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Abstract. Open-domain event detection (ODED) aims to identify event
mentions of all possible types in text. A challenge for ODED research
is the lack of large training datasets. In this work, we explore a novel
method to overcome this challenge by fine-tuning the powerful pre-trained
language model GPT-2 on existing datasets to automatically generate
new training data for ODED. To address the noises presented in the
generated data, we propose a novel teacher-student architecture where
the teacher model is used to capture anchor knowledge on sentence rep-
resentations and data type difference. The student model is then trained
on the combination of the original and generated data and regularized
to be consistent with the anchor knowledge from the teacher. We intro-
duce novel regularization mechanism based on mutual information and
optimal transport to achieve the knowledge consistency between the stu-
dent and the teacher. Moreover, we propose a dynamic sample weighting
technique for the generated examples based on optimal transport and
data clustering. Our experiments on three benchmark datasets demon-
strate the effectiveness of the propped model, yielding state-of-the-art
performance for such datasets.

Keywords: Event Extraction · Natural Language Processing · Data
Augmentation · GPT-2 · Teacher-Student Architecture.

1 Introduction

In Natural Language Processing (NLP), events are mentioned in text and refer
to changes of states of real word entities [33]. Each event in text is associated
with an event trigger, which is the main word (most often a single verb or
nominalization) to evoke the event (e.g., agree, death). As such, Event Detection
(ED) is one of the important tasks in Information Extraction of NLP whose goal
is to identify trigger words of events in text. For instance, in the sentence “Ames

recruited her as an informant in 1983, then married her two years later”,
an ED system should be able to recognize “recruited” and “married” as trigger
words of two events of semantic types Employment and Marriage respectively
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(also called event mentions). Due to its ubiquity, detecting event mentions is
an integral part of natural language understanding that can support question
answering, text sumarization, and knowledge base population (among others).

There is a wealth of prior work on event detection [11, 25, 5, 24, 37, 15]. How-
ever, most of prior works on ED assumes a predefined and small set of event types
for some specific domain that prevents the extraction of open-domain events (i.e.,
of all possible types). This work focuses on open-domain ED (ODED) to fill this
gap. One hurdle for developing effective ODED models is the lack of large train-
ing datasets. To obtain more training signals/data for ED, prior works have
resorted to unsupervised [9, 40], distantly supervised [12, 3] or domain adapta-
tion [22] methods. The common characteristics of these methods involves the
requirement of large-scale (though unlabeled) texts replete with event mentions.
In this work, we propose a novel method to generate additional training data for
ODED solely based on the pre-trained language model GPT-2 [32]. In particu-
lar, given the training data in an existing ODED dataset, we fine-tune GPT-2
to automatically generate sentences that are annotated with open-domain event
mentions. The generated data will then be combined with the original training
data to train models for ODED. To our knowledge, this is the first work that
leverages GPT-2 for data generation/augmentation for ED.

How can we efficiently combine the generated sentences with the original
data? The answer for this question is important as the generated samples might
be noisy/erroneous and simply concatenating them with the original training
data to train models might even hurt the performance. To address this issue,
prior work on automatic data generation with GPT-2 [2, 39] has explored sample
filtering techniques to remove noisy samples from the generated data. This is
done once before the model training and the remaining generated data is added
into the original data to train models. However, the noisiness criteria for sample
selection in such prior work is solely determined by fixed heuristics that might
not be optimal. To better handle the noisy data from GPT-2, we propose to
instead keep all the generated samples and devise mechanisms to directly address
noisy examples during the training process of the models for ODED. As such,
we argue that noisy samples would cause the representations/knowledge learned
via the combination of synthetic and original data to diverge significantly from
those learned solely via the original training data. To minimize the effect of
noisy samples, we can thus use the knowledge in the original data as an anchor
and enforce the induced knowledge from the synthetic and original data to be
consistent/close to those anchor. In this way, the models can still benefit from
the new information presented in the synthetic data while avoiding its inherent
noises via the consistency constraint.

