also 
experienced declines (Paxton et al., 2016) as the temper‑
ature warms and mosquito-free refugia are lost (Fortini 
et al. 2015). The changes on Kaua‘i hint at future similar 
scenarios on other Hawaiian Islands (Liao et al. 2015) 
if large-scale integrative conservation efforts to reduce 
malaria transmission are not undertaken (Liao et al. 2017).

Islands contain some of the world’s most imperiled spe‑
cies, which often face heightened pressure from introduced 
species and human-induced environmental change. In 
addition, their populations are often small owing to small 
geographic distributions, and thus are subject to elevated 
demographic stochasticity. Nonetheless, many of these at-
risk species may demonstrate genetic resilience that can 
be leveraged in conservation. Island species can serve as 
models for species around the globe whose habitats are 
becoming increasingly fragmented, causing their popula‑
tions to operate as functional islands.
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