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Abstract

Warning: this paper contains content that may
be offensive or upsetting.

Biased associations have been a challenge in
the development of classifiers for detecting
toxic language, hindering both fairness and
accuracy. As potential solutions, we inves-
tigate recently introduced debiasing methods
for text classification datasets and models, as
applied to toxic language detection. Our focus
is on lexical (e.g., swear words, slurs, iden-
tity mentions) and dialectal markers (specifi-
cally African American English). Our com-
prehensive experiments establish that existing
methods are limited in their ability to pre-
vent biased behavior in current toxicity detec-
tors. We then propose an automatic, dialect-
aware data correction method, as a proof-of-
concept. Despite the use of synthetic labels,
this method reduces dialectal associations with
toxicity. Overall, our findings show that debi-
asing a model trained on biased toxic language
data is not as effective as simply relabeling the
data to remove existing biases.

1 Introduction

Current hate speech or toxic language detection1

systems exhibit problematic and discriminatory
behavior that causes them to have disparate nega-
tive impact on minority populations (Yasin, 2018;
Guynn, 2020; Kim et al., 2020; Dias Oliva et al.,
2020). Tweets simply containing a minority iden-
tity mention are commonly flagged as toxic by cur-
rent systems, in contrast to those containing ma-
jority identity mentions, as illustrated in Figure 1.

At the core of the issue are dataset biases, i.e.,
spurious correlations between surface patterns and
annotated toxicity labels (§2), which stem from

1We use hate speech and toxic language interchangeably
in this work, though their definitions do not perfectly align.
[changed; previous text downplayed the difference too much]
–NAS
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Figure 1: Lexical items and dialect markers cause prob-
lematic behavior for toxic language detection systems
such as the widely used PerspectiveAPI. In the top two
example pairs, statements with minority identity men-
tions and swear words used inoffensively are flagged as
toxic, but majority identity mentions or offensive state-
ments without overt swearing are missed. The bottom
pair shows dialect-based racial bias for two inoffensive
greetings, where markers of African American English
(AAE) trigger the toxicity detector.

the data creation process (Sap et al., 2019). Pre-
vious work has outlined two such biases for hate
speech datasets (both shown in Figure 1): lexical
bias which associates toxicity with the presence of
certain words (e.g., profanities, identity mentions;
Dixon et al., 2018; Dinan et al., 2019) and di-
alectal bias, where toxicity is correlated with sur-
face markers of African American English (AAE;
Davidson et al., 2019; Sap et al., 2019). When
trained on biased datasets, models acquire and ex-
acerbate these biases (e.g., flagging text by Black
authors as more toxic than by white authors; Sap
et al., 2019; Zhang et al., 2018).

Concurrently, there has been elevated interest in
developing debiasing methods for standard natural
language understanding (NLU) tasks, i.e., meth-
ods that aim to decrease over-reliance on spurious
correlations in NLU models (Clark et al., 2019;

https://www.perspectiveapi.com/


Karimi Mahabadi et al., 2020; He et al., 2019).
This raises a natural question: are current debias-
ing approaches effective for mitigating biases spe-
cific to toxic language detection?

In this work, we address the above question by
investigating two classes of debiasing approaches
to mitigate lexical and dialectal biases—one that
employs additional training objectives for bias re-
moval, and another that filters training instances
likely exhibiting spurious biases (§3). Through
comprehensive experiments, we show that both
approaches face major challenges in mitigating bi-
ases from a model trained on a biased dataset (in
our case, the dataset from Founta et al., 2018) for
toxic language detection. While data filtering re-
sults in reduced bias associations in the data, mod-
els trained on filtered datasets still pick up on lex-
ical (§4) and dialectal biases (§5). We find that
dialectal biases are particularly harder to remove,
as has also been shown by Xia et al. (2020). “De-
biased” models still disproportionately flag text
in certain dialects as toxic. Notably, mitigating
dialectal bias through current debiasing methods
does not mitigate a model’s propensity to label
tweets by Black authors as more toxic than by
white authors.

We additionally explore an alternative proof-of-
concept—relabeling supposedly toxic training in-
stances whose automatic translations into a major-
ity dialect are deemed non-toxic by the classifier.
To this end, we create a synthetic dataset via few-
shot dialect translation system built with GPT-3
(Brown et al., 2020). While only an illustrative
solution, it nevertheless takes into account the di-
alectal context of the tweet, resulting in a model
less prone to dialectal and racial biases (§6). Over-
all, our findings indicate that debiasing a model al-
ready trained on biased toxic language data can be
challenging, compared to relabeling the data to re-
move existing biases. Our code and data are pub-
licly available on Github.2

2 Biases in Toxic Language Detection

We test the use of debiasing methods for the task
of toxic language detection, which aims to flag
rude, offensive, hateful, or toxic language on the
internet, with the goal of moderating online com-
munities (Roberts, 2019; Vidgen et al., 2019).
This task differs in several ways from the natu-