To this end, the teacher-student architecture is employed to achieve the
knowledge consistency. Here, the teacher model is first trained on the original
training data for ODED to induce anchor knowledge. The student will be trained
afterward from both generated and original data. Two learning principles are in-
troduced to accommodate consistency between the knowledge from the student
and the anchor knowledge: (1) Representations obtained by the teacher and the
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student on the same sentences should be compatible with each other. As such,
we propose to increase the mutual information between the teacher and student
networks in the learning process; (2) Both the teacher and the student should
discern the same level of difference between the original and the generated data.
For this principle, we propose two aspects to assess the distance between these
two types of data for difference consistency enforcement, i.e., representations and
event-containing likelihoods for sentences. In particular, instead of only relying
on the similarity of the induced representations, our distance function for two
sentence examples in ODED also consider the similar likelihood for the sentences
to contain event mentions (i.e., event-containing sentences are more similar in
ODED). Accordingly, our model leverages Optimal Transport, a method to find
the cheapest transformation between two data distributions, as a natural solu-
tion to simultaneously incorporate the two aspects into the distance function for
synthetic and original data for ODED.

Finally, to further regulate the synthetic data in the training process, we
seek to assign weights to the generated samples in the training loss function
to control their contribution for ODED. In particular, we compute the weight
of each synthetic data point based on its diversity w.r.t. the other generated
samples and its novelty w.r.t. the original training data. Our model features
dynamic updates of the data point weights after each training epoch to better
reflect the training process. Extensive experiments on three benchmark ODED
datasets reveal the effectiveness of the proposed model and lead to state-of-the-
art performance for all the datasets.

2 Model

We formulate ODED as a sequence labeling task. Given a sentence S = [w1, w2

, . . . , wN ], the goal is to make a prediction for each word wi, indicating whether
it is triggering an event or not (i.e., a binary classification for each word). Our
proposed approach for ODED consists of two major stages: (1) Data Generation
and (2) Task Modeling.

2.1 Data Generation

Our approach is motivated by GPT-2, a transformer-based language model [32]
that has shown impressive capability to generate fluent and meaningful text.
As such, we aim to utilize GPT-2 to automatically generate training data for
ODED3 and combine it with existing datasets to train better ODED models. To
this end, given a training dataset for ODED, we first attempt to fine-tune the
pre-trained GPT-2 model on this dataset so the knowledge about open-domain
event mentions can be injected into the language model. The expectation is to
encourage GPT-2 to produce synthetic sentences marked with event mentions
afterward.

3 We use the small version of GPT-2 in this work.
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Formally, for each sentence S = [w1, w2, . . . , wN ] in the original training
dataset O, we first insert two special tokens TRGs and TRGe right before and
after (respectively) each event trigger word in S. For instance, assuming wt is
the only event trigger in S, the resulting sentence S′ after insertion would be:
S′ = [w1, . . . , TRGs, wt, TRGe, . . . , wN ]. Afterward, we fine-tune the pre-trained
GPT-2 model on the newly generated sentences S′ in an auto-regressive fashion
(i.e., predicting the next token in S′). Finally, the fine-tuned GPT-2 is employed
to generate |O+| sentences where O+ is the set of sentences with at least one
event mention in O (i.e., positive samples). We denote the generated dataset by
G. Note that our generation process ensures all the sentences in G to involve at
least one marked event trigger from GPT-2.

To evaluate the quality of the generated data, we manually assess 100 sen-
tences that are generated by GPT-2 after being fine-tuned on the ODED dataset
LitBank [33]. Among these samples, we find that 85% of the sentences are gram-
matically correct, semantically sound, and similar to the original sentences in
LitBank. Also, 80% of the marked event triggers in the sentences are correct.
Refer to Section 3.5 for examples of generated sentences, noises and more data
analysis.

2.2 Task Modeling

Our generated data in G is noisy as the sentences might not be natural and the
event triggers might be incorrectly marked. To effectively combine G with the
original data O, this section describes our proposed teacher-student framework
to overcome the noise in the generated data to train ODED models.

Base Model: The student and teacher models in our framework employ
the same base network architecture for ODED (with different parameters). As
such, following the recent ED model in [36], our base architecture for ODED
starts with the pre-trained BERT model [6] whose output representations are
consumed by a Bi-directional LSTM (BiLSTM), and then followed by a feed-
forward network to make event predictions for each word in S. In particular, we
first feed the input sentence S = [w1, w2, . . . , wN ] into the pre-trained BERTbase

model. Afterward, the hidden vectors from the last layer of the BERT model are
consumed by BiLSTM (i.e., the encoder) to generate the word representations
H = [h1, h2, . . . , hN ]. The representation vector hi for wi ∈ S is then sent to a
two-layer feed-forward network with the sigmoid function in the end to obtain a
probability distribution P (·|S, i) over possible event labels for wi, i.e., EVENT
or NONE. Finally, we use the negative log-likelihood as the loss function to train
our models for ODED: Lpred = −

∑N

i=1 logP (yi|S, i) where yi is the golden event
label for wi ∈ S.

