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Abstract

Event Detection (ED) aims to recognize men-

tions of events (i.e., event triggers) and their

types in text. Recently, several ED datasets

in various domains have been proposed. How-

ever, the major limitation of these resources is

the lack of enough training data for individual

event types which hinders the efficient train-

ing of data-hungry deep learning models. To

overcome this issue, we propose to exploit the

powerful pre-trained language model GPT-2

to generate training samples for ED. To pre-

vent the noises inevitable in automatically gen-

erated data from hampering training process,

we propose to exploit a teacher-student archi-

tecture in which the teacher is supposed to

learn anchor knowledge from the original data.

The student is then trained on combination

of the original and GPT-generated data while

being led by the anchor knowledge from the

teacher. Optimal transport is introduced to fa-

cilitate the anchor knowledge-based guidance

between the two networks. We evaluate the

proposed model on multiple ED benchmark

datasets, gaining consistent improvement and

establishing state-of-the-art results for ED.

1 Introduction

An important task of Information Extraction (IE)

involves Event Detection (ED) whose goal is to

recognize and classify words/phrases that evoke

events in text (i.e., event triggers). For instance,

in the sentence “The organization donated 2 mil-

lion dollars to humanitarian helps.”, ED systems

should recognize “donated” as an event trigger of

type Pay. We differentiate two subtasks in ED,

i.e., Event Identification (EI): a binary classifica-

tion problem to predict if a word in text is an event

trigger or not, and Event Classification (EC): a

multi-class classification problem to classify event

triggers according to predefined event types.

Several methods have been introduced for ED,

extending from feature-based models (Ahn, 2006;

Liao and Grishman, 2010a; Miwa et al., 2014) to

advanced deep learning methods (Nguyen and Gr-

ishman, 2015; Chen et al., 2015; Nguyen et al.,

2016c; Sha et al., 2018; Zhang et al., 2020b;

Nguyen et al., 2021). Although deep learning mod-

els have achieved substantial improvement, their

requirement of large training datasets together with

the small sizes of existing ED datasets constitutes a

major hurdle to build high-performing ED models.

Recently, there have been some efforts to enlarge

training data for ED models by exploiting unsu-

pervised (Huang et al., 2016; Yuan et al., 2018) or

distantly-supervised (Keith et al., 2017; Nguyen

and Nguyen, 2018; Araki and Mitamura, 2018)

techniques. The common strategy in these meth-

ods is to exploit unlabeled text data that are rich in

event mentions to aid the expansion of training data

for ED. In this work, we explore a novel approach

for training data expansion in ED by leveraging the

existing pre-trained language model GPT-2 (Rad-

ford et al., 2019) to automatically generate training

data for models. Motivated by the promising per-

formance of GPT models for text generation, we

expect our approach to produce effective data for

ED in different domains.

Specifically, we aim to fine-tune GPT-2 on ex-

isting training datasets so it can generate new sen-

tences annotated with event triggers and/or event

types, serving as additional training data for ED

models. One direction to achieve this idea is to ex-

plicitly mark event triggers along with their event

types in sentences of an existing ED dataset that

can be used to fine-tune the GPT model for new

data generation. However, one issue with this di-

rection is that in existing ED datasets, numbers of

examples for some rare event types might be small,

potentially leading to the poor tuning performance

of GPT and impairing the quality of generated ex-

amples for such rare events. In addition, large num-
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bers of event types in some ED datasets might make

it more challenging for the fine-tuning of GPT to

differentiate event types and produce high-quality

data. To this end, instead of directly generating

data for ED, we propose to use GPT-2 to only gen-

erate samples for the event identification task to

simplify the generation and achieve data with bet-

ter annotated labels (i.e., output sentences only are

only marked with positions of event triggers). As

such, to effectively leverage the generated EI data

to improve ED performance, we propose a multi-

task learning framework to train the ED models on

the combination of the generated EI data and the

original ED data. In particular, for every event trig-

ger candidate in a sentence, our framework seeks

to perform two tasks, i.e., EI to predict a binary

label for being an event trigger or not, and ED to

predict the event type (if any) evoked by the word

via a multi-class classification problem. An input

encoder is shared for both tasks that allow training

signals from both generated EI data and original

ED data to contribute to the representation learn-

ing in the encoder (i.e., transferring knowledge in

generated EI data to ED models).