2https://github.com/XuhuiZhou/Toxic_
Debias

ral language understanding (NLU) tasks that debi-
asing methods have been successful on, such as
textual entailment (e.g., SNLI, MNLI; Bowman
et al., 2015; Williams et al., 2018) or reading com-
prehension (e.g., SQuAD; Rajpurkar et al., 2016).
First, compared to these NLU tasks where there
is one correct label, the toxicity of language is
inherently more nuanced, subjective, and contex-
tual, which causes toxic language datasets to have
lower agreement in general (Ross et al., 2017).
Second, the dataset biases in NLU are predom-
inantly artifacts introduced during data creation
(e.g., negations, exaggerations; Schwartz et al.,
2017; Gururangan et al., 2018), whereas those in
toxic language detection are grounded in the so-
cial dynamics of the world (Spears, 1998; Tech-
nau, 2018). For example, viewing AAE as a more
toxic or less proper variety of English is a form
of linguistic discrimination that upholds racial hi-
erarchies (Rosa and Flores, 2017; Blodgett et al.,
2020).3

In this work, we consider two broad categories
of toxic language dataset biases—lexical (§2.1)
and dialectal (§2.2). Our experiments focus on
a single, widely used dataset (§2.3) from Founta
et al. (2018).

2.1 Lexical Biases (TOXTRIG)

Current toxic language detection systems often
rely on the presence or absence of certain words
(e.g., swear words, identity mentions) to make
their predictions (Dixon et al., 2018; Dinan et al.,
2019). While most previous analyses of this bias
relied on a simple list of “bad” words (Davidson
et al., 2019; Dinan et al., 2019),4 we take a more
nuanced view of how lexical items can convey tox-
icity, inspired by work in pragmatics and sociolin-
guistics of rudeness (Dynel, 2015; Kasper, 1990,
inter alia). Specifically, we manually split our
full list of words into three distinct categories de-
pending on the extent to which they carry profane
or hateful meanings or are simply associated with
hateful contexts.5 We refer to the full set of words
as TOXTRIG, for Toxicity Triggers, which is in-

3We avoid using disputed terms such as general American
English or standard American English, which are frequently
used for WAE, since we believe that no dialect should be priv-
ileged with the designation “standard” or “general” (Rosa,
2019).

4https://tinyurl.com/list-of-bad-words
5We note, however, that this categorization is in itself sub-

jective.

https://github.com/XuhuiZhou/Toxic_Debias
https://github.com/XuhuiZhou/Toxic_Debias
https://tinyurl.com/list-of-bad-words


cluded in our released repository.6

Non-offensive minority identity mentions
(NOI) refers to descriptive mentions of minori-
tized demographic or social identities (e.g., gay,
female, Muslim). While these mentions are not
usually inherently offensive by themselves, they
are often found in offensive statements that are
hateful towards minorities (Dixon et al., 2018).
We detect these identity mentions in text using a
list of 26 regular expressions.

Possibly offensive minority identity mentions
(OI) are mentions of minoritized identities that
could denote profanity or hate depending on prag-
matic and contextual interpretations. This includes
slurs and objectifying outdated terms to refer to
minority groups, which are usually understood as
attacks. Additionally, this includes reclaimed slurs
(queer, n*gga), which connote less offensive in-
tent when spoken by in-group members compared
to out-group members (Croom, 2013).

Possibly offensive non-identity mentions (ONI)
contains swear words and other profanities, which
are usually offensive but not associated to any so-
cial groups (e.g., f*ck, sh*t). Note that the prag-
matic interpretation of these words is not neces-
sarily always toxic or offensive (Dynel, 2012), as
they are often used to convey closeness between
the speaker and listener or emphasize the emo-
tionality of a statement (e.g., second example in
in Figure 1).

2.2 Dialectal Biases (AAE)

Current toxic language detection systems also as-
sociate higher toxicity with dialectal markers of
African American English (AAE; Sap et al., 2019;
Davidson et al., 2019). Since AAE is a variety
of English that is common among African Amer-
icans and often signals a cultural identity (Green,
2002), this dialect-based racial bias causes speech
by Black authors to be suppressed more often than
non-Black authors (Sap et al., 2019), thereby ex-
acerbating racial inequality (Rosa, 2019).

In our experiments, we estimate the dialect of
a tweet using a topic model from Blodgett et al.
(2016). This model was trained on 60M tweets,
where the dialect of the tweet was inferred from
the model coordinates, which yielded a probability

6https://github.com/XuhuiZhou/Toxic_
Debias/blob/master/data/word_based_bias_
list.csv

of a tweet being in one of four dialects (African-
American English, white-aligned English, His-
panic, and other). In this study, we only focus
on African-American English (AAE) and white-
aligned English (WAE) tweets. Our experiments
either use the probability of a tweet being in these
dialects, or assign tweets their estimated-most-
probable dialect.

2.3 Dataset for Toxic Language Detection

We focus our analyses on a widely used hate
speech dataset of English tweets (Founta et al.,
2018). The tweets were collected using a multi-
round bootstrapping procedure, and were labeled
out of context7 for toxic language. We focus on
the 86k tweets that are annotated as hateful, abu-
sive, or neither and discard those labelled as spam.
We aggregate the abusive and hateful labels into a
single toxic category, yielding 32k toxic and 54k
non-toxic tweets.8

3 Debiasing Methods

We consider two types of debiasing methods from
current literature. The first type addresses known,
pre-defined biases—such as lexical and dialectal
biases for hate speech detection, via a model-
based approach involving additional training ob-
jectives (§3.1). In contrast, the second type is ag-
nostic to prior knowledge about biases, and in-
stead filters out examples that appear “too easy”
and might hence contain spurious correlations
(§3.2).

