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ABSTRACT

Unplanned intensive care unit (ICU) readmission rate is an impor-

tant metric for evaluating the quality of hospital care. Efficient

and accurate prediction of ICU readmission risk can not only help

prevent patients from inappropriate discharge and potential dan-

gers, but also reduce associated costs of healthcare. In this paper,

we propose a new method that uses medical text of Electronic

Health Records (EHRs) for prediction, which provides an alternative

perspective to previous studies that heavily depend on numerical

and time-series features of patients. More specifically, we extract

discharge summaries of patients from their EHRs, and represent

them with multiview graphs enhanced by an external knowledge

graph. Graph convolutional networks are then used for representa-

tion learning. Experimental results prove the effectiveness of our

method, yielding state-of-the-art performance for this task.
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1 INTRODUCTION

Patients who are readmitted to intensive care units (ICUs) after

transfer or discharge usually have a greater chance of developing

dangerous symptoms that can result in life-threatening situations.
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Readmissions also put families at higher financial burden and in-

crease healthcare providers’ costs. Therefore, it is beneficial for both

patients and hospitals to identify patients that are inappropriately

or prematurely discharged from ICU.

Over the past few years, there has been a surge of interest in

applying machine learning techniques to clinical forecasting tasks,

such as readmission prediction [12], mortality prediction [6], length

of stay prediction [14], etc. Earlier studies generally select statisti-

cally significant features from patients’ Electronic Health Records

(EHRs), and feed them into traditional machine learning models

like logistic regression [19]. Deep learning models have also been

gaining more and more attention in recent years, and have shown

superior performance in medical prediction tasks. For example, Lin

et al. select 17 types of chart events (diastolic blood pressure, capil-

lary refill rate, etc.) over a 48-hour time window and put them into

a LSTM-CNN model [12] and achieve much better performance

than previous work in readmission prediction.

A common theme among these studies is that they all rely on

numerical and time-series features of patients, while neglecting

rich information in the clinical notes of EHRs. This motivates us to

tackle this task from a pure natural language processing perspective,

which is not well explored in literature. Essentially, in this work,

we consider the task of ICU readmission prediction as binary text

classification, i.e., for a given clinical note, the model aims to predict

whether or not the patient will be readmitted to ICU within 30 days

after discharge.

Although it is possible to directly apply existing text classifica-

tion methods to the readmission prediction task, two major chal-

lenges need to be addressed: (1) clinical notes, e.g., discharge sum-

maries, are generally long and noisy, which makes it difficult to

capture the inherent semantics to support classification; (2) general

methods do not consider domain knowledge in the medical area,

which is critical as medical concepts are hard to interpret with

limited training for downstream tasks.

Recently, a useful strategy is proposed to tackle the first chal-

lenge, where it encodes documents with graphs-of-words to en-

hance the interactions of context, and to capture the global seman-

tics of the document. The strategy has been applied to different

NLP tasks, including document-level relation extraction [3, 4, 15],

question answering [5, 18], and text classification [17, 20, 23]. But

constructing graphs of clinical notes for patient outcome prediction,

to our knowledge, is underexplored.

Motivated by this, we propose a novel graph-based model that

represents clinical notes as document-level graphs to predict patient

readmission risk. Moreover, to address the second challenge, we
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where A𝑖 refer to each view’s normalized adjacency matrix and 𝛼𝑖
are the balancing factors that are determined by cross-validation.

The adjacency matrix is then masked with a threshold, i.e., 𝛾 = 0.5,

where only edges with larger weights are kept for further message

passing. The motivation for the masking is to improve robustness

and efficiency by decreasing some density.

The representation of vertices, i.e., X, are initialized with a pre-

trained word embedding BioWordVec [22]. For entity vertices, we

take the average values of word embeddings of the entity names as

the representation for the entity.

2.2 Encoding and Decoding

In this work, we incorporate a two-layer graph convolutional net-

work (GCN) [9] to encode the graph representation of clinical notes,

as depicted in Figure 1. We include an attention layer after GCN,

which serves as a decoder to decode the document-level represen-

tation D𝐺 from node embeddings. The encoding process can be

described as:

X
(𝑙+1)

= LeakyReLU(D̂− 1
2 ÂD̂

1
2X

(𝑙)
W

(𝑙) ) (2)

where Â = A + I, and I is the identity matrix of A. D̂ is the diagonal

degree matrix of Â, andW(𝑙) is the weight matrix for the 𝑙-th layer

where 𝑙 = 0, 1, 2 in this work.