Despite the simplification to EI for better anno-

tated labels of data, the generated sentences might

still involve noises due to the inherent nature of the

language generation, e.g., grammatically wrong

sentences, inconsistent information, or incorrect

event trigger annotations. As such, it is crucial to

introduce mechanisms to filter the noises in gener-

ated data to enable effective transfer learning from

generated EI data. To this end, prior works for GPT-

based data generation for other tasks has attempted

to directly remove noisy generated examples before

actual usage for model training via some heuris-

tic rules (Anaby-Tavor et al., 2020; Yang et al.,

2020). However, heuristic rules are brittle and re-

stricted in their coverage so they might overly filter

the generated data or incorrectly retain some noisy

generated samples. To address this issue, we pro-

pose to preserve all generated data for training and

devise methods to explicitly limit impacts of noisy

generated sentences in the models. In particular,

we expect the inclusion of generated EI data into

the training process for ED models might help to

shift the representations of the models to better

regions for ED. As such, we argue that this repre-

sentation transition should only occur at a reason-

able rate as drastic divergence of representations

due to the generated data might be associated with

noises in the data. Motivated by this intuition, we

propose a novel teacher-student framework for our

multi-task learning problem where the teacher is

trained on the original clean ED datasets to induce

anchor representation knowledge for data. The stu-

dent, on the other hand, will be trained on both

generated EI data and original ED data to accom-

plish transfer learning. Here, the anchor knowledge

from the teacher will be leveraged to guide the stu-

dent to prevent drastic divergence of representation

vectors for noisy information penalization. Conse-

quently, we propose a novel anchor information to

implement this idea, seeking to maintain the same

level of differences between the generated and orig-

inal data (in terms of representation vectors) for

both the teacher and the student (i.e., generated-vs-

original data difference as the anchor). At the core

of this techniques involves the computation of dis-

tance/difference between samples in generated and

original data. In this work, we envision two types

of information that models should consider when

computing such distances for our problem: (1) rep-

resentation vectors of the models for the examples,

and (2) event trigger likelihood scores of exam-

ples based on the models (i.e., two examples in the

generated and original data are more similar if they

both correspond to event triggers). As such, we pro-

pose to cast this distance computation problem of

generated and original data into an Optimal Trans-

port (OT) problem. OT is an established method

to compute the optimal transportation between two

data distributions based on the probability masses

of data points and their pair-wise distances, thus fa-

cilitating the integration of the two criteria of event

trigger likelihoods and representation vectors into

the distance computation between data point sets.

Extensive experiments and analysis reveal the

effectiveness of the proposed approach for ED in

different domains, establishing new state-of-the-

art performance on the ACE 2005, CySecED and

RAMS datasets.

2 Model

We formulate the task of Event Detection as a

word-level classification problem as in prior work

(Nguyen and Grishman, 2015; Ngo et al., 2020).

Formally, given the sentence S = [w1, w2, . . . , wn]
and the candidate trigger word wt, the goal is to pre-

dict the event type l from a pre-defined set of event

types L. Note that if the word wt is not a trigger

word, the gold event type is None. Our proposed
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approach for this task consist of two stages: (1)

Data Augmentation: to employ natural language

generation to augment existing training datasets for

ED, (2) Task Modeling: to propose a deep learning

model for ED, exploiting available training data.

2.1 Data Augmentation

As presented in the introduction, our motivation in

this work is to explore a novel approach for train-

ing data augmentation for ED based on the power-

ful pre-trained language model for text generation

GPT2. Our overall strategy involves using some

existing training dataset O for ED (i.e., original

data) to fine-tune GPT-2. The fine-tuned model is

then employed to generate a new labeled training

set G (i.e., synthetic data) that will be combined

with the original data O to train models for ED.

To simplify the training data generation task and

enhance the quality of the synthetic data, we seek to

generate data only for the subtask EI of ED where

synthesized sentences are annotated with positions

of their event triggers (i.e., event types for triggers

are not required for the generation to avoid the com-

plication with rare event types for fine-tuning). To

this end, we first enrich each sentence S ∈ O with

positions of event triggers that it contains to facili-

tate the GPT fine-tuning process. Formally, assume

that S = w1, w2, . . . , wn is a sentence of n words

with only one event trigger word located at wt, the

enriched sentence S′ for S would have the form:

S′ = [BOS,w1, . . . , TRGs, wt, TRGe, . . . , wn,

EOS] where TRGs and TRGe are special tokens

to mark the position of the event trigger, and BOS

and EOS are special tokens to identify the begin-

ning and the end of the sentence. Next, the GPT-2

model will be fine-tuned on the enriched sentences

S′ of O in an auto-regressive fashion (i.e., predict-

ing the next token in S′ given prior ones). Finally,

using the fine-tuned GPT-2, we generate a new

dataset G of |O| sentences (|G| = |O|) to achieve a

balanced size. Here, we ensure that only generated

sentences that contain the special tokens TRGs

and TRGe (i.e., involving event trigger words) are

added into G, allowing us to identify the candi-

date trigger word in our word-level classification

formulation for ED. As such, the combination A
of the synthetic data G and the original data O
(A = O ∪ G) will be leveraged to train our ED

model in the next step.