3.1 Debiased Training for Pre-Defined
Toxicity Biases

We use the LEARNED-MIXIN method of Clark
et al. (2019), which achieved high out-of-
distribution (OOD) performance on several NLU
tasks, for debiased training. This method trains
an ensemble containing a bias-only model which
only uses pre-defined features corresponding to
known biases, and a full model which uses all fea-
tures. Intuitively, the ensemble encourages the full
model to rely more on features unrelated to the

7Only the tweet text—no profile information or conversa-
tional context—was shown to annotators.

8We also explored using another widely used hate speech
dataset (Davidson et al., 2017), which collected tweets us-
ing a seed list of swear words and slurs. However, in line
with findings by Xia et al. (2020), debiasing led to degener-
ate behavior due to the data collection process, as discussed
in Appendix B.

https://github.com/XuhuiZhou/Toxic_Debias/blob/master/data/word_based_bias_list.csv
https://github.com/XuhuiZhou/Toxic_Debias/blob/master/data/word_based_bias_list.csv
https://github.com/XuhuiZhou/Toxic_Debias/blob/master/data/word_based_bias_list.csv


biases. Once trained, the bias-only model is dis-
carded, and only the “bias-free” full model is used
for inference, following Clark et al. (2019).

Bias-only model Given its effectiveness on bag-
of-words (BoW) features, we use an SVM classi-
fier as the lexical-bias-only model. For example,
the TOXTRIG-only model counts the frequency of
TOXTRIG words in each tweet. Our dialectal-bias-
only model uses the probability of dialects (AAE,
WAE, Hispanic, and other) obtained from a dialect
detector (Blodgett et al., 2016) as features in a
SVM classifier.

Full model We fine-tune a RoBERTa-large clas-
sifier (Liu et al., 2019), a state-of-the-art classifier
for the toxicity detection task. See Appendix A.1
for more modeling details.

Note that we only consider the LEARNED-
MIXIN-ONI and LEARNED-MIXIN-TOXTRIG

models for lexical debiasing, due to poor ac-
curacies of the bias-only models for NOI and
OI.9

3.2 Data Filtering for Spurious Biases
In addition to debiasing methods that handle
known biases, we also explore automated ap-
proaches which filter out instances exhibiting un-
specified, spurious biases. Specifically, we de-
scribe below two data selection methods that have
shown strong OOD performance.

AFLite (Bras et al., 2020) is an algorithm based
on the key intuition that examples predicted cor-
rectly by the simplest methods likely exhibit spu-
rious biases. An ensemble of simple linear clas-
sifiers is trained and tested on different partitions
of the data; test instances which are “predictable”,
or classified correctly by most classifiers in the
ensemble are discarded. The algorithm is iter-
ative, and is repeated until a target data size is
achieved. Models trained on this filtered dataset
achieve higher performance on OOD and adver-
sarially constructed test sets, compared to the orig-
inal model, on several text and image classification
datasets. This indicates a reduction in spurious bi-
ases in the filtered data.

DataMaps (Swayamdipta et al., 2020) show
the presence of distinct regions in a dataset—

9The NOI and OI bias-only models reach 63% and 67%
accuracy, respectively, which is empirically hard for the en-
semble to use. This is likely due to low coverage of those
categories (4.43% NOI and 4.25% OI).

namely, easy, hard and ambiguous—defined with
respect to a given model. These regions are
discovered based on the training dynamics of a
model, determined by the model’s confidence in
the true class, for each example, as well as the
variability of this confidence, throughout train-
ing epochs. Swayamdipta et al. (2020) show that
training exclusively on the hard and ambiguous
regions of the data results in high OOD perfor-
mance, indicating lower prevalance of spurious
biases. The easy region is the largest in size
for RoBERTa; however, experiments showed that
training exclusively on these examples hurt OOD
generalization on different NLU tasks. Following
this work, we create DataMaps-Easy, DataMaps-
Ambiguous, and DataMaps-Hard subsets for our
dataset.

Following Swayamdipta et al. (2020), we set
the target filtered subset size to 33% of the orig-
inal training set for both filtering methods, but our
filtering additionally preserved the original label
proportions. We then fine-tune a RoBERTa-large
classifer on these filtered subsets; see Appendix
A.2 for more details.

4 Experiments: Lexical Biases

We investigate the effect of debiasing approaches
(§3) on removing lexical biases in hate speech de-
tection. First, we discuss the evaluation frame-
work for measuring bias reduction (§4.1). We
present quantitative (§4.2) and qualitative (§4.3)
results on lexical bias removal for all debiasing ap-
proaches, and OOD evaluation for debiased train-
ing methods (§4.4). See Appendix A.3 for hyper-
parameters and other experimental settings.

4.1 Evaluation Framework

We report the performance of all models as over-
all accuracy and F1 with respect to the toxic class.
Given that current hate speech systems tend to rely
heavily on the presence of NOI, OI, and ONI men-
tions (§2.1) for labeling text as toxic, we use false
positive rate (FPR) over each of these categories to
measure the degree of bias in the model, following
Hardt et al. (2016) and Xia et al. (2020). Specif-
ically, we report the FPR of a model on tweets
containing NOI (FPRNOI), OI (FPROI), and ONI
(FPRONI), as well the F1 corresponding to each of
these classes. Intuitively, the lower the FPR∗, the
less the model infers lexical associations for toxi-
city, and hence is less biased.