Knowledge Consistency Enforcement: As motivated in the introduction,
the teacher model T in our framework is first trained on the original noiseless
data O to capture the anchor knowledge (using the loss Lpred). The data com-
bination O ∪ G will then be utilized to train the student model S, also serving
as our final model for ODED. To mitigate the noise from G, the student model
S would be regularized to be consistent with the anchor knowledge from the
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teacher. As such, we employ two types of anchor knowledge for teacher-student
consistency, i.e., the representations of the input sentences and the difference
between the synthetic and original data as perceived by the teacher.

First, to enforce the teacher-student compatibility based on representations
of input sentences, we first feed the input sentence S into both the teacher and
the student networks, and compute the representations of the sentence by max-
pooling the representation vectors returned by the BiLSTM encoders for the
words, i.e., hT = MAX POOL[hT

1 , . . . , h
T
N ] for the teacher and similarly hS for

the student. The goal of the representation compatibility is to encourage the
similarity between hT and hS for the same S. As such, one simple method is
to directly compute the distance between the two vectors and use this distance
as an auxiliary training loss. However, this might restrict the learning capabil-
ity of the student as less room for variation in hS is granted. To allow more
variation in hS and still maintain essential similarity with hT , we propose to
instead maximize the mutual information (MI) between hT and hS . However,
computing MI between hT and hS is intractable due their high dimensionality.
To address this issue, following [8], we treat hT and hS as random variables
and estimate their MI via the Jenson-Shanon divergence between the joint dis-
tribution, i.e., PT,S(h

T , hS), and the product of the marginal distributions, i.e.,
PT (h

T ) ∗PS(h
S). In particular, the Jenson-Shanon divergence computation can

be fulfilled by a feed-forward discriminator, denoted by D, which distinguishes
the samples of the joint distribution PT,S(h

T , hS) from those of the product
distribution PT (h

T ) ∗ PS(h
S). In this work, we sample from PT,S(h

T , hS) by
directly concatenating hT and hS . The samples from PT (h

T ) ∗ PS(h
S) are ob-

tained by concatenating hT with the student-based representation vector for
another sentence randomly chosen from the same mini-batch, i.e., h′S . Finally,
the samples are sent to the discriminator D to produce scores for whether the
samples are from the joint distribution or not. The negative log-likelihoods of
the samples are then included in the overall loss function to serve as a way to
maximize the MI between hS and hT :

LMI = − log(D([hT
, h

S)]))− log(1−D([hT
, h

′S ])) (1)

Our second teacher-student consistency for learning is realized by the dif-
ference between synthetic and original data in G and O. As such, our principle
is to treat the teacher-based distance between the sentences in G and O as an
anchor. The student should then adhere to this anchor distance to avoid signif-
icant divergence from the teacher for noise mitigation. Given that, the major
question is how to effectively estimate the distance/difference between G and O
for this consistency regularization. To this end, as presented in the introduction,
our intuition is to simultaneously consider the representations and the event-
containing likelihoods of the sentences in G and O for this distance function. To
implement this intuition, we first discuss how we compute the distance DS

G,O

between G and O for the student model S.
In particular, given the student network S, we first obtain a representation

vector hS for each sentence S in G ∪ O as done in the MI estimation above.
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Afterward, to obtain an event-containing likelihood score pS for S, we com-
pute the maximum of the probabilities for being an event trigger of the words
wi ∈ S: pS = maxi=1..N (PS(EVENT|S, i)) where PS(·|S, i) is the probability
distribution over the possible event labels for wi based on the student model S.
To facilitate the distance estimation for G and O, let Ro = [hS,o

1 , . . . , hS,o
n ] and

P o = [pS,o
1 , . . . , pS,o

n ] be the sets of representation vectors and event-containing
likelihood scores (respectively) for the sentences in O (n = |O|). Similarly, let

Rg = [hS,g
1 , . . . , hS,g

m ] and P g = [pS,g
1 , . . . , pS,g

m ] be the sets of representation vec-
tors and event-containing likelihood scores (respectively) for the sentences in G
(m = |G|). Consequently, to simultaneously exploit Ro, P o, Rg and P g for dis-
tance estimation, we seek to find an optimal alignment between sentences in G
and O such that two sentences with closest representations and event-containing
likelihoods have better chance to be aligned to each other. This problem can be
then solved naturally with optimal transport (OT) methods that enable the
computation of the optimal mapping between two probability distributions.