To assess the quality of the synthetic data, we

randomly select 200 sentences from G (generated

by the fine-tuned GPT-2 model over the popular

ACE 2005 training set for ED) and evaluate them

regarding grammatical soundness, meaningfulness,

and inclusion and correctness of annotated event

triggers (i.e., whether the words between the tokens

TRGs and TRGe evoke events or not). Among

the sampled set, we find that 17% of the sentences

contains at least one type of such errors.

2.2 Task Modeling

This section describes our model for ED to over-

come the noises in the generated data G for model

training. As discussed in the introduction, we em-

ploy the Teacher-Student framework with multi-

task learning to achieve this goal. In the proposed

framework, the teacher and student employs a base

deep learning model with the same architecture and

different parameters.

Base Model: Following the prior work (Wang

et al., 2019), our base model consists of the

BERTbase model to represent each word wi in the

input sentence S with a vector ei. Formally, the

input sentence [[CLS], w1, w2, . . . , wn, [SEP ]] is

fed into the BERTbase model and the hidden states

of the last layer of BERT are taken as the con-

textualized embeddings of the input words, i.e.,

E = [e1, e2, . . . , en]. Note that if wi contains more

than one word-piece, the average of its word-piece

embeddings is used for ei. In our experiments, we

find that fixing the BERTbase parameters achieve

higher performance. As such, to fine-tune the

contextualized embeddings E for ED, we employ

a Bi-directional Long Short-Term Memory (BiL-

STM) network to consumes E; its hidden states,

i.e., H = [h1, h2, . . . , hn], are then employed as

the final representations for the words in S. Fi-

nally, to create the final vector V for ED prediction,

the max-pooled representation of the sentence, i.e.,

h̄ = MAX POOL(h1, h2, . . . , hn), is concate-

nated with the representation of the trigger candi-

date, i.e., ht. V is consumed by a feed-forward net-

work, whose last layer has |L| neurons, followed by

a softmax layer to predict the distribution P (·|S, t)
over possible event types in L. To train the model,

we use negative log-likelihood as the loss function:

Lpred = − logP (l|S, t) where l is the gold label.

As the synthetic sentences in G only involve in-

formation about positions of event triggers (i.e., no

event types included), we cannot directly combine

G with O to train ED models with the loss Lpred.

To facilitate the integration of G into the training
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process, we introduce an auxiliary task of EI for the

multi-task learning in the training process, seeking

to predict the binary label laux for the trigger candi-

date wt in S, i.e., laux = 1 if wt is an event trigger.

To perform this auxiliary task, we employ another

feed-forward network, i.e., FFaux, which also con-

sumes the overall vector V as input. This feed-

forward network has one neuron with the sigmoid

activation function in the last layer to estimate the

event trigger likelihood score: P (laux = 1|S, t) =
FFaux(V ). Finally, to train the base model with

the auxiliary task, we exploit the binary cross-

entropy loss: Laux = −(laux log(FFaux(V )) +
(1− laux) log(1−FFaux(V ))). Note that the main

ED task and the auxiliary EI task are done jointly

in a single training process where the loss Lpred for

ED is computed only for the original data O. The

loss Laux, in contrast, will be obtained for both

original and synthetic data in A.

Knowledge Consistency: The generated data G is

not noise-free. As such, training the ED model on

A could lead to inferior performance. To address

this issue, as discussed in the introduction, we pro-

pose to first learn the anchor knowledge from the

original data O, then use that to lead the model

training on A to prevent drastic divergence from

the anchor knowledge (i.e., knowledge consistency

promotion), thus constraining the noises. Hence,

we propose a teacher-student network, in which

the teacher is first trained on O to learn the anchor

knowledge. The student network will be trained

on A afterward leveraging the consistency guid-

ance with the induced anchor knowledge from the

teacher. We will also use the student network as

the final model for our ED problem in this work.

In our framework, both teacher and student net-

works will be trained in the multi-task setting with

ED and EI tasks. In particular, the training losses

for both ED and EI will be computed based on

O for the teacher (the loss to train the teacher is:

Lpred + τLaux where τ is a trade-off parameter).

In contrast, the combined data A will be used to

compute the EI loss for the student while the ED

loss for the student can only be computed on the

original data O. As such, we propose to enforce

the knowledge consistency between the two net-

works for both the main task ED and the auxiliary

task EI during the training of the student model.