RNOI ↓ ROI ↓ RONI ↓
Original 0.0445 0.2641 0.6718

33
%

tr
ai

n Random 0.0345 0.2603 0.6683
AFLite 0.0434 0.2396 0.5985
DataMaps-Ambig. 0.0126 0.1968 0.5839
DataMaps-Hard 0.0080 0.1853 0.5849
DataMaps-Easy 0.0772 0.3661 0.7720

Table 1: Lexical associations between toxicity and
TOXTRIG mentions in the original dataset (Founta
et al., 2018) and various filtered counterparts. Ran-
dom, AFLite, and DataMaps all contain only 33% of
the original data after filtering. Lower Pearson R cor-
relation value indicates less superficial patterns in the
dataset, i.e., less bias. Takeaway: The hard and am-
biguous subsets given by DataMaps contain the lowest
amount of lexical associations, indicated in boldface.

Evaluation for Filtered Datasets We addition-
ally consider metrics based on spurious lexical as-
sociations for data filtering approaches. This mea-
sures prevalence of spurious surface patterns in the
filtered datasets, which might propagate to mod-
els trained on the data. Specifically, we report the
Pearson’s correlation between the gold standard
toxicity label and whether or not it contains NOI,
OI, or ONI mentions. These correlations are de-
noted as RONI, RNOI, and ROI, respectively; lower
values indicate reduction in lexical biases.

Baselines We consider comparison against two
natural baselines: a vanilla RoBERTa-large classi-
fier trained on the original dataset (Original). We
also consider a baseline trained on a random selec-
tion of the training data (Random), for comparison
with data filtering methods for debiasing. Each
subset is trained on 33% of the training data.

4.2 Results for Lexical Bias Reduction

First, we measure the reduction in lexical bi-
ases in filtered datasets, as given by AFLite and
DataMaps. As shown in Table 1, subsets given
by AFLite and the ambiguous and hard regions
produced by DataMaps reduce the overall asso-
ciations between TOXTRIG words and toxicity,
compared to the original and random baselines;
DataMaps-Hard has the largest reduction. On the
other hand, as expected, DataMaps-Easy shows
an increased association between TOXTRIG men-
tions and toxicity, showing that the these examples
display overt lexical biases.

Table 2 shows results for lexical bias reduc-
tion using both debiased training approaches, as

well as models trained on datasets filtered us-
ing AFLite and all three regions from DataMaps.
Both debiased training approaches, LMIXIN-ONI
and LMIXIN-TOXTRIG, reduce FPRONI as well
as FPROI by a large amount. However, both
approaches also hurt in-distribution test perfor-
mance, indicating that ONI and other TOXTRIG

features are essential for good performance.10 In
contrast, the models trained on hard and am-
biguous subsets from DataMaps both preserve in-
distribution performance, even though they are
trained only a third of the original data. They also
reduce the rate of falsely predicting NOI mentions
as toxic (FPRNOI), while not showing much im-
provement for ONI and maintaining FPROI of the
original baseline.

Surprisingly, the model trained on the easy sub-
set from DataMaps shows good bias reduction on
the NOI and ONI categories, while matching the
random selection baseline for OI. This is despite
DataMaps-Easy showing an increased association
between TOXTRIG mentions and toxicity (Table
1). Notably, the F1 for all categories suffers un-
der this model, indicating that it is less competent
than the baseline. These results suggest that re-
duced associations in the data might not necessar-
ily lead to debiased models trained on the same
data. Overall, no single approach outperforms all
others across different categories for lexical debi-
asing.

4.3 Qualitative Analysis
A qualitative study of the Founta et al. (2018) test
set shows the presence of many annotation errors.
We show three representative annotation errors in
Table 3. The first example contains an atypical ex-
ample of toxicity, towards white folks, which the
annotators might have been unaware of. It also
contains a link which annotators had access to, but
not models. The second contains the word p*ss
which the annotators may have relied for their as-
sessment. The third encourages violence/abuse to-
wards an identity which isn’t typically the target of
violence. Interestingly, the DataMaps-Easy pre-
dictions agree with all the gold standard annota-
tions; perhaps such annotation errors and ambigu-
ity are responsible for the performance discussed
in §4.2. These annotation ambiguities might also
impair our measurement for models’ performance

10When we combine the bias-only model and the full
model, we obtain competitive performance (see Appendix
A.4).



Test (12893) NOI (602) OI (553) ONI (3236)

Acc.↑ F1 ↑ F1 ↑ FPRNOI ↓ F1 ↑ FPROI ↓ F1 ↑ FPRONI ↓

Vanilla 94.210.0 92.330.0 89.760.3 10.241.3 98.840.1 85.710.0 97.340.1 64.720.8

LMIXIN-ONI 89.651.5 85.592.5 87.041.1 13.991.5 98.870.0 85.710.0 87.874.5 43.743.1

LMIXIN-TOXTRIG 90.440.7 86.941.1 85.470.3 11.151.7 97.640.3 71.430.0 90.411.8 44.551.5

33
%

tr
ai

n Random 94.070.1 92.180.1 89.480.4 9.330.7 98.930.0 83.333.4 97.400.1 67.150.6

AFLite 93.860.1 91.940.1 90.210.4 11.261.1 98.900.0 85.710.0 97.320.1 67.973.4

DataMaps-Ambig. 94.330.1 92.450.1 89.160.7 7.391.0 98.870.0 85.710.0 97.540.0 64.391.4