Formally, given the probability distributions p(x) and q(y) over the domains
X and Y, and the cost function C(x, y) : X × Y → R+ for mapping X to Y,
OT finds the optimal joint distribution π∗(x, y) (over X × Y) with marginals
p(x) and q(y), i.e., the cheapest transportation of p(x) to q(y), by solving the
following problem:

π
∗(x, y) = min

π∈Π(x,y)

∫
Y

∫
X

π(x, y)C(x, y)dxdy

s.t. x ∼ p(x) and y ∼ q(y),

(2)

where Π(x, y) is the set of all joint distributions with marginals p(x) and q(y).
Note that if the distributions p(x) and q(y) are discrete, the integrals in Equa-
tion 2 are replaced with a sum and the joint distribution π∗(x, y) is represented
by a matrix whose entry π(xi, yj) represents the probability of transforming
the data point xi to yj to convert the distribution p(x) to q(y). To this end,
our model defines the domains X and Y for OT via the representation spaces
of the sets Rg and Ro. As such, the cost function C(x, y) is defined by the
Euclidean distance between the representation vectors of the corresponding el-
ements, i.e., C(hS,g

i , hS,o
j ) = ‖hS,g

i − hS,o
j ‖. Also, the probability distributions

p(x) and q(y) are defined over the normalized likelihood scores P g and P o, i.e.,

p(hS,g
i ) = softmax (P g) and p(hS,o

i ) = softmax (P o). Based on these definitions,

the optimal transport π∗(hS,g
i , hS,o

j ), which is obtained by solving Equation 2,
could be used to compute the smallest transportation cost between G and O
(i.e., Wasserstein distance), serving as the distance function DS

G,O in our model:

DS
G,O = Σm

i=1Σ
n
j=1π

∗(hS,g
i , hS,o

j )‖hS,g
i − hS,o

j ‖.
Note that as solving the OT problem in Equation 2 is intractable, we employ

the entropy-based approximation of OT and solve it with the Sinkhorn algorithm
[30].

In the next step, we apply the same procedure obtain the distance DT
G,O be-

tween G for the teacher network. Finally, to realize the G-O distance consistency
between the student and the teacher, we introduce the difference Ldiff between
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DT
G,O and DS

G,O into the overall loss function:

Ldiff = |DT
G,O −D

S
G,O| (3)

Note that in the actual implementation, we only compute Ldiff for each mini-
batch and add it to the loss function to enable efficient solving of the OT opti-
mization.

Dynamic Sample Weighting: To further improve the representation learn-
ing of the student model for ODED, we seek to control the contribution of each
generated sample in G for the overall training loss. In particular, we weight each
generated sample in the loss function based on an estimated degree to which the
sample can provide new training signals for the original data O. In our model,
the weight for each synthetic sample is determined based on its diversity score
w.r.t. to other generated sentences in G and its novelty score w.r.t the original
data. As such, we dynamically computes the weights during the training process
where the weight and scores for each generated sample are updated immediately
after each epoch to better capture the progress of the model.

Accordingly, to compute diversity scores for synthetic samples, we first cluster
all generated sentences in G using their student-based representation vectors hS,g

i

from the BiLSTM encoder and K-mean clustering4. This produces K centroid
vectors cg = [cg1, . . . , c

g
K ] for K clusters Cg = [Cg

1 , . . . , C
g
K ] (respectively) in G.

Let k(i) be the cluster index of the i-the sentence Si ∈ G (1 ≤ k(i) ≤ K). The
diversity score sdivi for Si in our model is then computed based on the distance

between its representation hS,g
i and the corresponding centroid vector cg

k(i) (i.e.,

the farther Si is toward the center, the more it contributes to the diversity in
G): ai = ‖hS,g

i − cg
k(i)‖, s

div
i = eai/

∑
Sj∈C

g

k(i)
eaj .

In the next step, we aim to compute novelty scores for the generated sam-
ples in G via their distances toward the original data O (i.e., the farther Si is
toward O, the more novel it is for the training data). As such, we reuse the idea
of OT-based distance between G and O to estimate the novelty score for the
synthetic samples in G (i.e., based on both the representation vectors and the
event-containing likelihoods of sentences). In particular, to enable efficient OT
computation, we also first cluster the sentences in the original training dataset O
using their representation vectors hS,o

i ∈ Ro from BiLSTM and K-mean cluster-
ing. The outputs from this clustering involve K centroid vectors co = [co1, . . . , c

o
K ]

for the K clusters Co = [Co
1 , . . . , C

o
K ] (respectively) in O. Afterward, we attempt

to compute the optimal transport between the cluster sets Cg and Co for the
synthetic and original data whose results are leveraged to obtain novelty scores
for generated samples later.