First, to achieve the knowledge consistency for

ED, we seek to minimize the KL divergence be-

tween the teacher-predicted label-probability distri-

bution and the student-predicted label-probability

distributions. Formally, for a sentence S ∈ O, the

label-probability distributions of the teacher and

the student, i.e., Pt(·|S, t) and Ps(·|S, t) respec-

tively, are employed to compute the KL-divergence

loss LKL = −Σl∈LPt(l|S, t) log(
Pt(l|S,t)
Ps(l|S,t)

). By de-

creasing the KL-divergence during the student’s

training, the model is encouraged to make simi-

lar predictions as the teacher for the same original

sentence, thereby preventing noises to mislead the

student. Note that different from traditional teacher-

student networks that employ KL to achieve knowl-

edge distillation on unlabelled data (Hinton et al.,

2015), the KL divergence in our model is leveraged

to enforce knowledge consistency to prevent noises

in labeled data automatically generated by GPT-2.

Second, for the auxiliary task EI, instead of en-

forcing the student-teacher knowledge consistency

via similarity predictions, we argue that it will be

more beneficial to leverage the difference between

the original data O and the generated data G as an

anchor knowledge to promote consistency. In par-

ticular, we expect that the student which is trained

on A, should discern the same difference between

G and O as the teacher which is trained only on

the original data O. Formally, during student train-

ing, for each mini-batch, the distances between the

original data and the generated data detected by the

teacher and the student are denoted by dTO,G and

dSO,G , respectively. To enforce the O-G distance

consistency between the two networks, the follow-

ing loss is added into the overall loss function:

Ldist =
|dT

O,G−dS
O,G |

|B| , where |B| is the mini-batch

size. The advantage of this novel knowledge consis-

tency enforcement compared to the KL-divergence

is that it explicitly exploits the different nature of

the original and generated data to facilitate the mit-

igation of noises in the generated data.

A remaining question for our proposed knowl-

edge consistency concerns how to assess the differ-

ence between the original and the generated data

from the perspective of the teacher, i.e., dTO,G , and

the student networks, i.e., dSO,G . In this section,

we will describe our method from the perspective

of the student (the same method is employed for

the teacher network). In particular, we define the

difference between the original and the generated

data as the cost of transforming O to G such that

for the transformed data the model will make the

same predictions as G. How can we compute the

cost of such transformation? To answer this ques-
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tion, we propose to employ Optimal Transport (OT)

which is an established method to find the efficient

transportation (i.e., transformation with the lowest

cost) of one probability distribution to another one.

Formally, given the probability distributions p(x)
and q(y) over the domains X and Y , and the cost

function C(x, y) : X ×Y → R+ for mapping X to

Y , OT finds the optimal joint distribution π∗(x, y)
(over X × Y) with marginals p(x) and q(y), i.e.,

the cheapest transportation from p(x) to q(y), by

solving the following problem:

π
∗(x, y) = min

π∈Π(x,y)

∫
Y

∫
X

π(x, y)C(x, y)dxdy

s.t. x ∼ p(x) and y ∼ q(y),

(1)

where Π(x, y) is the set of all joint distributions

with marginals p(x) and q(y). Note that if the

distributions p(x) and q(y) are discrete, the inte-

grals in Equation 1 are replaced with a sum and

the joint distribution π∗(x, y) is represented by

a matrix whose entry (x, y) represents the prob-

ability of transforming the data point x ∈ X to

y ∈ Y to convert the distribution p(x) to q(y). By

solving the problem in Equation 11, the cost of

transforming the discrete distribution p(x) to q(y)
(i.e., Wasserstein distance DistW ) is defined as:

DistW = Σx∈XΣy∈Yπ
∗(x, y)C(x, y).

In order to utilize OT to compute the transforma-

tion cost between O and G, i.e., dSO,G , we propose

to define the domain X and Y as the representa-

tion spaces of the sentences in O and G, respec-

tively, obtained from the student network. In par-

ticular, a data point x ∈ X represents a sentence

Xo ∈ O. Similarly, a data point y ∈ Y stands

for a sentence Yg ∈ G. To define the cost function

C(x, y) for OT, we compute the Euclidean distance

between the representation vectors of the sentences

Xo and Yg (obtained by max-pooling over repre-

sentations of their words): C(x, y) =
∥

∥h̄Xo − h̄Yg
∥

∥

where h̄Xo = MAX POOL(hXo,1, . . . , h
X
o,|Xo|

),

h̄Yg = MAX POOL(hYg,1, . . . , h
Y
g,|Yg |

), and hXo,i

and hYg,i are the representation vectors of the i-

th words of Xo and Yg, respectively, obtained

from the student’s BiLSTM. Also, to define the

discrete distribution p(x) for OT over X , we em-

ploy the event trigger likelihood ScoreXo for the

trigger candidate of each sentence Xo in X that

is returned by the feed-forward network FFSaux

1It is worth mentioning that this problem is intractable so
we solve its entropy-based approximation using the Sinkhorn
algorithm (Peyre and Cuturi, 2019).