DataMaps-Hard 94.500.0 92.610.1 89.540.4 6.260.9 98.840.0 85.710.0 97.430.0 61.951.1

DataMaps-Easy 94.000.1 91.940.2 86.810.6 5.920.7 98.870.0 83.333.4 97.170.1 60.333.8

Table 2: Evaluation of lexical bias removal for all debiasing methods on the Founta et al. (2018) test set. Results
show the mean and s.d. (subscript) of accuracy and F1 across 3 runs, as well as F1 and false positive rate exclusively
on test examples containing specific TOXTRIG mentions—NOI, OI and ONI, along with the number of examples
in each category. The lower the FPR*, the less the model infers lexical associations for toxicity. The first block
shows debiased training approaches, along with the vanilla classifier, which are trained on the full dataset. The
second block shows data filtering approaches, all trained on only 33% of the training data. Best performance in
each block is boldfaced. Takeaway: While data filtering approaches achieve overall higher performance, debiased
training approaches perform better on lexical bias reduction, in aggregate.

Gold DM-
Hard

DM-
Easy

@user THIS? LMAOOOOO...do yourself a solid and stay out of Black people’s mentions and
mind your caucasia...

¨ A ¨

RT @user I wish I wasn’t so annoying like I even piss myself off A ¨ A
@user If you want to attack people, attack fundamentalists of all faiths. Attack those who
condemn 1.5bn people out of hand.

¨ A ¨

Table 3: Examples of test set tweets with their gold-standard annotations and predictions from models trained on
DataMaps-Hard (DM-Hard) and DataMaps-Easy (DM-Easy) subsets. A denotes tweets with toxic labels, and ¨
represents non-toxic labels. We anonymize the usernames to protect user privacy.

and debiasing effects, and expose a limitation of
these datasets.

4.4 Adversarial Evaluation: ONI-Adv
To further study the reliance of debiased models
on the ONI words, we use the test set from Di-
nan et al. (2019), which contains 3000 manually
created sentences, 300 toxic. The toxic sentences
barely contain any ONI mentions, e.g., Cheese is
made by french people who smell. We call this
test set ONI-Adv (for adversarial) since it chal-
lenges models with a reversal in the association
between toxicity and offensive non-identity words
(e.g., “f*ck”, “sh*t”).

We report F1 for all models in Figure 2, which
shows how well a model identifies toxicity in of-
fensive tweets that do not contain overtly lexical
cues of toxicity. The debiased training approaches
improve over the baselines; data filtering methods
do not. One reason for this might be that data
filtering methods were trained on much less data
than both LMIXIN models. Regardless, none of
the models we test are good at predicting subtle,

non-overt toxicity.

5 Experiments: Dialectal and Racial
Biases

We test the efficacy of the bias reduction methods
from §3 for dialectal bias (§2.2) reduction.

5.1 Dialectal Biases

For our dialectal bias experiments, we first infer
the dialect of a tweet as described in §2.2. Then,
analogous to the lexical bias evaluation, we quan-
tify the dialectal debiasing using the Pearson’s cor-
relation between estimated probabilities of AAE

and toxicity (RAAE), and the false positive rates of
models on AAE tweets (FPRAAE). See Appendix
A.3 for hyperparameters and other experimental
settings.

Results in Table 4 show that almost all data fil-
tering and debiasing methods reduce dialectal bi-
ases, with DataMaps-Easy as the exception (con-
sistent with Table 1). Notably, DataMaps-Hard
performs the best at dialectal debiasing, both in



Figure 2: Challenge set evaluation for lexical biases,
comparing all debiasing methods with baselines, using
the ONI-Adv test set. Takeaway: F1 measures show
that all models perform poorly at identifying toxic text
not containing overtly lexical cues of toxicity. In gen-
eral, debiased training approaches outperform the orig-
inal model on this challenge set, while data filtering is
not as effective.

terms of toxicity-AAE correlation (RAAE) and in
terms of false flagging of toxicity (FPRAAE). Inter-
estingly, most models’ decrease in false flagging
is small, suggesting room for improvement.

5.2 Racial Biases
To quantify the real-world impact of dialect-
based racial bias, we measure the rates of toxi-
city predicted by models on a corpus of tweets
for which the race of authors is available, but
not annotations of toxicity. Specifically, we con-
sider the dataset released by Preoţiuc-Pietro and
Ungar (2018), which consists of 5.4M tweets,
collected from 4,132 survey participants (3,184
White, 374 African American) with self-reported
race/ethnicity and Twitter user handles.11

We quantify our models’ racial bias by measur-
ing the difference in rates of flagging tweets by
African American authors and those by white au-
thors, following Sap et al. (2019).12

Listed in Table 5, our results show that auto-
matic debiasing methods do not consistently de-
crease the racial discrepancy in flagging toxicity.
Notably, the toxicity rates on tweets by African
American authors—and the diferences compared
to white authors—are similar across all debias-
ing methods and baselines, except for DataMaps-
Easy, which shows the most racial bias in toxic-

11For efficiency, we randomly select 12k tweets from the
dataset as the OOD test set.

12Note that we assume that authors from all races have the
same likelihood of writing toxic language.