To this end, we directly use the centroid vectors in cg and co as the represen-
tations for the clusters in Cg and Co, serving as the domains X and Y for OT.
Also, the event-containing likelihood score pti for the cluster Ct

i (t ∈ {g, o} to
indicate synthetic or original data, 1 ≤ i ≤ K) is estimated via the average of the

student-based likelihood scores pS,t
j of the sentences in Ct

i : p
t
i =

1
|Ct

i
|

∑
Sj∈Ct

i
pS,t
j .

4 K = 10 produces the best performance in our study.
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Given the representations and event-containing likelihood scores, we follow the
same described procedure to obtain the optimal transport π∗

c (c
g
i , c

o
j) between

the cluster sets Cg and Co (i.e., by solving Equation 2 and using the Euclidean
distance for the cost function C(x, y)). In the next step, we align each cluster
Cg

i in G to cluster Co
i∗ in O that has the highest probability in the optimal

transport, i.e., i∗ = argmaxj π
∗
c (c

g
i , c

o
j). The distance di between the cluster Cg

i

in G toward the original data O is then obtained via the distance between the
centroid vectors of Cg

i and Co
i∗ : bi = ‖cgi − coi∗‖, di = ebi/

∑
j=1..K ebj .

As such, the novelty score snovi for a generated sample Si ∈ G in our work
will be set directly to the distance of its corresponding cluster Cg

k(i) toward the

original data: snovi = dk(i).
Finally, to aggregate the diversity and novelty scores for each sentence Si ∈ G

to compute its weight scomb
i in the training loss, we set scomb

i = (1−α)snovi +αsdivi

and normalize it over the generated samples (α is a trade-off parameter). For
convenience, we consider the examples in the original dataO as having the weight
of 1. The final training loss function for the student network over an example
S ∈ G ∪O with the weight scomb is thus: L = scomb ∗Lpred+β ∗LMI + γ ∗Ldiff

where β and γ are the trade-off parameters.

3 Experiments

3.1 Datasets & Hyper-parameters

We use the following three ODED datasets to evaluate the models5:

– LitBank [33]: This dataset provides event annotation for 100 English lit-
erary texts. We use the same data split (train/dev/test) as [33] for fair
comparison.

– TimeBank [31]: This dataset annotates 183 English news articles with event
mentions and temporal relations. To make fair comparison with prior work
[22], we exclude event mentions in TimeBank that have not occurred (e.g.,
future, hypothetical or negated events) and apply the the same data split.

– SW100 [3]: This corpus presents event annotations for 100 documents in
10 different domains from Simple Wikipedia. The original data split in [3] is
inherited in our experiment.

In our experiments we use the small version of GPT-2 to generate data.
All the hyperparameters for the proposed model are selected based on the F1
scores on the development set of LitBank. The same hyper-parameters from this
fine-tuning are then applied for the other datasets for consistency. In the base
model, we use the BERTbase version, 200 dimensions in the hidden states of
the BiLSTM, and 2 layers for the feed-forward neural network with 200 hidden

5 Note that we do not use the ACE 2005 dataset [35] as it only focuses on a small set
of event types in the news domain, thus being not appropriate for our open-domain
setting of event detection.
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LitBank TimeBank SW100

BiLSTM-BaseO 73.4 81.9 85.3
BiLSTM-BaseG 75.9 80.0 83.8
BiLSTM-BaseO+G 74.0 82.3 84.3
Confidence-Filtering [2] 73.9 82.5 86.1
Novelty-Filtering [39] 74.9 81.4 86.8

BiLSTM+BERT* [33] 73.9 - -
GatedGCN* [15] 74.5 - -
BERT-A* [22] - 82.6 -
DS-BiLSTM* [3] - - 72.4

GPT-Augmented (proposed) 77.4 85.0 89.7

Table 1. Model performance (F1 scores) on the test data of the datasets. Rows with
* indicate results taken from the corresponding papers.

dimensions to predict events. The discriminator D of the MI component consists
of an one-layer feed-forward neural network with 200 hidden dimensions. The
trade-off parameters α, β and γ are set to 0.6, 0.1, and 0.05, respectively. The
learning rate is set to 0.3 for the Adam optimizer and the batch size of 50
is employed during training. Finally, note that we do not update the BERT
model for word embeddings in this work due to its better performance on the
development data of LitBank. We use a single GeForce RTX 2080 GPU with
11GB memory to run the models in this work. PyTorch 1.1 is used to implement
the models.