for the auxiliary task EI in the student model,

i.e, ScoreXo = FFSaux(Xo). Afterward, we ap-

ply the softmax function over the scores of the

original sentences in the current mini-batch to ob-

tain p(x), i.e., p(x) = Softmax(ScoreXo ). Sim-

ilarly, the discrete distribution q(y) is defined as

q(y) = Softmax(ScoreYg ). To this end, by solv-

ing the OT problem in Equation 1 and obtaining

the efficient transport plan π∗(x, y) using this setup,

we can obtain the distance dSO,G . In the same way,

the distance dTO,G can be computed using the rep-

resentations and event trigger likelihoods from the

teacher network. Note that in this way, we can inte-

grate both representation vectors of sentences and

event trigger likelihoods into the distance computa-

tion between data as motivated in the introduction.

Finally, to train the student model, the following

combined loss function is used in our framework:

L = Lpred + αLaux + βLKL + γLdist, where α,

β, and γ are the trade-off parameters.

3 Experiments

3.1 Datasets, Baselines & Hyper-Parameters

To evaluate the effectiveness of the proposed model,

called the GPT-based data augmentation model for

ED with OT (GPTEDOT), we conduct experiments

on the following ED datasets:

ACE 2005 (Walker et al., 2006): This dataset

annotates 599 documents for 33 event types that

cover different text domains(e.g., news, weblog or

conversation documents). We use the same pre-

processing script and data split as prior works (Lai

et al., 2020c; Tong et al., 2020b) to achieve fair

comparisons. In particular, the data split involves

529/30/40 articles for train/dev/test sets respec-

tively. For this dataset, we compare our model

with prior state-of-the-art models reported in the

recent works (Lai et al., 2020c; Tong et al., 2020b),

including BERT-based models such as DMBERT,

AD-DMBERT (Wang et al., 2019), DRMM, EKD

(Tong et al., 2020b), and GatedGCN (Lai et al.,

2020c).

CySecED (Man Duc Trong et al., 2020): This

dataset provides 8,014 event triggers for 30 event

types from 300 articles of the cybersecurity do-

main (i.e., cybersecurity events). We follow the the

same pre-processing and data split as the original

work (Man Duc Trong et al., 2020) with 240/30/30

documents for the train/dev/test sets. To be consis-

tent with other experiments and facilitate the data

generation based on GPT-2, the experiments on Cy-
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SecED are conducted at the sentence level where

inputs for models involve sentences. As such, we

employ the state-of-the-art sentence-level models

reported in (Man Duc Trong et al., 2020), i.e., DM-

BERT (Wang et al., 2019), BERT-ED (Yang et al.,

2019), as the baselines for CySecED.

RAMS (Ebner et al., 2020): This dataset anno-

tates 9,124 event triggers for 38 event types. We

use the official data split with 3,194, 399, and 400

documents for training, development, and testing

respectively for RAMS. We also perform ED at the

sentence level in this dataset. For the baselines, we

utilize recent state-of-the-art BERT-based models

for ED, i.e., DMBERT (Wang et al., 2019) and

GatedGCN (Lai et al., 2020c). For a fair compar-

ison, the performance of such baseline models is

obtained via their official implementations from

the original papers that are fine-tuned for RAMS.

For each dataset, we use its training and devel-

opment data to fine-tune the GPT-2 model. We

tune the hyperparameters for the proposed teacher-

student architecture using a random search. All

the hyperparameters are selected based on the F1

scores on the development set of the ACE 2005

dataset. The same hyper-parameters from this fine-

tuning are then applied for other datasets for con-

sistency. In our model we use the small version

of GPT-2 to generate data. In the base model, we

use BERTbase, 300 dimensions in the hidden states

of BiLSTM and 2 layers of feed-forward neural

networks with 200 hidden dimensions to predict

events. The trade-off parameters τ , α, β and γ are

set to 0.1, 0.1, 0.05, and 0.08, respectively. The

learning rate is set to 0.3 for the Adam optimizer

and the batch size of 50 are employed during train-

ing. Finally, note that we do not update the BERT

model for word embeddings in this work due to

its better performance on the development data of

ACE 2005.