Test

RAAE ↓ F1 ↑ FPRAAE ↓

Vanilla 0.4079 92.330.0 16.840.3

LMIXIN-Dialect - 92.260.1 16.070.4

33
%

tr
ai

n Random 0.4080 92.180.1 16.670.6

AFLite 0.3496 91.850.1 16.840.8

DataMaps-Ambig. 0.2966 92.450.1 15.990.4

DataMaps-Hard 0.2834 92.610.1 13.710.2

DataMaps-Easy 0.5376 91.940.2 19.462.8

AAE-relabeled 0.2834 91.640.3 12.690.0

Table 4: Dialectal bias evaluation for all debiasing
methods (§5), as well as the relabeling approach (§6)
on the Founta et al. (2018) test set. We report F1 and
the false positive rate with respect to tweets in AAE
(FPRAAE), reflecting dialectal bias (lower is less bi-
ased), showing mean and s.d. (subscript) across 3 runs.
(Top Block) Debiased training approaches, along with
the vanilla classifier, are all trained on the full dataset.
(Middle Block) Random, AFLite and DataMaps all
are trained on only 33% of the training data. Best
performance for each training set size is in boldface.
Takeaway: Both debiasing approaches improve per-
formance over baselines, with DataMaps-Hard proving
the most effective at debiasing. (Bottom Block) AAE-
relabeling results in a model which despite following a
noisy process yields even larger improvements for di-
alectal debiasing.

ity flagging. Surprisingly, DataMaps-Hard, which
mitigated dialectal bias the best out of all debi-
asing methods, also shows high discrepancy be-
tween author races. Confirming previous results,
this suggests that debiasing these systems requires
more than automatic debiasing methods.

6 Toward Data Relabeling

Based on our quantitative and qualitative analy-
ses, we believe there still is room for improve-
ment in debiasing hate speech detection. There-
fore, we turn our attention to the role of label noise
in datasets. Partly inspired by our qualitative anal-
yses of debiased models’ predictions, we design
a proof-of-concept study where we automatically
correct the label of tweets using a(n automatic) di-
alectal translation of the tweet, inspired by previ-
ous work showing that highlighting AAE tweets’
dialect led them to be labeled as less toxic (Sap
et al., 2019). We conclude this study by discussing
the limitations and ethical implications of the syn-
thetic data, and cautioning against its real-world
application.

Focusing on dialectal bias, our key assumption
is that an AAE tweet and its corresponding WAE



W-Tox. AA-Tox. ∆ ↓ AA/W↓
Original 7.24 12.61 5.37 1.74
LMIXIN-Dialect 7.50 12.55 5.06 1.67

33
%

tr
ai

n Random 8.28 13.24 4.96 1.60
AFLite 7.32 11.64 4.33 1.59
DataMaps-Ambig. 6.75 12.17 5.42 1.80
DataMaps-Hard 6.36 11.67 5.31 1.84
DataMaps-Easy 8.46 16.30 7.83 1.94

AAE-relabeled 6.93 10.60 3.67 1.53

Table 5: Racial disparity in toxicity prediction re-
ported on Preoţiuc-Pietro and Ungar (2018). W-Tox.
indicates % of white users’ tweets being flagged as
toxic, AA-Tox. indicates % of African American users’
tweets being flagged as toxic, ∆ refers to the difference
between AA-Tox. and W-Tox., and AA/W refers to the
ratio between AA-Tox. and W-Tox. Takeaway: Meth-
ods generally fail in debiasing on this OOD test set ex-
cept the relabeling approach shows some benefit.

version should have the same toxicity label, there-
fore toxic AAE tweets whose WAE versions are
non-toxic are candidates for label correction.13

However, gold-standard translations of AAE to
WAE would require qualified translators, and au-
tomatic AAE-to-WAE translation systems do not
exist, to the best of our knowledge. Therefore,
we create a proof-of-concept study—we set up a
AAE to WAE “translation” system using the few-
shot capabilities of the GPT-3 language model
(Brown et al., 2020). Under this mechanism, we
prompt GPT-3 with four translation pairs (taken
from Spears, 1998) and an AAE tweet from our
training data, and generate its WAE “translation”.
The list of prompts, as well as further details, are
provided in Appendix C. [Note that unlike our pre-
vious lists, it’s okay to not include this in Github,
because we want to discourage people using this.
It’s okay to just keep it in the appendix (with an ad-
ditional warning).]ss [agree] –NAS Note that we do
not recommend this approach to build large scale
parallel data for dialects, as discussed under ethi-
cal implications and limitations.

Next, according to our heuristic, we only re-
label toxic AAE tweets whose WAE translation is
predicted as non-toxic by either our vanilla clas-
sifier trained on the original Founta et al. (2018)
dataset, or an identical classifier trained on the
WAE translated tweets. The resulting dataset

13Note that this assumption does not hold for lexical items,
because substituting lexical items (e.g., swapping a minority
mention for a majority mention) would drastically change the
denotational meaning of the sentence.

(AAE-relabeled) is the same size as the original
dataset, but with 954 (12%) out of 8260 toxic AAE

tweets relabeled as non-toxic (examples in Table
6). To assess the validity of the relabeling, the
first three authors manually annotated toxicity of
50 randomly selected relabeled tweets. On aver-
age, authors agreed with 84% of the relabeling de-
cisions.