3.2 Baselines

We compare our model (called GPT-Augmented) with the following baselines:
• Base models: The baselines in this group all employ the base architecture

in Section 2.2. Three versions of this base model are possible, i.e., BiLSTM-

BaseO, BiLSTM-BaseG , and BiLSTM-BaseO+G , depending on whether it is
trained on the original training data O, the generated data G, or the combination
of O and G respectively.

• Noisy mitigation methods: We consider two recent methods that are pro-
posed to mitigate the noise from the GPT-generated data to train models: (i)
Confidence-Filtering: Inspired by LAMBADA [2], this baseline filters the gen-
erated data based on the confidence of the trained base model BiLSTM-BaseO
in predicting labels for the generated data. Specifically, BiLSTM-BaseO is first
employed to make predictions on the generated data. The synthetic sentences
in G are then sorted via the confidence of the model (i.e., the event-containing
likelihoods with the event probabilities from BiLSTM-BaseO). Only sentences
with a confidence above a tuned threshold are kept and combined with the orig-
inal data to retrain the base model; and (ii) Novelty-Filtering: Inspired by
[39], this baseline also filters the generated samples in G as Confidence-Filtering;
however, instead of using the confidence, it employs novelty scores. As such, the
novelty score for one generated sentence S ∈ G is obtained via the average of
the Euclidean distances between the representations of S and each sentence in
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the original training data O. Here, the representations of the examples are also
computed by the trained BiLSTM-BaseO model.

• State-of-the-art models: We also compare GPT-Augmented with the ex-
isting systems that report the state-of-the-art performance on each dataset.
Namely, on LitBank we compare with the BiLSTM+BERT model in [33]
and the recent GatedGCN model in [15]. On TimeBank, we compare with the
in-domain performance of the BERT-A model in [22] that takes an adversar-
ial domain adaptation approach. Finally, on SW100 dataset, we compare with
the DS-BiLSTM model in [3] that augments the training data with distant
supervision data.

3.3 Results

The performance (i.e., F1 scores) of the models on three datasets is shown in Ta-
ble 1. As can be seen, the proposed model significantly outperforms the baselines
(with p < 0.01) over all the three datasets. Specifically, compared to BiLSTM-
BaseO, GPT-Augmented improves F1 scores by at least 3%6. We attribute this
improvement to the new training signals from the GPT-generated data and
the effectiveness of the proposed techniques for noise mitigation and generated
sample weighting for ODED. Also, the necessity of the proposed knowledge con-
sistency enforcement for noise mitigation and sample weighting can be better
revealed by considering the baselines BiLSTM-BaseO+G , Confidence-Filtering,
and Novelty-Filtering that all exploit the generated data G, but considerably
under-perform the proposed model.

3.4 Ablation Study

This section studies the contribution of different components of the proposed
model. We analyze the performance of GPT-Augmented on the LitBank de-
velopment set when its two major components are removed or altered, i.e., (1)
Knowledge Consistency Enforcement (KCE) and (2) Dynamic Sample Weighting
(DSW).

Knowledge Consistency Enforcement: First, for KCE, we examine the fol-
lowing baselines:

(i) Full-MI: This model excludes the representation consistency based on MI
from GPT-Augmented;

(ii) Full-MI+Euclidean: This model replaces the MI-based loss LMI with
Euclidean loss in GPT-Augmented (i.e., ‖hS − hT ‖);

(iii) Full-OT: This model eliminates the OT-based loss LOT for data differ-
ence compatibility from GPT-Augmented;

(iv) Full-OTrep: This baseline still employs the OT-based loss LOT ; however,

instead of computing the cost function C(hS,g
i , hS,o

j ) based on representation

6 In the experiments, we learn that augmenting the models with GPT-generated data
is more helpful for recalls.
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Model P R F1

GPT-Augmented (Full) 78.9 82.0 80.4

Full-MI 74.1 84.6 79.1
Full-MI+Euclidean 74.4 84.4 79.1

Full-OT 74.0 84.4 78.9
Full-OTrep 75.9 82.6 79.1
Full-OTevent 76.1 79.8 77.9
Full-OT+Euclidean 76.1 81.8 78.9

Full-OT-MI 74.3 82.2 78.1

Table 2. Performance on the LitBank development set.

distances, this model uses a constant cost function, i.e., C(hS,g
i , hS,o

j ) = 1. This
baseline aims to show that sentence representations play an important role for
distance estimation between synthetic and original data for ODED;