3.2 Results

Results of experiments on the ACE 2005 test set are

shown in Table 1. The most important observation

is that the proposed model GPTEDOT significantly

outperforms all the baseline models (p < 0.01),

thus showing the benefits of GPT-generated data

and the teacher-student framework with knowledge

consistency for ED in this work. In particular,

compared to the BERT-based models that lever-

age data augmentation, i.e., AD-DMBERT (Wang

et al., 2019) with semi-supervised and adversarial

Model P R F1

CNN (Nguyen and Grishman, 2015) 71.8 66.4 69.0

DMCNN (Chen et al., 2015) 75.6 63.6 69.1

DLRNN (Duan et al., 2017) 77.2 64.9 70.5

ANN-S2 (Liu et al., 2017) 78.0 66.3 71.7

GMLATT (Liu et al., 2018) 78.9 66.9 72.4

GCN-ED (Nguyen and Grishman, 2018) 77.9 68.8 73.1

Lu’s DISTILL (Lu et al., 2019) 76.3 71.9 74.0

TS-DISTILL (Liu et al., 2019) 76.8 72.9 74.8

DMBERT* (Wang et al., 2019) 77.6 71.8 74.6

AD-DMBERT* (Wang et al., 2019) 77.9 72.5 75.1

DRMM* (Tong et al., 2020a) 77.9 74.8 76.3

GatedGCN* (Lai et al., 2020c) 78.8 76.3 77.6

EKD* (Tong et al., 2020b) 79.1 78.0 78.6

GPTEDOT* 82.3 76.3 79.2

Table 1: Performance on the on ACE 2005 test set. *

indicates models that use BERT for the encoding.

Model P R F1

CNN (Nguyen and Grishman, 2015) 51.8 36.7 43.0

DMCNN (Chen et al., 2015) 47.5 38.7 43.2

GCN-ED (Nguyen and Grishman, 2018) 46.3 51.8 48.9

MOGANED (Yan et al., 2019) 53.7 59.6 56.5

CyberLSTM (Satyapanich et al., 2020) 42.5 29.0 34.5

DMBERT (Wang et al., 2019) 59.4 51.3 55.1

BERT-ED (Man Duc Trong et al., 2020) 60.2 56.1 58.1

GPTEDOT 65.9 64.1 65.0

Table 2: Comparison with state-of-the-art models on

CySecED. All the models in this table use BERT.

Model P R F1

DMBERT (Wang et al., 2019) 62.6 44.0 51.7

GatedGCN (Lai et al., 2020c) 66.5 59.0 62.5

GPTEDOT 55.5 78.6 65.1

Table 3: Model’s performance on RAMS. All the mod-

els use BERT in this table.

learning, DRMM (Tong et al., 2020a) with image-

enhanced models, and EKD (Tong et al., 2020b)

with external open-domain event triggers, the better

performance of GPTEDOT highlights the advan-

tages of GPT-2 to generate data for ED models.

Results of experiments on the CySecED test set

are presented in Table 2. This table reveals that

the teacher-student architecture GPTEDOT signif-

icantly improves the performance over previous

state-of-the-art models for ED in cybersecurity do-

main. This is important as it shows that the pro-

posed model is effective in different domains. In

addition, our results also suggest that GPT-2 can

be employed to generate effective data for ED in

domains where data annotation for ED requires

extensive domain expertise and expensive cost to

obtain such as the cybersecurity events. Moreover,

the higher margin of improvement for GPTEDOT

on CySecED compared to the those on the ACE
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2005 dataset suggests the necessity of using more

training data for ED in technical domains.

Finally, results of experiments on the RAMS

test set are reported in Table 3. Consistent with

our experiments on ACE 2005 and CySecED,

our proposed model achieve significantly higher

performance than existing state-of-the-art models

(p < 0.01), thus further confirming the advantages

of GPTEDOT for ED.

3.3 Ablation Study

This ablation study evaluates the effectiveness of

different components in GPTEDOT for ED. First,

for the importance of the generated data G from

GPT-2 and the teacher-student architecture to mit-

igate noises, we examine the following baselines:

(1) BaseO: The baseline is the base model trained

only on the original data O, thus being equivalent to

the teacher model and not using the student model;

and (2) BaseA: This baseline trains the base model

on the combination of the original and generated

data, i.e., A, using the multi-learning setting (i.e.,

the teacher model is excluded).