We incorporate a graph summation module [11, 23] to decode

the document-level representation D𝐺 from the constructed graph,

by assigning different attention weights to the nodes. The decoding

process can be described as:

X𝐺 = 𝑓1 (X
(2) ) ⊙ 𝑓2 (X

(2) ) (3)

D𝐺 = mean(X𝐺 ) +max(X𝐺 ) (4)

where X(2) is the output of the GCN encoder and 𝑓1, 𝑓2 are two

feed-forward networks with sigmoid and leakyrelu activation, re-

spectively. The 𝑓1 network acts as a soft attention mechanism that

indicates the relative importance of nodes, while 𝑓2 serves as feature

transformation. The operator ⊙ denotes element-wise multiplica-

tion. Then the document-level representation D𝐺 is summarized

as the addition of the mean and maximum values of the attentive

node embeddings.

We also use a two-layer bidirectional LSTM to directly encode

the document and decode the document-level representation D𝑇

with a linear decoder, where linear transformation and max-pooling

are applied. Then the two document-level representations, i.e., D𝐺

and D𝑇 , are concatenated and fed into a MLP classifier. The model

is optimized with cross-entropy loss.

3 EXPERIMENT

3.1 Dataset

The experiment is conducted based on the MIMIC-III Critical Care

(Medical Information Mart for Intensive Care III) Database, which

is a large, freely-available database composed of de-identified EHR

data [8]. For a fair comparison, we use the same data split with the

baseline [21], where the discharge summaries are extracted from

EHRs and the generated 48, 393 documents are split into training

(80%), validation (10%), and testing (10%).

3.2 Evaluation Metrics

We use three metrics for evaluation, i.e., the area under the receiver

operating characteristics curve (AUROC), the area under the preci-

sion recall curve (AUPRC), and the recall at precision of 80% (RP80).

AUROC and AUPRC are widely used for evaluating patient out-

come prediction tasks, including readmission prediction [12, 13, 21].

RP80 is a clinically-relevant metric that helps minimize the risk of

alarm fatigue, as introduced in ClinicalBERT [7], where we fix the

precision at 80% and calculate the recall rate.

3.3 Baselines

The following baselines are used for comparison.

• BioBERT. BioBERT is a domain-specific BERT variant pre-

trained on large biomedical corpora, e.g., PubMed abstracts

and PMC full-text articles [10]. In the experiment, we use

the latest version, i.e., BioBERT v1.1, with a classification

head as the baseline. The last 512 tokens of each note are

used as input to the model.

• ClinicalBERT. ClinicalBERT is initialized from BioBERT v1.0

and pre-trained on MIMIC notes [1]. Note that there is an-

other ClinicalBERT [7] model which presents a similar idea.

• CC-LSTM. Zhang et al. propose CC-LSTM that encodes

UMLS knowledge into text representations and report state-

of-the-art performance on readmission prediction on the

MIMIC-III dataset [21]. For a fair comparison, we use the

same pre-trained word embeddings, i.e., BioWordVec [22],

in our model.

• MedText-x. Specifically, we replace the Bi-LSTM encoder

with ClinicalBERT and BioBERT to demonstrate the effec-

tiveness of the proposed graph-based knowledge injection

strategy. The last two baselines are denoted by MedText-

ClinicalBERT and MedText-BioBERT, respectively.

3.4 Results

The experimental results are presented in Table 1. Generally, the pro-

posed method, i.e., MedText, compares favorably with all the other

baselines and outperforms the state-of-the-art method. Besides, di-

rectly applying pre-trained language models, such as BioBERT and

ClinicalBERT, to readmission prediction does not work well. It is

most likely due to the long and noisy nature of clinical notes, and

only the last 512 tokens are taken as input in the experiment. How-

ever, by combining with MedText, the performance gets improved

greatly, indicating the effectiveness of the proposed graph-based

knowledge injection method.

Additionally, Lin et al. propose a readmission prediction model

that takes numerical features, e.g., chart events, of patients as input,

and claim a state-of-the-art AUROC of 0.791 with AUPRC of 0.513

on the same dataset [12]. This is essentially not comparable as they

are using numerical features instead of text, but it highlights the

value of clinical notes in EHRs.
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