Then, we evaluate the dialectal bias of AAE-
relabeled and quantify the dialect and racial pre-
diction biases from a RoBERTa-large classifier
trained on AAE-relabeled, following §5. As shown
in the last row of Table 4, this relabeling scheme
decreases dialectal bias more than any other debi-
asing method, specifically as measured by the FPR
on AAE tweets, with one point drop in F1 score.
The F1 score on the ”gold” test data (Table 4) are
not fully reliable, as test data contain label biases
and better performance could come from exploit-
ing these biases. As shown in Table 5, the model
trained on AAE-relabeled has the lowest racial dis-
parity in toxicity flagging rates compared to all
other methods.

These results highlight that debiasing meth-
ods are much less effective at mitigating dialec-
tal dataset biases compared to data relabeling.
For future investigations, we recommend obtain-
ing human-written AAE-WAE pairs (e.g., as done
by Groenwold et al., 2020). Additionally, to en-
sure less biased toxicity labeling, we recommend
recruiting AAE speakers or experts for avoid-
ing over-identification of AAE-markers as toxic
(Spears, 1998; Croom, 2013). Alternatively, we
recommend exploring more holistic representa-
tions of social biases or toxicity (e.g., Social Bias
Frames; Sap et al., 2020).

Ethical Implications & Limitations

The above synthetic setting is meant to illustrate
the role of labeling quality on biases in annota-
tions. We strongly caution against using this ap-
proach in real-world applications, such as build-
ing parallel datasets for dialects. First, due to
how its training data was selected, GPT-3 has
likely not been exposed to many African Ameri-
can English varieties during training (Jo and Ge-
bru, 2020). Second, pretrained language models
are known to generate toxic language at non-trivial
rates (Gehman et al., 2020), which could cause dif-
ferential toxicity in the translations.



AAE GPT-3 WAE Translation Gold New

RT @user I can’t stand a bad texter bruh like don’t
be mad if I forget about yo ass

RT @user I can’t stand a bad texter bro like don’t
be mad if I forget about you

A ¨

RT @user Retweet if you fuck with this!!!! RT @user Retweet if you like this! A ¨

RT @user That nigga needs anger management RT @user That guy needs anger management A ¨

RT @user oh fucking hell take a day off man RT @user oh fuck take a day off man A A

Table 6: Examples of AAE tweets with their GPT-3 based WAE translation, and original gold standard and new
annotations based on AAE-relabeled. For the first three tweets, the (biased) gold labels are changed by models
predicting the new labels on their WAE translations. A indicates presence of toxicity, and ¨ represents non-
toxic.

7 Related Work

Debiasing Toxicity Detection As the popularity
of hate speech and toxic language detection sys-
tems has grown, several biases have been found in
dataset and models, spurring various debiasing ef-
forts to mitigate these individual biases (e.g., gen-
der bias, racial bias; Park et al., 2018; Sap et al.,
2019; Davidson et al., 2019). Some work tackles
identity-based biases, e.g., using data re-balancing
(Dixon et al., 2018), or adversarial feature learn-
ing (Vaidya et al., 2019). Less work has tackled
racial or dialectal bias. Notably, Xia et al. (2020)
use adversarial training to prevent the model from
associating toxicity with AAE, showing only small
improvements in fairness. Based on those results,
we do not explore adversarial methods, opting in-
stead for ensemble-based methods of predefined
bias reduction. In contemporary work, Mozafari
et al. (2020) use a re-weighting mechanism, which
shows some effects in debiasing racial bias. We
leave it for future work to evaluate this method
in our setting. In contrast to all previous work,
our experiments also measure the effectiveness of
bias-agnostic methods.

Other General Debiasing Methods Several ap-
proaches for debiasing NLU tasks have been pro-
posed lately. Some approaches rely on adversarial
training to remove protected attributes (e.g. gen-
der or race), from a model’s internal representa-
tions (Zhang et al., 2018; Wang et al., 2019; Xia
et al., 2020). Other approaches include confi-
dence regularization (Utama et al., 2020), as well
as other product of expert approaches (He et al.,
2019; Karimi Mahabadi et al., 2020) similar to
the debiased training approach from Clark et al.
(2019), which is the only debiased training we em-
ploy due to its relatively strong performance.

8 Conclusion

We investigate whether toxic language detection
systems can be debiased using recently introduced
methods for debiasing text classification in NLU
tasks. Focusing on two types of biases, lexical and
dialectal, our experiments show that these meth-
ods are limited in their ability to reduce the biased
behavior in toxicity detectors. Then, comparing
these methods with a synthetic scheme that aims
to relabel potentially biased examples, our re-
sults indicate that correcting noisy labels is much
more effective at this task. Indeed, accounting for
speaker identity and dialect is an important step
towards making systems less discriminatory, and
hence safe and usable. Our findings suggest that
future work focus primarily on the quality of the
underlying data for hate speech detection, instead
of solely relying on development of automatic de-
biasing for existing, imperfect datasets.
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Appendix

A Further Details for Models

A.1 Model Debiasing

The LEARNED-MIXIN ensemble allows the model
to explicitly determine how much to trust the bias
given the input:

pî =softmax{log(pi) + g(xi) log bi}

where xi is the ith input text, pi and bi is the
toxicity prediction produced by RoBERTa, and
bias-only model respectively, and g is a para-
metric function, which is defined as softplus(w ·
hi), where w is a learned vector, hi is the last
hidden layer of the model for example xi, and
the softplus(x) = log(1 + expx). To prevent
the LEARNED-MIXIN ensemble from ignoring bi,
Clark et al. (2019) add an entropy penalty (H) to
the loss:

R =αH(softmax{g(xi) log bi})

Where H(z) = −
∑︁

j zj log zj is the entropy and
α is a hyperparameter.