Second, for the multi-task learning design in the

teacher network, we explore the following ablated

models: (3) Teacher−A: This baseline removes the

auxiliary task EI in the teacher from GPTEDOT. As

such, the OT-based knowledge consistency for EI is

also eliminated; (4) Teacher−M : In this model, the

main task ED is utilize to train the teacher, so the

corresponding KL-based knowledge consistency

for ED is also removed.

Third, for the design of the knowledge consis-

tency losses in the student network, we evaluate

the following baselines: (5) Student−OT : This ab-

lated model eliminates the OT-based knowledge

consistency loss for the auxiliary task EI in the stu-

dent’s training of GPTEDOT (the auxiliary task is

still employed for the teacher and the student); (6)

Student−KL: For this model, the KL-based knowl-

edge consistency for the main task ED is ignored

in the student’s training; (7) Student+OT : In this

baseline, we use OT for the knowledge consistency

on both the main and the auxiliary tasks. Here,

for the main task ED, the cost function C(x, y)
for OT is still obtained via the Euclidean distances

between representation vectors while the distribu-

tions p(x) and p(y) are based on the maximum

probabilities of the label-probability distributions

Ps(.|Xo, to) and Ps(Yg, tg) for the ED task; and

(8) Student+KL: This baseline employs the KL di-

Model P R F1

GPTEDOT (full) 82.4 75.0 78.5

BaseO 78.2 73.7 75.9

BaseA 75.8 73.9 74.9

Teacher−A 76.9 78.1 77.5

Teacher−M 75.8 77.9 76.9

Student−OT 75.4 79.3 77.3

Student−KL 76.8 77.3 77.0

Student+OT 76.1 76.6 76.4

Student+KL 77.1 76.7 76.9

OT−Rep 76.8 77.3 77.0

OT−Score 78.0 77.1 77.6

Table 4: Ablation study on the ACE 2005 dev set.

vergence between models’ predicted distributions

to enforce the teacher-student consistency for both

the main task and the auxiliary task. To this end, for

the auxiliary task EI, we convert the final activation

of FFaux into a distribution with two data points

(i.e., [FFaux(X), 1 − FFaux(X)]) to compute the

KL divergence between the teacher and the student.

Finally, for the importance of Euclidean dis-

tances and event trigger likelihoods in the OT-

based distance between O and G for knowledge

consistency in EI, we investigate two baselines:

(9) OT−Rep: Here, to compute OT, we use con-

stant cost between every pair of sentences, i.e.,

C(x, y) = 1 (i.e., ignoring representation-based

distances); and (10) OT−Score: This model uses

uniform distributions for p(x) and q(y) to compute

the OT (i.e., ignoring event trigger likelihoods).

We report the performance of the models (on

the ACE 2005 development set) for the ablation

study in Table 4. There are several observations

from this table. First, the generated data G and

the teacher-student architecture are necessary for

GPTEDOT to achieve the highest performance. In

particular, comparing with BaseO, the better perfor-

mance of GPTEDOT indicates the benefits of the

GPT-generated data. Moreover, the better perfor-

mance of BaseO over BaseA reveals that the simple

combination of the synthetic and original data with-

out any effective method to mitigate noises might

be harmful. Second, the lower performance of

Teacher−A and Teacher−M shows that both the aux-

iliary and the main task (i.e., multi-task learning)

in the teacher are integral to produce the best per-

formance. Third, the choice of methods to promote

knowledge consistency is important and the pro-

posed combination of KL and OT for the ED and

EI tasks (respectively) are necessary. In particular,

removing or replacing each of them with the other

one (i.e., Student+OT and Student+KL) would de-
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Dataset Sentence

ACE 2005 I was totally shocked by the court’s decision to agree with Sam Sloan after he TRGs sued TRGe his children.

CySecED According to the last update by the company, the following techniques are used to protect against such TRGs malware TRGe.

RAMS The Russian officials TRGs vowed TRGe to bomb the ISIS bases after the last week’s TRGs attack TRGe.

Table 5: Generated sentences by GPT-2 for different datasets. Event triggers are shown in boldface that are

surrounded by the special tokens TRGs and TRGe generated by GPT-2.