(v) Full-OTevent: Instead of using event-containing likelihoods of sentences

to compute the distributions p(hS,g
i ) and p(hS,o

i ) in the OT-based loss for GPT-
Augmented, this method utilizes uniform distributions. The goal of this baseline
is to demonstrate that event-containing likelihoods of sentences are crucial for
the distance estimation between synthetic and original data for ODED;

(vi) Full-OT+Euclidean: This baseline completely replaces the OT loss Ldiff

with the Euclidean distance between the original data O and the generated data
G for data difference consistency in KCE, i.e., the distance DS

G,O for the student

network S is computed by: DS
G,O = 1

mn
Σm

i=1Σ
n
j=1‖h

S,g
i − hS,o

j ‖;
(vii) Full-OT-MI: This baseline completely removes the OT- and MT-based

loss; it excludes the KCE component and the teacher T .
Table 2 shows the performance of the baseline models for KCE. It is clear

from the table that both MI- and OT-based losses for KCE are important for
GPT-Augmented to achieve its best performance. Comparing GPT-Augmented
and Full-MI+Euclidean, we see that using MI to realize the representation-based
KCE is significantly better than its alternatives (i.e., via Euclidean distance) for
GPT-Augmented. Finally, comparing different methods to estimate the distance
between the generated and the original data for KCE (i.e., Full-OTrep, Full-
OTevent, and Full-OT+Euclidean), the OT-based approach in GPT-Augmented
clearly demonstrates its benefits with the highest performance. This testifies to
the importance of both sentence representations and event-containing likelihoods
for the computation of the distance between G and O for ODED.

Dynamic Sample Weighting: Second, for the DSW component, we study the
contribution of the proposed techniques for the sample weights with diversity and
novelty scores. To this end, we evaluate the following models:

(i) Full-Div: This baseline excludes the diversity score from the weight of each
generated sentence in the training loss of GPT-Augment, i.e., scomb

i = snovi .;
(ii) Full-Nov: This baseline excludes the novelty score snovi from GPT-Augmented,

i.e., scomb
i = sdivi .;
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Model P R F1

GPT-Augmented (Full) 78.9 82.0 80.4

Full-Div 78.1 80.4 79.2

Full-Nov 77.9 80.1 79.0
Full-Novrep 76.9 79.4 78.1
Full-Novevent 77.2 80.6 78.8

Full-Cluster 74.2 82.6 78.2
Full-Div-Nov 75.1 82.9 78.8

Table 3. Performance on the LitBank development set.

(iii) Full-Novrep: In the computation of novelty scores using OT, this baseline
replaces the cost function based on the centroid vectors with a constant function,
i.e., C(cgi , c

o
j) = 1.;

(iv) Full-Novevent: This model employs uniform distributions for the proba-
bility distributions in the OT-based computation for novelty scores (i.e., ignoring
the event-containing likelihoods).;

(v) Full-Cluster: This baseline aims to completely eliminate the data cluster-
ing in GPT-Augmented.;

(vi) Full-Div-Nov: This component entirely removes DSW, using the same
weight for all the samples, i.e., scomb

i = 1.
The performance of the baseline models for DSW are presented in Table

3. The Table shows that both novelty and diversity scores are important for
the best performance of GPT-Augmented. In addition, computing these scores
without clustering cannot reach the best performance, indicating the necessity
of clustering the data before computing the scores. Finally, the superiority of
GPT-Augmented over Full-Novrep and Full-Novevent, emphasizes the benefits of
leveraging both representations and event-containing likelihoods of data clusters
with OT to obtain the distance between original and GPT-generated data for
ODED.

3.5 Analysis

To further evaluate the novelty/similarity of the event mention patterns captured
in the generated data G w.r.t the original data O, we train the base model
in Section 2.2 only on the original data O (i.e., BiLSTM-BaseO) and directly
evaluate its performance on the generated data G. The precision, recall and F1
scores for this experiment using the LitBank dataset are 94.9%, 87.1% and 90.8%,
respectively. As such, the high precision of BiLSTM-BaseO on G shows that the
generated data is highly compatible with the original data. More importantly,
the lower recall indicates that the generated data does involve event mention
patterns that are novel for the original data. Therefore, training ODED models
on the combination of generated and original data could improve the models’
performance, as demonstrated in our experiments.