A.2 Data Filtering

For the data filtering methods, we first filter data to
50% of the original data as in Swayamdipta et al.
(2020). Then we further downsample the dataset
to 33% of the original data to control that each
training set has the same toxic ratio as the origi-
nal training set. This step is to avoid confounding
our results with different toxic ratio among differ-
ent training sets.

A.3 Training Settings

For all the experiments, we fine-tune RoBERTa-
large (Liu et al., 2019) over the corresponding cor-
pus with one GTX2080 Ti. We use the default hy-
perparameters as provided in the HuggingFace
Transformers library (Wolf et al., 2019), with
two major changes: we use a learning rate of 10−5

and 8 batch size in all experiments.

A.4 Prediction Combining with Bias-only
Model

To prevent the possibility that our LMIXIN-
TOXTRIG/ONI is not well trained, thus resulting
in the decrease of models’ in-distribution perfor-
mance, we use the joint-prediction from the main
and bias-only model to infer the in-distribution test

set and they obtain 94.15% and 94.17% accuracy,
respectively. This is competitive performance as
shown in Table 2.

B Alternative Dataset of Toxic Language

Davidson et al. (2017) collected data from Twit-
ter, starting with 1,000 terms from HateBase (an
online database of hate speech terms) as seeds,
which the process relies on lexical biases. We
find that performing data filtering methods over
this dataset leads to degenerate behaviour. Specifi-
cally, as shown in Table 7, the easy region demon-
strates least spurious correlation due to its heavily
skewed class distribution, which further prevent us
from downsampling to control the toxic ratio. We
also train LMIXIN-TOXTRIG and LMIXIN-dialect
over the dataset. Table 8 shows that FPR of the
debiased model increase instead except for the OI
category and Table 9’s results behave in-line with
Table 4.

C Few-shot AAE-to-WAE Translation

Note that we do not recommend the following
approach to build large scale parallel data for
dialects, as discussed under ethical implications
and limitations (§6).

We use GPT-3 (Brown et al., 2020) to create
a few-shot AAE-to-WAE translation system, us-
ing the following set of example translation pairs
drawn from Spears (1998):

AAE: Get your triflin’ ass out of here.
WAE: Get your trifling self out of here.

AAE: I saw his ass yesterday.
WAE: I saw him yesterday.

AAE: His ass is gonna get fried.
WAE: He is gonna get fried

AAE: Wassup, nigga?
WAE: What’s up bro?

AAE: <tweet>
WAE:

We prepend the formatted example pairs to each
AAE tweet in our training data, and generate the
translation from GPT-3 using top-0.95 nucleus
sampling with a temperature of 0.5. Prompts, for-
matting, and generation parameters were chosen
based on manual inspection of the output.



Toxic Ratio RNOI ↓ ROI ↓ RONI ↓ RAAE ↓

Original† 0.8308 0.0287 0.4320 0.2610 0.4061

Random 0.8312 0.0288 0.4312 0.2621 0.4011
AFLite 0.7669 0.0342 0.4708 0.2835 0.4236
DataMaps-Ambig. 0.6736 0.0493 0.4683 0.3230 0.4445
DataMaps-Hard 0.6645 0.0521 0.4533 0.3190 0.4426
DataMaps-Easy 0.9972 0.0135 0.0771 0.0396 0.0928

Table 7: Lexical and dialectal associations between toxicity in the original dataset (Davidson et al., 2017) and
various filtered counterparts. Random, AFLite, and DataMaps all contain only 50% of the original data after
filtering. (We could not perform downsampling on these datasets due to their heavily skewed label distribution.)
Lower Pearson R correlation value indicates less superficial patterns in the dataset, thus are less biased. The easy
subset gives the best results here are due to its severe inbalanced label distribution.

Test NOI OI ONI

Acc.↑ F1 ↑ F1 ↑ FPRNOI ↓ F1 ↑ FPROI ↓ F1 ↑ FPRONI ↓
Original 96.37 97.81 96.42 25.00 99.86 57.14 99.57 63.64
LMIXIN-TOXTRIG 96.15 97.69 96.19 28.57 99.78 42.86 99.28 72.73

Table 8: Lexical bias removal evaluation for debiasing methods. Original refers to the model trained over the full
training set. The test set is further categorized into tweets that contained relevant TOXTRIG words. F1 indicates
models’ performance while the false positive rate (FPR*) reflects models’ bias. The lower the FPR* is, the less
biased the model tend to be.

Debiasing Method Test
RAAE Acc. ↑ F1 ↑ FPRAAE ↓

Original 0.4079 96.37 97.81 24.76
LMIXIN-Dialect - 96.48 97.88 22.86

Table 9: Dialectal bias evaluation for all debiasing
methods, on both in-distribution test set as well as out-
of-distribution dialect and race priming test sets. In ad-
dition to accuracy and F1, we report the false positive
rate with respect to tweets in AAE (FPRAAE), reflecting
dialectal bias (lower is less debiased). Each method is
based on a RoBERTa-large classifier.