Error Type Sentence Example Proportion

Incompleteness A federal judge on Monday settled TRGs charges TRGe against seven members of 18%

Repetition Do you think the TRGs attack TRGe will happen to you or do you think the TRGs attack TRGe will happen to you? 15%

Inconsistency this morning we were watching the news and heard the news about the tragic TRGs death TRGe of a young boy and her mother in Iraq. 12%

Missing Labels Aaron Tramailer’s story is the story of a woman who was forced into suicide. 29%

Incorrect Labels The SEC is a very good place to TRGs hide TRGe money. 26%

Table 6: Samples of noisy generated sentences for the ACE 2005 dataset from GPT-2. Event triggers are shown in

boldface and the special tokens TRGs and TRGe are generated by GPT-2.

|G| P R F1

0.5 * |O| 80.3 72.4 76.2

1.0 * |O| 82.4 75.0 78.5

2.0 * |O| 81.3 73.3 77.1

3.0 * |O| 78.4 71.8 75.0

Table 7: The performance of GPTEDOT on the ACE

2005 dev set with different sizes of the generated data

G.

crease the performance significantly. Finally, in the

proposed consistency method based on OT for EI,

it is beneficial to employ both representation-level

distances (i.e., OT−Rep) and models’ predictions

for event trigger likelihoods (i.e., OT−Score) as re-

moving any of them hurts the performance.

3.4 Analysis

To provide more insights into the quality of the

synthetic data G, we provide samples of sentences

that are generated by the fine-tuned GPT-2 model

on each dataset in Table 5. This table illustrates that

the generated sentences also belong to the domains

of the original data (i.e., the cybersecurity domain).

As such, combining synthetic data with original

data is promising for improving ED performance

as demonstrated in our experiments.

As discussed earlier, the generated data G is not

free of noise. In order to better understand the

types of errors existing in generated sentences, we

manually assess 200 sentences randomly selected

from the set G generated by the fine-tuned GPT-2

model on the ACE 2005 dataset. We categorize the

errors into five types and provide their proportions

along with example for each error type in Table

6. This table shows that the majority of errors are

due to missing labels (i.e., no special tokens TRGs

and TRGe are generated) or incorrect labels (i.e.,

marked words are not event triggers of interested

types) generated by the language model.

Finally, to study the importance of the size of

the generated data to augment training set for ED,

we conduct an experiment in which different num-

bers of generated samples in G (for the ACE 2005

dataset) are combined with the original data O.

The results are shown in Table 7. According to

this table, the highest performance of the proposed

model is achieved when the numbers of the gener-

ated and original data are equal. More specifically,

decreasing the number of generated samples po-

tentially limits the benefits of data augmentation.

On the other hand, increasing the size of generated

data might introduces extensive noises and become

harmful to the ED models.

4 Related Work

Early methods for ED have employed feature-

based techniques (Ahn, 2006; Ji and Grishman,

2008; Patwardhan and Riloff, 2009; Liao and Grish-

man, 2010a,b; Hong et al., 2011; McClosky et al.,

2011; Li et al., 2013; Miwa et al., 2014; Yang and

Mitchell, 2016). Later, advanced deep learning

methods (Nguyen and Grishman, 2015; Chen et al.,

2015; Nguyen et al., 2016a,b; Sha et al., 2018;

Zhang et al., 2019; Yang et al., 2019; Nguyen and

Nguyen, 2019; Zhang et al., 2020b) have been ap-

plied for ED. One challenge for ED research is the

limited size of existing datasets that hinder the train-

ing of effective models. Prior works have attempted

to address this issue via unsupervised (Huang et al.,

2016; Yuan et al., 2018), semi-supervised (Liao

and Grishman, 2010a; Huang and Riloff, 2012;

Ferguson et al., 2018), distantly supervised (Keith

et al., 2017; Nguyen and Nguyen, 2018; Zeng et al.,

2017; Araki and Mitamura, 2018), and few/zero-

shot (Huang et al., 2018; Lai et al., 2020a,b) learn-
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ing. In this work, we propose a novel method to

augment training data for ED by exploiting the

powerful language model GPT-2 to automatically

generate new samples.

Leveraging GPT-2 for augmenting training data

has also been studied for other NLP tasks recently

(e.g., relation extraction, commonsense reasoning)

(Papanikolaou and Pierleoni, 2020; Zhang et al.,

2020a; Yang et al., 2020; Madaan et al., 2020;

Bosselut et al., 2019; Kumar et al., 2020; Anaby-

Tavor et al., 2020; Peng et al., 2020). However,

none of those works has explored GPT-2 for ED. In

addition, existing methods only resort to heuristics

to filter out noisy samples generated by GPT-2. In

contrast, we propose a novel differentiable method

capable of preventing noises from diverging repre-

sentation vectors of the models for ED.

5 Conclusion

We propose a novel method for augmenting train-

ing data for ED using the samples generated by

the language model GPT-2. To avoid noises in the

generated data, we propose a novel teacher-student

architecture in a multi-task learning framework.

We introduce a mechanism for knowledge consis-

tency enforcement to mitigate noises from gener-

ated data based on optimal transport. Experiments

on various ED benchmark datasets demonstrate the

effectiveness of the proposed method.
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