To understand the effect of the generated data size for GPT-Augmented,
Table 4 reports the performance of GPT-Augmented on the development data
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|G| P R F1

0.5 * |O+| 77.6 80.6 79.1
1.0 * |O+| 78.9 82.0 80.4
2.0 * |O+| 75.0 81.6 78.2
3.0 * |O+| 76.2 76.0 76.1

Table 4. The performance of GPT-Augmented on the LitBank dev set with different
sizes of the generated data G.

of LitBank when we vary the size of the generated data G. On the one hand, we
find that decreasing the size |G| of the generated data to half of positive samples
O+ in the original data O cannot fully benefit from the generated data from
GPT-2. On the other hand, increasing the size for G (i.e., to two or three times
larger than O+) could introduce more noises and hurt the model performance.

Table 6 presents some noiseless examples generated from GPT-2 while Table
5 shows some noisy sentences along with their categories in the generated data.

Error Sentence

Inconsistency I TRGs heard TRGe that he was very fond of women and I had a good time at the dinner table;
but in the mean time she TRGs told TRGe me in the end it was all about her!

Repetition “That’s my boy” TRGs said TRGe the little boy ”and that’s my boy”.

Meaninglessness He TRGs looked TRGe down at his watch and then at the clock in his shoes.

Missing Triggers He TRGs left TRGe London yesterday, at 2 P.M, and arrived at Paris two hours later;

Incorrect Triggers There has been no TRGs revolution TRGe in this country since 1960.

Table 5. Samples of noisy generated sentences for the LitBank dataset from GPT-2.
Event triggers are shown in boldface and surrounded with special tokens TRGs and
TRGe, generated by GPT-2. In the first example, i.e., “Inconsistency” error, the model
changes the pronoun from he to she in the first and second clause in the sentence. For
the error of “Missing Triggers”, GPT-2 fails to mark the word arrived as an event
trigger. Finally, in the example for the error of “Incorrect Triggers”, there is no event
trigger in the sentence and GPT-2 incorrectly marks “revolution” as an event trigger.

Dataset Sentence

LitBank I was excited to go with him, as we had TRGs met TRGe earlier before this.
LitBank We TRGs went TRGe out in groups and TRGs came TRGe after a long journey.

TimeBank Last year, Beijing companies TRGs proposed TRGe more TRGs discounts TRGe than western companies.
TimeBank Some experts TRGs anticipate TRGe that the long TRGs recession TRGe TRGs resulted TRGe in all absolute TRGs loss TRGe for all players.

SW100 Scientists have TRGs found TRGe that this plant is so small that no rat has been TRGs fed TRGe by it.
SW100 40 years ago, the British government TRGs entered TRGe into an TRGs agreement TRGe with all groups in TRGs rebellions TRGe.

Table 6. Samples of generated sentences for each dataset. Event triggers are shown in
boldface and surrounded with special tokens TRGs and TRGe, generated by GPT-2.
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4 Related Work

The major approaches for ED involve early feature-based models [1, 11, 17, 18, 20,
16, 21, 37] and recent deep learning models [5, 26, 43, 38, 27, 44, 14, 34, ?]. Open
domain event detection has attracted more attentions recently [3, 33, 22].

A challenge for ED in general and for ODED in particular is the scarcity of
large training datasets. As such, prior work has attempted to address this issue
via unsupervised [9, 40], semi-supervised [17, 10, 7], distantly supervised [23, 41,
3] or domain adaptation [22] models. In this work, we take a novel approach by
utilizing the pre-trained language model GPT-2 to generate new training data
for ODED.

Using GPT-2 to generate training data has been studied very recently for
other NLP tasks, including relation extraction [28], multi-label text classification
[42], commonsense reasoning [39], event influence prediction [19], knowledge base
completion [4], sentiment, intent and question classification [13, 2], and spoken
language understanding [29]. In order to deal with noisy generated data, these
approaches have only heuristically and statically filtered out noisy data. Unlike
such prior work, our model keeps all the generated data and introduce a novel
teacher-student framework to allow models learn with noisy data, featuring MI-
and OT-based KCE and DSW mechanisms.

5 Conclusion

We propose a novel approach to generate training data for ODED by fine-tuning
the pre-trained language model GPT-2. To deal with the noises in the generated
data, we propose a teacher-student framework in which the teacher model is
used to capture anchor knowledge (i.e., sentence representations and synthetic-
original data difference) to regularize the student model. We present novel mech-
anisms to encourage the knowledge consistency between the student and the
teacher based on MI and OT. We also introduce a dynamic method to weight
the generated sentences. In the future, we plan to apply the proposed method
to other related NLP tasks.
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